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Friedel oscillation is a well-known wave phenomenon which represents the oscillatory response of elec-
tron waves to imperfection. By utilizing the pseudospin-momentum locking in gapless graphene, two recent
experiments demonstrate the measurement of the topological Berry phase by corresponding to the unique
number of wavefront dislocations in Friedel oscillations. Here, we study the Friedel oscillations in gapped
graphene, in which the pseudospin-momentum locking is broken. Unusually, the wavefront dislocations do
occur like that in gapless graphene, which requires immediate verification in the current experimental condition.
The number of wavefront dislocations is ascribed to the invariant pseudospin winding number in gapped and
gapless graphene. This study deepens the understanding of the correspondence between topological quantity and
wavefront dislocations in Friedel oscillations and implies the possibility to observe the wavefront dislocations of
Friedel oscillations in intrinsic gapped two-dimensional materials, e.g., transition metal dichalcogenides.

DOI: 10.1103/PhysRevB.103.L161407

Since the seminal discovery of graphene [1], two-
dimensional materials have attracted wide interest because
of their novel physics and great potential applications [2].
Usually, two-dimensional materials have high mobility, in
which the quasiparticles move ballistically and exhibit uncon-
ventional quantum tunneling and interference [3–8] . One can
intentionally add one or two impurities to form the impurity-
design system; this kind of system is charming because it is
easily handled theoretically and experimentally, and then it
can be regarded as the model system for the exploration of
ballistic physics [9]. Experimentally, scanning tunneling mi-
croscopy (STM) is a proper tool for an impurity-design system
[10]. More interesting, the dimensions of two-dimensional
materials are very unique. On the one hand, the bare sur-
face properties of two-dimensional materials are also the bulk
properties, in contrast to three-dimensional materials. On the
other hand, different from the one-dimensional materials, two-
dimensional materials with two-dimensional parameter space
are enough to evolve the global topological quantity [11].
Therefore, a surface-sensitive STM measurement is promising
to explore the topological physics of impurity-design two-
dimensional materials.

Friedel oscillations (FOs) are the quantum interference
of electronic wave scattering by the imperfection in crys-
talline host materials [12]. Recently, STM was demonstrated
experimentally to measure the topological Berry phase π
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of monolayer graphene by counting two wavefront disloca-
tions in FOs, which are induced by the intentional hydrogen
adatom [13]. One subsequent experiment shows that for bi-
layer graphene FOs can exhibit four, two, or zero wavefront
dislocations explained by the 2π Berry phase, the specific
sublattice positions of the single impurity, and the position of
the STM tip [14]. The electronic Berry phase as the intrinsic
nature of the wave functions is defined in momentum space,
which is responsible for many exotic electronic dynamics such
as the index shift of the quantum Hall effect in monolayer
graphene [15,16] and bilayer graphene [17], Klein tunneling
[3,4], and the weak antilocalization [18]. Probing the Berry
phase usually requires the magnetic field [4,15,16,19]. These
two experiments not only do not need external magnetic
field but also realize the measurement of the Berry phase in
real space. However, the two experiments both focus on the
gapless cases for graphene and emphasize the relation be-
tween the Berry phase and the wavefront dislocation number,
leaving the influence of the gap opening on the wavefront
dislocations unexplored. Presented in the experimental studies
in Refs. [13,14], the pseudospin winding number and the
Berry phase are equivalent (inequivalent) in gapless (gapped)
graphene, which attracts us to explore the effect of the gap
opening on the interference pattern of FOs.

