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ABSTRACT

We report the effect of remote surface optical (RSO) phonon scattering on carrier mobility in monolayer graphene gated by ferroelectric
oxide. We fabricate monolayer graphene transistors back-gated by epitaxial (001) Ba0.6Sr0.4TiO3 films, with field effect mobility up to
23 000 cm2 V−1 s−1 achieved. Switching ferroelectric polarization induces nonvolatile modulation of resistance and quantum Hall effect in
graphene at low temperatures. Ellipsometry spectroscopy studies reveal four pairs of optical phonon modes in Ba0.6Sr0.4TiO3, from which
we extract RSO phonon frequencies. The temperature dependence of resistivity in graphene can be well accounted for by considering the
scattering from the intrinsic longitudinal acoustic phonon and the RSO phonon, with the latter dominated by the mode at 35.8 meV. Our
study reveals the room temperature mobility limit of ferroelectric-gated graphene transistors imposed by RSO phonon scattering.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0106939

I. INTRODUCTION

Leveraging its high mobility, superb mechanical strength, and
optical transparency, extensive research has been carried out on
graphene-based field effect transistor (FET) devices1,2 for develop-
ing radio-frequency transistors,3,4 nonvolatile memory,5 flexible
electronics,6 and optoelectronics.7,8 As the electronic properties of
graphene are highly susceptible to the interfacial dielectric environ-
ment due to its two-dimensional (2D) nature, the choice of the
gate and substrate materials for graphene FETs can have a signifi-
cant impact on the device performance.9 For example, the gate can
be a major source of charged impurities10 as well as providing
dielectric screening.11–13 The interfacial charge dynamics can
induce undesired switching hysteresis and compromise the device
retention.9,14 One important phenomenon is the remote surface
optical (RSO) phonon from the dielectric layer, which is the major
mechanism that limits room temperature mobility15–17 and satura-
tion current9,18,19 in the graphene channel.

Recently, the ferroelectric/2D van der Waals heterostructure has
emerged as a promising platform for developing high-performance

logic, memory, and optical applications.14,20 Ferroelectrics possess
nonvolatile switchable polarization with high doping capacity21 and
exhibit second harmonic generation22 as well as negative capacitance
effect,23 which can be utilized to design novel functionalities in the
2D devices, such as electron collimation,24 nonlinear optical filter-
ing.,25 steep slope switching,26 and neuromorphic computing.27 The
widely explored ferroelectric systems include ferroelectric
oxides,6,8,28–30 polymers,5,31,32 and 2D semiconductors.20 Among
them, the ferroelectric perovskite oxides have the distinct advantages
of large bandgap, large polarization, high-κ dielectric constant, high
endurance, low coercive field, and fast switching time.14 For elec-
tronic applications, it is important to understand the effect of interfa-
cial ferroelectric layer on the channel mobility. The high-κ nature of
ferroelectric oxides implies the presence of soft optical phonon
modes, which can significantly affect the mobility of the 2D channel
at room temperature.12,33 This effect is, especially, prominent in
monolayer graphene (1LG) due to its linear dispersion.9,34 Despite
the rapid progress in developing ferroelectric/graphene-based
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applications, the effect of RSO phonon on the electronic and
thermal transport of the device has not been examined to date.

In this work, we report a comprehensive magnetotransport
study of graphene FETs back-gated by ferroelectric Ba0.6Sr0.4TiO3

(BSTO) thin films. The devices exhibit high field effect mobility up
to 23 000 cm2 V−1 s−1 and nonvolatile field effect modulation of
quantum Hall effect. Four RSO phonon modes have been identified
by considering the optical phonon modes in BSTO and the dielec-
tric boundary condition. The temperature dependence of resistivity
in graphene points to the dominant effect of the 35.8 meV RSO
phonon at high temperature. Our study reveals the room tempera-
ture mobility limit in graphene imposed by the ferroelectric oxide
gate, providing important material information for designing high-
performance ferroelectric/graphene FETs for nanoelectronic
applications.

