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RESEARCH

Comparative genome analysis of plant 
ascomycete fungal pathogens with different 
lifestyles reveals distinctive virulence strategies
Yansu Wang1,2, Jie Wu3, Jiacheng Yan3, Ming Guo4, Lei Xu1, Liping Hou5* and Quan Zou2,6* 

Abstract 

Background: Pathogens have evolved diverse lifestyles and adopted pivotal new roles in both natural ecosystems 
and human environments. However, the molecular mechanisms underlying their adaptation to new lifestyles are 
obscure. Comparative genomics was adopted to determine distinct strategies of plant ascomycete fungal pathogens 
with different lifestyles and to elucidate their distinctive virulence strategies.

Results: We found that plant ascomycete biotrophs exhibited lower gene gain and loss events and loss of CAZyme-
encoding genes involved in plant cell wall degradation and biosynthesis gene clusters for the production of second-
ary metabolites in the genome. Comparison with the candidate effectome detected distinctive variations between 
plant biotrophic pathogens and other groups (including human, necrotrophic and hemibiotrophic pathogens). The 
results revealed the biotroph-specific and lifestyle-conserved candidate effector families. These data have been con-
figured in web-based genome browser applications for public display (http:// lab. malab. cn/ soft/ PFPG). This resource 
allows researchers to profile the genome, proteome, secretome and effectome of plant fungal pathogens.

Conclusions: Our findings demonstrated different genome evolution strategies of plant fungal pathogens with dif-
ferent lifestyles and explored their lifestyle-conserved and specific candidate effectors. It will provide a new basis for 
discovering the novel effectors and their pathogenic mechanisms.

Keywords: Plant fungal pathogens, Carbohydrate-active enzymes, Secondary metabolites, Effector proteins, Gene 
gain and loss
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Background
Plant pathogens with different lifestyles utilize distinct 
strategies to interact with their host plants. Necrotrophs 
such as the white mold fungus Sclerotinia sclerotiorum 
and the gray mold fungus Botrytis cinerea often secrete 
enzymes and toxins to kill their hosts and reproduce in 
dead tissue [1], while biotrophs such as powdery mildew 
fungi (e.g., Blumeria graminis) establish haustoria and 

take up nutrients within living host cells [2]. Hemibi-
otrophs such as Magnaporthe oryzae first adopt a 
biotrophic growth phase and later change into a necro-
trophic infection phase [3]. The plastic genome structure 
of fungal species could help them evolve distinct sets of 
genes to successfully complete their infection lifestyle 
[4–6]. In the variable genome compartment, gene gain 
and loss events reflect high adaptation within patho-
genic life histories [7, 8]. Effector genes are often located 
in genomic compartments with high mutation and/or 
recombination rates, such as repeat-rich regions, near 
telomeres, this promotes genes lose, gain, or mutation, 
and are among the most rapidly evolving genes in path-
ogen populations [9]. Even the birth-and-death model 
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of an effector gene was proposed by Fouché, et  al. [10], 
whether plant pathogens virulence is associations with 
their different lifestyles and how does   evolution change 
the diversity of effector proteins among these species is 
poorly understood.

