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Abstract 
An insect wing consists of a thin membrane supported by a system of veins, and 
flow of blood through the system of veins is critical for maintaining healthy in-
sect wings. Better understanding of the insect wing vein circulation requires 
to know how the efficiency of blood flow in an insect wing relates to the geo-
metric shape of the vein. Our investigation of the wing vein network of a drag-
onfly Anax junius follows the idea of Murray’s law, which is established in the 
study of efficiency of the vein network and the geometric shape of the vein. In-
stead of using the classic Murray’s law for circular cross-sections, we derived 
a variation of the Murray’s law for vein cross-sections of equilateral triangles. 
Then, we evaluated the conformity of the studied wing vein network to Mur-
ray’s law by measuring the diameter of veins of the forewing of A. junius. Our 
data suggest that the vein network does not abide by the class Murray’s law 
and support that the shape of the vein is not cylindrical. 

Keywords: Murray’s law, Hagen-Poiseuille flow, vein network, geometry, trans-
port optimization  
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Introduction 

An insect wing includes a network of veins in which longitudinal veins 
are connected to each other by cross-veins. Many insects share the well-
defined wing circulatory flow route in which hemolymph enters the wing 
via the anterior veins, flows toward the wing tip, and returns through 
the posterior veins back to the thorax [1, 2]. Blood (or hemolymph) flow 
through wing veins provides water and nutrients to and removes waste 
products from live cells hosted in veins [1, 3]. Hemolymph flow through 
the network of wing veins is important for maintaining the health and 
functionality of insect wings.  

The vein system of an insect wing may be viewed as a network and 
analyzed to better understand the hemolymph flow patterns and hemo-
lymph distribution throughout the insect wing. If one assumes the gen-
eral shape of any given wing in the vein network takes the form of a cyl-
inder and that the hemolymph flow is laminar, it is well-known that the 
optimality of the hemolymph flow throughout the wing is determined 
by the conformality of the geometry of a particular vein intersection to 
Murray’s law [4]. 

More specifically, Murray’s law states that, in a flow network where 
cost for transport and maintenance of the transport medium is at a min-
imum, if a given vein of radius r splits into two veins of radii r1 and r2, 
then necessarily  r3 = r1

3 + r2
3 . This is generalized for a single vein of ra-

dius 𝑟 splitting into n branches:

     
 
  r3 = r1

3 + r2
3 + … + r

n
3                                                       (1) 

The use of the standard version of Murray’s law to analyze hemolymph 
transport has been accomplished in studies such as [5]. 

However, the cross-sectional shape of veins in an insect wing network 
is not consistently cylindrical. For instance, the fore wing of a dragonfly 
C. servilia Drury had various cross-sectional shapes for its veins [6]. As 
such, Eq. (1) based on the circular cross-sections may be valid for lim-
ited areas of a wing where vein cross-sections are circular. 

In this study, we derived alternate versions of Murray’s law for 
different geometric shapes of the vein. Since dragonflies have been 
studied most for biomimetic wings [7-11], we chose Common Green 
Darner (Anax junius), a commonly found dragonfly in Nebraska, as a 



Wh i t e  e t  a l .  i n  P r o c .  A S M E  Flu i d s  E n g .  D i v.  S u m m e r  M t g  2 0 2 2        3

representative insect. Among common regular shapes such as rectan-
gles, ellipses and triangles, the most interesting case is when we assume 
the vein is of the shape of an equilateral triangle. In this case, the theo-
retic data suggested by this version of Murray’s law is most conformed 
with the real measurement we obtained from a real dragon wing model. 

Materials and Methods 

Murray’s law for vein cross-sections of equilateral triangles 

Murray’s law is derived from the Hagen-Poiseuille equation for laminar 
flow [4, 12-14], which describes incompressible laminar flow of a New-
tonian fluid in a cylindrical vein. To derive analogous versions of Mur-
ray’s law for veins whose cross-sections take on the shape of an equi-
lateral triangle, we follow the results by Murray [13] and Rosen [14] in 
assuming that the power required to support the system of blood ves-
sels is the sum of the power required to maintain the flow of blood, 
P

Flow
, with the power required to maintain the health of the cells that 

the blood supplies with energy, P
Supply

. Therefore, the equation for total 
power is given by

 P
Total

 = P
Flow

 + P
Supply

                                                  (2) 

If Q denotes the flow rate through a blood vessel, and ΔP represents 
the change in pressure, then the power required to maintain the flow of 
blood through the vessel is modelled by

  P
Flow

 = QΔP                                                            (3) 

When it comes to the power required to maintain the cells that the ves-
sel feeds, it is assumed to be proportional to the volume of the vessel. 
That is,

