
This is a repository copy of Contributing to the European Language Grid as a provider.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/193005/

Version: Published Version

Book Section:

Galanis, D., Labropoulou, P., Roberts, I. orcid.org/0000-0002-7296-5851 et al. (7 more
authors) (2022) Contributing to the European Language Grid as a provider. In: Rehm, G.,
(ed.) European Language Grid: A Language Technology Platform for Multilingual Europe.
Cognitive Technologies . Springer Cham , Cham , pp. 67-93. ISBN 978-3-031-17257-1

https://doi.org/10.1007/978-3-031-17258-8_4

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Chapter 4
Contributing to the European Language Grid
as a Provider

Dimitris Galanis, Penny Labropoulou, Ian Roberts, Miltos Deligiannis, Leon
Voukoutis, Katerina Gkirtzou, Rémi Calizzano, Athanasia Kolovou, Dimitris
Gkoumas, and Stelios Piperidis

Abstract The ELG platform enables producers of language resources and language
technology tools and services to upload, describe, share, and distribute their services
and products as well as to describe their companies, academic organisations and
projects. This chapter presents the functionalities offered through web-based user
interfaces for describing LT resources or related entities with metadata and for man-
aging their publication. It gives a detailed description of the options that providers of
LT tools can exploit to integrate them into ELG as ready-to-deploy services and the
tools that ELG offers in their support during the preparation, upload and integration
phases. The tools and packaging recommendations for resources to be uploaded in
ELG are also presented. The chapter concludes with a discussion of functionalities
offered to providers by ELG and other related platforms.

1 Introduction

The European Language Grid platform (Rehm et al. 2021) offers various functional-
ities for providers of Language Resources and Technologies (LRTs) through which
they can share their assets with the Language Technology (LT) community and inter-
ested clients, customers or users of these technologies. The minimum requirement
is that they make them accessible (by uploading them to ELG or through another
website) and describe them with a metadata record that complies with the ELG spec-
ifications (see Chapter 2), where they specify the access location and licensing con-

Dimitris Galanis · Penny Labropoulou ·Miltos Deligiannis · Leon Voukoutis · Katerina Gkirtzou ·

Athanasia Kolovou · Dimitris Gkoumas · Stelios Piperidis
Institute for Language and Speech Processing, R. C. “Athena”, Greece,
galanisd@athenarc.gr, penny@athenarc.gr, mdel@athenarc.gr, leon.voukoutis@athenarc.gr,
katerina.gkirtzou@athenarc.gr, akolovou@athenarc.gr, dgkoumas@athenarc.gr, spip@athenarc.gr

Ian Roberts
University of Sheffield, UK, i.roberts@sheffield.ac.uk

Rémi Calizzano
Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, Germany,
remi.calizzano@dfki.de

67© The Author(s) 2023

G. Rehm (ed.), European Language Grid, Cognitive Technologies,

https://doi.org/10.1007/978-3-031-17258-8_4

mailto:galanisd@athenarc.gr
mailto:penny@athenarc.gr
mailto:mdel@athenarc.gr
mailto:leon.voukoutis@athenarc.gr
mailto:katerina.gkirtzou@athenarc.gr
mailto:akolovou@athenarc.gr
mailto:dgkoumas@athenarc.gr
mailto:spip@athenarc.gr
mailto:i.roberts@sheffield.ac.uk
mailto:remi.calizzano@dfki.de
https://doi.org/10.1007/978-3-031-17258-8_4
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17258-8_4&domain=pdf

68 Dimitris Galanis, Penny Labropoulou, Ian Roberts, Miltos Deligiannis et al.

ditions under which they can be used. To take advantage of the advanced features
of ELG, providers can also integrate LT tools as ready-to-deploy services, following
the ELG specifications, or upload the resource itself, in which case it will be stored
and preserved according to the Data Management Plan (see Chapter 8) and made
readily available to LRT consumers. Furthermore, descriptions of organisations that
are active in the LT area can be added in order to promote their activities and prod-
ucts. Descriptions of projects that have been funded in the broader LT area can also
be included in the ELG catalogue. LRTs, organisations that have provided or created
them and projects that have contributed to their funding are linked together.

Detailed documentation is provided and a suite of helper tools have been devel-
oped aiming to make the contribution and integration of all entities briefly sketched
above as simple as possible, taking into account the technical expertise and prefer-
ences of users. In ELG, the provision and management of catalogue entries is sup-
ported through web user interfaces (UIs) and REST application programming inter-
faces (APIs). Section 2 describes the steps a provider must take to contribute entries
to the catalogue, and the tools provided by ELG to support this process. The ELG cat-
alogue intends to be a reliable source for resources that can be accessed and (re-)used
by commercial and non-commercial, research and public organisations as well as in-
dividuals. For this purpose, management and curation policies and processes for the
metadata, data and services included in ELG have been set up, albeit with variations
depending on the source and type of contribution. Only authorised and authenticated
individuals can add LRTs in ELG; the registration and assignment of the “provider”
user role is a simple process for all interested users (see Chapter 3). In addition, all
entries go through a formal publication life cycle (see Chapter 2). Before being pub-
lished in the catalogue, added metadata records are validated by the ELG core team
(Section 3). Section 4 looks into the requirements for the different types of resources
and entities in ELG, either integrated in ELG or available remotely and added to ELG
as metadata records only. Further technical specifications are set for LT services that
are intended to be deployed through the ELG cloud infrastructure, and for data re-
sources hosted in ELG. Before being published in ELG, these resources go through
a process that aims to ensure their technical validity and, for services, to set up the
required environment for their deployment. Section 5 presents similar platforms and
infrastructures and discusses the approach and tools they offer for providers of LRTs,
in analogy to the comparison made for the platform functionalities from the point of
view of consumers in Chapter 3.

2 Adding Resources to the ELG Platform

LRT providers come from a variety of backgrounds, some within Language Technol-
ogy fields such as NLP or Computational Linguistics, and others from neighbouring
fields such as Digital Humanities. Different providers have different levels of techni-
cal knowledge and familiarity with formal metadata descriptions, so ELG attempts
to offer an integrated environment suitable for both expert and non-expert users. The

4 Contributing to the European Language Grid as a Provider 69

functions exposed for registering and managing catalogue entries and their accompa-
nying data files are designed to be user-friendly while still offering advanced features
to users with the relevant skills.

All metadata records must comply with the ELG metadata schema (Labropoulou
et al. 2020). The schema offers a rich set ofmetadata elements for each type of LRT or
entity (organisation, project) to be added. Individual elements are either mandatory,
recommended or optional, depending on the record type. Providers can add entries
with only the mandatory elements, although they are also encouraged to add the
recommended ones. See Chapter 2 for more details.

2.1 Creating Metadata Records

Providers can add records in one of two ways: either by creating and uploading XML
files compliant to the ELG schema (Section 2.1.1), or by using the interactive editor
offered by ELG (Section 2.1.2). In practice many users will adopt a combination
of the two approaches, for example, a provider who wishes to submit many similar
records (such as MT services based on the same underlying engine but with models
for different language pairs) may create their first record using the editor, export it
as XML, and use this file as a template to generate the remaining records.

2.1.1 Creation and Upload of Metadata Files

This first option is probably more appealing to expert and technical users, especially
those that wish to register multiple related records or produce frequently updated
versions of LRTs registered in ELG. To facilitate the process of adding records, pre-
filled metadata templates and examples (with the mandatory and recommended ele-
ments) are available in the ELG GitLab repository1. As mentioned above, any exist-
ing metadata record can be exported from ELG as XML to be used as a template.

A REST endpoint for metadata validation of single files or zipped archives of
XML files is publicly available and offered for providers that want to validate their
metadata files and ensure they comply with the ELG schema before uploading them
to the platform.2 The XSD validator checks that all mandatory elements are filled in
and that filled-in values are consistent with the data type declared for the elements –
for example, if elements take values from controlled vocabularies or should follow
a specific pattern – and returns the results in JSON form.