A gap opening in graphene occurs in various different
ways, with the substrate coupling being a typical example
[20]. Most experiments and devices are performed on the
substrate-supported graphene, in which lattice mismatch in-
duced inversion symmetry breaking makes the Berry phase
an unquantized multiple of π [21]. As a result, the gap open-
ing should challenge the established correspondence relation
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FIG. 1. Schematic measurement of electronic density oscillation
by STM. (a) In the real-space atomic structure of graphene, there is
a single-atom vacancy (red dot) on one sublattice site; by scanning
the STM tip (blue dot) one can probe the vacancy-induced density
oscillations which are contributed by the intravalley and intervalley
scatterings. Focusing on the intervalley scattering, we plot the corre-
sponding physical process; that is, the STM tip emits the electron
waves in one valley K, as shown by the propagator G(K, 0, r),
leading to scattering by the vacancy back to the STM tip through
the other valley K′, as shown by the propagator G(K′, r, 0). When
the STM tip is shifted around the vacancy in real space as shown by
the blue arrow along the circle, the contributing momentum states to
the propagator change their momentum around K and K′, as shown
in (c). (b) The Brillouin zone used to define K and K′. (c) Intervalley
scattering (green double arrow) in momentum space. The contribut-
ing momentum states in each valley are parallel to r and are denoted
by using the same arrows in (a).

between the Berry phase and the wavefront dislocation num-
ber in previous experiments [13,14]. In this study, we study the
FOs in gapped graphene. Compared to the gapless graphene,
gapped graphene does not have pseudospin-momentum lock-
ing, which may prohibit the occurrence of the characteristic
interference structure (namely, wavefront dislocations) in FOs
following the intuitive picture, as suggested by the seminal
work [13]. But the wavefront dislocations in FOs do emerge.
Here, we explain the origin of wavefront dislocations by the
invariant pseudospin winding number in gapped and gapless
graphene, which can be regarded as an updated correspon-
dence relation compatible with previous experiments [13,14].
The wavefront dislocations in FOs of gapped graphene can
be verified in the present experimental conditions, and this
study helps deepen the understanding of topological physics
reflected in the FOs of the impurity-design system.

Figure 1 gives the schematic measurement of the impurity-
induced electronic density oscillation of monolayer graphene
by STM. The present experimental technology allows one to
intentionally introduce a single-atom vacancy on an arbitrary
sublattice site of graphene [22], e.g., on sublattice A, as shown
by the red dot in Fig. 1(a). Corresponding to the introduction
of the single vacancy, FOs occur and lead to the change in
the space-resolved and energy-resolved local density of states
(LDOS) δρ(r,ε) [23,24]:

δρ(r,ε) = − 1

π
Im[TrδG(r, r,ε)], (1)

where δG = G − G0 represents the change in the total
Green’s function (GF) or propagator G incorporating the ef-
fect of the vacancy relevant to the bare propagator G0 of the
host system [i.e., graphene in Fig. 1(a)] and has the form

δG(r2, r1,ε) = G0(r2, 0,ε)TG0(0, r1, ε). (2)

Here, the T -matrix approach is used to describe the effect of
a vacancy whose potential is simulated by V0δ(r), and the T
matrix is [25]

T(ε) = V[1 −
∫

d2kG0(k,ε)V]−1. (3)

In the T matrix, V usually is a matrix, and its form depends on
the specific position of the vacancy; for example, in Fig. 1(a)
(for the other vacancy configuration see the Supplemental
Material [26]), it is

V =
[
V0 0

0 0

]
(4)

using the sublattice basis of {A, B}. For graphene, there are
two Dirac valleys in the Brillouin zone [8] [see Fig. 1(b)], K =
( 2π

3 , 2π

3
√

3
) and K′ = ( 2π

3 ,− 2π

3
√

3
); then δρ(r,ε) are contributed

by the intravalley and intervalley scatterings. In graphene,
the intravalley scattering contribution to δρ(r,ε) has been
well understood through many theoretical [23,25,27–37] and
experimental [22,38–41] efforts, while the intervalley scat-
tering contribution has attracted attention very recently due
to its underlying topological nature [13,14,42]. δρ(r,ε) is
measured easily by STM. FOs of δρ(r,ε) are dominated by
the backscattering events along the constant-energy contour
[43,44]. Focusing on the intervalley scattering, the corre-
sponding physical process of Eq. (2) is shown in Fig. 1(a);
that is, the STM tip emits the electron waves from one val-
ley K, as shown by the propagator G0(K, 0, r,ε), leading to
scattering by the vacancy back to the STM tip through the
other valley, K′, as shown by the propagator G0(K′, r, 0,ε).
Of course, the conjugate process also exists; that is, the emis-
sion (scattering waves) are from the K′ (K) valley. Here,
G0(K/K′, 0, r,ε) is the matrix element of the 2×2 matrix
G0 and is associated with the valley momentum index K/K′