 P
Supply

  = KV                                                                (4) 

where K is the metabolic factor, which is a positive constant, and V is the 
volume of the vessel. 
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Now, denote by r the distance between the center of an equilateral 
triangle with side length h and any vertex. Then,

  r =  h                                                            (5) 
                                                                  √3

The volume flow rate Q through a tube where the cross sections are 
equilateral triangles is given in [15] by

   Q =    Gh4                                                           (6)
                                                              60 √3μ

where G is the magnitude of the pressure gradient in the flow direction 
(= −dP/dx,), and μ denotes the dynamic viscosity of the hemolymph. 
Both are assumed to be constant. Since G is a constant, one may take G 
= −ΔP/Δx to lend that for a pipe of length Δx = −l, and then we have the 
expression G = ΔP/l. This expression for G is substituted back into Eq. 
(6) for Q, and then ΔP is solved for:

ΔP =  60 √3 μlQ                                                  (7) 
                                                                     h4

Substituting the expression for Δ𝑃 from Eq. (7) into Eq. (3), we have,

       P
Flow

(h)= 60 √3μlQ2                                            (8) 
                                                                           h4

Next, the volume of an equilateral triangular prism is given by

      V (h) = √3 h2l                                                      (9) 
                                                                 4

Then, substituting Eq. (9) into Eq. (4),

      P
Supply

(h) = √3Kh2l                                             (10) 
                                                                       4
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Combining Eq. (8) and Eq. (10) in Eq. (2), the following equation for to-
tal power is obtained:

         P
Total

(h) = 60 √3μlQ2  +  √3Kh2l                            (11) 
                                                                       h4                              4

The power to maintain an entire circulatory system is just the sum 
of the power functions for each individual blood vessel segment. For 
any blood vessel whose cross-section is an equilateral triangle, there is 
an optimal side length h of the equilateral triangle such that the power 
required to maintain the flow of blood through the vessel and to feed 
the cells is minimized. At such an optimal length h, the derivative of 𝑃𝑃 
with respect to h must be zero. Hence, we differentiate Eq. (11) with re-
spect to h, and set dP

Total
/dh = 0 to solve for the optimum h. This lends 

the equation

 −240 √3 μlQ2 + √3 Kh5l = 0                                    (12) 
                                                                         2

Solving Eq. (12) for Q gives the following relation between the flow rate 
and the optimum side length:

   Q =       K      h2.5                                              (13) 
                                                             √480μ

Finally, the new version of Murray’s law is retrieved by using the fact 
that, for a vein of flow rate Q branching off into n branches with respec-
tive flow rates Q1, Q1, …, Q

n
, we have 

Q = Q1
 +Q2

 + … Q
n

                                            (14) 

and thus, substituting Eq. (13) into Eq. (14) for a branch of side length 
h branching off into n branches of respective side lengths h1, h2, …, h

n
, 

we have

     
  

 h2.5 = h1
2.5 + h2

2.5 + … h
n

2.5                                    (15) 

To recover the standard form of Murray’s law, one can replace V in Eq. 
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(9) by πr2l, where r is the radius of the vein now taking on the shape of 
a tube, and Q in Eq. (6) by πr4/8μl, before minimizing resulting power 
Eq. (2) with respect to the radius of the tube r. 

Measurement of vein diameter 

A high-resolution picture of a fore wing of A. junius was taken using a 
digital SLR camera (Canon EOS Rebel T3), and the picture was converted 
to a black-and-white image as shown in Figure 1. Measurements of the 
width or diameter of the wing veins at a particular intersection were 
made using the measurement tools in Photoshop (Adobe).  

Figure 2 shows how the diameter of a given vein segment was mea-
sured. First, two different locations in a particular vein segment were se-
lected, and lines were drawn at the two places, edge to edge, at no par-
ticular angle. The centers of these two lines are marked as p1 and p2 in 
Figure 2. Second, a line was drawn between p1 and p2, as shown is blue. 
Third, lines were drawn precisely perpendicular to the central blue line, 
which are the black dotted lines. Fourth, the length of the dotted lines 
was recorded as the various diameters d1, d2, and d3. Last, the diameter 
d of the vein segment was determined as the average of these three val-
ues. At any given intersection, the diameter of all veins in the intersec-
tion are measured in this fashion as shown in Table 1. 