Users can upload their metadata records through the provider’s grid (see Sec-
tion 2.3) as single files or in batch mode. The import step includes additional vali-
dation rules, which check the syntactic and, to a certain extent, semantic integrity of
the record. For example, checks are performed for metadata elements that depend

1 https://gitlab.com/european-language-grid/platform/ELG-SHARE-schema
2 https://live.european-language-grid.eu/catalogue/#/validate-xml

https://gitlab.com/european-language-grid/platform/ELG-SHARE-schema
https://live.european-language-grid.eu/catalogue/#/validate-xml

70 Dimitris Galanis, Penny Labropoulou, Ian Roberts, Miltos Deligiannis et al.

on the presence or value of other elements (e. g., the element “multilinguality type”
which is mandatory for bilingual and multilingual resources), or for duplicate values
(e. g., the same “language” value used twice). Validation errors are reported to the
user for correction. If the file is valid, it is imported to the platform and the provider
can perform further edits with the editor or submit it for publication in accordance
with the publication life cycle (see Chapter 2).

2.1.2 Metadata Editor

The editor can be accessed through the provider’s grid (see Section 2.3). It supports
users in creating new metadata records, as well as editing and updating existing
ones. The editor includes themandatory and recommended fields of the ELG schema.
Chapter 2 provides a summary of all mandatory metadata elements.

The editor has been designed with non-expert users in mind, and intends to hide
the richness of the ELG schema. For this reason, we offer a full-fledged UI with
metadata elements grouped into semantically coherent sets and layered along hor-
izontal and vertical tabs, following the ELG conceptual structure. Different editor
forms with the same look and feel have been implemented for each resource or en-
tity type. Figure 1 shows the editor for tools/services; the horizontal tabs correspond
to the main classes of the schema – in this case, LRT, tool/service and distribution –
and the vertical tabs to categories of elements within that main section. The figure
shows the LRT horizontal tab, whose options include “identity” (identification meta-
data such as the resource name, long description, and name of the creator responsible
for the record), “categories” (classification elements such as keywords and subject
domain), and “documentation” (links to publications, user manuals, or other docu-
ments describing the resource).
CREATE A NEW SERVICE OR TOOL

Work in progress
ELG-compatible
service

LANGUAGE
RESOURCE/TECHNOLOGY

TOOL/SERVICE DISTRIBUTION DATA Save draft Save

LRT identifier
A string used to uniquely identify the language resource/technology

Description

LRT provider
The actor responsible for providing, curating, maintaining and making available (publishing) the language resource/technology

Source of metadata record
The entity (repository, catalogue, archive, etc.) from which the metadata record has been imported into the new catalogue

IDENTITY

CATEGORIES

CONTACT

DOCUMENTATION

RELATED LRΤS

The official name or title of the language resource/technology

Example service

select language

English

Fill in

An abbreviation, acronym, etc. used for the language resource/technology

Example

select language

English

This is an example of a metadata record for an ELG-compatible service.

Paragraph

select language

English

Recommended format: major_version.minor_version.patch (see semantic versioning guidelines at http://semver.org)

1.0.0

The date of the LRT version (latest update of the particular version if possible)

Select type and describe

Fill in

LRT name * language

LRT short name language

language

Version

Version date

Actor type

Go to catalogueMy grid My items My validations Feedback Administration

RELEASE 2

Ian R RobertsMy grid

Catalogue Documentation & Media About

Fig. 1 ELG metadata editor

4 Contributing to the European Language Grid as a Provider 71

The editor guides the user to fill in at least all of the mandatory elements with
appropriate values. Help tips and examples are available for metadata elements, and
different editing controls are used for elements depending on their data type. For
instance, the elements of controlled vocabularies are shown using dropdown lists.
For vocabularies with many values (e. g., languages, service functions, etc.), we use
a combination of dropdown lists with suggested values as the user types in the text.

The combination of dropdown lists and dynamically suggesting values is also
applied to improve normalisation. For example, some elements such as keywords
allow free text entry, however as the user types, a popup suggests matching values
that have previously been used for the same element in other records, “nudging” the
user to choose identical values instead of slight variations. The same lookup mecha-
nism, of suggesting values from those already imported in the catalogue, is used for
reducing the chance for duplicates of related entities such as agents, projects, docu-
ments, licences, and other resources.3 For such entities, the ELG schema requires a
set of minimal information, a name/title, and, optionally, an identifier and metadata
elements that could uniquely distinguish it from similar entities (e. g., email for per-
sons, website for organisations, a URL with the text for licences, etc.). Thus, when
adding related entities through the editor, users type in a name/title, and are shown
matching entries (if any) to select from; if not, they are prompted to fill in the re-
quired elements mentioned above. The same set of metadata elements is also used
at the import of metadata records to uniquely identify the related entities.

Through the editor, providers have the option of saving incomplete metadata
records (“draft”), for which only the data type of the metadata elements is validated
(e. g., that they have entered a valid URL). When they decide to properly save the
metadata record, we validate the entry using the yup library4, implementing at least
the same rules used at the import of metadata files. In case of errors, messages de-
scribe the error and location where it occurred (see Figure 2); clicking on the error,
users are forwarded to its location.

2.2 Uploading and Managing Data Files

Data files, i. e., the physical files that contain the contents of a resource, must be
uploaded as a ZIP file. Section 4.2.2 presents recommendations for the packaging of
data resources, especially for those that can be split into subsets.

Providers can upload data files as a first step when they upload an XML file5, or
during the editing process with the editor. The editor includes a tab entitled “Data”
(Figure 3) through which users can manage the files (upload, replace and delete).

3 This is a well-known issue across catalogues; the adoption of unique persistent identifiers is rec-
ommended to resolve it, but not all entities are assigned such a unique identifier or it may not be
known to the provider that submits the metadata record.
4 https://github.com/jquense/yup
5 At the time of writing, the upload of data files during the batch import of XML metadata records
is not supported.

https://github.com/jquense/yup

72 Dimitris Galanis, Penny Labropoulou, Ian Roberts, Miltos Deligiannis et al.
CREATE A NEW SERVICE OR TOOL

Correct the following errors in order to proceed
1. Language Resource/Technology > Identity > Description is required

2. Language Resource/Technology > Identity > Description language is required

Work in progress
ELG-compatible
service

LANGUAGE
RESOURCE/TECHNOLOGY

TOOL/SERVICE DISTRIBUTION DATA Save

LRT identifier
A string used to uniquely identify the language resource/technology

Description

LRT provider
The actor responsible for providing, curating, maintaining and making available (publishing) the language resource/technology

Source of metadata record
The entity (repository, catalogue, archive, etc.) from which the metadata record has been imported into the new catalogue

LRT creator
The actor who created the language resource/technology

Funding project
The project that funded the creation, enrichment, extension, etc. of the language resource/technology

IDENTITY

CATEGORIES

CONTACT

DOCUMENTATION

RELATED LRΤS

The official name or title of the language resource/technology

Example service

select language

English

Fill in

An abbreviation, acronym, etc. used for the language resource/technology

Example

select language

English

Paragraph

select language

English

Recommended format: major_version.minor_version.patch (see semantic versioning guidelines at http://semver.org)

1.0.0

The date of the LRT version (latest update of the particular version if possible)

Select type and describe

Fill in

Select type and describe

The date when the language resource/technology became available to the public

The official title of the project

Upload an image file (e.g., JPG, PNG) or add the full URL for the LRT logo

Browse

 Save

The European Language Grid has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement № 825627 (ELG)

Technologies Resources Community Events Documentation About ELG Contact us

© 2022 ELG Consortium Terms of Use

LRT name * language

LRT short name language

language

Version

Version date

Actor type

Actor type

Publication date

Project name

Logo

Go to catalogueMy grid My items My validations Feedback Administration

RELEASE 2

Ian R RobertsMy grid

Catalogue Documentation & Media About

Fig. 2 ELG metadata editor with error messages

A resourcemay be available in a range of distributable forms (“distributions”), for
example, in different file formats (e. g., as PDF, XML or TXT files). ELG supports
the upload of multiple data files for the same resource. For this reason, when users
upload more than one package of data files, they are prompted to associate each
package with the respective distribution (i. e., the one that includes the metadata that
describe the size and format of the particular set of files). This action is performed
by selecting the specific package on the “distribution” tab.