II. SAMPLE PREPARATION AND CHARACTERIZATION

We work with epitaxial 100 and 300 nm (001) BSTO thin
films deposited on Nb-doped SrTiO3 (Nb:STO) substrates using
off-axis RF magnetron sputtering. The films are deposited in
25 mTorr process gas of Ar and O2 (ratio 2:1) at 600 °C. X-ray dif-
fraction (XRD) studies show that these films are single crystalline
with a c-axis lattice constant of 3.99 Å [Fig. 1(a)]. Atomic force
microscopy (AFM) images reveal smooth surface morphology with
a typical root-mean-square roughness of 3–4 Å [Fig. 1(a) inset].
Thin graphite flakes (kish graphite from Sigma-Aldrich®) are
mechanically exfoliated on BSTO. The monolayer flakes are
identified optically and characterized via Raman spectroscopy.
Figure 1(b) compares the Raman spectra of graphene on BSTO and
bare BSTO. There is no appreciable D band observed in the 1LG
sample, indicating a lack of atomic defects. From the Lorentz fits to
each peak, we deduce a large 2D to G band intensity ratio
I(2D)/I(G) ¼ 3:7, which is comparable to those observed in high-
mobility graphene sandwiched between SiO2 substrates and HfO2

top-layers,17 confirming the high quality of our samples.35 Selected
flakes are fabricated into Hall bar devices via electron-beam lithog-
raphy followed by electron-beam evaporation of 5 nm Cr/25 nm Au
as the electrodes [Fig. 1(c)]. The conductive Nb:STO substrate
serves as the back-gate electrode for field effect studies [Fig. 1(d)].
We perform variable temperature magnetotransport measurements
in a Quantum Design PPMS using standard lock-in technique
(SR830) at an excitation current of 50 nA. The results are based on
three graphene samples (denoted as devices A, B, and C).

The BSTO-gated graphene FETs show high mobility
compared with those gated by SiO2. Figure 1(e) shows the
Shubnikov–de Haas oscillation of the longitudinal resistivity ρxx
taken on device A at 10 K and the back-gate voltage of Vg =−1 V.
The oscillation period corresponds to a charge density of
n = 5.36 × 1012 cm−2. The oscillatory amplitude δρxx is given by10

δρxx
ρ0

¼ 4γ thexp � π

ωcτq

� �
, (1)

where ρ0 ¼ 157 Ω is the zero-field resistivity, γ th ¼ 2π2kBT/�hωc
sinh(2π2kBT/�hωc)

is
the thermal factor, ωc ¼ eB/m* is the cyclotron frequency with e
being the elementary charge, and τq is the quantum scattering

time. Here, m*¼�h
ffiffiffiffiffiffi
πn

p
/vF is the effective mass in monolayer gra-

phene, with vF � 106 m s�1 being the Fermi velocity. Fitting
δρxx/γ th vs 1/B reveals τq � 33 fs [Fig. 1(f)], while the extracted
Hall mobility μHall ¼ 1

neρ0
¼ P7420 cm2 V�1 s�1, corresponding to

a transport scattering time of τt ¼ m*μHall
e ¼ 200 fs. These results are

comparable to previous reports for graphene on BSTO29 and
SiO2.

10 The large ratio between the transport and quantum scatter-
ing times τ t

τq
� 6:1 indicates that the mobility is dominated by

small-angle scattering events, e.g., from charged impurities residing
within the BSTO substrate.10 This ratio is larger than those
reported for graphene gated by HfO2 and SiO2

9 and agrees well
with the theoretical value for long-ranged scatterers considering the
dielectric screening of BSTO.14

Figure 2(a) shows ρxx(Vg) of device A measured at 2 K. We
observe a hysteresis between the up-sweep and down-sweep curves,
which corresponds to ferroelectric polarization switching.14 The
Dirac points locate at Vg = 2.4 V for the up-sweep state and
Vg = 0.9 V for the down-sweep state. To determine the carrier
density n, we characterize the Hall resistivity ρxy(B) [Fig. 2(b) inset]
at different back-gate voltages and deduce the Hall coefficient