for the clear description of intervalley scattering. Then, the
arguments of G0 are increased from (r2, r1, ε) to (K/K′,
r2, r1, ε), while the position arguments can be abbreviated
through r = r2 − r1 in the uniform graphene as used below.
When the STM tip is shifted around the vacancy in real space,
as shown in Fig. 1(a), the contributing momentum states to
the propagator change their momentum around K and K′, as
shown in Fig. 1(c). As a result, the Berry phase defined in
momentum space is measured by STM in real space, and the
key is the pseudospin-momentum locking [13]. In contrast, we
will show that the pseudospin winding number instead of the
Berry phase is measured by STM in gapped graphene without
pseudospin-momentum locking.

The physics is essentially the same for gapped mono-
layer and bilayer graphene, described below using the gapped
monolayer as an example; the relevant results for gapped
bilayer graphene are given in the Supplemental Material [26].
The Hamiltonian of gapped monolayer graphene is H0 =
vF (ησxkx − σyky) + �σz. H0 is expressed in the sublattice
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FIG. 2. Friedel oscillation pattern around a single-atom vacancy at the origin. Intervalley scattering contribution to density oscillations
δρA(r,ε) and δρB(r,ε) on sublattice A (left panel) and on sublattice B (middle panel), respectively. And the sum δρA(r,ε) + δρB(r,ε) as the
total electronic density modulation (right panel). Following Ref. [13], the energy is integrated over energy up to Fermi energy. Here, Fermi
level ε = 0.11t0 � 0.4 eV, � = 0.017t0 � 50 meV, and the color scale is normalized by a numerical factor C×10−3.

basis of {A, B}; then σx,y,z is the Pauli matrix acting on the
pseudospin space. ±� is the staggered potential on sublattices
A and B, which originates from the inversion symmetry break-
ing, e.g., from the proximity substrate [20,45]. And η = ±1
is the valley index for two inequivalent valleys in graphene,
vF = 3/2a0t0, with a0 being the carbon-carbon bond length
and t0 being the nearest-neighbor hopping energy, where a0

(t0) is used as the length (energy) unit in our convention
[8]. The energy spectrum and the spinor wave function are,
respectively,

Eξ (k) = ξvF

√
δ2 + k2 (5)

and

ψξ,k = 1√
1 + k2/(εξ + δ)2

[
1

ηkx−iky

εξ +δ

]
, (6)

where the reduced quantities are defined as δ = �/νF , εξ =
Eξ /vF , with ξ = ±1 for the conduction and valence bands.
The GF in momentum space is defined as G0(k,ε) ≡ (z −
H0)−1, and it is

G0(k,ε) = 1

z2 − �2 − ν2
F k2

[
z + � ηvF keiηθk

ηvF ke−iηθk z − �

]
. (7)

Here, z = ε + i0+, with 0+ for the retarded properties of GF,
and the Fermi level ε is assumed to be in the conduction
band for brevity. Performing the Fourier transformation to the
momentum space GF, we express the real-space GF [46] as
G(0)(K, r,ε) = −eiK·r/(2vF )2G(0)(r,ε), with

G(0)(r,ε) =
[

iε+H0(u) η
√

ε+ε−H1(u)eiηθr

η
√

ε+ε−H1(u)e−iηθr iε−H0(u)

]
,

(8)
where Hj is the jth order Hankel function of the first
kind, ε± = ε ± �, u = r

√
ε+ε−/vF , and r (θr) is the mod-

ule (azimuthal angle) of r. Concentrating on the intervalley
contribution, the change in the LDOS is

δρ(δK, r, ε) = δρA(r, ε) − δρB(r, ε), (9)

where the sublattice-resolved LDOSs are

δρA(r, ε) = C Im
[
t (ε)H2

0 (u)ε2
+
]

cos(δK · r), (10a)

δρB(r, ε) = C Im
[
t (ε)H2

1 (u)ε+ε−
]

cos(δK · r − δηθr ).