2.3 Managing Catalogue Entries

The ELG platform presents users that have the “provider” role set with a “grid” (dash-
board), through which they can access and manage the catalogue items they have
created, as well as create new items (Figure 4). Since every provider is by definition
CREATE A NEW CORPUS

Work in progressLANGUAGE
RESOURCE/TECHNOLOGY CORPUS PART DISTRIBUTION DATA Save draft Save

Name Upload date Assigned to distribution Actions

AM-News.zip 13 April 2022 No

*In order to delete a dataset you should first unlink it from the corresponding distribution and save your record.

DATA
Upload data

 Save draft Save

The European Language Grid has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement № 825627 (ELG)

Technologies Resources Community Events Documentation About ELG Contact us

© 2022 ELG Consortium Terms of Use

Go to catalogueMy grid My items My validations Feedback Administration

RELEASE 2

Ian R RobertsMy grid

Catalogue Documentation & Media About

Fig. 3 ELG metadata editor – “data” tab for uploading data files

4 Contributing to the European Language Grid as a Provider 73

Fig. 4 Provider’s grid (see Figure 6 in Chapter 3, p. 48, for the Consumer’s grid)

also a consumer, the provider’s dashboard is an extension of the consumer’s dash-
board shown in Chapter 3, adding a counter of the number of records this user has
created and links to the editor, XML upload, and XML validator tools.

Users can manage the metadata records they have created through a dedicated
page (“My items”, Figure 5), and, in accordance with their user rights and the pub-
lication status of the record, perform the following actions: edit a metadata record,
submit it for publication, create a new version of a published record, copy a metadata
record (in order to use it as a model and create a similar record), delete a metadata
record that has not yet been published, and request the unpublication of one of their
records.6 The “My items” page is a focused version of the catalogue, this time fil-
tering records according to each user’s role. This page also implements browse and
search functionalities like the main catalogue page.

6 Records cannot be completely deleted after publication except in exceptional circumstances, and
then only by request to the ELG administrators.

74 Dimitris Galanis, Penny Labropoulou, Ian Roberts, Miltos Deligiannis et al.

Fig. 5 “My items” page

3 Validating and Publishing Metadata Records

Metadata records added by individuals7 enter a validation process, as specified in the
ELGpublication life cycle (see Chapter 2), before they are published in the catalogue:
we perform technical/metadata and legal validation for ELG-compatible services and
resources with uploaded data files, and validation at the metadata level only for all
other metadata records. ELG-compatible services also go through a set of actions
required for the registration of the service in the ELG platform (see Section 4.1.8).

Validators have access to the metadata records that have been assigned to them
through the “validator’s grid”, and more specifically the “My validations” page (Fig-
ure 6). The validation form includes fields in which the validator can add internal
comments (visible only to the other validators), and in the case of rejected records,
a field for noting the reasons and suggested changes that are communicated to the
provider for corrections. Providers can go through the changes and resubmit the
record, which initiates a new round of validation, until final approval. When the
metadata record has been approved by the responsible validator or validators, it is
automatically made visible in the public catalogue.

4 Entity-Type Specific Requirements

There are several technical requirements that need to be met for LT services (Sec-
tion 4.1) or resources (Section 4.2) to be deployed through or hosted in ELG success-
fully. We also present the requirements for metadata-only resources (Section 4.3).

7 For harvesting and batch import functionalities from other catalogues, see Chapter 6.

4 Contributing to the European Language Grid as a Provider 75

Search for services, tools, datasets, organizations...

Curator

test-curator (7)

elg-system (6)

test-admin (1)

test-metadata-validator (1)

Items

Corpus (6)

Model (3)

Organization (3)

Lexical/Conceptual

resource
(1)

Project (1)

Tool/Service (1)

Status

submitted (9)

published (6)

Has data

no (12)

yes (3)

Resubmitted

false (14)

true (1)

Τechnically valid
yes (15)

Metadata valid

not validated (9)

yes (6)

Legally valid

yes (15)

15 search results

Resource name Status

Select All

ToolVal

1.0.0

Tool/Service

submitted: 22 July 2021

has data

legal validator

test-legal-validator

metadata validator

test-metadata-validator

technical validator

test-technical-validator

curator

test-admin

submitted

legally valid

yes

metadata valid

not validated

technically

valid

yes

KP_Division

Organization

submitted: 21 July 2021

metadata validator

test-metadata-validator

curator

test-curator

submitted

legally valid

yes

metadata valid

not validated

technically

valid

yes

new test data corpus

1.0.0 (automatically assigned)

Corpus

submitted: 16 July 2021
legal validation date: 16 July 2021
metadata validation date: 16 July 2021

has data

legal validator

test-legal-validator

metadata validator

test-metadata-validator

technical validator

test-metadata-validator

curator

test-curator

Review comments

[16/07/2021] Validation review: legal rejection after metadata/tech approve

[16/07/2021] Validation review: reject metadata approve technical

published

legally valid

yes

metadata valid

yes

technically

valid

yes

MY ITEMS VALIDATION TASKS MY USAGE MY DOWNLOADS

Search

Fig. 6 “My validations” page

4.1 ELG-compatible Services

A service is ELG-compatible if it is packaged in a Docker image and follows the
ELG LT internal API, i. e., the service consumes and produces messages in the ELG-
specified format, as defined in Section 4.1.1 below. When a provider adds a tool or
service to ELG either using XML metadata upload or through the metadata editor,
they are asked if the service will actually be integrated in ELG, so that conformance
to our specifications can be monitored.

76 Dimitris Galanis, Penny Labropoulou, Ian Roberts, Miltos Deligiannis et al.

4.1.1 Internal LT API Specification

The ELG internal LT API is closely related to the public API described in Chapter 3.
The public API is a simplified derivative of the internal API. While both the internal
and public APIs make use of the same JSON messages for input and output, the
internal API is designed strictly around a single HTTP request-response transaction
for each processing task, rather than the multi-step asynchronous mode supported
by the public API.

For the internal API, services that accept text receive their requests as JSON,
while services that process binary audio or image data receive a MIME “multipart/-
form-data” request with the metadata in JSON and the binary data as the relevant
audio or imageMIME type. The endpoint must return the appropriate JSON response
message depending on its function (standoff “annotations”, classifications, audio, or
new “texts” – which could be a single text, a series of sentences, a list of alternative
translations, etc.). Examples include:

• Information extraction (IE) services for text accept a “text” request and return an
“annotations” response; i. e., annotations whose position is described in terms of
zero-based character offsets. Such services include tokenisers, sentence splitters,
sentiment analysers, named entity recognisers, dependency parsers, etc.

• Text classification services accept a “text” request and return a “classification”
response with the classes that have been assigned to the whole input text by the
service. Examples are language identifiers, text-level sentiment classifiers etc.

• Machine translation services receive a “text” request and generate a new text or
list of alternatives returned in a “texts” message. Services such as summarisation
would use a similar format.

• Information extraction services from speech take “audio” requests and return
the same standoff annotations as IE-from-text, but in this case the annotations
are time segments in the audio stream, e. g., keyword spotting for audio files.

• Speech recognition services take “audio” requests and return a text transcription
or a choice of n-best transcriptions, encoded as a “texts” message.

• Text-to-speech services take “text”messages and return “audio”messages, which
can either include the returned audio inline as base64-encoded data, or as a URL
reference to audio which has been uploaded to the temporary storage helper ser-
vice (see Section 4.1.2).

• Optical character recognition services take “image” requests and return the ex-
tracted text as a “texts” response.

• Image classification services take “image” requests and return “classification”
responses.

The formats of the input and output messages are generic and can be easily reused
for integrating new types or classes of services. For example, Speech-to-Text ser-
vices, such as a speech summariser that would consume an “audio” request and re-
turn a “texts” response in the same way as a pure speech recogniser, can easily be
added. Other examples can be found in Chapter 7.

4 Contributing to the European Language Grid as a Provider 77

Detailed, up-to-date guidance on the process of integrating an LT service and
selecting the most appropriate integration option can be found in the ELG documen-
tation8; more information is provided in Section 4.1.3.

