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Abstract

Cognitive impairment (CI) is a major health concern in aging populations. It impairs patients’ 

independent life and may progress to dementia. Vascular cognitive impairment (VCI) 

encompasses all cerebrovascular pathologies that contribute to cognitive impairment (CI). 

Moreover, the majority of CI subtypes involve various aspects of vascular dysfunction. Recent 

research highlights the critical role of reduced cerebral blood flow (CBF) in the progress of VCI, 

and the detection of altered CBF may help to detect or even predict the onset of VCI. Arterial 

spin labeling (ASL) is a non-invasive, non-ionizing perfusion MRI technique for assessing CBF 

qualitatively and quantitatively. Recent methodological advances enabling improved signal-to-

noise ratio (SNR) and data acquisition have led to an increase in the use of ASL to assess CBF 

in VCI patients. Combined with other imaging modalities and biomarkers, ASL has great 

potential for identifying early VCI and guiding prediction and prevention strategies. This review 

focuses on recent advances in ASL-based perfusion MRI for identifying patients at high risk of 

VCI. 

Key Words: Vascular cognitive impairment; Vascular dementia; Perfusion MRI; Arterial spin 

labeling; Neuroimaging; Cerebral blood flow; Neurovascular unit
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Introduction

Cognitive impairment (CI) is a clinical syndrome defined as cognitive decline that is more 

pronounced than expected for the patient’s age or education level. In adults older than 65 years, 

the prevalence of mild cognitive impairment (MCI) ranges from 3% to 19%,1 and increases to 

22.2% in patients at the age of 71 years or higher. The prevalence of dementia in the elderly (> 

65 years) is 6.4%, while that of Alzheimer’s disease (AD) and vascular dementia (VaD) is 4.4% 

and 1.6% respectively.2, 3 Individuals suffering from MCI have a significantly increased risk to 

develop dementia.4 CI is becoming a major concern in aging populations due to its heavy 

medical and socioeconomic burden for patients, families, and the society. Indeed, the CI-

associated burden on the medical care system has surpassed that of cancer and heart diseases 

in the United States.5

The term vascular cognitive impairment (VCI) was proposed to describe the contribution of 

cerebrovascular pathologies to any severity of CI.6, 7 According to the Vascular Impairment of 

Cognition Classification Consensus Study (VICCCS), VCI contains mild VCI (VCI-no dementia, 

VCIND) and major VCI (i.e. vascular dementia, VaD) (Figure 1). The latter is further classified 

into 4 subtypes: post-stroke dementia (PSD), subcortical ischemic VaD (SIVD), multi-infarct 

(cortical) dementia, and mixed dementia with additional neurodegenerative pathologies (e.g. 

VCI-AD, VCI-DLB).4, 8 

(Figure 1 about here)

In addition to hypertension, diabetes, hypercholesterinemia and other factors compromising 
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cerebrovascular function, aging is recognized as a major risk factor of cerebrovascular 

pathology.9 Indeed, the risk of developing VaD doubles with every 5.3 years after the age of 65. 

Early VCI identification and prediction will be crucial in preventing or delaying full VaD onset 

since early treatment of cerebral vascular dysfunction is directly associated with lower incidence 

of VaD.10

Recent studies suggest that reduction in cerebral blood flow (CBF) occurs prior to the 

clinical onset of VCI.11-13 Consequently, CBF measurement may aid in distinguishing cognitively 

normal adults from those at risk for or exhibiting VCI.14 In addition, CBF reduction is a sensitive 

predictor of cognitive decline and its progression with age.15, 16 This suggests that early 

detection of CBF changes may be an appropriate method for identifying individuals at risk for 

VCI. Moreover, the degree of cognitive deficit in patients with subcortical VCI is correlated with 

reduced regional CBF (rCBF) 17 

Hypoperfusion is also prevalent in AD patients and can precede the onset of clinical AD by 

several years.18 The classical amyloid cascade hypothesis attributes the decrease in the CBF to 

neuronal hypometabolism. However, according to the vascular hypothesis, AD pathology begins 

with perfusion changes, resulting in dysfunction of neurons and surrounding cells19, and 

alterations of both large and small cerebral vessels, prominently seen in, but not limited to the 

penetrating vasculature of white matter (WM), are considered key drivers in AD.20 Thus, CBF 

measurements may also be used to identify individuals in the presymptomatic stages of AD. 

Moreover, the most predominant type of cognitive impairment is mixed VCI-AD. Since the role 
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of cerebral hypoperfusion in AD is not yet entirely clear and subject to ongoing research, the 

primary focus of this study will be VCI. 

This review discusses recent applications and advances in the use of arterial spin labeling 

(ASL) in VCI patients and individuals at high risk for developing VCI.

The emerging association between VCI and CBF changes

Due to athe strong correlation between CBF and neuronal function and metabolism, CBF is 

recognized as a clinically relevant marker of brain function.21 Intact CBF regulation as well as 

normal cerebral metabolism are essential for the maintainancemaintenance of cognitive 

function.22 In addition, impaired CBF is associated with an increased risk of developing all types 

of dementia.23 In VCI, sustained changes in CBF can occur beforeprior to clinical symptoms.10, 

11, 13, Evidence shows that in patients with subcortical VCI, and pathological alterations including 

CBF reduction and changes in blood distribution change are closely related toassociated with 

the degree of CI in patients with subcortical VCI.17 Thus, a thorough mechanistic understanding 

of CBF in the pathophysiologic cascade of VCI is crucial to preserve the possibility of timely 

intervention.

Cerebral microinfarcts and other ischemic brain tissue injury, especially in the WM, are 

major pathological hallmarks of VCI.24, 25 Chronic cerebral metabolic dysfunction as well as 

deterioration of pre-existing systemic vascular risk factors such as hypertension, hyperlipidemia, 

diabetes mellitus, or atrial fibrillation, are important contributors to developing CI.21, 26, 27 
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Resulting structural changes in cerebral blood vessels such as hypertensive remodeling or 

atherosclerosis in high-risk patient groups often lead to vascular occlusion, abnormal cerebral 

perfusion, and impaired autoregulation, culminating into CBF reduction and CI.

Dysfunction of the neurovascular unit leads to impaired neurovascular couplingCBF 

regulation

Although the brain only represents about 2% of the body mass, it consumes approximately 

20% of nutrients and oxygen while lacking relevant storage capacities for both. Proper CBF 

regulation assures both constant and stable brain tissue perfusion which is crucial to meet the 

brain’s metabolic demands and for maintaining normal neuronal activity.28, 29 The neurovascular 

unit (NVU), which is comprised of neurons, astrocytes, vascular smooth muscle cells (SMCs), 

endothelial cells (ECs) and pericytes, plays a crucial role in coupling vascular perfusion and 

thus regional CBF to metabolic needs of neuronal activity, attracting increasing attention in VCI 

pathophysiology.30, 31 Disruptions of any component of the NVU in cerebrovascular pathologies 

hasve significant impact on CBF modulation and neuronal function (Figure 2).32 The precise 

neurovascular coupling is therefore of vital importance, and even mild impairments can may 

severely affect cerebralbrain function, and can cause cognitive decline.33

(Figure 2 about here)

SMCs in the NVU can directly control vessel diameter and thus regional CBF.32, 34 In VCI 

patients, SMC degeneration is frequently observed, going along with distinct cerebrovascular 
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structural alterations such as endothelial cell flattening. Proper myogenic responses of SMCs 

are important for CBF regulation and steady capillary perfusion, protecting the brain against 

potentially negative effects of any rapid blood pressure change.35 In addition, myogenic 

responses of SMCs are coupled to neuronal activity and metabolic demands as nearby neurons 

and astrocytes release prostaglandins, nitric oxide, K+ and Ca2+ ions to SMCs,.28, 36 Thiswhich 

precisely regulates brain tissue blood perfusion through SMC contraction or dilation.37 In chronic 

hypertension and aging, SMCs undergo degeneration in VCI, and the control of myogenic 

autoregulatory responses is often impaired, causing vascular injury, microbleeds and increased 

blood-brain barrier (BBB) permeability.33 Chronic hypertension is associated with vascular 

hypertrophy and remodeling, and enhances atherosclerosis in large and penetrating brain 

vessels, which is very common in VCI patients.