(10b)

Here, δK = K − K′, δη = η − η′, C = 1/(8v4
F ), and t (ε) =

V0/[1 − V0G(0)
AA(0, ε)] is the matrix element of the T matrix

induced by the vacancy on the sublattice A.
Nontrivially, Eq. (9) for the LDOS contributed by the in-

tervalley scattering has a form identical to that in gapless
graphene [13], and it reproduces the result of the gapless case
when � → 0. For the vacancy on sublattice A, δρA(r, ε) is
trivial. |δη| = 2 for the intervalley scattering; then the phase
of δρB(r, ε) is singular at r = 0. By shifting the STM tip
around the vacancy, i.e., θr is rotated by 2π , there should
be two additional wavefronts in the FOs pattern of δρB(r, ε)
[13]. In Fig. 2, focusing on the intervalley scattering con-
tribution, we show electronic density oscillations around a
single-atom vacancy δρA(r, ε) and δρB(r, ε) on sublattice A
(left panel) and on sublattice B (middle panel), respectively.
The sum δρA(r, ε) + δρB(r, ε) is the total electronic density
modulation (right panel). As expected, δρA(r, ε) exhibits the
normal oscillating wavefronts perpendicular to δK with a
wavelength λδK = 2π/|δK| = 2.60a0 ≈ 3.69 Å, and does not
display any topological feature. δρB(r, ε) gives two wavefront
dislocations at r = 0, which accommodates for the phase ac-
cumulated along the contour enclosing the singular point of
the phase θr [47]. In the total electronic density modulation
(see the right panel of Fig. 2), δρA(r, ε) only shifts the position
of dislocations from r = 0 along the direction parallel to δK
and does not change the shape and the number of dislocations
[13].

The two additional wavefronts are regarded as the signature
of the Berry phase π of graphene. However, the correspon-
dence between the Berry phase and the wavefront dislocation
number fails since the Berry phase is an unquantized multiple
of π in gapped graphene. Returning to Fig. 1(c), in which
we do not follow Refs. [13,14] in plotting the momentum-
resolved pseudospin direction, it still shows synchronous
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FIG. 3. Pseudospin texture pattern. (a) Pseudospins on the
constant-energy contour. (b) Pseudospin as a function of θk . Here,
� = 50 meV, ε = 100 meV, and η = 1.

motion of the dominant scattering state contributing to FOs
in momentum space and the STM tip in real space; for
example, the scattering state rotates clockwise (counterclock-
wise) on the constant-energy contour when the STM tip is
shifted clockwise (counterclockwise) around the vacancy. The
scattering state can be used to define the pseudospin vector
s = (sx, sy), where

sx = 〈ψξ,k|σx|ψξ,k〉 = 2ηkx(εξ + δ)

(εξ + δ)2 + k2
, (11a)

sy = 〈ψξ,k|σy|ψξ,k〉 = − 2ky(εξ + δ)

(εξ + δ)2 + k2
. (11b)

Due to sx ∼ kx and sy ∼ ky, Eq. (11) gives four fixed points
with the momentum azimuthal angle θk = 0, π/2, π , and 2π ,
at which the pseudospin directions are fixed. This feature has
no dependence on δ and thus is robust to the gap opening. To
show more visually, we arbitrarily choose a set of parameters
to plot the pseudospin texture in Fig. 3. With the scattering
state moving on the constant energy contour, the pseudospin
direction twists continuously in Fig. 3(a). Clearly, there are
four fixed points shown by the red dots [see Fig. 3(a)], which
implies the invariant pseudospin winding number. Referring
to Fig. 3(b), when θk evolves from zero to 2π , the pseu-
dospin rotates by 2π , corresponding to the winding number 1.
Alternatively, the invariant pseudospin winding number can
also be shown mathematically [48]. We rewrite the gapped
Hamiltonian of monolayer graphene into the form