As described in Chapter 3, error, warning and progress report messages are rep-
resented as structured objects with a message code, representing a message that can
be localised into many languages. The ELG team provides a set of standard message
codes for common messages, and maintains their translations, but service providers
who use their own custom messages are welcome to contribute their own localisa-
tions for integration into the public message resolver by contacting the ELG team.

Services that take a long time to process data have the option of returning a se-
ries of “progress” messages prior to generating the final response using the standard
HTTP “server-sent events” format.9

4.1.2 Helper Services

ELG provides certain helper services that can be called at fixed URLs by LT ser-
vice containers if they run within the platform. Notably, ELG provides a temporary
storage helper which LT services can use in order to return data that does not natu-
rally map on to the standard JSON-based response formats. This helper allows an
LT service to store arbitrary blobs of binary data on a short-term basis (for any time
from ten seconds up to 24 hours), and receive a randomly generated URL that can be
included in the response JSON, and which the caller can retrieve up until its expiry
time. Typical uses for this service include text-to-speech services that need to return
larger chunks of audio data, or services that visualise structures such as parse trees
in a binary image format. This is discussed further in the context of the Text2TCS
service in Chapter 7, Section 5.1, p. 144 ff.

4.1.3 Integration Requirements and Options

The requirements for integrating an LT tool or service into ELG are as follows.

Expose an ELG-compatible endpoint: The provider needs to make sure that the
LT tool or service to be integrated into ELG exposes an HTTP endpoint, i. e.,
either such an endpoint already exists or it needs to be implemented. The cor-
responding endpoint application must consume HTTP requests that follow the
ELG JSON format, call the included or underlying LT tool and produce responses
again in the ELG JSON format as specified in the the ELG LT internal API (Sec-
tion 4.1.1). Developers working in Python or Java, Groovy, Kotlin, or other JVM-
based languages, can make use of helper libraries provided by the ELG team to
handle much of the boilerplate code for creating the HTTP listener, parsing and

8 https://european-language-grid.readthedocs.io/en/stable/all/3_Contributing/Service.html
9 https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events

https://european-language-grid.readthedocs.io/en/stable/all/3_Contributing/Service.html
https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events

78 Dimitris Galanis, Penny Labropoulou, Ian Roberts, Miltos Deligiannis et al.

ELG Kubernetes cluster

LT Service Execution Server

LT tool

standalone

container

Adapter

container Proxy

container

LT tool

(own API)

LT tool

(own API)

Provider's server/cloud

Pod

Pod

Pod

Fig. 7 Integration options

producing the JSON messages, etc., so that the provider can concentrate on their
own business logic (see Sections 4.1.6 and 4.1.5 for more details).

Provide the application in the form of a Docker image: Thewhole application
must be packaged as a container image using Docker or similar tools, and up-
loaded to a Docker registry, such as GitLab10, DockerHub11 or Azure Container
Registry12. More than one image might be needed for one service, depending on
how the service is made available. From the three options described in Fig. 7,
providers can pick the one that best fits their needs.

• LT tool packaged in one standalone image:One image is created that contains
the application that exposes the ELG-compatible endpoint and the actual LT
tool. This is themost common approachwhenwrapping tools that are callable
as libraries from custom code, such as Python machine learning models.

• LT tool running remotely outside the ELG infrastructure: In this case, one
proxy image is created that exposes one (ormore) ELG-compatible endpoints;
the proxy container communicates with the actual LT service that runs outside
the ELG infrastructure.

• LT tool requiring an adapter: This is a compromise between the standalone
and remote approaches. A tool that is available as a Docker image but whose
API is not natively ELG-compatible can be run alongside a separate ELG-
compatible adapter image as a single pod in the ELG infrastructure. The
adapter receives ELGAPI requests, communicates with the tool’s native API
in the pod, and translates the responses back to ELG format.

10 https://gitlab.com
11 https://hub.docker.com
12 https://azure.microsoft.com/en-us/services/container-registry/

https://gitlab.com
https://hub.docker.com
https://azure.microsoft.com/en-us/services/container-registry/

4 Contributing to the European Language Grid as a Provider 79

1 # Base image.
2 FROM openjdk:8-jdk-alpine
3

4 # SET TARGET DIRECTORY
5 ENV TARGETDIR /elg/
6 # This is required for wait.sh
7 RUN apk update && apk add bash
8

9 # Install tini and create unprivileged user
10 RUN apk add --no-cache tini && \
11 addgroup --gid 1001 "elg" && \
12 adduser --disabled -password --gecos "ELG User ,,," \
13 --home /elg --ingroup elg --no-create -home --uid 1001 elg
14

15 # Create target directory
16 RUN install -d -o elg -g elg $TARGETDIR
17 # Copy everything to target directory
18 COPY --chown=elg:elg dockerCmd ${TARGETDIR}dockerCmd
19 # Copy/Rename server app jar.
20 ADD --chown=elg:elg /elg-ilsp-lt-services -rest-simple -0.0.1-

SNAPSHOT -exec.jar ${TARGETDIR}dockerCmd/app.jar
21

22 # Set working directory
23 USER elg:elg
24 WORKDIR ${TARGETDIR}dockerCmd
25

26 # Make sure script can be executed
27 RUN chmod +rx ./wait.sh
28

29 # The command that is run when the container starts
30 ENTRYPOINT ["sh", "runInContainer.sh"]

Listing 1 Example of a dockerfile for an integrated ELG LT service

4.1.4 Creation of Docker Images

The Docker image of an application contains the code of the tool and all dependen-
cies required to run it, e. g., the operating system, frameworks, settings, configuration
files and libraries etc. Containers are instantiations of images and can be thought of
as lightweight virtual machines.

The process of packaging a service as a Docker image involves creating a dock-
erfile that describes the build process, running that build, and pushing, i. e., copying
the resulting image to a Docker registry that is accessible to the ELG infrastructure.
An example dockerfile is shown in Listing 1. The most important parts are:

• Line 2 states that an image containing a lightweight Linux-based operating sys-
tem that includes Java programming language will be used as the base.

• Line 20 adds the Java-based application (.jar file) that exposes an ELG-compliant
LT service to the image (see Section 4.1.5 for more details).

80 Dimitris Galanis, Penny Labropoulou, Ian Roberts, Miltos Deligiannis et al.

1 # Login to Gitlab container registry
2 $ docker login registry.gitlab.com
3

4 # Build the image and tag it with the name registry.gitlab.com/
ilsp-nlpli -elg/elg-ilsp-lt-services and a version number

5 $ docker build -t registry.gitlab.com/ilsp-nlpli -elg/elg-ilsp-lt-
services:1.0.0 .

6

7 # Push the image to the container registry
8 $ docker push registry.gitlab.com/ilsp-nlpli -elg/elg-ilsp-lt-

services:1.0.0
Listing 2 Example sequence of commands to build and push a Docker image to a registry

• Line 30 specifies the script (.sh) that is run when a container is created from this
image; this script starts the Java application.

A simple and robust way to build and store the image of a service in a registry
is to put the service code into a source code repository such as GitHub13 or GitLab,
and then to use the repository’s continuous integration (CI) mechanism. There are
various examples of services built like this, i. e., using GitLab CI, in the ELGGitLab
space.14 Gitlab CI is triggered immediately after a commit on the repository or on
demand and runs the build process specified in .gitlab-ci.yml.

An image can also be built and stored by running a set of commands locally. This
option is helpful because CI services are often restricted, e. g., Gitlab has monthly
quotas. In this case, users must first download the source code to a local folder (in-
cluding the dockerfile), and then run a sequence of commands similar to Listing 2.

Some languages and build systems provide alternatives for building Docker im-
ages that do not require developers to write their own dockerfile, or to use Docker
at all. For example, Java services based on the Micronaut15 helper described below
can use the Micronaut built-in dockerPush or dockerPushNative gradle tasks to
build and push an image in one step using an automatically generated dockerfile, or
Google Jib16, which is designed specifically around the needs of Java applications
and produces intelligently layered images that make more efficient use of space in
the container registry. Additional files such as models can also be included.

