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Abstract: Epileptic seizures are caused by abnormal electrical activity in the brain that manifests itself
in a variety of ways, including confusion and loss of awareness. Correct identification of epileptic
seizures is critical in the treatment and management of patients with epileptic disorders. One in four
patients present resistance against seizures episodes and are in dire need of detecting these critical
events through continuous treatment in order to manage the specific disease. Epileptic seizures
can be identified by reliably and accurately monitoring the patients’ neuro and muscle activities,
cardiac activity, and oxygen saturation level using state-of-the-art sensing techniques including
electroencephalograms (EEGs), electromyography (EMG), electrocardiograms (ECGs), and motion or
audio/video recording that focuses on the human head and body. EEG analysis provides a prominent
solution to distinguish between the signals associated with epileptic episodes and normal signals;
therefore, this work aims to leverage on the latest EEG dataset using cutting-edge deep learning
algorithms such as random neural network (RNN), convolutional neural network (CNN), extremely
random tree (ERT), and residual neural network (ResNet) to classify multiple variants of epileptic
seizures from non-seizures. The results obtained highlighted that RNN outperformed all other
algorithms used and provided an overall accuracy of 97%, which was slightly improved after cross
validation.

Keywords: machine learning; epilepsy; random neural network

1. Introduction

Epileptic disorders result in seizures caused by abnormal brain activity. Epilepsy
is a brain-centered central nervous system disorder that manifests itself in a variety of
ways including loss of awareness and confusion. These symptoms result in fall injuries
and patients often bite their tongues. Seizures are difficult to detect for researchers since
they occur without warning. Epileptic seizures can be detected by observing electroen-
cephalogram (EEG) signals of a patient. An EEG is a graphical record of the brain’s electric
activity that indicates the voltage fluctuations in electrical activity recorded using multiple
electrodes placed on various brain locations [1]. Clinical EEGs are used by doctors to
monitor different types of epileptic activity since it leaves discrete imprints in the form of
interictal epileptic discharges, high-frequency oscillations, and pre-ictal activities [2]. EEG
signals have non-stationary and non-Gaussian characteristics that are used to measure the
electrical activity of the brain to diagnose the type of brain disorder. An EEG is especially
effective when it comes to studying the function of the brain and diagnosing epilepsy. EEG
signal analysis can help distinguish between signals associated with epileptic episodes and
normal signals.
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The rapid development in the fields of the Internet of Things (IoT) and artificial
intelligence (AI) has paved the way for improvements in various fields of life [3,4]. Over
the past few decades, these technologies have also transformed the healthcare sector
by lowering costs and increasing efficiency. Patients suffering from epilepsy sometimes
have to depend on caregivers, assisted living, or nursing homes [5]. A system that could
detect epileptic seizures automatically in a closed-loop environment could help healthcare
centres monitor patients with epilepsy and detect epileptic seizures/events by employing
technologies such as EEGs and electrocardiograms (ECGs). It could also potentially increase
the efficiency of seizure detection and reduce the labor and effort needed for monitoring
and analyzing the seizure patterns by a neurophysiologist with their naked eye.

Classification algorithms, such as those employed in this research, could help predict
whether or not a person will have a seizure. Researchers have carried out extensive studies
to understand electrical activities and dynamic properties of the brain to identify nonlinear
deterministic dynamics found in seizure activity [6]. Furthermore, EEG-based brain activity
has been analyzed using nonlinear time series analysis (NTSA) in the literature [7–9]. EEGs
have been used in many studies that involved patients with various diseases, such as
Alzheimer’s [10], depression [11], and Parkinson’s disease [12]. In addition, studies have
been carried out on EEGs of patients with epilepsy [12–15] as well as those of healthy
individuals [16–18]. The findings from epilepsy-related publications are classified into
two categories: epileptic seizures [13,15] and brain activities of healthy individuals [19].
Researchers have investigated and modeled the nonlinearity of human brain behavior
using these two categories. Moreover, the studies suggested that even minor changes
in the dynamic system parameters of the brain can result in a range of physiological
brain states [20,21] and may cause brain abnormalities [11,22,23] or other issues [6,24].
Furthermore, detection of epileptic seizures remains a source of consternation for many
researchers [6,8,13,15].