Figure 1. Black-and-white image of the fore wing of Anax Junius wing. Inset: An exam-
ple of the intersection of wing veins for vein width measurement. 
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Measurement of conformity to Murray’s law 

We assigned a conformity rating C at each intersection of the vein net-
work as follows. At each intersection, the measurements for diameter 
of each adjacent branch were taken as explained above. Let d denote the 
diameter of the thickest branch which splits into n branches of respec-
tive diameters d1, d2, …, d

n
. Then, a rating of conformity to Murray’s law 

is given by the quotient
               

n            
∑ d

i
x
     

C  =
  

i=1  
          

× 100%
                                                 (16) 

            dx

When x = 3, we retrieve the conformity rating for the classic version 
of Murray’s law [i.e., Eq. (1)], where d

i 
= 2r

i
. When x = 2.5, we retrieve 

the conformity rating for the variation of Murray’s law in Eq. (15) for a 
vein taking on the cross-sectional shape of an equilateral triangle, where    

  
 

d
i
 = 2r

i
 = 2hi/√3. 

In both cases, if the value of C is within the range of 100 ± 20%, then 
the conformity to Murray’s law is designated as “good conformity”. Any 
other value of C is “bad conformity”. If the intersection has good con-
formity, then it abides by the corresponding Murray’s law for the vein 
system. 

Figure 2. Measurement of the vein diameter using the black-and- white image of the 
insect wing.   
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Result and Discussion 

It is reasonable to assume that the conformity rate of Murray’s law is 
directly related to the efficiency of the network. That is, the higher the 
conformity rate is, the more efficient the network is. 

We computed the conformity to the standard Murray’s law using Eq. 
(16), with x = 3 [i.e., Eq. (1)], for 165 intersections on the wing image of 
the Anax Junius, and some results are summarized in Table 1 as an ex-
ample. Out of the 165 intersections examined, only about 60% of the 
intersections had “good” conformity to Murray’s law. In particular, only 
60% of the intersections analyzed had a C

MUR 
value [i.e., Eq. (16) for x = 

3], shown in the MUR column of Table 1, lying between 80% and 120%. 
While this encompasses the majority of intersections analyzed, the slim 
majority indicates that the vein network does not rigorously adhere to 
the classic Murray’s law. 

Then, we computed the perfect exponent for all intersections as follows. 
Given a particular branch d splitting into n branches d1, d2, …, d

n
, one can 

solve the following equation for the “perfect” exponent x such that 

dx = d1
x + d2

x + … d
n

x                                                  (17) 

This was done in Maplesoft using the fsolve function:

    
      fsolve (dx = d1

x + d2
x + … d

n
x,  x = a … b)                                (18) 

where the interval [a, b] of solutions for x is enlarged until a solution is 
located. It needs to be noted that, in some cases, the equation had no so-
lution, for when d = d

i 
for some 1 ≤ i ≤ n, an exponent x could not be cal-

culated for that particular intersection. 
The found perfect exponent values are shown in the ACT column 

in Table 1. About 65% of the intersections analyzed had a perfect ex-
ponent less than 3, which further supports our findings that the stud-
ied vein network of A. Junius does not rigorously follow the classic Mur-
ray’s law. Instead, the average “perfect exponent” was found to be about 
2.33, much closer to the exponent appearing in the equilateral triangle 
version of Murray’s law [i.e., Eq. (15)]. Therefore, our computation sug-
gests that the geometric shape of the vein can be better represented by 
equilateral triangles rather than circles in terms of the efficiency of the 
vein network. 



Wh i t e  e t  a l .  i n  P r o c .  A S M E  Flu i d s  E n g .  D i v.  S u m m e r  M t g  2 0 2 2         10

Conclusion and Future Work 

In this paper, we took geometric measurements of each intersection on 
the forewing of the Anax junius. With these measurements, we analyzed 
data on the conformity of each intersection to the classic form of Mur-
ray’s law [Eq. (1)]. Furthermore, we derived a variation of Murray’s law 
assuming the shape of the veins’ cross-sections was an equilateral tri-
angle [Eq. (15)]. Then, we analyzed data on the conformity of each in-
tersection to this newly derived equation.  

With respect to the above data collection and analysis, the vein net-
work of the Anax junius is more reminiscent of a vein network where the 
veins take on the geometry of a triangular prism rather than a cylinder, 
where the standard version of Murray’s law is applied. 

In future research, other versions of Murray’s law could be derived 
for vein cross-sections of other shapes — such as for ellipses. For ex-
ample, if the shape of the cross section of a vein takes the form of an 
ellipse with semi-axes a and b, branching off into n veins with likewise 
geometry, one semi-axis of fixed length b and the other of respective 
length a1, a2, …, a

n
, the analogy of Murray’s law for ellipses can be de-

rived and stated as

                                                         a2          
=

            a1
2        

+ …  +
        an

2

               
 
√ a2 +3b2           √a1

2 +3b2               √an
2 +3b2                                       (19) 

As such, versions of Murray’s law such as the one above may be used to 
compute their own conformity ratings for each intersection on an in-
sect wing.   

   k
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