FIG. 1. (a) XRD θ–2θ scan of a 100 nm BSTO film on Nb:STO. Inset: AFM
topography image. (b) Raman spectra of 1LG on BSTO normalized to the G
band intensity and bare BSTO. (c) Optical image of device A, with the graphene
edge outlined (dotted line). (d) Device schematic. (e) ρxx vs 1/B at 10 K with the
background resistivity subtracted, and (f ) the corresponding semi-log plot of
δρxx /γ th vs 1/B. The dashed lines are fits to Eq. (1).
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RH ¼ ρxy/B, with n ¼ 1/eRH. We denote the carrier density in
electron- and hole-doped regions as ne and nh, respectively.
Figure 2(b) plots 1/eRH vs Vg, where we identify three distinct
regions for the up-sweep branch associated with different polariza-
tion states of BSTO. When BSTO is uniformly polarized in Pup
(region III) and Pdown (region I) states, it behaves as a normal

high-κ dielectric. In the intermediate Vg-range (region II), we
observe a gradual change of carrier density with a steeper slope in
n(Vg). As BSTO is a relaxor, the polarization switching is associated
with the alignment of polar nanoregions,36 in contrast to the
abrupt switching in canonical ferroelectrics such as Pb(Zr,Ti)O3.
The induced polarization corresponds to the enhanced doping effi-
ciency. Similar behaviors are also observed in the down-sweep
branch. Around the Dirac point, we fit the conductivity by

σ(n) ¼ [(ne,heμFE)
�1 þ ρshort]

�1
, where μFE is the field effect mobil-

ity and ρshort is the resistivity due to short-ranged scatterers.
Figure 2(a) inset shows the fits to the up-sweep branch, which
yields μFE of 4700 cm

2 V−1 s−1 for holes and 23 000 cm2 V−1 s−1 for
electrons. For the down-sweep branch, we extract μFE of
2700 cm2 V−1 s−1 for holes and 10 300 cm2 V−1 s−1 for electrons.
Figure 2(c) shows ρxx(Vg) of this device at 8.9 T, which exhibits
well-developed quantum Hall states in both branches. The filling
factors’ sequence corresponds to 4(n +½), which is the signature
behavior of monolayer graphene.

III. TEMPERATURE DEPENDENCE OF RESISTIVITY

To investigate the temperature dependence of resistivity in
BSTO-gated graphene, we conduct Hall measurements at different
temperatures to convert Vg to n. Here, we choose to work with the
hole-doped region for the up-sweep branch, where we have access
to the largest density range. Figure 3(a) shows n vs Vg at 80 K.
BSTO exhibits a linear n(Vg) relation, n ¼ �αVg, with α being
the gating efficiency. We extract the dielectric constant of BSTO
ϵBSTO ¼ αed/ϵ0, where d is the BSTO film thickness and ϵ0 is the
vacuum permittivity. The temperature dependence of ϵBSTO
[Fig. 3(b)] is consistent with previous report.29 We then shift the

FIG. 2. Magnetotransport studies of device A. (a) ρxx(Vg) at 2 K. The arrows
label the Vg sweeping direction. Inset: σ vs �n with fits (dashed lines), with nh
and ne denoting the hole- and electron-doped regions, respectively. (b) 1/eRH vs
Vg at 2 K. Inset: ρXy vs B at Vg =−1 V for up-sweep with a linear fit (dashed
line). (c) ρxx(Vg) at 10 K and 8.9 T. The filling factors for the down-sweep branch
are labeled.

FIG. 3. (a) n(Vg) at 80 K with a linear fit (dashed line). (b) ϵBSTO vs T for
100 nm (solid dots) and 300 nm (open circles) BSTO. (c) ρxx vs −n at 20–
200 K with 20 K intervals. Inset: color map of ρxx (V

0
g, T ).