ECs are another critical NVU component responsible for mediating dynamic microvascular 

responses and neurovascular coupling. ECs respond to changing rCBF demands through 

multiple factors and mechanisms including endothelial nitric oxide synthase (eNOS), 

neurotransmitters, and metabolic reactions.38, 39 Endothelial NO production contributes to 

neurovascular coupling, inhibits platelet aggregation and smooth muscle proliferation, and 

ensures rCBF adjustment to neuronal activity. In VCI, cerebral ECs undergo pathological 

changes and produce pro-inflammatory mediators and toxic factorsmolecules such as VCAM-1, 

TNF-α, IL-1β, and matrix metalloproteinases (MMPs), magnifying neuroinflammation and blood-

brain barrier (BBB) disruption.40 Moreover, pathologically altered ECs promote NVU uncoupling 
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through dysregulated VEGF/angiogenesis and ROS/NO axes. Decreased NO bioavailability can 

further leads to ineffective CBF regulation and cerebral hypoperfusion, which ultimately causes 

neuronal death and CI.41, 42 Significant impairment in endothelium-associated arteriolar dilation 

can occur in aging because WM-penetrating arterioles are predominantly affected. 

Dysfunctional ECs can also produce toxic factors that block WM repair and integrity. For 

example, upregulation of brain endothelium-derived acid sphingomyelinase (ASM) contributes 

to BBB disruption and potentially CBF alterations in aging mice.

Pericytes usually reside in close proximity to brain capillaries enwrap brain 

microvasculature, and extend their processes around the microvasculature to maintain basal 

capillary tone, and contribute to neurovascular coupling.43 They are also crucial for BBB 

integrity, angiogenesis and clearance of toxic cellular metabolites.44-46 Pericyte coverage 

significantly decreases during aging, and the loss of pericytes is associated with BBB 

dysfunction, CBF alteration, neuronal loss, WM damage, and cognitive decline.47-49 Brain 

ischemia can induces capillary constriction by pericytes. This is followed by regional pericyte 

death due to the loss of energy supply and excitotoxicity, which may irreversibly decrease 

capillary blood flow and damage the BBB even after reperfusion, causing neuronal damage.50, 51 

VCI risk factors such as hypertension can also lead tocause loss of  impaired pericyte 

function.52

Dysfunction of the abovementioned NVU components all contribute to impaired CBF 

regulation and BBB disruption in cerebrovascular pathologies. CBF alteration is further related 
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to WM injury, lacunes, cerebral microbleeds, brain atrophy and cognitive deficits in several VCI 

subtypes both in animals and humans.14, 17, 24, 53-57 A comprehensive understanding of the 

impacts of CBF patterns on disease onset and progression, the relationship between global 

CBF and rCBF changes, and standardized criteria for CBF determination is of great importance 

to validate CBF as a biomarker in assessing VCI and individualizing its treatment (Figure 2).

(Figure 2 about here)

Application of ASL for detecting CBF alterations in VCI and related conditions

ASL for the measurement of cerebral blood flow

Neuroimaging is essential for precise VCI assessment, including T2-weighted MRI for the 

detection of lacunar infarcts, susceptibility weighted imaging (SWI) for microbleeds, and fluid-

attenuated inversion recovery (FLAIR) sequences for white matter hyperintensities (WMH). 

Recently, it is recommended that arterial spin labelling (ASL) can quantitatively measure subtle 

perfusion changes which are untraceable with structural MRI, and add specificity to VCI 

diagnosis.6 The technology of ASL was first proposed by Williams et al. in 1992.58 ASLIt has 

been validated for qualitative and quantitative CBF analysis in different brain disorders, such as 

CI, AD, acute stroke, and migraine.59-64 ASL can detect subtle perfusion changes which are 

untraceable with structural magnetic resonance imaging (MRI). ASL labels blood water to act as 

an endogenous tracer for CBF mapping by changing the magnetization of water proton spins in 

the arterial blood at the neck region.65, 66 Two brain images are acquired; the first (control) 
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image is subtracted from the second (labeled) image in order to remove the static brain tissue 

signal and to obtain the trajectory of blood flow.67 If necessary, a series of these image pairs 

can be acquired for the detection of dynamic changes over the course of the examination.11, 68 

AlthoughWhile dynamic susceptibility contrast-enhanced perfusion weighted-imaging 

(DSC-PWI) and [15O]-water positron emission tomography (PET) are well-established standards 

for CBF measurements, ASL has multiple advantages over these methods, including its non-

invasiveness, avoidance of radiation or contrast agent use, high reproducibility, as well as more 

widespread availability, thus can be a valuable noninvasive alternative to assess brain 

perfusion.69-71 ASL has been assessed in several clinical studies and is sensitive for detecting 

CBF changes in VCI and AD patients.14, 17, 72, 73

Moreover, multimodal imaging with the combination of ASL and other MRI sequences 

provides more comprehensive assessment for VCI pathologies.74 Recently, combined ASL and 

blood oxygenation level-dependent (BOLD) functional MRI has been used to study the change 

of neurovascular coupling in VCI and chronic stroke as the relationship between regional CBF 

and neuronal activity can be analyzed.75, 76 In addition, using ASL with fluorine 18 

fluorodeoxyglucose (FDG) PET can reveal the coupling of perfusion and metabolism in different 

brain regions.77 Therefore, we can further obtain the correlation between CBF at different 

locations and neuronal activity or metabolic state by combining ASL technique with other 

imaging modalities.
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ASL in major forms of VCI

Subcortical ischemic VaD, post-stroke dementia, and mixed VCI-AD dementia are the 3 

most commonly studied types of CI with vascular contribution, and ASL can be used to evaluate 

CBF changes in respective patients (Table 1). ASL showed reduced CBF in the frontal and 

parietal cortices and corresponding subcortical WM lesions in 8 patients with subcortical 

ischemic VaD compared to 18 elderly subjects with normal cognitive function.53 Another study 

compared 53 subcortical VaD patients with significant CI to 23 matched subcortical ischemic 

vascular disease patients without CI, found diffusely decreased CBF in the temporal and frontal 

lobes, and in deeper structures such as the hippocampus, thalamus and insula in subcortical 

VaD patients.17

Subcortical ischemic VaD also belongs to the umbrella of cerebral small vessel disease 

(cSVD). cSVD causes diffuse brain injury and is strongly associated with VCI.78 Key 

neuroimaging findings in cSVD include small subcortical infarcts, white matter hyperintensities 

(WMH), lacunes, cerebral microbleeds, enlarged perivascular spaces.79 Cortical microinfarcts 

have also been described.80 Cortical microinfarcts and confluent WMH have been shown to be 

associated with significant reduction in global CBF.24, 54 In addition, CBF surrounding WMH can 

predict future WMH expansion.74, 81

In one study of post-stroke dementia, researchers selected 39 elderly patients six years 

after stroke, of which eight developed dementia. In these patients, the ratio of CBF in the gray 

matter (GM CBF) to CBF in the white matter (WM CBF) was reduced. Moreover, this ratio 
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predicted the occurrence of dementia in post-stroke patients without dementia.82 However, 

normalized CBF values were calculated by dividing them by the mean WM CBF in the 

respective study, which is considered as a simple calibration method with lower sensitivity and 

reproductibility. Thus, the analysis of CBF changes in post-stroke dementia warrants further 

investigation.