To be deployed in ELG, a Docker image must meet the following requirements:

• It must be built for the amd64 architecture (also known as x86_64); multi-
architecture images may be appreciated by users who want to run the service
on their own hardware, but ELG itself runs on amd64.

• It must be compatible with the Broadwell micro-architecture, which supports
SSE4.2, AVX and AVX2 but not AVX512 instructions.

13 https://github.com
14 https://gitlab.com/european-language-grid
15 https://micronaut.io
16 https://github.com/GoogleContainerTools/jib

https://github.com
https://gitlab.com/european-language-grid
https://micronaut.io
https://github.com/GoogleContainerTools/jib

4 Contributing to the European Language Grid as a Provider 81

• The container must run in at most 6GB of RAM, but the smaller its foot-
print the better. By default, containers are limited to 512MB RAM; if the con-
tainer requires more memory, this must be specified in the metadata record (us-
ing additionalHWRequirements). Services requiring more than 6GB are ap-
proved only in exceptional cases.

• It must be tagged with an explicit version number such as :1.0.0, not the im-
plicit :latest tag which typically changes over time.

• The network socket on which the container listens for HTTP requests must bind
to all the container’s IP addresses (typically by using 0.0.0.0). Some HTTP
libraries only listen on the local loopback 127.0.0.1 by default, which will not
be sufficient in ELG.

• Ideally the container should run without needing outgoing network connections
to locations outside the hosting cluster. In particular, any model files must be
cached within the image at build time, not downloaded at runtime from a repos-
itory such as Hugging Face. If outgoing network access is required, the target
IP address ranges must be specified.

It is recommended for the service to only start listening once it is fully initialised
and ready to start handling requests. If this is not possible (e. g., if the code re-
quires some asynchronous initialisation process and the library used opens its sock-
ets before that process is complete), then a separate “readiness” endpoint should
also be provided at a separate URL path from the main service endpoint (typically
/elg-ready) that returns the response code 503 (“service unavailable”) if the ser-
vice is not yet initialised, and 200 or 204 once it is ready to handle requests.

Sections 4.1.5 and 4.1.6 present Java- and Python-based libraries for easily cre-
ating an application that offers an ELG-compatible service. Some of these include
utilities for creating the Docker image in which the service will be packaged.

4.1.5 Helper Libraries for Java

For LT service developers working in Java or other Java Virtual Machine (JVM) lan-
guages such as Groovy17 or Kotlin18, ELG provides helper libraries for two popular
frameworks, Spring Boot19 and Micronaut20. The programming style is similar in
both cases, though Micronaut is better optimised towards creating smaller, lighter
images with faster startup times, so if the service implementation does not already
have a dependency on Spring, Micronaut is the recommended option. Both libraries
depend on a common bindings library21 of Java model classes that represent the
various JSON message structures in a more Java-native way.

17 https://groovy-lang.org
18 https://kotlinlang.org
19 https://spring.io/projects/spring-boot
20 https://micronaut.io
21 https://javadoc.io/doc/eu.european-language-grid/elg-java-bindings

https://groovy-lang.org
https://kotlinlang.org
https://spring.io/projects/spring-boot
https://micronaut.io
https://javadoc.io/doc/eu.european-language-grid/elg-java-bindings

82 Dimitris Galanis, Penny Labropoulou, Ian Roberts, Miltos Deligiannis et al.

An ELG-compatible LT service can be built in three steps22 using Micronaut:

1. Create a blank Micronaut application using the Micronaut Launch tool.23
2. Add the ELGhelper as a dependency, which is published to the central repository

– for Gradle this means
implementation("eu.european -language -grid:lt-service -

micronaut:1.0.0")

3. Create a controller that extends LTService (for services that process text-based
requests) or BinaryLTService (for services that process requests with binary
content) and implement the relevant handle or handleSync method.

The process24 is similar for Spring Boot:

1. Create a blank Spring Boot application using the “Spring Initializr”25 – addi-
tional dependencies are not needed, unless the specific code requires them.

2. Add the ELGhelper as a dependency, which is published to the central repository
– for Gradle this means
implementation("eu.european -language -grid:elg-spring -boot-

starter:1.0.0")

3. Create one or more beans annotated @ElgHandler, with one or more public
methods annotated @ElgMessageHandler. Each method should take an ELG
request type such as TextRequest as a parameter (and for binary requests a
second parameter of type Flux<DataBuffer> for the actual data) and return
an ELG response type such as AnnotationsResponse or a reactive streams
Publisher producing that type.

In both cases, Micronaut and Spring Boot, developers must add their code in the
appropriate places to call the actual LT tool and build a response based on the tool’s
results, using the model classes, e. g., an AnnotationsResponse object in the case
that the results are standoff annotations. Once the objects are created, the frameworks
and libraries are able to automatically serialise them into ELG-compliant JSON re-
sponse messages. Similarly, the frameworks automatically translate the received in-
put JSON messages to objects that can be easily handled by the developer, e. g., in
the Spring Boot case a “text” JSON request is deserialised to a TextRequest object.

4.1.6 Helper Tools for Python

Similar to Java, the ELG team provides helper tools to create an ELG-compatible
service from a Python-based LT service. The helper tools are included in the ELG
Pypi package presented in Chapter 3. The package provides two Python classes that

22 https://gitlab.com/european-language-grid/platform/lt-service-micronaut
23 https://micronaut.io/launch
24 https://gitlab.com/european-language-grid/platform/elg-spring-boot-starter
25 https://start.spring.io

https://gitlab.com/european-language-grid/platform/lt-service-micronaut
https://micronaut.io/launch
https://gitlab.com/european-language-grid/platform/elg-spring-boot-starter
https://start.spring.io

4 Contributing to the European Language Grid as a Provider 83

1 from elg import FlaskService
2 from elg.model import TextRequest , AnnotationsResponse
3 import langdetect
4

5 class ELGService(FlaskService):
6 def process_text(self, request: TextRequest):
7 langs = langdetect.detect_langs(request.content)
8 ld = {}
9 for l in langs:
10 ld[l.lang] = l.prob
11 return AnnotationsResponse(features=ld)
12

13 service = ELGService("LangDetection")
14 app = service.app

Listing 3 Example ELG service created using the FlaskService class of the ELG Python package

can be extended to create a simple HTTP server that exposes an ELG-compatible
endpoint of the LT tool. The ELG Python package also comes with a command-line
interface (CLI) that helps with the creation of the Docker image.

For the ELG-compatible endpoint, the developer creates a Python class extending
either FlaskService or QuartService as a base class, and must implement one of
the four following handler methods: process_text, process_structured_text,
process_audio or process_image, depending on the required input type for the
LT service. This method will contain the code of the LT tool, it takes as input an ELG
request object of the relevant type and should return a valid ELG response object. As
a simple example, Listing 3 shows an LT tool that detects the language of the input
text. The ELGService class inherits from the FlaskService class, which already
contains all the code needed to create the server. This allows the developer to focus
on the LT tool by only having to define the handler method. The FlaskService
and QuartService classes work the same way; the first is based on Flask26, which
is more suited to CPU-bound synchronous code, the second uses the asyncio-based
Quart framework27, which is better for I/O bound code – QuartService is the only
supported option if the handler method uses async/await28. Both base classes sup-
port the progress reporting mechanism and correctly handle exceptions raised by the
tool, mapping them to ELG-compliant failure responses.