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 132, 154301 (2022); doi: 10.1063/5.0106939 132, 154301-3

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/jap


charge neutral point at different temperatures to V 0
g ¼ 0 V and

convert the resulting ρxx(V
0
g) [Fig. 3(c) inset] to ρxx(n) based on

the gating efficiency [Fig. 3(c)]. At low n, ρxx increases with
decreasing temperature, which can be attributed to thermally acti-
vated charge carriers in the electron–hole puddle region.37 At
high doping level, the sample exhibits metallic T-dependence
associated with phonon scattering.15,17

In graphene, the temperature dependence of resistivity can be
modeled as15

ρ(T , n) ¼ ρ0(n)þ ρLA(T , n)þ ρRSO(T , n): (2)

Here, ρ0(n) is the residual resistivity due to impurity scattering,
which is temperature-independent; ρLA(T , n) is associated with the
longitudinal acoustic (LA) phonon scattering intrinsic to graphene;
and ρRSO(T , n) is associated with RSO phonon scattering from the
interfacial dielectric layer.

A. Effect of LA phonon

In the nondegenerate equipartition acoustic phonon system,38

the LA phonon contribution depends linearly on temperature,15,28

ρLA(T , n) ¼
π2D2

A

2h2ρmv
2
phv

2
F

h
e2
kBT , (3)

where DA is the acoustic deformation potential, ρm ¼ 7:6
�10�7 kg m�2 is the areal mass density of graphene, and
vph ¼ 2:1� 104 m s�1 is the sound velocity for LA phonons in gra-
phene. Equation (3) can well describe the low temperatures data of
our samples, where ρxx exhibits a linear T-dependence that is inde-
pendent of n. From the slopes of low temperature ρxx(T) for
devices A–C, we obtain DA = 20 ± 6 eV, which is within the range
of previous reports (10–30 eV).9

B. Effect of RSO phonon

With increasing temperature, ρ(T) becomes nonlinear and
highly dependent on n, which can be attributed to the onset of
RSO phonon contribution ρRSO(T , n). The RSO phonon effect has
previously been studied in graphene interfaced with SiO2,

15

Al2O3,
16 and HfO2.

17 Under relaxation time approximation,12,34,39

ρRSO(T , n) can be expressed as the sum of independent contribu-
tions from individual RSO phonon modes,

ρRSO(T , n) ¼
X

i
ρ(i)RSO(T , n) (4)

where ρ(i)RSO(T , n) ¼
Ð
dkdqA(k, q) gi

e�hωi /kBT�1
is the contribution

from ith RSO phonon mode ωi. Here, A(k, q) is the matrix
element for scattering between electron (k) and phonon (q) states;

gi ¼ �hωi
1

ϵiþ1 � 1
ϵi�1þ1

� �
is the corresponding electron-phonon cou-

pling strength,17 with ϵi being the ith intermediate dielectric cons-
tant depending on the frequency-dependent dielectric function
ϵ(ω) of BSTO. At kBT � EF , we can assume A(k, q) and gi are
temperature-independent and, thus, decouple the density and tem-

perature dependences of resistivity as ρ(i)RSO(T , n) ¼ C(n) ~gi
e�hωi /kBT�1,

where C(n) captures the density dependence of resistivity and ~gi is
the unitless magnitude of gi.

We first consider the temperature dependence of ρ(i)RSO.
Phenomenologically, ϵ(ω) can be expressed by the generalized
Lyddane–Sachs–Teller (LST) relation,

ϵ(ω) ¼ ϵ1
Y
i

ω(i)
LO

2 � ω2 � iωγ(i)LO

ω(i)
TO

2 � ω2 � iωγ(i)TO
, (5)

where ϵ1 is the optical permittivity and ω(i)
TO and ω(i)

LO are the fre-
quencies of the ith transverse optical (TO) and longitudinal optical
(LO) phonon modes, respectively. The independent broadening
parameters, γ(i)TO and γ(i)LO, account for anharmonic lattice interac-
tions. From Eq. (5), in the case of zero phonon broadening, the
dielectric function diverges to infinity at the TO modes and
approaches zero at the LO modes. The intermediate dielectric con-
stants ϵi are defined by rewriting the real part of the LST relation
[Eq. (5)] into the form of lossless Lorentzian oscillator approximation,