Successful plant pathogens have to overcome physi-
cal barriers, suppress or manipulate the plant immune 
system, and retrieve nutrients from host tissues when 
infecting host plants for pathogenicity [11]. The plant cell 
wall is an important physical barrier that serves as the 
first line of plant defense that plant pathogens encounter 
during infection and is composed of basic carbohydrate 
ingredients, including cellulose, hemicellulose, pectin 
and lignin. Plant pathogens produce carbohydrate-active 
enzymes (CAZymes) that play a pivotal role in breaching 
the frontline of plant defense [12]. Important members 
of the CAZyme family are cell wall degrading enzymes 
(CWDEs), including glycolside hydrolases (GHs), poly-
saccharide lyases (PLs) and carbohydrate esterases (CEs), 
that cleave or modify oligo- and polysaccharides as well 
as other glycoconjugates and are involved in complex 
carbohydrate metabolism [13]. Filamentous fungi also 
produce a wide repertoire of bioactive secondary metab-
olites. Many secondary metabolites act as pathogenic-
ity factors and have detrimental impacts on host health. 
For example, trichothecenes produced by Fusarium 
spp., T-toxin polyketides produced by Cochliobolus het-
erostrophus and AM-toxin cyclic peptides by Alternaria 
alternata are clearly involved in pathogenicity [14, 15]. 
Many observations found that fungi have evolved differ-
ent CAZyme and secondary metabolite production strat-
egies to adapt their own lifestyle [16–18]. Well known 
functions of melanin are protecting spores or mycelium 
against external environment, such as desiccation, oxy-
gen and UV. It is also required for appressorium forma-
tion of M. grisea and allows the fungus invades the plant 
tissue [19].

Plant pathogens secrete diverse groups of effector pro-
teins to gain virulence advantages. One major role of 
effectors is to suppress plant immunity and aid infection 
for pathogenicity and successful establishment of differ-
ent lifestyles [20–22]. Most effectors have N-terminal 
signal sequences for secretion, and this feature helps pre-
dict the entire inventory of secreted proteins [23–26]. 
The other trait of effector proteins is that they are rich in 
cysteine (greater than 2 %), which would help in the for-
mation of stabilizing disulfide bridges [23]. A proportion 
of effectors perform multifarious functions, such as host 
cell wall degradation, act as inhibitors of host defensive 
enzymes (e.g., proteases) or affect defense signaling path-
ways (e.g., salicylic acid biosynthesis) [27]. They function 
either in the plant extracellular space (apoplast) or inside 
plant cells after translocation from the pathogen [28]. 

Despite their key functions as immunity suppressors, 
effectors can be recognized by the plant surveillance sys-
tem, leading to effector-trigger immunity (ETI) in a man-
ner highly specific to resistant (R) proteins [29, 30].

Many known plant pathogens are mostly distributed in 
four classes in Ascomycota. These phytopathogenic fungi 
have diverse survival strategies and a high level of ecolog-
ical diversity [31]. To uncover lifestyle-specific features of 
effector proteins, we employed a comparative genomic 
method to analyze 17 selected plant fungal pathogens 
of Ascomycota, all causing important crop diseases, 
including 2 biotrophs, 6 necrotrophs, and 9 hemibio-
trophs (Tables S1 and S2). Two human pathogens and 
three biotrophs from Basidiomycota were included for 
comparison. We focus on the following two aspects: (i) 
genome structure and evolution characteristics among 
pathogens with different lifestyles and (ii) whether there 
are differences in the effector genetic diversity of these 
plant pathogens. The identification and analyses of the 
repertoire of effector variants is a prerequisite to under-
stand pathogen-plant interactions and will provide 
important insights into the different infection strategies 
of pathogens.

Results
Lower gene gain and loss events occurred in ascomycete 
plant biotrophs
The genome sizes of the 22 genomes ranged between 
19.7 and 124.5  Mb (Table S1). The number of protein 
sequences ranged from 6,532 to 27,347 (Table  1). The 
ascomycete biotrophs (e.g., B. graminis and Golovino-
myces cichoracearum) have relatively smaller pro-
teomes than those of other species (Table  1). A total of 
16,036 protein families were identified in 22 species, 
among which the number of families expanded and con-
tracted. The two ascomycete biotrophs, B. graminis and 
G. cichoracearum, harbor a relatively low number of 
expanded and contracted families (Fig.  1 and Table S3), 
implying a slow rate of gene gain and loss in their evo-
lution. Although both species live a hemibiotrophic life-
style, Fusarium oxysporum and Ceratocystis fimbriata 
were in sharp contrast to all species tested. F. oxysporum 
had the most rapidly expanded families (1,222), while C. 
fimbriata contained the largest number of rapidly con-
tracted families (243), indicating that they had under-
gone significant gene gains or losses in their genomes 
(Fig.  1 and Table S3). Even though both F. oxysporum 
and F. graminearum belong to the genus Fusarium, F. 
oxysporum revealed obvious gene family expansion 
(Fig.  1) because of its broad host adaptation and differ-
ent reproductive strategies. Ma, et al. [32] discovered that 
F. oxysporum (15 chromosomes) harbors a larger genome 
assembly than F. graminearum (4 chromosomes), and the 
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Table 1 Number of proteins in the proteome, secretome and effectome for each fungus