Mixed VCI-AD dementia is probably the most common form of CI.83, 84 Patients with AD 

symptoms or prodromal AD exhibit global and regional hypoperfusion in the parietal and medial 

temporal lobes, as well as in the precuneus, posterior cingulate cortex, and hippocampus.85, 86 

Many patients clinically diagnosed with AD have considerable vascular pathology, and may be 

assumed to be indeed mixed-type VCI-AD patients. The CBF patterns in VCI-AD need to be 

much better elucidated in future studies for better understanding of their implications in mixed 

VCI-AD.87

ASL in mild VCI and high-risk individuals

Early identification of mild VCI is critical for timely interventions aiming to avoid or delay 

progression to major VCI. Cerebral hypoperfusion measured by ASL is an early indicator of VCI 

in patients presenting with very mild symptoms. In patients with mild VCI (VCIND), the rCBF 

reduction in specific regions in VCIND maycan be related toconsistent with domain-specific 

cognitive deficits. For example, a study comparing VCIND with different domain impairment 

found that the group of 16 non-amnestic VCIND patients with single domain impairment showed 
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CBF reduction in the left temporal lobe, left lenticular nucleus, and bilateral periventricular 

WM.88 Moreover, a study combined ASL and BOLD-fMRI to compare 26 subcortical ischemic 

vascular disease patients without CI and 28 patients with mild CI, used the regional 

homogeneity (ReHo)-CBF coupling and ReHo-CBF ratio to represent neurovascular coupling. In 

patients without CI, the ReHo/CBF ratio in the left precentral gyrus was positively correlated to 

Mini-mental State Examination (MMSE) scores. The mild CI group showed further decreased 

global ReHo-CBF coupling and decreased ReHo-CBF ratio mainly in the left insula, left 

precentral gyrus, right middle temporal gyrus, and right precuneus, indicating the role of 

impaired neurovascular coupling at the early stage of VCI and during disease progression.75

Subjective cognitive decline (SCD) is distinct from objective cognitive decline (mild VCI and 

VaD), but is associated with increased risk of future cognitive decline compared to individuals 

without any symptoms.89 Evidence from 35 SCD patients compared to elderly subjects with 

normal cognition suggested that SCD patients have negative associations between verbal 

memory and rCBF measured by ASL, which may reflect neurovascular dysfunction at an early 

stage of SCD.90 

ASL can predict cognitive decline in high-risk patients. In patients with vascular risk factors 

of cSVD such as hypertension, diabetes, or hypercholesterolemia, a cohort showed that relative 

CBF (vs. global mean CBF) in leptomeningeal middle cerebral artery (MCA) territories is 

positively correlated with executive functions and Montreal Cognitive Assessment (MoCA) 

scores.14 Another study of 71 subjects also showed that in non-demented older adults with 
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multiple vascular risk factors, advancing age was correlated with reduced cortical CBF, which 

was in turn associated with CI, whereas no such relationship was observed in patients with low 

vascular risk factor burden.91 Specifically, decreased rCBF in type 2 diabetes is associated with 

decline in several cognitive domains, including memory, learning, attention, and execution.26, 92 

Hypertension can further exacerbate CBF decrease in patients with diabetes.93 Even in healthy 

elderly individuals, ASL may help to predict CI as reduced CBF in the posterior cingulate cortex 

can indicate early neuropsychological decline as shown in a prospective study of 148 elderly 

individuals.94 Thus, CBF measured by ASL is a potential functional biomarker of VCI,95 which 

may have a high value in early detection of CBF alteration in high risk populations (Table 1).

Technical advances of ASL enable CBF imaging

Recent technical advances expanding the clinical use of ASL as a CBF measurement tool

The practical advantages of ASL lie in its avoidance of invasive needling, radioactive 

tracers, potentially nephrotoxic contrast agents, long preparations, and extensive scan times.96 

Multiple studies have demonstrated good feasibility, applicability and reproducibility of ASL in 

geriatric populations.71, 97 The clinical application of ‘classical’ ASL imaging is still limited though. 

In contrast to DSC-PWI, which requires contrast agent application but provides hemodynamic 

parameters including CBF, cerebral blood volume (CBV), mean transit time (MTT) and time to 

peak (TTP), ASL is relatively limited to CBF analysis. Due to the use of subtracted images in 

order to determine ASL signals, there is an unavoidable lower signal-to-noise ratio (SNR) 
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compared to direct contrast agent measurements.98 Moreover, the significant diversity of ASL 

parameters used by different investigators limits its application in multicenter research 

comparisons that need prior determination of consistent protocols.

However, recent technical advances have expanded the clinical use of ASL as a CBF 

measurement tool. According to different labeling schemes, ASL is classified into pulsed ASL 

(pASL), continuous ASL (cASL), and pseudo-continuous ASL (pcASL) (Figure 3).99, 100 pASL 

refers to a single short pulse about 10 ms to label inflowing arterial blood, the inverted blood 

flows from neck to brain and gradually loses labeling.; cASL is a continuous pulse at a thin slice 

through the neck over a period of time.; However, the need for continuous radio frequency 

apparatus and low labeling efficiency severely restricts its clinical application.101 and pcASL 

uses more than 1000 shortaped pulses (1-2 seconds) with high frequency instead of a long 

continuous pulse, (Figure 2) which can be considered as an “upgraded” pASL with higher 

SNR.66 Both pcASL andis preferred over pASL and cASLare commonly used in clinical settings 

with pcASL becoming the more preferred choice, as pcASL enables a higher SNR compared to 

pASL and higher labeling efficiency with more accessible pulses than cASL. This results inMany 

studies have shown both high scan-rescan repeatability and excellent inter-site reproducibility of 

pcASL in cerebrovascular diseases.14, 102-104

Minimized arterial transit time (ATT) for improved CBF imaging

One of the important technical issue of ASL is the consideration of inflow time or arterial 

Page 21 of 97 Journal of Cerebral Blood Flow and Metabolism

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Confidential: For Review Only
transit time (ATT), which is the time delay between labeling in the neck region and the arrival of 

labeled blood in the brain.Minimizing prolongation and variation of arterial transit time (ATT), 

which is the time delay between labeling in the neck region and the arrival of labeled blood in 

the brain, can increase accuracy. Prolonged ATT is thought to cause CBF underestimation in 

ASL, as relaxation of inverted or saturated spins (‘de-labeling’) during the blood passage from 

labeling location to screening location can occur.105, 106 The ASL accuracy can be improved by 

minimizing ATT, which means inverting spins as close as possible to the screening areas.107 

The calculation of final CBF using ATT also prevents underestimation. However, ATT can vary 

significantly, based on differences in cerebral regions, patients’ age, blood flow velocity in 

diverse arteries, and a longer travel distance caused by the probable presence of collateral 

pathways.66, 67 

To avoid imprecise measurement due to heterogeneous ATT in clinical settings, the 

artificially preset post-labeling delay (PLD) (or inversionflow time in pASL) can be refined by 

delaying the screening time to roughly imitate ATT in the brain.92, 108 PLD is optimized to be 

longer than the longest ATT to ensure that the labeled blood has reached the tissue at the time 

of screening (Figure 3).109 However, A technology called single PLD-ASL, which applies a single 

PLD time that is set between 1.5 to 2s for CBF estimation, maytends to cause errors due to the 

mismatch between the single PLD and ATT.110, 111 Especially in the case of proximal vessel 

occlusion, the delayed inflow and perfusion can be falsely recognized by single-PLD ASL as 

reduced CBF in the corresponding vascular territories, producing arterial transit artifacts.77 This 
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disadvantage can be overcomed by multi- PLD -ASL, a recent ASL technology acquiring serial 

ASL images at multiple PLDs which improves the accuracy of CBF measurement and provide 

more hemodynamic parameters including ATT, but requires relatively long scanning time.112, 113 

Another recent solution is the use of spatial coefficient of variation (CoV) of CBF images from 

single-PLD ASL as an alternative for ATT measurement, which can detect subtle CBF change 

without long-time scanning.59, 114, 115 As the impact of vessel stenosis and occlusion in poorly 

perfused areas on ASL accuracy is common in VCI, these strategies help to overcome the 

challenge and improve the application value of advanced ASL in VCI assessment.