ϵ(ω) ¼ ϵ1 þ
X

i
(ϵi�1 � ϵi)

ω(i)
TO

2

ω(i)
TO

2 � ω2
, (6)

where ϵimax is defined as ϵimax ¼ ϵ1. From the deduced ϵi, we can cal-
culate the electron–phonon coupling strength gi. For graphene sand-
wiched between BSTO and vacuum, the RSO modes can be
determined by matching the dielectric boundary condition
ϵ(ωi)þ 1 ¼ 0.33,39

To obtain ωi and gi, we carry out spectroscopic ellipsometry
to study the frequencies of the optical phonon modes and dielectric
properties of BSTO. Two ellipsometer apparatuses are used for
measurements performed at room temperature. A commercial vari-
able angle of an incidence spectroscopic ellipsometer (IR-VASE
Mark-II; J.A. Woollam Co., Inc.) is employed for the infrared spec-
tral range (650–3000 cm−1). An in-house built instrument is used
for the far-infrared spectral range (50–650 cm−1).40 Ellipsometry
data are obtained in the Ψ-Δ notation, and the measurements are
taken at multiple angles of incidence.41 A bare SrTiO3 substrate is
measured in addition for comparison with model calculations
using literature values for phonon mode parameters.42 The ellips-
ometry data are analyzed for the phonon mode properties of the
epitaxial thin film. A three-phase (substrate-film-ambient) model is
established, where the film is modeled by the BSTO layer thickness.
The far-infrared and infrared dielectric function is modeled using
Eq. (5), where the LO phonon mode frequency can be directly
obtained from the best-match model analysis. The broadening
parameters in the best-match model calculations account for finite
absorption losses or phonon damping near TO and LO modes. A
detailed discussion of the phonon mode analysis can be found in
Refs. 43–45. The BSTO dielectric function is modeled with four
phonon mode pairs, ω1

TO � ω1
LO, ω

2
TO � ω2

LO, ω
3
TO � ω3

LO,
ω4
TO � ω4

LO. The calculated Ψ and Δ data using the above model
description are compared against the measured ellipsometry data,
while the model parameters are varied until reaching a best match
between the calculated and measured data. Parameters for variation
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are BSTO optical permittivity ϵ1 and film thickness, TO and LO
phonon frequencies, and their broadening parameters.

Figure 4(a) shows the frequency dependence of the real part of
the complex dielectric function of BSTO ϵBSTO(ω). This function is
calculated from Eq. (5) by setting all broadening parameters to zero
and using the TO and LO mode parameters obtained from the best-
match model calculation using the measured ellipsometry data
as target values. In the frequency range of interest, we identify
four pairs of TO and LO phonon modes: ω1

TO ¼ 14:4 meV,
ω1
LO ¼ 15:2 meV; ω2

TO ¼ 17:3 meV, ω2
LO ¼ 35:8 meV; ω3

TO

¼ 36:2 meV, ω3
LO ¼ 58:5 meV; ω4

TO ¼ 64:0 meV, and ω4
LO

¼ 93:9 meV. By solving the dielectric boundary condition, we
deduce four RSO phonon modes, with each one located between a
pair of TO and LO modes: ω1 ¼ 15:1 meV, ω2 ¼ 35:8 meV,
ω3 ¼ 57:9 meV, and ω4 ¼ 86:8 meV. The corresponding coupling
strength is calculated based on the intermediate dielectric constants
ϵi deduced from Eq. (6): g1 ¼ 0:046 meV, g2 ¼ 4:2 meV,
g3 ¼ 0:54 meV, and g4 ¼ 2:1 meV. Figure 4(b) plots the individual
contribution of each RSO phonon scattering to the temperature
dependence of resistivity in graphene: ρi(T)/ gi

e�hωi /kBT�1
. At T > 50 K,

it is clear that ρ(T) is dominated by the ω2 ¼ 35:8 meV mode. The
lowest phonon mode ω1 ¼ 15:1 meV has a negligibly small g1, as
revealed by the dielectric function spectrum so it does not couple

strongly to the graphene channel. As a result, even though it has the
highest excited phonon population, its contribution to resistivity is
insignificant.