 S: Secretome; P: Proteome; E: Effectome

Phylum Fungus Proteome Secretome S/P (%) Effectome E/P (%)

Ascomycota Aspergillus fumigatus 9630 798 8.29 74 0.77

Botrytis cinerea 13,703 1226 8.95 94 0.69

Blumeria graminis 6835 665 9.73 229 3.35

Ceratocystis fimbriata 7266 566 7.79 60 0.83

Colletotrichum gloeosporioides 15,071 2015 13.37 353 2.34

Fusarium graminearum 13,313 1263 9.49 223 1.68

Fusarium oxysporum 27,347 1800 6.58 337 1.23

Golovinomyces cichoracearum 6532 373 5.71 54 0.83

Gaeumannomyces tritici 14,650 1465 10.00 262 1.79

Histoplasma capsulatum 9313 344 3.69 48 0.52

Leptosphaeria maculans 12,469 1033 8.28 176 1.41

Magnaporthe oryzae 12,989 1727 13.30 422 3.25

Parastagonospora nodorum 15,994 1348 8.43 249 1.56

Pyrenophora seminiperda 8698 620 7.13 86 0.99

Pyrenophora teres 13,126 1102 8.40 181 1.38

Sclerotinia sclerotiorum 14,490 850 5.87 79 0.55

Verticillium dahlia 10,535 1086 10.31 129 1.22

Venturia inaequalis 13,741 1754 12.76 486 3.54

Zymoseptoria tritici 10,963 912 8.32 189 1.72

Basidiomycota Puccinia graminis 15,979 1892 11.84 618 3.87

Melampsora larici-populina 16,372 1781 10.88 562 3.43

Ustilago maydis 6782 600 8.85 88 1.30

Fig. 1 Phylogenetic relationship of pathogens and gene family size changes among these species. The tree was constructed by RAxML based on 
single-copy gene families present in the fungal pathogens examined. The colored strips represent different lifestyles of fungi. The circles represent 
the numbers of expanded and contracted families or gain and loss genes of each fungus. The threshold for being defined as rapidly evolving 
families is set to 0.01
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lineage-specific (LS) genomic regions in F. oxysporum 
account for more than one-quarter of the genome and 
are rich in transposons and genes with distinct evolu-
tionary profiles but related to pathogenicity, indicative of 
horizontal acquisition.

Lower number of CWDE gene homologs in plant biotrophs
CAZymes play critical roles in the degradation of the 
plant cell wall. The CE, GH, and PL superfamilies are also 
known as cell wall degrading enzymes (CWDEs) due to 
their role in the disintegration of the plant cell wall by 
bacterial and fungal pathogens [13]. To better understand 
the frequency and distribution of CAZyme-coding genes 
in the genome of each lifestyle, we detected the pres-
ence of CAZyme-coding genes using a homology-based 
approach. We identified lower numbers of three types 
of CWDEs (GHs, PLs and CEs) in plant biotrophs than 
in necrotrophs and hemibiotrophs (Fig. 2 and Table S4), 
consistent with previous studies showing that a lower 
proportion of CWDEs allows biotrophic organisms to 
better adapt live plant tissue and avoid plant cell death 
[16, 21, 33]. A highly complex set of CWDE homologs in 
the genomes of plant hemibiotrophic and necrotrophic 

pathogens indicates their significant roles in pathogenic-
ity by being involved in the breakdown of the plant cell 
wall. However, the human biotrophic pathogen A. fumig-
atus displayed a distinct pattern with plant biotrophs 
that had higher CWDE gene numbers (Fig. 2 and Table 
S4). The enzymes for auxiliary activities (AAs) and car-
bohydrate-binding modules (CBMs) were also reduced 
in plant biotrophs. These noncatalytic proteins could 
increase the affinity of enzymes to substrates. Glycosyl-
transferases (GTs) involved in the biosynthesis of oli-
gosaccharides, polysaccharides, and glycoconjugates 
are more similar to hemibiotrophic and necrotrophic 
pathogens.