(Figure 3 about here)

Other strategies to improve the efficiency and accuracy of CBF measurement

New ASL strategies are under development to improve the efficiency of CBF 

measurements. For example, time-encoded pcASL, measuring dynamic perfusion, and 

methods that show combined 4D-angiography with perfusion information are gradually being 

applied for CBF measurements.116 Optimized acquisition and analysis frameworks as well as 

capable MRI scanners will enhance the clinical use of ASL to quantitatively measure brain 

perfusion.108, 117

ASL implementation varies, among others, in hardware considerations, pulsing 

approaches, time delay setting, readout approaches, and postprocessing methods. In 2014, the 

International Society for Magnetic Resonance in Medicine (ISMRM) and the European 
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consortium ASL in Dementia (AID) reached a consensus concerning an optimal clinical 

implementation for CBF measurements.109 The consensus recommends pcASL, background 

suppression, segmented 3D readouts, calculation and presentation of both label/control 

difference images, and CBF reported in absolute units.118 To obtain ATT data and to avoid 

abnormally long ATT, multiple- PLD ASL is suggested, while single- PLD ASL is recommended 

for rapid CBF measurements.109

Concluding Remarks and Perspectives

The early recognition and identification of VCI are attracting increasing has recently gained 

growing attention. Cerebral hypoperfusion might play a crucial role in developing and 

accelerating VCI. A considerable body of evidence supports that decreases in CBF detected by 

ASL are an early indicator of VCI, and play a major role in both mixed type VCI-AD and AD. 

This may further widen the application of ASL as an imaging tool for the prediction of cognitive 

decline. However, there is still a great diversity in ASL parameters applied by different research 

groups, and the harmonization of imaging modalities is crucial for increasing reproducibility of 

imaging findings. FutureLarger studies exploring the possibility of screening VCI in different 

patient populations including different patient populations as well as healthy controls are highly 

warranted to establish solid screening or diagnostic criteria of VCI.
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Tables

Table 1: Representative ASL studies in VCI and high-risk individuals

Study Patient 

cohort

N in each group ASL 

methods

Main findings

Schuff et al.53 SIVD 8 SIVD + 18 HC pASL Reduced CBF in the frontal cortex and WM 

lesions.

Sun et al.17 SVCI 53 subcortical VaD + 

23 subcortical 

ischemia without CI

pcASL Diffusely decreased CBF in temporal and 

frontal lobes, also in hippocampus, thalamus 

and insula.

Liu et al.75 SVCI 28 SVCI + 26 

subcortical ischemia 

without CI + 24 HC

pcASL Decreased global ReHo-CBF coupling and 

decreased ReHo-CBF ratio mainly in 

cognition-related regions.

Firbank et al.82 PSD 8 PSD + 31 PSND + 

29 HC

pASL GM CBF/ WM CBF ratio was reduced in PSD 

group and predicted dementia in PSND group.

Hays et al.90 SCD 35 SCD + 35 HC pcASL Negative associations between verbal 

memory and rCBF in SCD patients.

Ferro et al.24 cSVD risk 

factors

74 dementia + 78 

CIND + 29 NCI

pcASL Cerebral cortical microinfarcts were 

associated with reduction in global CBF.

Promjunyakul 

et al.74

cSVD risk 

factors

82 with cSVD risk 

factors

pASL CBF penumbra was more extensive than 

structural penumbras of WMH.

Promjunyakul 

et al.81

NCI elderly 61 NCI pASL CBF surrounding WMH could predict future 

WMH expansion.

Jann et al.14 cSVD risk 

factors

45 with cSVD risk 

factors

pcASL Relative CBF in MCA territories is positively 

correlated with executive functions and MoCA 

scores.

Bangen et al.91 Vascular 

risk burden

16 high vascular risk 

+ 55 low vascular risk

pASL The correlation among increasing age, 

reduced cortical CBF, and CI was only 

significant in patients with high vascular risk 

burden.

Bangen et al.92 T2DM 11 T2DM, 38 without 

diabetes

pcASL Decreased rCBF in diabetes was associated 

with decline in several cognition domains.

Xekardaki et 

al.94

Cognitive 

decline

73 cognitive decline + 

75 HC

pASL Reduced CBF in the posterior cingulate cortex 

could indicate early neuropsychological 

decline.

SIVD: subcortical ischemic VaD; HC: health control (here refers to cognitively normal elderly 

subjects); SVCI: subcortical VCI; ReHo: regional homogeneity; PSD: post-stroke dementia; 
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PSND: post-stroke no-dementia; SCD: subjective cognitive decline; cSVD: cerebral small vessel 

disease; CIND: cognitive impairment–no dementia; NCI: no cognitive impairment; WMH: white 

matter hypertensities; MoCA: Montreal Cognitive Assessment; T2DM: Type 2 diabetes mellitus

Figure Legends

Figure 1. Classification of VCI according to the Vascular Impairment of Cognition Classification 

Consensus Study (VICCCS) guideline. VCI is divided into mild VCI (VCI-no dementia, VCIND) 

and major VCI (vascular dementia, VaD). VaD can be further classified into 4 subtypes: post-

stroke dementia (PSD), subcortical ischemic VaD, multi-infarct (cortical) dementia, and mixed 

dementia with nonvascular pathologies.

Figure 2. Schematic diagram and detailed functions of the cellular components of the 

neurovascular unit (NVU). The NVU is the functional unit helping in molecular transport 

exchange and CBF regulation. Detailed functions (in black) of normal pericytes, vascular 

smooth muscle cells (SMCs) and endothelial cells, three components of the NVU, are depicted. 

Dysfunction of any cellular component of the NVU (in red) can contribute eventually lead to 

vascular cognitive impairment (VCI). Pericytes are crucial in blood-brain barrier (BBB) 

permeability maintaining, molecular transport, cerebral blood flow (CBF) controlling and 

angiogenesis promotion. The loss of pericytes in VCI leads to increasing amyloid β deposition, 

BBB damage, CBF reduction and oxygen supply reduction. SMCs can directly control the 
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vessel diameter and have autoregulatory effects on neuronal metabolic states and brain tissue 

perfusion. SMCs degeneration disturbs steady cerebral perfusion and is associated with chronic 

hypertension, vascular hypertrophy and atherosclerosisvascular injury, microbleed development 

and blood-brain barrier (BBB) disruption. Endothelialum cells mediates neurovascular coupling, 

microvascular responses, endothelial nitric oxide synthase (eNOS) production and 

neurotransmitter transportation. Dysfunction of endothelium causes increased toxic factors and 

reduced production of eNOS, which can promotes the development of VCI. Pericytes are crucial 

in CBF controlling, BBB permeability maintaining, and angiogenesis promotion. The loss of 

pericytes in VCI leads to BBB damage, CBF reduction, and neuronal loss.