Figure 5 shows ρxx(T) of device A at various carrier densities
beyond the electron–hole puddle region and the corresponding
fitting curves using Eq. (2). We first consider the contributions
from all four RSO phonons to ρRSO(T , n) models. Based on the
RSO phonon frequencies ωi and their corresponding coupling
strength gi, Eq. (4) can be rewritten as

ρRSO(T , n) ¼ C(n)
0:046

e15:1 meV/kBT � 1
þ 4:2
e35:8 meV/kBT � 1

�

þ 0:54
e57:9 meV/kBT � 1

þ 2:1
e86:8 meV/kBT � 1

�
: (7)

As shown in Fig. 5(a), this model well captures the tempera-
ture dependence of resistivity at all densities. We then consider
fitting ρ(T) using a single effective Bose–Einstein distribution with
the dominant phonon frequency of 35.8 meV [Fig. 5(b)],

ρRSO(T , n) ¼
C0(n)

e35:8 meV/kBT � 1
(8)

where C0(n) is the fitted density dependent resistivity. This model
also yields excellent fit to the experimental results for devices A
[Fig. 5(b)], B, and C. These results further confirm the dominating
role of the 35.8 meV RSO phonon mode in determining the high
temperature resistivity of graphene on BSTO, consistent with the
simulation result in Fig. 4(b).

Figure 6(a) shows the density dependence of the coefficient
C(n) extracted from these three devices. All samples exhibit a
power-law density dependence C(n)/ n�β , which can be attrib-
uted to the long-range nature of RSO phonon scattering. The expo-
nent β ranges from 0.9 to 1.3, consistent with the values reported
in graphene interfaced with SiO2

15 and HfO2.
17 This value is

higher than the predicted β = 1/2 for Thomas–Fermi

FIG. 4. (a) Real function of ϵ(ω) for BSTO simulated based on the ellipsometry
data. (b) Simulated ρi (T ) for four RSO phonon modes.

FIG. 5. ρxx(T) at selected hole densities taken on device A with fits to Eq. (2),
with ρRSO given by (a) Eq. (7) (solid lines) and (b) Eq. (8) (dashed lines).
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approximation for electron screening.34 The stronger n-dependence
has been attributed to the finite-q corrections to the scattering
matrix element |Hkk0|

2.33,34

C. Modeling of room temperature mobility

Based on the fitting results, we calculate the mobility limit of
graphene on BSTO imposed by the LA phonon and various RSO
phonon modes using μi ¼ 1/neρi(n). Figure 6(b) summarizes the
mobilities at 300 K from the individual phonon scattering mecha-
nisms using the parameters extracted from device A. The LA
phonon limited mobility has 1/n dependence on the density, which
gives �105 cm2 V�1 s�1 at the doping level of interest. Among all
RSO phonons, the 35.8 meV mode is the dominating scattering
source at 300 K, yielding μ � 3� 4� 104 cm2 V�1 s�1.
Combining all phonon contributions, the overall mobility is around
3� 104 cm2V �1 s�1 and exhibits very weak density dependence.
This result is about twice of the room temperature mobility limit
for HfO2-gated graphene,17 despite the significantly higher doping
capacity of BSTO.

IV. CONCLUSIONS

In conclusion, we have investigated the effect of RSO phonon
scattering in graphene FET back-gated by ferroelectric BSTO. The
high-temperature resistance is dominated by the 35.8 meV RSO
phonon mode, which limits the room temperature mobility of gra-
phene FET to about 3� 104 cm2 V�1 s�1. The BSTO gate provides
efficient dielectric screening, high doping capacity, and the promise
for local doping control via nanoscale domain patterning, while its
impact on the room temperature mobility in graphene FET is
highly competitive compared with high-κ dielectrics such as HfO2.
Our study sheds light on the technological potential of ferroelectric

perovskite oxide as the gate material for graphene-based
nanoelectronics.
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