H0(k) = |Eξ (k)|
[

cos α sin αe−iφ

sin αeiφ − cos α

]
, (12)

where the azimuthal α(k) and polar φ(k) angles on the
Bloch sphere are defined as cos α = �/|Eξ (k)|; sin α =
| f (k)|/|Eξ (k)|, with f (k) = vF (ηkx + iky); and φ ≡ −Arg f .
As a result, we obtain the Berry phase along a closed Fermi
surface:

γ (C) =
∮

C
dk · Aξ = πWC

[
1 − �

|Eξ (k)|
]
. (13)

Here, we have used the Berry connection
Aξ = i〈uk,ξ |∇kuk,ξ 〉 = −ξ sin2 α

2 ∇kφ. Most importantly,
the winding number is introduced,

WC ≡ −ξ

∮
C

dφ

2π
= ηξ. (14)

While the Berry phase of Eq. (13) has the � dependence and
becomes an unquantized multiple of π , WC of Eq. (14) with
an absolute value of 1 is topologically invariant in gapless and
gapped graphene. As a result, the two wavefront dislocations
also exist in gapped graphene, which should be ascribed to the
invariant winding number.

Here, we first discuss the experimental implication of our
theoretical discovery. When � → 0 for gapless graphene,
one can say that the Berry phase and winding number are
equivalent; then Berry phase is measured by the wavefront
dislocations [13,14]. But a supplementary experiment is nec-
essary to confirm the gapless nature of the graphene sample.
In two previous experiments [13,14], there was no such
supplementary experiment, and they did not perform the quan-
titative comparison between experiments and simulations for
the FOs, which both prohibit the discovery of the possible
gap opening. The quantitative calculations of FOs, especially
properly incorporating the strength and range of the impurity
potential, are rather important and are worth further simula-
tions, e.g., using density functional calculations [49]. Also,
this experimental discussion is also applicable to one recent
theoretical proposal, which used the presence or absence of
wavefront dislocations in FOs to distinguish the incompatible
low-energy models for twisted bilayer graphene [50]. In light
of the present experimental technology, we expect immediate
verification of our theoretical prediction in gapped graphene.
In addition, our results may stimulate theoretical and ex-
perimental research interest in the FOs in intrinsic gapped
two-dimensional materials, e.g., transition metal dichalco-
genides [51,52].

The robustness of the wavefront dislocations of FOs to the
gap opening dictates the potential applications in graphene-
based pseudospintronics [53]. Each imperfection can be
regarded as one vortex, and the sublattice dependence of
wavefront dislocation helps define the vortex and antivortex
since the orientations of the tripod shape of the imperfec-
tion on two sublattices are different [13]. Then, we can
use a vortex (antivortex) of 0 (1) to construct the memory
device. The writing of a vortex-based memory device can
be performed by using STM to shift the imperfection from
one sublattice to the other one [22], while its reading is
realized by scanning the imperfection-induced FOs to charac-
terize the orientations of the tripod shape of the imperfection.
One recent experiment [42] studied the effect of spacing
on the wavefront dislocation of two vortices and showed
the irrelevant vortices on the several nanometer scale which
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favors the high density of a vortex-based memory device. This
implies the great potential of impurity-design graphene in
pseudospintronics.

In summary, we have studied the Friedel oscillation in
gapped graphene. Although the pseudospin-momentum lock-
ing is broken, the wavefront dislocations still emerge in
Friedel oscillations contributed by intervalley scattering. We
establish the correspondence between the invariant winding
number instead of the Berry phase and the number of wave-
front dislocations in gapped graphene, which can be verified
by the present experimental technology. This study is helpful
for understanding the correspondence between the topological

quantity and wavefront dislocations in Friedel oscillations
and broadens the range of materials to observe the wavefront
dislocations of Friedel oscillations, e.g., in transition metal
dichalcogenides [51,52].
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