Figure 3. Schematic diagram displaying the main differences between pulsed arterial spin 

labeling (pASL), continuous ASL (cASL), and pseudo-continuous ASL (pcASL), in labeling zone 

and duration. pASL refers to a single short pulse to label inflowing arterial blood, while 

cASL/pcASL involves a continuous pulse or over 1000 shaped pulses with high frequency at a 

thin slice, through the neck over a period of time. Arterial transit time (ATT) refers to the time 

between labeling and screening, which can lead to cerebral blood flow (CBF) underestimation in 

ASL due to relaxation of labeled spins. As ATT varies in different cerebral regions, is dependent 

on patients’ age, and changes due to pathology, tThe post-labeling delay (PLD, or inversion 

time in pASL) is artificially preset to be longer than the longest ATT to delay the screening time 

and minimize the inaccuracy caused by ATT. However, single-PLD ASL can cause errors due 
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to the mismatch between the single PLD and ATT, especially in vessel stenosis and occlusion, 

which is common in VCI patients. This challenge can be overcomed by multi-PLD ASL or the 

use of spatial coefficient of variation (CoV).
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Abstract

Cognitive impairment (CI) is a major health concern in aging populations. It impairs patients’ 

independent life and may progress to dementia. Vascular cognitive impairment (VCI) 

encompasses all cerebrovascular pathologies that contribute to cognitive impairment (CI). 

Moreover, the majority of CI subtypes involve various aspects of vascular dysfunction. Recent 

research highlights the critical role of reduced cerebral blood flow (CBF) in the progress of VCI, 

and the detection of altered CBF may help to detect or even predict the onset of VCI. Arterial spin 

labeling (ASL) is a non-invasive, non-ionizing perfusion MRI technique for assessing CBF 

qualitatively and quantitatively. Recent methodological advances enabling improved signal-to-

noise ratio (SNR) and data acquisition have led to an increase in the use of ASL to assess CBF 

in VCI patients. Combined with other imaging modalities and biomarkers, ASL has great potential 

for identifying early VCI and guiding prediction and prevention strategies. This review focuses on 

recent advances in ASL-based perfusion MRI for identifying patients at high risk of VCI. 

Key Words: Vascular cognitive impairment; Vascular dementia; Perfusion MRI; Arterial spin 

labeling; Neuroimaging; Cerebral blood flow; Neurovascular unit
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Introduction

Cognitive impairment (CI) is a clinical syndrome defined as cognitive decline that is more 

pronounced than expected for the patient’s age or education level. In adults older than 65 years, 

the prevalence of mild cognitive impairment (MCI) ranges from 3% to 19%,1 and increases to 22.2% 

in patients at the age of 71 years or higher. The prevalence of dementia in the elderly (> 65 years) 

is 6.4%, while that of Alzheimer’s disease (AD) and vascular dementia (VaD) is 4.4% and 1.6% 

respectively.2, 3 Individuals suffering from MCI have a significantly increased risk to develop 

dementia.4 CI is becoming a major concern in aging populations due to its heavy medical and 

socioeconomic burden for patients, families, and the society. Indeed, the CI-associated burden 

on the medical care system has surpassed that of cancer and heart diseases in the United 

States.5

The term vascular cognitive impairment (VCI) was proposed to describe the contribution of 

cerebrovascular pathologies to any severity of CI.6, 7 According to the Vascular Impairment of 

Cognition Classification Consensus Study (VICCCS), VCI contains mild VCI (VCI-no dementia, 

VCIND) and major VCI (i.e. vascular dementia, VaD) (Figure 1). The latter is further classified into 

4 subtypes: post-stroke dementia (PSD), subcortical ischemic VaD (SIVD), multi-infarct (cortical) 

dementia, and mixed dementia with additional neurodegenerative pathologies (e.g. VCI-AD, VCI-

DLB).4, 8 

(Figure 1 about here)

In addition to hypertension, diabetes, hypercholesterinemia and other factors compromising 
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cerebrovascular function, aging is recognized as a major risk factor of cerebrovascular 

pathology.9 Indeed, the risk of developing VaD doubles with every 5.3 years after the age of 65. 

Early VCI identification and prediction will be crucial in preventing or delaying full VaD onset since 

early treatment of cerebral vascular dysfunction is directly associated with lower incidence of 

VaD.10

Recent studies suggest that reduction in cerebral blood flow (CBF) occurs prior to the clinical 

onset of VCI.11-13 Consequently, CBF measurement may aid in distinguishing cognitively normal 

adults from those at risk for or exhibiting VCI.14 In addition, CBF reduction is a sensitive predictor 

of cognitive decline and its progression with age.15, 16 This suggests that early detection of CBF 

changes may be an appropriate method for identifying individuals at risk for VCI. Moreover, the 

degree of cognitive deficit in patients with subcortical VCI is correlated with reduced regional CBF 

(rCBF) 17 

Hypoperfusion is also prevalent in AD patients and can precede the onset of clinical AD by 

several years.18 The classical amyloid cascade hypothesis attributes the decrease in the CBF to 

neuronal hypometabolism. However, according to the vascular hypothesis, AD pathology begins 

with perfusion changes, resulting in dysfunction of neurons and surrounding cells19, and 

alterations of both large and small cerebral vessels, prominently seen in, but not limited to the 

penetrating vasculature of white matter (WM), are considered key drivers in AD.20 Thus, CBF 

measurements may also be used to identify individuals in the presymptomatic stages of AD. 

Moreover, the most predominant type of cognitive impairment is mixed VCI-AD. Since the role of 
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cerebral hypoperfusion in AD is not yet entirely clear and subject to ongoing research, the primary 

focus of this study will be VCI. 

This review discusses recent applications and advances in the use of arterial spin labeling 

(ASL) in VCI patients and individuals at high risk for developing VCI.

The emerging association between VCI and CBF changes

Due to the strong correlation between CBF and neuronal function and metabolism, CBF is 

recognized as a clinically relevant marker of brain function.21 Intact CBF regulation as well as 

normal cerebral metabolism are essential for the maintenance of cognitive function.22 In addition, 

impaired CBF is associated with an increased risk of developing all types of dementia.23 In VCI, 

changes in CBF can occur before clinical symptoms.10, 11, 13 Evidence shows that in patients with 

subcortical VCI, pathological alterations including CBF reduction and distribution change are 

closely related to the degree of CI.17 Thus, a thorough understanding of CBF in the 

pathophysiologic cascade of VCI is crucial to preserve the possibility of timely intervention.

Cerebral microinfarcts and other ischemic brain tissue injury, especially in the WM, are major 

pathological hallmarks of VCI.24, 25 Chronic cerebral metabolic dysfunction as well as deterioration 

of pre-existing systemic vascular risk factors such as hypertension, hyperlipidemia, diabetes 

mellitus, or atrial fibrillation, are important contributors to developing CI.21, 26, 27 Resulting structural 

changes in cerebral blood vessels such as hypertensive remodeling or atherosclerosis in high-

risk patient groups often lead to vascular occlusion, abnormal cerebral perfusion, and impaired 

Page 57 of 97 Journal of Cerebral Blood Flow and Metabolism

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Confidential: For Review Only
autoregulation, culminating into CBF reduction and CI.