After having defined the HTTP server compatible with the ELG LT internal API
using the FlaskService or QuartService class, the next step is to create the
Docker image. The ELG CLI that comes with the Python package contains the elg
docker create command to help during this step. The command automatically
generates the dockerfile based on the arguments. Listing 4 shows an example for the
language detection service presented in Listing 3. All the available options of the

26 https://flask.palletsprojects.com/en/2.0.x/
27 https://pgjones.gitlab.io/quart/
28 https://www.european-language-grid.eu/2021/10/04/choose-the-right-tool-to-create-your-elg-
service-in-python/

https://flask.palletsprojects.com/en/2.0.x/
https://pgjones.gitlab.io/quart/
https://www.european-language-grid.eu/2021/10/04/choose-the-right-tool-to-create-your-elg-service-in-python/
https://www.european-language-grid.eu/2021/10/04/choose-the-right-tool-to-create-your-elg-service-in-python/

84 Dimitris Galanis, Penny Labropoulou, Ian Roberts, Miltos Deligiannis et al.

elg docker create -n ELGService -p elg_service.py -r langdetect
Listing 4 CLI command to generate the dockerfile automatically

command are accessible with elg docker create --help. Once the dockerfile
is generated, the creation and the publication of the Docker image follows the same
process as described in Section 4.1.4.

The ELG documentation includes a complete tutorial on how to create an ELG-
compatible service using the Python package.29 With these helper tools, we seek to
facilitate as much as possible the creation of an ELG-compatible service from an
LT tool implemented in Python. Using the Python helper ensures that the resulting
service follows best practice in terms of error handling, request parsing, etc. and
the construction of the dockerfile. This makes the services deployed in the ELG
infrastructure efficient and secure.

4.1.7 Metadata Requirements

In addition to the metadata requirements for tools and services (see Chapter 2), the
metadata records of ELG-compatible services must also include a set of technical
metadata that are necessary for their deployment in the platform:

• dockerDownloadLocation: location of the image with the LT service;
• serviceAdapterDownloadLocation: location of the adapter image (if any);
• executionLocation: REST endpoint at which the LT tool is exposed within
the Docker image (http://localhost:{port}{/path});

• additionalHWRequirements: can be used to specify hardware requirements
for this tool beyond the default limits of 512MB RAM and one CPU core;

• We also recommend providing sample data on which the service produces sen-
sible results. Sample data help speed up the validation process, and can be used
through the trial UIs and the “Code samples” tab by consumers who want to
test the service. Providers can upload a file with samples, add a URL where the
samples are located, or simply add the data in a dedicated free text element.

Figure 8 shows the mandatory elements replicating the editor (with sections hori-
zontally and tabs vertically); elements marked with an asterisk are mandatory, given
certain conditions, or required depending on the presence of another value or ele-
ment.

29 https://european-language-grid.readthedocs.io/en/stable/all/A1_PythonSDK/TutoServiceIntegr
ation.html

https://european-language-grid.readthedocs.io/en/stable/all/A1_PythonSDK/TutoServiceIntegration.html
https://european-language-grid.readthedocs.io/en/stable/all/A1_PythonSDK/TutoServiceIntegration.html

4 Contributing to the European Language Grid as a Provider 85

LANGUAGE RESOURCE /

TECHNOLOGY
DISTRIBUTIONTOOL/SERVICE

IDENTITY

IDENTITY

• Resource name

• Description

• Version

IDENTITY• Keyword

IDENTITY• Additional information

CONTACT

CATEGORIES

RELATED LRT'S

DOCUMENTATION

CATEGORIES

IDENTITY• Function

TECHNICAL

IDENTITY

• Software distribution form

• Private

• Docker download location

• Service adapter download

location *

• Execution location

• Additional h/w

requirements *

• Licence

TECHNICAL

IDENTITY

• Language dependent

• Input content resource

• Resource type

• Language *

• Output resource *

• Resource type

• Language *

EVALUATION

Fig. 8 Mandatory metadata for an ELG-compatible service

4.1.8 Technical Validation and Registration of ELG-Compatible Services

When LT providers have completed the packaging of their service, they can add it
to ELG by supplying a metadata record via either the XML upload or editor mech-
anisms described in Section 2.1, specifying that it is an “ELG-compatible service”
when prompted. Submitting the record initiates the validation process, which is per-
formed internally by the ELG team.

The validation starts with the service registration process: The metadata or tech-
nical validator inspects the metadata record (accessed through the validator’s grid)
and deploys the service in the ELG Kubernetes cluster by creating the respective
entries in the Helm charts that control the cluster. After that, the validator registers
the service using a registration form (Figure 9), which specifies:

• Kubernetes-specific endpoint to be used by the LT execution server when calling
the service, derived from the executionLocation metadata element value.

• ID of the trial UI to be used for rendering the processing results.
• Type of service (e. g., Speech Recognition, Text-to-Speech, Text Classification,
etc.), which determines the appearance of the “Code samples” tab.

• Accessor ID that is used to form the public API endpoint URLs at which the
service can be called. If the service was created as a new version of an existing
service then it will share the same accessor ID as the service it replaces, but other
than this, two distinct services must have different accessor IDs.

86 Dimitris Galanis, Penny Labropoulou, Ian Roberts, Miltos Deligiannis et al.

Fig. 9 Registration form for ELG-compatible LT services

When the registration is completed, the service is visible only to the validator and
the provider. The technical validator and the provider check that the service behaves
as expected using test input, and that the results it returns can be rendered adequately
by the assigned trial UI – this is where good sample data is particularly useful. When
required, the validator may communicate with the provider to recommend changes in
the technical implementation of the service or metadata. When the service is finally
running as it should the technical validator approves it; it will be published once it
also receives approval from the legal validator (see Chapter 2 for more information
on the ELG publication life cycle).

4.1.9 Custom Try Out Interface

The ELG-provided trial UIs30 have been designed to support common service types
in a generic way, but there may be specific services for which the standard UIs either
do not work or do not represent the results in a particularly intuitive way. If this is the
case, it is possible to supply an alternative trial UI that better suits the service to be

30 https://gitlab.com/european-language-grid/usfd/gui-ie

https://gitlab.com/european-language-grid/usfd/gui-ie

4 Contributing to the European Language Grid as a Provider 87

1 // set up message listener
2 window.addEventListener('message', (e) => {
3 if(e.origin ===
4 'https://live.european -language -grid.eu') {
5 const serviceInfo = JSON.parse(e.data);
6 // configure UI here - store ServiceUrl and Authorization, fetch
7 // parameter metadata from ApiRecordUrl, etc.
8 }
9 });
10

11 // request configuration from the parent frame
12 setTimeout(() => {
13 // the content of the message is unimportant, any message will trigger
14 // the configuration reply.
15 window.parent.postMessage("GUI:Ready for config",
16 "https://live.european -language -grid.eu");
17 }, 500);

Listing 5 Typical JavaScript setup code for a trial UI

added. The standard UIs are open source under the Apache Licence31, and providers
are free to use this code as a basis for their own UI.

A trial UI is a single-page HTML/JavaScript application which is loaded into an
<iframe> by the catalogue page when the user views an ELG-compatible service.
Trial UIs run entirely in the browser and must not send user data to anywhere other
than the ELG service endpoint and the i18nmessage resolver service. The JavaScript
inter-frame messaging mechanism is used to supply the UI with the data it needs to
configure itself for use with this particular service – when the UI <iframe> loads
it must register a message listener that expects to receive message data that can be
parsed as JSON, then dispatch a message to the parent frame to trigger the configu-
ration message in return.32 An example of this mechanism is shown in Listing 5.

The message event data sent by the parent frame will be JSON containing the
following properties:

ServiceUrl The public LT service API URL at which the service can be called.
The URL may include query string parameters if the service has more than one
deployed version.

ApiRecordUrl The catalogue API URL from which the metadata record for this
service may be retrieved with a GET request. This provides access to service pa-
rameter declarations, sample data, etc.

Authorization An HTTP Authorization header value that will authenticate
calls to the ServiceUrl and ApiRecordUrl as the user who is logged in.

31 https://www.apache.org/licenses/LICENSE-2.0
32 To avoid the parent frame sending the configuration data before the UI frame is ready to receive
it.

https://www.apache.org/licenses/LICENSE-2.0

88 Dimitris Galanis, Penny Labropoulou, Ian Roberts, Miltos Deligiannis et al.

Language (optional) ISO code for the preferred language of the user. If present,
this should be used as the lang parameter when resolving status messages to
strings using the i18n resolver (see Section 4.1.1)

The custom UI can be hosted at any HTTPS URL – the ServiceUrl and
ApiRecordUrl return the appropriate CORS headers to support cross-origin re-
quests. Trial UIs run as Docker images in the ELG Kubernetes cluster. UIs can be
created either by the ELG team or by a provider that needs a custom visualisation in-
terface for the tools they contribute. CustomUIs can be integrated into ELG together
with the ELG technical team.