Loss of secondary metabolite biosynthesis genes in plant 
biotrophs
Secondary metabolites (SMs) are low-molecular-
weight compounds with a significant ecological, sym-
biotic or pathogenic role. SM biosynthetic pathways 
that produce polyketides, nonribosomal peptides 
(NRPs), ribosomal peptides, terpenes and hybrid 
metabolites are the most prevalent. Biosynthetic gene 
clusters (BGCs) are responsible for the production of 

Fig. 2 Numbers of CAZyme-encoding genes and secondary metabolite biosynthetic gene clusters in each fungus. The colored strips represent 
different lifestyles of fungi. The heatmap indicates the number of genes encoding CAZymes involved in GH, GT, PL, AA and CBM activity. The 
numbers were normalized with the “scale” function in the R “base” package. The circles denote the number of each biosynthetic gene cluster (BGC) 
type, including nonribosomal peptides (NRPs), polyketides, and terpenes
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these small molecules. To investigate the presence and 
diversity of BGCs involved in specialized metabolism 
pathways, the fungal genomes were processed by per-
forming antiSMASH analyses. Plant biotrophs possess 
a contracted array of nonribosomal peptide, polyke-
tide, and terpene biosynthetic gene clusters, imply-
ing that they have a weaker capacity to produce these 
secondary metabolites than necrotrophs and hemibio-
trophs (Fig. 2), consistent with biotrophs being able to 
keep their host alive and take nutrients from it, while 
necrotrophs need to produce more diverse second-
ary metabolites to maintain generally broader host 
ranges than biotrophs [34, 35]. Human pathogens, 
H. capsulatum and ascomycete plant biotrophs have 
lower numbers of NRPs (4 gene clusters), polyketides 
(1 gene cluster), and terpenes (4 gene clusters), while 
A. fumigatus has more than several times (8 NRPs, 
10 polyketides, 6 terpenes) that of H. capsulatum 
(Table S5), which is inconsistent with plant ascomy-
cete fungal pathogens. Although there was a discrep-
ancy in NRP numbers with Syme, et al. [36], both our 
results and theirs reflected that NRPs were overrepre-
sented in P. teres compared to other ascomycete fun-
gal genomes. The antiSMASH analysis also revealed 
that the ascomycete genome formed a larger comple-
ment of secondary metabolite gene clusters than the 
basidiomycetes examined in this study even the strains 
from basidiomycetes harbor larger genome (Fig. 2), the 
results are similar to a previous report [17].

Plant biotrophs contain distinctive secretomes 
and effectomes
The predicted secretome and effectome varied in terms of 
the number of proteins among 22 genomes. The number 
of predicted secreted proteins ranged from 344 to 2015, 
or 3.69–13.37 % of their respective proteomes, while the 
number of predicted effectors ranged from 48 to 618, 
accounting for 0.52–3.87 % of the proteome, respec-
tively (Table 1). We clustered 1902 orthologous families 
for secreted proteins and 388 orthologous families for 
effectors across all species using OrthoFinder. Biotrophs 
were distinctively separated from the other groups in the 
secretome and effector with principal coordinate analy-
sis (PCoA) (Fig. 3; ANOSIM: P= 0.001 and 0.01, respec-
tively), while hemibiotrophic and necrotrophic pathogens 
apparently showed an aggregated distribution pattern 
(Fig.  3; ANOSIM: P > 0.1), which indicated the genetic 
diversity variations of effector and secreted proteins in 
different lifestyles.