Dysfunction of the neurovascular unit leads to impaired CBF regulation

Proper CBF regulation assures both constant and stable brain tissue perfusion which is 

crucial to meet the brain’s metabolic demands and maintain normal neuronal activity.28, 29 The 

neurovascular unit (NVU), which is comprised of neurons, astrocytes, vascular smooth muscle 

cells (SMCs), endothelial cells (ECs) and pericytes, plays a crucial role in coupling vascular 

perfusion and thus regional CBF to neuronal activity, attracting increasing attention in VCI 

pathophysiology.30, 31 Disruption of any component of the NVU in cerebrovascular pathologies 

has significant impact on CBF modulation and neuronal function (Figure 2).32 The precise 

neurovascular coupling is therefore of vital importance, even mild impairments can affect brain 

function and cause cognitive decline.33

(Figure 2 about here)

SMCs in the NVU can directly control vessel diameter and thus regional CBF.32, 34 Proper 

myogenic responses of SMCs are important for CBF regulation and steady capillary perfusion, 

protecting the brain against potentially negative effects of any rapid blood pressure change.35 In 

addition, myogenic responses of SMCs are coupled to neuronal activity as nearby neurons and 

astrocytes release prostaglandins, nitric oxide, K+ and Ca2+ to SMCs,28, 36which precisely 

regulates brain tissue blood perfusion through SMC contraction or dilation.37 In chronic 

hypertension and aging, SMCs undergo degeneration and the autoregulatory responses is often 
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impaired, causing vascular injury, microbleeds and increased blood-brain barrier (BBB) 

permeability.33

ECs are another critical NVU component responsible for mediating dynamic microvascular 

responses and neurovascular coupling. ECs respond to changing rCBF demands through 

multiple factors and mechanisms including endothelial nitric oxide synthase (eNOS), 

neurotransmitters, and metabolic reactions.38, 39 In VCI, cerebral ECs undergo pathological 

changes and produce pro-inflammatory mediators and toxic factors, magnifying 

neuroinflammation and BBB disruption.40 Moreover, pathologically altered ECs promote NVU 

uncoupling through dysregulated VEGF/angiogenesis and ROS/NO axes. Decreased NO 

bioavailability can further lead to ineffective CBF regulation and cerebral hypoperfusion, which 

ultimately causes neuronal death and CI.41, 42

Pericytes enwrap brain microvasculature, maintain basal capillary tone, and contribute to 

neurovascular coupling.43 They are also crucial for BBB integrity, angiogenesis and clearance of 

toxic cellular metabolites.44-46 Pericyte coverage significantly decreases during aging, and the loss 

of pericytes is associated with BBB dysfunction, CBF alteration, neuronal loss, WM damage, and 

cognitive decline.47-49 Brain ischemia can induce capillary constriction by pericytes followed by 

regional pericyte death due to the loss of energy supply and excitotoxicity, which may irreversibly 

decrease capillary blood flow and damage the BBB even after reperfusion.50, 51 VCI risk factors 

such as hypertension can also lead to impaired pericyte function.52

Dysfunction of the abovementioned NVU components all contribute to impaired CBF 
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regulation and BBB disruption in cerebrovascular pathologies. CBF alteration is further related to 

WM injury, lacunes, cerebral microbleeds, brain atrophy and cognitive deficits in several VCI 

subtypes both in animals and humans.14, 17, 24, 53-57 A comprehensive understanding of the impacts 

of CBF patterns on disease onset and progression, the relationship between global CBF and 

rCBF changes, and standardized criteria for CBF determination is of great importance to validate 

CBF as a biomarker in assessing VCI.

Application of ASL for detecting CBF alterations in VCI and related conditions

ASL for the measurement of cerebral blood flow

Neuroimaging is essential for precise VCI assessment, including T2-weighted MRI for the 

detection of lacunar infarcts, susceptibility weighted imaging (SWI) for microbleeds, and fluid-

attenuated inversion recovery (FLAIR) sequences for white matter hyperintensities (WMH). 

Recently, it is recommended that arterial spin labelling (ASL) can quantitatively measure subtle 

perfusion changes which are untraceable with structural MRI, and add specificity to VCI 

diagnosis.6 The technology of ASL was first proposed by Williams et al. in 1992.58 It has been 

validated for qualitative and quantitative CBF analysis in different brain disorders, such as CI, AD, 

acute stroke, and migraine.59-64 ASL labels blood water to act as an endogenous tracer for CBF 

mapping by changing the magnetization of water proton spins in the arterial blood at the neck 

region.65, 66 Two brain images are acquired; the first (control) image is subtracted from the second 

(labeled) image in order to remove the static brain tissue signal and to obtain the trajectory of 
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blood flow.67 If necessary, a series of these image pairs can be acquired for the detection of 

dynamic changes over the course of the examination.11, 68 

Although dynamic susceptibility contrast-enhanced perfusion weighted-imaging (DSC-PWI) 

and [15O]-water positron emission tomography (PET) are well-established standards for CBF 

measurements, ASL has multiple advantages over these methods, including its non-invasiveness, 

avoidance of radiation or contrast agent use, high reproducibility, as well as more widespread 

availability, thus can be a valuable noninvasive alternative to assess brain perfusion.69-71 ASL has 

been assessed in several clinical studies and is sensitive for detecting CBF changes in VCI and 

AD patients.14, 17, 72, 73

Moreover, multimodal imaging with the combination of ASL and other MRI sequences 

provides more comprehensive assessment for VCI pathologies.74 Recently, combined ASL and 

blood oxygenation level-dependent (BOLD) functional MRI has been used to study the change of 

neurovascular coupling in VCI and chronic stroke as the relationship between regional CBF and 

neuronal activity can be analyzed.75, 76 In addition, using ASL with fluorine 18 fluorodeoxyglucose 

(FDG) PET can reveal the coupling of perfusion and metabolism in different brain regions.77 

Therefore, we can further obtain the correlation between CBF at different locations and neuronal 

activity or metabolic state by combining ASL technique with other imaging modalities.

ASL in major forms of VCI

Subcortical ischemic VaD, post-stroke dementia, and mixed VCI-AD dementia are the 3 most 
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commonly studied types of CI with vascular contribution, and ASL can be used to evaluate CBF 

changes in respective patients (Table 1). ASL showed reduced CBF in the frontal and parietal 

cortices and corresponding subcortical WM lesions in 8 patients with subcortical ischemic VaD 

compared to 18 elderly subjects with normal cognitive function.53 Another study compared 53 

subcortical VaD patients with significant CI to 23 matched subcortical ischemic vascular disease 

patients without CI, found diffusely decreased CBF in the temporal and frontal lobes, and in 

deeper structures such as the hippocampus, thalamus and insula in subcortical VaD patients.17

Subcortical ischemic VaD also belongs to the umbrella of cerebral small vessel disease 

(cSVD). cSVD causes diffuse brain injury and is strongly associated with VCI.78 Key neuroimaging 

findings in cSVD include small subcortical infarcts, WMH, lacunes, cerebral microbleeds, 

enlarged perivascular spaces.79 Cortical microinfarcts have also been described.80 Cortical 

microinfarcts and confluent WMH have been shown to be associated with significant reduction in 

global CBF.24, 54 In addition, CBF surrounding WMH can predict future WMH expansion.74, 81

In one study of post-stroke dementia, researchers selected 39 elderly patients six years after 

stroke, of which eight developed dementia. In these patients, the ratio of CBF in the gray matter 

(GM CBF) to CBF in the white matter (WM CBF) was reduced. Moreover, this ratio predicted the 

occurrence of dementia in post-stroke patients without dementia.82 However, normalized CBF 

values were calculated by dividing them by the mean WM CBF in the respective study, which is 

considered as a simple calibration method with lower sensitivity and reproductibility. Thus, the 

analysis of CBF changes in post-stroke dementia warrants further investigation.
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Mixed VCI-AD dementia is probably the most common form of CI.83, 84 Patients with AD 

symptoms or prodromal AD exhibit global and regional hypoperfusion in the parietal and medial 

temporal lobes, as well as in the precuneus, posterior cingulate cortex, and hippocampus.85, 86 