4.2 ELG-hosted Resources

Together with metadata descriptions, providers are encouraged to upload the corre-
sponding data files of their language resources so that they are readily available for
download through ELG. To register their resources, they can select their preferred
option from the ones presented in Section 2.1 and upload the accompanying files
following the instructions in Section 2.2.

4.2.1 Requirements for ELG-hosted Resources

ELG requires data files to be uploaded as compressed ZIP files. There are no other
specific metadata requirements apart from those defined for records of the resource
type towhich they belong (i. e., corpora, models, etc.). Chapter 2, Section 5, (p. 19 ff.)
describes the metadata schema in more detail.

4.2.2 Packaging Data and Splitting Metadata Records: Recommendations

Datasets are composed of files that can be organised according to different criteria.
For example, a multilingual corpus of texts from various domains can be described
as a whole (one metadata record) or split into subsets (with corresponding metadata
records) using the language or domain criteria. Depending on their intended use,
different ways of packaging datasets and making them available can be suggested.33

We prepared a set of recommendations for the packaging of data files to enable
users, especially those accessing ELG through programmatic APIs, to automatically
identify, download and use corpora as is, without having to download them and man-
ually search among them the subsets that interest them.34

33 https://www.w3.org/TR/vocab-dcat-3 provides a similar argumentation for data distributions.
34 These recommendations can be applied in different contexts, depending on whether the resource
will be uploaded in ELG: when providers upload their corpora into ELG, they can use them to
package the files and register the resource as one or multiple metadata records; if they decide to

https://www.w3.org/TR/vocab-dcat-3

4 Contributing to the European Language Grid as a Provider 89

The following cases are foreseen:

Multilingual resources are recommended to be split into bilingual pairs, so that
users can easily find and use them, for example, in the case of bilingual corpora,
to train bilingual models.

Resources from shared tasks are usually already split into training, development,
gold, and test datasets, with a direct link to each of these. This is an established
practice, and adopted in ELG as is. We recommend to register them as separate
metadata records.

In both cases, a parent metadata record, to which the metadata records of all sub-
sets can point is recommended using the “isPartOf” relation.

4.3 Metadata Records for External LRTs, Organisations and Projects

When external LRTs, organisations or projects are added to ELG, the only require-
ment for such metadata records is that they conform to the minimal version of the
ELGmetadata schema, i. e., they include themandatorymetadata elements described
in Chapter 2, Section 5 (p. 19 ff.). Providers can use one of the options described in
Section 2.1 (p. 69 ff.). For these records, the validation process aims to ensure that
the metadata description is consistent and informative for users.

5 Provider-Related Functionalities in ELG and other Platforms

In this final section of the chapter we discuss some aspects of the functionalities of-
fered to LT providers in ELG in relation to those available in other similar platforms.
This discussion cannot be exhaustive. It rather attempts to give an overview of their
design and implementation, highlight the main options utilised by the platforms, and
offer explanations of the adopted approaches.

5.1 Metadata Requirements

Although the use of certain metadata schemas (e. g., DC35, DCAT36, schema.org37,
etc.) is growing, these schemas are usually restricted to the documentation of gen-

grant access to external corpora through hyperlinks, they can follow them for splitting the resource
into one or multiple records and marking the availability through a direct link (element “download-
Location”).
35 https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
36 https://www.w3.org/TR/vocab-dcat-3/
37 https://schema.org

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.w3.org/TR/vocab-dcat-3/
https://schema.org

90 Dimitris Galanis, Penny Labropoulou, Ian Roberts, Miltos Deligiannis et al.

eral properties and do not satisfy domain- or community-specific requirements, es-
pecially with regard to discovery. Thus, most platforms use their own metadata
schemas or ask for a minimum set of elements which are community-, domain-, or re-
source type specific (see Chapter 6 for a discussion of metadata schemas). Technical
metadata are typically mandatory when resources are deployed in a platform. ELG
has a detailed schema with a minimum set of required metadata to allow for flexi-
bility and strictness when this is mandated for operational reasons (i. e., resources
deployed in ELG, added by individuals, harvested from other sources).

CLARIN has initiated the Component MetaData Infrastructure38, which provides
a framework to describe and reuse different “metadata profiles” for resource types
and communities. Specific metadata profiles, e. g., those of web services, are “recom-
mended” with an aim to ensure interoperability and operational requirements. How-
ever, these profiles may promote different mandatory elements, depending on the
use of the profile by each CLARIN Centre. Hugging Face39 uses a dataset and model
card, in which part of the required information is specified via YAML40 tags.

5.2 Provider User Interface and Metadata User Interface

User-friendly editors that can cover multiple metadata schemas are difficult to im-
plement, especially when the schemas have a complex structure. Nevertheless, most
platforms include such an option. ELG, like META-SHARE41 (Piperidis 2012;
Piperidis et al. 2014), OpenMinTeD42 (Labropoulou et al. 2018) and the European
AI-on-demand platform43, offer provider-specific UIs and a metadata editor support-
ing their respective schemas for describing resources. Hugging Face offers a rather
simple UI with limited functionality. LAPPS Grid44 (Ide et al. 2016) does not pro-
vide such UIs, a provider must communicate with the technical team in order to
add services to the Galaxy45 toolbox. Various CLARIN teams have created editors
that support CMDI metadata (e. g., COMEDI46, ARBIL47, etc.). For more technical
users, platforms offer APIs through which they can upload metadata records with
JSON being the most widely used format for the records.

38 https://www.clarin.eu/content/component-metadata
39 https://huggingface.co
40 https://huggingface.co/docs/datasets/v1.12.0/dataset_card.html
41 http://www.meta-share.org
42 https://openminted.github.io
43 https://www.ai4europe.eu
44 https://www.lappsgrid.org
45 http://galaxy.lappsgrid.org
46 https://clarino.uib.no/comedi/page
47 https://portal.clarin.nl/node/14320

https://www.clarin.eu/content/component-metadata
https://huggingface.co
https://huggingface.co/docs/datasets/v1.12.0/dataset_card.html
http://www.meta-share.org
https://openminted.github.io
https://www.ai4europe.eu
https://www.lappsgrid.org
http://galaxy.lappsgrid.org
https://clarino.uib.no/comedi/page
https://portal.clarin.nl/node/14320

4 Contributing to the European Language Grid as a Provider 91

5.3 Try Out User Interface

Hugging Face offers embedded trial UIs to access their public “inference API”.
These are similar in spirit to the ELG “try out” UI mechanism, with a publicly docu-
mented API being called by a generic user interface. In addition, Hugging Face pro-
vides “Spaces”48 which enable users to create and deploy their own UIs for demon-
strating a model. The approach followed by Hugging Face Spaces is different from
ELG; it is based on developers coding their own back-end server code and front-end
UI as a single unit using the Streamlit49 or Gradio50 Python libraries. The developer
adds this source code to a Git repository and Hugging Face then deploys the code
to their infrastructure directly from the source code rather than from a developer-
supplied Docker image. The UI is tightly coupled to the server-side code and the
“API” is an implementation detail that varies from “space” to “space”. ELG does
not offer this kind of option by default, but the documented APIs mean that third
parties could create a similar service on top of the LT services offered by ELG.

5.4 Helper Tools for Packaging Resources

As described in the previous sections, ELG offers command line utilities and SDKs
for creating and submitting metadata for resources, preparing ELG-compatible ser-
vices, etc. OpenMinTeD offered only a metadata validation service, without a corre-
sponding command line tool. The European AI-on-demand platform, however, pro-
vides such utilities through Acumos51 an open source framework, that makes it easy
to build, share, and deploy AI applications.