To further probe the possible mechanism that causes 
the distribution pattern of effectors between biotrophs 
and other organisms, we determined the biotroph-
specific and core candidate effector families. Some 
biotroph-specific candidate effectors were found to 
be species-specific and often lacked homologs (Table 
S6). They were annotated to exhibit diverse func-
tions (Table S7). Although no common effectors were 
detected among species, as illustrated by the flower 
plot (Fig.  4  A), we defined 7 core effector families 

Fig. 3 PCoA plots of the secretome (A) and effectome (B) based on the weighted UniFrac distance metric. Af, Aspergillus fumigatus; Bc, Botrytis 
cinerea; Bg, Blumeria graminis; Cf, Ceratocystis fimbriata; Cg, Colletotrichum gloeosporioides; Fg, Fusarium graminearum; Fo, Fusarium oxysporum; Gc, 
Golovinomyces cichoracearum; Gt, Gaeumannomyces tritici; Hc, Histoplasma capsulatum; Lm, Leptosphaeria maculans; Mo, Magnaporthe oryzae; Pn, 
Parastagonospora nodorum; Ps, Pyrenophora seminiperda; Pt, Pyrenophora teres; Ss, Sclerotinia sclerotiorum; Vd, Verticillium dahlia; Vi, Venturia inaequalis; 
Zt, Zymoseptoria tritici; Pg, Puccinia graminis; Mlp, Melampsora larici-populina ; Um, Ustilago maydis 
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from the overlapping sets among different lifestyles 
(Fig.  4B). Of these, five effector families were anno-
tated as cutinase (OG0000001), endo-1,4-beta-xylanase 
(OG0000005), FK506-binding protein (OG0000020), 
cysteine-rich secretory protein (OG0000037) and 
endosomal P24B protein (OG0000039) (Fig. S1 and 
Table S8). The domains they contained included cuti-
nase (PF01083.22), Glyco_hydro_11 (PF00457.17), 
FKBP_C (PF00254.28), CAP (PF00188.26) and EMP24_
GP25L (PF01105.24) (Table  2 and Fig. S2). One of the 
remaining two core effector families contains proteins 
with unknown function (DUF3455; OG0000043), while 
the other (OG0000019) is excluded from our analysis 
due to the lack of observed protein domains.

Establishment of the genome database of plant fungal 
pathogens
To make our data easily available to the research com-
munity, we developed a genome database for plant fun-
gal pathogens and encourage researchers to use these 
resources (http:// lab. malab. cn/ soft/ PFPG). Currently, 
online resources provide genomic and protein sequences 
for our data only, but they could be integrated in the 
future with additional genomic or transcriptomic data 
from other plant fungal pathogens. The genome hub 
we built offers a suite of bioinformatics tools to explore, 
analyze, and interpret these data. For example, we set up 
sequence search web services that allow users to search 
their sequence of interest, perform BLAST similarity 

Fig. 4 Flower plot (A) and Venn diagram (B) illustrating core and specific gene families of the effectome among each species or lifestyle. Flower 
plots showing no overlapping effectors were detected between species. The number in the flower plot represents the total effector gene family of 
each species. The number in the Venn diagram indicates the core or specific gene family of each lifestyle

Table 2 Pfam domain annotations of core effector families

Target name Sequence number Domain accession Descriptions

Cutinase 43 PF01083.22 Cutinase (OG0000001)

Glyco_hydro_11 22 PF00457.17 Glycosyl hydrolases family 11 (OG0000005)

FKBP_C 14 PF00254.28 FKBP-type peptidyl-prolyl cis-trans isomerase (OG0000020)

CAP 10 PF00188.26 Cysteine-rich secretory protein family (OG0000037)

EMP24_GP25L 10 PF01105.24 emp24/gp25L/p24 family/GOLD (OG0000039)

DUF3455 9 PF11937.8 Protein of unknown function (DUF3455) (OG0000043)