Many patients clinically diagnosed with AD have considerable vascular pathology, and may be 

assumed to be indeed mixed-type VCI-AD patients. The CBF patterns in VCI-AD need to be much 

better elucidated in future studies for better understanding of their implications in mixed VCI-AD.87

ASL in mild VCI and high-risk individuals

Early identification of mild VCI is critical for timely interventions aiming to avoid or delay 

progression to major VCI. Cerebral hypoperfusion measured by ASL is an early indicator of VCI 

in patients presenting with very mild symptoms. In patients with mild VCI (VCIND), the rCBF 

reduction in specific regions can be related to cognitive deficits. For example, a study comparing 

VCIND with different domain impairment found that the group of 16 non-amnestic VCIND patients 

with single domain impairment showed CBF reduction in the left temporal lobe, left lenticular 

nucleus, and bilateral periventricular WM.88 Moreover, a study combined ASL and BOLD-fMRI to 

compare 26 subcortical ischemic vascular disease patients without CI and 28 patients with mild 

CI, used the regional homogeneity (ReHo)-CBF coupling and ReHo-CBF ratio to represent 

neurovascular coupling. In patients without CI, the ReHo/CBF ratio in the left precentral gyrus 

was positively correlated to Mini-mental State Examination (MMSE) scores. The mild CI group 

showed further decreased global ReHo-CBF coupling and decreased ReHo-CBF ratio mainly in 
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the left insula, left precentral gyrus, right middle temporal gyrus, and right precuneus, indicating 

the role of impaired neurovascular coupling at the early stage of VCI and during disease 

progression.75

Subjective cognitive decline (SCD) is distinct from objective cognitive decline (mild VCI and 

VaD), but is associated with increased risk of future cognitive decline compared to individuals 

without any symptoms.89 Evidence from 35 SCD patients compared to elderly subjects with 

normal cognition suggested that SCD patients have negative associations between verbal 

memory and rCBF measured by ASL, which may reflect neurovascular dysfunction at an early 

stage of SCD.90 

ASL can predict cognitive decline in high-risk patients. In patients with vascular risk factors 

of cSVD such as hypertension, diabetes, or hypercholesterolemia, a cohort showed that relative 

CBF (vs. global mean CBF) in leptomeningeal middle cerebral artery (MCA) territories is positively 

correlated with executive functions and Montreal Cognitive Assessment (MoCA) scores.14 

Another study of 71 subjects also showed that in non-demented older adults with multiple vascular 

risk factors, advancing age was correlated with reduced cortical CBF, which was in turn 

associated with CI, whereas no such relationship was observed in patients with low vascular risk 

factor burden.91 Specifically, decreased rCBF in type 2 diabetes is associated with decline in 

several cognitive domains, including memory, learning, attention, and execution.26, 92 

Hypertension can further exacerbate CBF decrease in patients with diabetes.93 Even in healthy 

elderly individuals, ASL may help to predict CI as reduced CBF in the posterior cingulate cortex 
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can indicate early neuropsychological decline as shown in a prospective study of 148 elderly 

individuals.94 Thus, CBF measured by ASL is a potential functional biomarker of VCI,95 which may 

have a high value in early detection of CBF alteration in high risk populations (Table 1).

Technical advances of ASL enable CBF imaging

Recent technical advances expanding the clinical use of ASL as a CBF measurement tool

The practical advantages of ASL lie in its avoidance of invasive needling, radioactive tracers, 

potentially nephrotoxic contrast agents, long preparations, and extensive scan times.96 Multiple 

studies have demonstrated good feasibility, applicability and reproducibility of ASL in geriatric 

populations.71, 97 The clinical application of ‘classical’ ASL imaging is still limited though. In 

contrast to DSC-PWI, which requires contrast agent application but provides hemodynamic 

parameters including CBF, cerebral blood volume (CBV), mean transit time (MTT) and time to 

peak (TTP), ASL is relatively limited to CBF analysis. Due to the use of subtracted images in order 

to determine ASL signals, there is an unavoidable lower signal-to-noise ratio (SNR) compared to 

direct contrast agent measurements.98 Moreover, the significant diversity of ASL parameters used 

by different investigators limits its application in multicenter research comparisons that need prior 

determination of consistent protocols.

However, recent technical advances have expanded the clinical use of ASL as a CBF 

measurement tool. According to different labeling schemes, ASL is classified into pulsed ASL 

(pASL), continuous ASL (cASL), and pseudo-continuous ASL (pcASL) (Figure 3).99, 100 pASL 

Page 65 of 97 Journal of Cerebral Blood Flow and Metabolism

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Confidential: For Review Only
refers to a single short pulse about 10 ms to label inflowing arterial blood, the inverted blood flows 

from neck to brain and gradually loses labeling. cASL is a continuous pulse at a thin slice through 

the neck over a period of time. However, the need for continuous radio frequency apparatus and 

low labeling efficiency severely restricts its clinical application.101 pcASL uses more than 1000 

short pulses (1-2 seconds) with high frequency instead of a long continuous pulse, which can be 

considered as an “upgraded” pASL with higher SNR.66 Both pcASL and pASL are commonly used 

in clinical settings with pcASL becoming the more preferred choice. Many studies have shown 

both high scan-rescan repeatability and excellent inter-site reproducibility of pcASL in 

cerebrovascular diseases.14, 102-104

Minimized arterial transit time (ATT) for improved CBF imaging

One of the important technical issue of ASL is the consideration of inflow time or arterial 

transit time (ATT), which is the time delay between labeling in the neck region and the arrival of 

labeled blood in the brain. Prolonged ATT is thought to cause CBF underestimation in ASL, as 

relaxation of inverted or saturated spins (‘de-labeling’) during the blood passage from labeling 

location to screening location can occur.105, 106 The ASL accuracy can be improved by minimizing 

ATT, which means inverting spins as close as possible to the screening areas.107 The calculation 

of final CBF using ATT also prevents underestimation. However, ATT can vary significantly, based 

on differences in cerebral regions, patients’ age, blood flow velocity in diverse arteries, and a 

longer travel distance caused by the probable presence of collateral pathways.66, 67 
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To avoid imprecise measurement due to heterogeneous ATT in clinical settings, the artificially 

preset post-labeling delay (PLD) (or inversion time in pASL) can be refined by delaying the 

screening time to roughly imitate ATT in the brain.92, 108 PLD is optimized to be longer than the 

longest ATT to ensure that the labeled blood has reached the tissue at the time of screening 

(Figure 3).109 However, single PLD-ASL which applies a single PLD time that is set between 1.5 

to 2s for CBF estimation, may cause errors due to the mismatch between the single PLD and 

ATT.110, 111 Especially in the case of proximal vessel occlusion, the delayed inflow and perfusion 

can be falsely recognized by single-PLD ASL as reduced CBF in the corresponding vascular 

territories, producing arterial transit artifacts.77 This disadvantage can be overcomed by multi-PLD 

ASL, a recent ASL technology acquiring serial ASL images at multiple PLDs which improves the 

accuracy of CBF measurement and provide more hemodynamic parameters including ATT, but 

requires relatively long scanning time.112, 113 Another recent solution is the use of spatial coefficient 

of variation (CoV) of CBF images from single-PLD ASL as an alternative for ATT measurement, 

which can detect subtle CBF change without long-time scanning.59, 114, 115 As the impact of vessel 

stenosis and occlusion in poorly perfused areas on ASL accuracy is common in VCI, these 

strategies help to overcome the challenge and improve the application value of advanced ASL in 

VCI assessment.