5.5 Packaging Data Resources

ELG has adopted a lightweight policy for the packaging of uploaded datasets, given
that direct deployment is currently not foreseen. In the CLARIN infrastructure, each
centre has its own processes and recommended formats for uploaded resources, tak-
ing into account preservation or deployment purposes (e. g., submitting the resources
to processing). Hugging Face maintains a detailed set of instructions for the upload
of datasets and models, which is crucial for ensuring that they can be deployed.

48 https://huggingface.co/spaces
49 https://streamlit.io
50 https://gradio.app
51 https://www.acumos.org

https://huggingface.co/spaces
https://streamlit.io
https://gradio.app
https://www.acumos.org

92 Dimitris Galanis, Penny Labropoulou, Ian Roberts, Miltos Deligiannis et al.

6 Conclusions

ELG enables producers of language resources and language technology tools and
services to upload, describe, share, and distribute their services and products as well
as to describe their companies, academic organisations and projects. ELG offers to
providers web-based user interfaces for describing LT resources or related entities
with metadata records and provides them with functionalities for managing the life
cycle of their assets; a billing component for commercial services and resources has
been implemented (see Chapter 3, Section 6, p. 59 f.) and will be activated as soon as
the ELG legal entity is in place (see Chapter 13). Providers of LT tools can exploit
such functionalities to integrate LT tools in the ELG platform as ready-to-deploy
services. LT data and tool providers are requested to follow the specifications and
recommendations for packaging tools and resources to be uploaded in ELG. In the
wider language technology ecosystem, provider-related functionalities are offered
by other platforms, too, respecting their own target groups, objectives and policies.
ELG has built bridges to some of these platforms, see Chapter 6 for more details.

References

Ide, Nancy, James Pustejovsky, Christopher Cieri, Eric Nyberg, Denise DiPersio, Chunqi Shi, Keith
Suderman, Marc Verhagen, Di Wang, and Jonathan Wright (2016). “The Language Application
Grid”. In: Worldwide Language Service Infrastructure. Ed. by Yohei Murakami and Donghui
Lin. Cham: Springer, pp. 51–70. DOI: 10.1007/978-3-319-31468-6_4.

Labropoulou, Penny, Dimitris Galanis, Antonis Lempesis, Mark Greenwood, Petr Knoth, Richard
Eckart de Castilho, Stavros Sachtouris, ByronGeorgantopoulos, StefaniaMartziou, Lucas Anas-
tasiou, Katerina Gkirtzou, Natalia Manola, and Stelios Piperidis (2018). “OpenMinTeD: A
Platform Facilitating Text Mining of Scholarly Content”. In: Proceedings of WOSP 2018 (co-
located with LREC 2018). Miyazaki, Japan: ELRA, pp. 7–12. URL: http://lrec-conf.org/works
hops/lrec2018/W24/pdf/13_W24.pdf.

Labropoulou, Penny, Katerina Gkirtzou, Maria Gavriilidou, Miltos Deligiannis, Dimitris Galanis,
Stelios Piperidis, Georg Rehm, Maria Berger, Valérie Mapelli, Michael Rigault, Victoria Ar-
ranz, Khalid Choukri, Gerhard Backfried, José Manuel Gómez Pérez, and Andres Garcia-Silva
(2020). “Making Metadata Fit for Next Generation Language Technology Platforms: The Meta-
data Schema of the European Language Grid”. In: Proceedings of the 12th Language Resources
and Evaluation Conference (LREC 2020). Ed. by Nicoletta Calzolari, Frédéric Béchet, Philippe
Blache, Christopher Cieri, Khalid Choukri, Thierry Declerck, Hitoshi Isahara, Bente Maegaard,
Joseph Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis. Marseille, France: ELRA,
pp. 3421–3430. URL: https://www.aclweb.org/anthology/2020.lrec-1.420/.

Piperidis, Stelios (2012). “The META-SHARE Language Resources Sharing Infrastructure: Princi-
ples, Challenges, Solutions”. In: Proceedings of the Eight International Conference on Lan-
guage Resources and Evaluation (LREC’12). Ed. by Nicoletta Calzolari, Khalid Choukri,
Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard, Joseph Mariani, Asuncion Moreno,
Jan Odijk, and Stelios Piperidis. Istanbul, Turkey: ELRA.

Piperidis, Stelios, Harris Papageorgiou, Christian Spurk, Georg Rehm, Khalid Choukri, Olivier Ha-
mon, Nicoletta Calzolari, Riccardo del Gratta, Bernardo Magnini, and Christian Girardi (2014).
“META-SHARE: One year after”. In: Proceedings of the 9th Language Resources and Evalu-
ation Conference (LREC 2014). Ed. by Nicoletta Calzolari, Khalid Choukri, Thierry Declerck,

https://doi.org/10.1007/978-3-319-31468-6_4
http://lrec-conf.org/workshops/lrec2018/W24/pdf/13_W24.pdf
http://lrec-conf.org/workshops/lrec2018/W24/pdf/13_W24.pdf
https://www.aclweb.org/anthology/2020.lrec-1.420/

4 Contributing to the European Language Grid as a Provider 93

Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and Stelios
Piperidis. Reykjavik, Iceland: ELRA, pp. 1532–1538. URL: http://www.lrec-conf.org/proceed
ings/lrec2014/pdf/786_Paper.pdf.

Rehm, Georg, Stelios Piperidis, Kalina Bontcheva, Jan Hajic, Victoria Arranz, Andrejs Vasiļjevs,
Gerhard Backfried, José Manuel Gómez Pérez, Ulrich Germann, Rémi Calizzano, Nils Feldhus,
Stefanie Hegele, Florian Kintzel, Katrin Marheinecke, Julian Moreno-Schneider, Dimitris Gala-
nis, Penny Labropoulou, Miltos Deligiannis, Katerina Gkirtzou, Athanasia Kolovou, Dimitris
Gkoumas, Leon Voukoutis, Ian Roberts, Jana Hamrlová, Dusan Varis, Lukáš Kačena, Khalid
Choukri, Valérie Mapelli, Mickaël Rigault, Jūlija Meļņika, Miro Janosik, Katja Prinz, Andres
Garcia-Silva, Cristian Berrio, Ondrej Klejch, and Steve Renals (2021). “European Language
Grid: A Joint Platform for the European Language Technology Community”. In: Proceedings
of the 16th Conference of the European Chapter of the Association for Computational Linguis-
tics: System Demonstrations (EACL 2021). Kyiv, Ukraine: ACL, pp. 221–230. URL: https://w
ww.aclweb.org/anthology/2021.eacl-demos.26.pdf.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://www.lrec-conf.org/proceedings/lrec2014/pdf/786_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/786_Paper.pdf
https://www.aclweb.org/anthology/2021.eacl-demos.26.pdf
https://www.aclweb.org/anthology/2021.eacl-demos.26.pdf
http://creativecommons.org/licenses/by/4.0/

	Chapter 4 Contributing to the European Language Grid as a Provider
	1 Introduction
	2 Adding Resources to the ELG Platform
	2.1 Creating Metadata Records
	2.1.1 Creation and Upload of Metadata Files
	2.1.2 Metadata Editor

	2.2 Uploading and Managing Data Files
	2.3 Managing Catalogue Entries

	3 Validating and Publishing Metadata Records
	4 Entity-Type Specific Requirements
	4.1 ELG-compatible Services
	4.1.1 Internal LT API Specification
	4.1.2 Helper Services
	4.1.3 Integration Requirements and Options
	4.1.4 Creation of Docker Images
	4.1.5 Helper Libraries for Java
	4.1.6 Helper Tools for Python
	4.1.7 Metadata Requirements
	4.1.8 Technical Validation and Registration of ELG-Compatible Services
	4.1.9 Custom Try Out Interface

	4.2 ELG-hosted Resources
	4.2.1 Requirements for ELG-hosted Resources
	4.2.2 Packaging Data and Splitting Metadata Records: Recommendations

	4.3 Metadata Records for External LRTs, Organisations and Projects

	5 Provider-Related Functionalities in ELG and other Platforms
	5.1 Metadata Requirements
	5.2 Provider User Interface and Metadata User Interface
	5.3 Try Out User Interface
	5.4 Helper Tools for Packaging Resources
	5.5 Packaging Data Resources

	6 Conclusions
	References