Homeobox_KN 2 PF05920.11 Homeobox KN domain

DUF2990 1 PF11693.8 Protein of unknown function (DUF2990)

Others 13 No annotation information

http://lab.malab.cn/soft/PFPG
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searches to compare sequences against the genomic and 
protein sequence database and utilize the genome brows-
ing tool for visualization of the genomic data. Compared 
to other plant pathogenic fungi genome database, such as 
FungiDB (https:// fungi db. org), our database has accumu-
lated and stored sequences of the secretome and effec-
tome of plant fungal pathogens. The goal of the website 
is to establish a user-friendly platform for phytopatholo-
gists to extract and summarize plant fungal pathogen 
information intuitively from multiple data sources and to 
explore the novel virulence factors.

Discussion
The plasticity of the genetic profile allows biotrophic, 
necrotrophic and hemibiotrophic lifestyles to form evo-
lutionarily stable life history traits within fungi. Expan-
sion and contraction of gene families is important to 
pathogen and host coevolution [37, 38]. Our results sug-
gested that all selected pathogens have experienced gene 
family expansion and contraction, even though two asco-
mycete biotrophs showed slow gain and loss rates. Com-
pared with biotrophs, necrotrophs and hemibiotrophs 
experienced relatively obvious turnover of genes as well 
as intensive dependence on the changes of host-life-state. 
Host-adapted lifestyles range from mutualistic symbiosis 
to pathogenic states, the millions of years of co-evolu-
tion has resulted a complex molecular dialogue between 
organisms [39]. Gain and loss of genomic islands can 
lead to rapid lifestyle transitions in plant-associated 
Pseudomonas [40]. Cuscuta australis also experienced 
remarkably high levels of gene contraction to adapt their 
parasitic lifestyle [38]. Hence, understanding of the co-
evolutionary process in the arms race between plant pat-
tern recognition receptors and pathogen effectors will be 
an important goal of future research.

Moreover, our study showed that plant biotrophs carry 
a lower number of CAZyme-encoding genes associated 
with plant cell wall degradation and apparently undergo 
a convergent loss of secondary metabolic gene clusters 
to trade off their sustainable parasitism. Spanu, et al. [41] 
discovered powdery mildew fungi that adapt to their 
specific biotrophy by increasing retrotransposons and 
reducing the number of enzymes involved in primary and 
secondary metabolism, carbohydrate-active enzymes, 
and transporters. Similarly, in comparison with hemibio-
trophic Phytophthora species, Baxter, et al. [42] explored 
the oomycete Hyaloperonospora arabidopsidis (Hpa), 
an obligate biotroph, and reduced some genes encoding 
host-targeted, degradative enzymes and genes required 
for the synthesis of arachidonic acid and polyamine oxi-
dases. Profiles derived from whole-genomic analysis also 
revealed that necrotrophic pathogens harbored an exten-
sive set of CAZymes and secondary metabolic enzymes 

compared to biotrophic pathogens [35, 43]. All of these 
results demonstrated that biotrophs have evolved specific 
genetic features to accommodate their infection and sur-
vival strategy.

To address how variations in effectors have an impact 
on the interaction between hosts and pathogens, we 
investigated the genetic diversity of effector repertoires 
from different lifestyles. The diversity distribution analy-
sis of effectors indicated clear separation of biotrophs 
from the other lifestyle groups (Fig.  3), consistent with 
biotrophs preferentially harboring distinct suites of effec-
tors that have specific functions in biotrophic pathogen-
esis [41]. Moreover, a set of core effector families from 
pathogens with different lifestyles was observed in our 
study, which suggests that most pathogens defeat plant 
immunity with core conserved effectors. Even genome 
database-integrated sequences and annotations for doz-
ens of fungi species have been established [44], most of 
them neglected effector candidate repertoire for plant 
pathogenic fungi. The genome database we established 
is complementary for the most devastating fungal plant 
pathogens, it allows researchers to compare the func-
tional repertoire in the species used in this study and 
uncover novel effectors and their pathogenic mechanism.