(Figure 3 about here)

Other strategies to improve the efficiency and accuracy of CBF measurement
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New ASL strategies are under development to improve the efficiency of CBF measurements. 

For example, time-encoded pcASL, measuring dynamic perfusion, and methods that show 

combined 4D-angiography with perfusion information are gradually being applied for CBF 

measurements.116 Optimized acquisition and analysis frameworks as well as capable MRI 

scanners will enhance the clinical use of ASL to quantitatively measure brain perfusion.108, 117

ASL implementation varies, among others, in hardware considerations, pulsing approaches, 

time delay setting, readout approaches, and postprocessing methods. In 2014, the International 

Society for Magnetic Resonance in Medicine (ISMRM) and the European consortium ASL in 

Dementia (AID) reached a consensus concerning an optimal clinical implementation for CBF 

measurements.109 The consensus recommends pcASL, background suppression, segmented 3D 

readouts, calculation and presentation of both label/control difference images, and CBF reported 

in absolute units.118 To obtain ATT data and avoid abnormally long ATT, multiple-PLD ASL is 

suggested, while single-PLD ASL is recommended for rapid CBF measurements.109

Concluding Remarks and Perspectives

The early recognition and identification of VCI are attracting increasing attention. Cerebral 

hypoperfusion might play a crucial role in developing and accelerating VCI. A considerable body 

of evidence supports that decreases in CBF detected by ASL are an early indicator of VCI, and 

play a major role in both mixed type VCI-AD and AD. This may further widen the application of 

ASL as an imaging tool for the prediction of cognitive decline. However, there is still a great 
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diversity in ASL parameters applied by different research groups, and the harmonization of 

imaging modalities is crucial for increasing reproducibility of imaging findings. Future studies 

exploring the possibility of screening VCI in different patient populations are highly warranted.
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Tables

Table 1: ASL studies in VCI and high-risk individuals

Study Patient 

cohort

N in each group ASL 

methods

Main findings

Schuff et al.53 SIVD 8 SIVD + 18 HC pASL Reduced CBF in the frontal cortex and WM 

lesions.

Sun et al.17 SVCI 53 subcortical VaD + 

23 subcortical 

ischemia without CI

pcASL Diffusely decreased CBF in temporal and 

frontal lobes, also in hippocampus, thalamus 

and insula.

Liu et al.75 SVCI 28 SVCI + 26 

subcortical ischemia 

without CI + 24 HC

pcASL Decreased global ReHo-CBF coupling and 

decreased ReHo-CBF ratio mainly in cognition-

related regions.

Firbank et al.82 PSD 8 PSD + 31 PSND + 

29 HC

pASL GM CBF/ WM CBF ratio was reduced in PSD 

group and predicted dementia in PSND group.

Hays et al.90 SCD 35 SCD + 35 HC pcASL Negative associations between verbal memory 

and rCBF in SCD patients.

Ferro et al.24 cSVD risk 

factors

74 dementia + 78 

CIND + 29 NCI

pcASL Cerebral cortical microinfarcts were associated 

with reduction in global CBF.

Promjunyakul 

et al.74

cSVD risk 

factors

82 with cSVD risk 

factors

pASL CBF penumbra was more extensive than 

structural penumbras of WMH.

Promjunyakul 

et al.81

NCI elderly 61 NCI pASL CBF surrounding WMH could predict future 

WMH expansion.

Jann et al.14 cSVD risk 

factors

45 with cSVD risk 

factors

pcASL Relative CBF in MCA territories is positively 

correlated with executive functions and MoCA 

scores.

Bangen et al.91 Vascular 

risk burden

16 high vascular risk 

+ 55 low vascular risk

pASL The correlation among increasing age, 

reduced cortical CBF, and CI was only 

significant in patients with high vascular risk 

burden.

Bangen et al.92 T2DM 11 T2DM, 38 without 

diabetes

pcASL Decreased rCBF in diabetes was associated 

with decline in several cognition domains.

Xekardaki et 

al.94

Cognitive 

decline

73 cognitive decline + 

75 HC

pASL Reduced CBF in the posterior cingulate cortex 

could indicate early neuropsychological 

decline.

SIVD: subcortical ischemic VaD; HC: health control (here refers to cognitively normal elderly 

subjects); SVCI: subcortical VCI; ReHo: regional homogeneity; PSD: post-stroke dementia; 
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PSND: post-stroke no-dementia; SCD: subjective cognitive decline; cSVD: cerebral small vessel 

disease; CIND: cognitive impairment–no dementia; NCI: no cognitive impairment; WMH: white 

matter hypertensities; MoCA: Montreal Cognitive Assessment; T2DM: Type 2 diabetes mellitus

Figure Legends

Figure 1. Classification of VCI according to the Vascular Impairment of Cognition Classification 

Consensus Study (VICCCS) guideline. VCI is divided into mild VCI (VCI-no dementia, VCIND) 

and major VCI (vascular dementia, VaD). VaD can be further classified into 4 subtypes: post-

stroke dementia (PSD), subcortical ischemic VaD, multi-infarct (cortical) dementia, and mixed 

dementia with nonvascular pathologies.

Figure 2. Schematic diagram and detailed functions of the cellular components of the 

neurovascular unit (NVU). The NVU is the functional unit helping CBF regulation. Detailed 

functions (in black) of normal pericytes, vascular smooth muscle cells (SMCs) and endothelial 

cells, three components of the NVU, are depicted. Dysfunction of any cellular component of the 

NVU (in red) can contribute to vascular cognitive impairment (VCI). SMCs can directly control the 

vessel diameter and have autoregulatory effects on brain tissue perfusion. SMCs degeneration 

disturbs steady cerebral perfusion and is associated with vascular injury, microbleed development 

and blood-brain barrier (BBB) disruption. Endothelial cells mediate neurovascular coupling, 

microvascular responses, endothelial nitric oxide synthase (eNOS) production. Dysfunction of 
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endothelium causes increased toxic factors and reduced production of NO, which can promote 

the development of VCI. Pericytes are crucial in CBF controlling, BBB permeability maintaining, 

and angiogenesis promotion. The loss of pericytes in VCI leads to BBB damage, CBF reduction, 

and neuronal loss.

Figure 3. Schematic diagram displaying the main differences between pulsed arterial spin labeling 

(pASL), continuous ASL (cASL), and pseudo-continuous ASL (pcASL), in labeling zone and 

duration. pASL refers to a single short pulse to label inflowing arterial blood, while cASL/pcASL 

involves a continuous pulse or over 1000 shaped pulses with high frequency at a thin slice, 

through the neck over a period of time. Arterial transit time (ATT) refers to the time between 

labeling and screening, which can lead to cerebral blood flow (CBF) underestimation in ASL due 

to relaxation of labeled spins. The post-labeling delay (PLD, or inversion time in pASL) is artificially 

preset to be longer than the longest ATT to delay the screening time and minimize the inaccuracy 

caused by ATT. However, single-PLD ASL can cause errors due to the mismatch between the 

single PLD and ATT, especially in vessel stenosis and occlusion, which is common in VCI patients. 

This challenge can be overcomed by multi-PLD ASL or the use of spatial coefficient of variation 

(CoV).
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Figure 1. Classification of VCI according to the Vascular Impairment of Cognition Classification Consensus 
Study (VICCCS) guideline. 
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Figure 2. Schematic diagram and detailed functions of the cellular components of the neurovascular unit 
(NVU). 
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Figure 3. Schematic diagram displaying the main differences between pulsed arterial spin labeling (pASL), 
continuous ASL (cASL), and pseudo-continuous ASL (pcASL), in labeling zone and duration. 
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