Conclusions
In this study, we presented a comparative genomic analy-
sis of ascomycete plant pathogens and revealed genome 
variations among pathogenic fungi with different life-
styles. Plant ascomycete biotrophs appear to have very 
similar genomic characteristics, including much lower 
content in expanded or contracted gene families, genes 
coding for CAZymes, and enzymes participating in sec-
ondary metabolite synthesis. Their effector repertoire 
diversity shows remarkable differences relative to necro-
trophs, hemibiotrophs and human pathogens. Although 
expanding the population genomics of plant pathogens 
offers a powerful approach to analyze whole-genome 
features and predict extensive effector gene repertoires, 
experimental verification of gene function in biologi-
cal processes and effectors in virulence is still needed. 
Moreover, the variations of pathogen virulence in space 
and time are driven mainly by plant-pathogen co-evolu-
tionary dynamics. Further research is in progress to try 
to understand more about virulence effectors evolution 
in plant immune system network.

Methods
Genome data collection
The fungi selected are among the most economically 
important groups of pathogens of native and cultivated 
plants. The members include the barley pathogens B. 
graminis f. sp. hordei and Pyrenophora teres f. teres, the 

https://fungidb.org


Page 8 of 11Wang et al. BMC Genomics           (2022) 23:34 

wheat pathogens F. graminearum, Gaeumannomyces 
tritici, Parastagonospora nodorum, Zymoseptoria tritici 
and Puccinia graminis f. sp. tritici, the hemibiotrophic 
rice and wheat pathogen M. oryzae, the biotrophic maize 
pathogen Ustilago maydis, generalized economic crops 
and grass pathogens, and two human pathogens, Asper-
gillus fumigatus and Histoplasma capsulatum (Table 
S2). Genomes for all fungi were collected from the NCBI 
Assembly database (for assembly accessions, see Table 
S1) [45]. Three species of B. graminis, Colletotrichum 
gloeosporioides and P. teres f. teres lack annotation infor-
mation, and their genome assemblies were each anno-
tated using the MAKER Annotation Pipeline (http:// 
gmod. org/ wiki/ MAKER_ Tutor ial) [46]. We detected and 
masked the repeats and transposable elements based on 
the algorithms GeneMark-ES [47] and SNAP [48] and 
obtained conceptually translated protein. Protein infor-
mation of the closest homology for each sequence was 
retrieved from UniProt based on the best BLAST hit 
(maximum e-value of  1e−5). HMMER was performed to 
identify Pfam domains against the Pfam protein database 
[49].

Phylogenomic analyses
These twenty-two genomes were subjected to phylog-
enomic analyses. The gene families with only one gene 
per species were identified by OrthoFinder [50]. A total 
of 531 single-copy gene families were produced (https:// 
github. com/ Wangys- prog/ Fungal_ effec tor_ prote ins/ 
tree/ main/ Single_ Copy_ Ortho logue_ Seque nces). For 
these families, we performed multiple sequence align-
ment and maximum likelihood (ML) tree estimation. 
Sequence alignment was performed in MAFFT [51] and 
HAlign [52, 53] with default settings. TrimAl was used 
to trim the alignment to eliminate poorly aligned regions 
[54]. The species tree was estimated in RAxML using the 
standard algorithm [55]. Visualization of the tree was 
performed with iTOL [56].

Divergence date estimation
For divergence time evaluation for the genome-based 
tree, phylogeny was calibrated in r8s with the penalized-
likelihood algorithm, and the smoothing parameter value 
was set to 1 through cross-validation [57]. Three calibra-
tion points were fixed in the molecular clock analysis. 
Node 1 was fixed to 635 Mya for the age estimates of 
Dikarya [16]. Node 2 was constrained to 500 - 582 Mya 
for the divergence of Basidiomycota [16, 58]. Node 3 was 
constrained to 207-339 Mya [59].

Evolution of gene family sizes
The computational tool CAFE was used to analyze 
the gene families that have experienced expansion or 

contraction [60]. The program can estimate the evolu-
tion of gene family sizes over a phylogeny based on the 
stochastic birth and death model assuming that gene 
gain and loss are equally probable. The expansion or 
contraction events of gene families were estimated by 
the comparisons of family size differences between the 
most recent common ancestor (MRCA) and each of the 
current species with a significant P-value of 0.01. If the 
significance of gene family expansion in each branch was 
also less than 0.01 (P-value), these families were regarded 
as rapidly evolving families. The sequence count table of 
protein families from OrthoFinder and the ultrametric 
tree from r8s were used in the analyses.

CAZymes annotation
The hmmscan program from the HMMER software 
package [61] was used to annotate the CAZyme domain 
by comparing query protein sequences to the dbCAN 
CAZyme domain HMM database (http:// bcb. unl. edu/ 
dbCAN2/ downl oad/ Datab ases/) [62]. The dbCAN2 meta 
server grouped CAZyme functional modules into six 
classes: glycosyl transferases (GTs), glycoside hydrolases 
(GHs), polysaccharide lyases (PLs), carbohydrate ester-
ases (CEs), enzymes for auxiliary activities (AAs) and 
carbohydrate-binding modules (CBMs) [63].

Prediction of gene clusters for biosynthesis of specialized 
metabolites
Biosynthetic gene clusters (BGCs) for secondary metab-
olites were analyzed using antiSMASH, which applies a 
rule-based cluster detection approach to identify 45 dif-
ferent types of secondary metabolite biosynthetic path-
ways via their core biosynthetic enzymes. The 45 BGC 
classes were condensed into five major groups: nonribo-
somal peptide synthetase (NRPs), polyketide, ribosomally 
synthesized and posttranslationally modified peptides 
(RiPP), and terpenes [64].

Prediction of the secretome and effectome
The SignalP 4.0 server was used initially to predict pro-
teins with a signal peptide [65]. The TMHMM server 
was used to screen for predicted proteins without a pre-
dicted transmembrane domain (TMHMM server ver-
sion 2.0; http:// www. cbs. dtu. dk/ servi ces/ TMHMM/). 
The putative effector proteins were predicted by Effec-
torP 2.0. The class probability threshold for the Effec-
torP classifier is set at 0.55 [66]. Secreted and effector 
protein sequences were clustered into orthologous fam-
ilies using MCL. Representative protein sequences were 
randomly selected from each family and used to calcu-
late phylogenetic distance. The distance was visualized 
by principal coordinate plots using the “pcoa” func-
tion of R. ANOSIM analysis was used to statistically 

http://gmod.org/wiki/MAKER_Tutorial
http://gmod.org/wiki/MAKER_Tutorial
https://github.com/Wangys-prog/Fungal_effector_proteins/tree/main/Single_Copy_Orthologue_Sequences
https://github.com/Wangys-prog/Fungal_effector_proteins/tree/main/Single_Copy_Orthologue_Sequences
https://github.com/Wangys-prog/Fungal_effector_proteins/tree/main/Single_Copy_Orthologue_Sequences
http://bcb.unl.edu/dbCAN2/download/Databases/
http://bcb.unl.edu/dbCAN2/download/Databases/
http://www.cbs.dtu.dk/services/TMHMM/
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test whether there was a significant difference among 
groups [67]. The core and specific families were illus-
trated by Venn diagram and flower plot using VennDia-
gram and the plotrix package of R [68, 69].

Genome database establishment
The web server was built using Drupal (http:// www. 
drupal. org/), which is an open source platform that 
allows users to design robust and flexible websites. The 
framework and basic functionality of Drupal is writ-
ten by PHP, and it supports many extensions, such as 
PHP, MySQL. Tripal provides other functions to extend 
the content of Drupal, such as genomic data loaders 
and data storage. Furthermore, Tripal also offers some 
extensions that support loading and visualization of 
BLAST and popular genome browsing tools, such as 
JBrowse [70].
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