This study aimed to develop a random neural network (RNN)-based deep learning
model for the detection of epileptic seizures that utilized statistical features extracted from
a publicly available dataset containing labeled data of three classes of different kinds of
epileptic seizures, along with one class of normal data recorded from six patients. The main
contributions of this study are summarized as follows:

• A novel AI-based classification model for automatic detection of epileptic seizures
using an RNN algorithm was developed. The total number of classes include a
normal and three different types of epileptic seizures, including complex partial,
electrographic, and video-detected seizures with no visual change.

• The novel model was compared with that of other classification algorithms such
as the convolutional neural network (CNN) and residual neural network (ResNet)
considering all four classes, including normal and the three other types of seizures.

• A critical analysis of the results obtained demonstrated that the model was the
most suitable classification method for the identification of various types of epileptic
seizures.

The rest of the paper is organized as follows: Section 2 discusses recent state-of-the-art
studies on epileptic disorders, including different machine learning algorithms and datasets
used in the literature; Section 3 provides details of the adapted EEG-based dataset and
a description of RNN, ResNet, ERT, and CNN; the experimental results are discussed in
Section 4; and finally, Section 5 concludes the paper.
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2. Related Work

Many studies have been carried out over the past few decades in order to better
understand epilepsy and the brain activity related to epileptic episodes and to predict
seizures. In [25] wavelet filters were used to restrict signals under 60 Hz. Various techniques,
such as independent component analysis (ICA), were used to remove artifacts from EEG
data and the data were segregated using blind source separation. In [26] the authors
proposed a technique for the characterization of EEG time series data to improve the signal
classification. Fotiadis et al. [27] performed classification of EEG segments for epilepsy
using time-frequency analysis and compared various other methods for EEG analysis. The
power spectrum density of each segment was calculated using short-time Fourier transform.
In [28], the authors proposed a method for removing artifacts from EEG data to detect
seizures in epileptic patients. After artifacts were removed from EEG data, the patterns
that represented seizures in EEGs were easily distinguishable from non-seizure epochs.
Epileptic seizures were detected by applying various entropy estimators to EEG signals
recorded from healthy individuals and epileptic patients in [29–31]. The authors in [32]
used the eigenvector method for feature extraction, and trained the classifier using the
extracted features from the EEG data.

Several methods for the prediction of epileptic seizures have been proposed in the
past few years; however, none of them have relied on a single metric as a measure for the
performance of the proposed method. Moreover, researchers have used a variety of publicly
available datasets in their studies and the different datasets might also have affected the
performance of a specific classification model. Therefore, while evaluating the performance
of a classification model the dataset used should also be taken into account.

3. Methods and Materials
3.1. EEG Dataset for Epilepsy

The dataset, which is publicly available, was recorded at the American University of
Beirut. The dataset contains EEG recordings of 6 patients suffering from focal epilepsy. The
patients were being evaluated for possible epileptic surgery with long-term EEG-video
monitoring. The dataset consists of multi-channel time-series data recorded at a sampling
rate of 500 Hz stored in European data format (EDF), which stores header information, as
well as raw data that contain 19 channels where each channel represents an electrode placed
on the patient’s scalp. There are a total of 35 seizures recorded, and they are divided into
3 categories: 1. complex partial seizures; 2. electrographic seizures; and 3. video-detected
seizures with no visual change over EEG.

The data were pre-processed and labelled as normal data and data that contain epilep-
tic seizures. Two of the channels (Cz and Pz) were dropped in order to have uniform
data across all records. The classified data were stored in matrices and each matrix had a
size of 19 × 500 that stored 1 s of data containing 19 channels and 500 samples. The data
were labelled as 0, 1, 2, and 3 where label 0 represented normal data containing 3895 s of
information. The labels 1, 2, and 3 represented records with epileptic seizures representing
complex partial seizures, electrographic seizures, and video-detected seizures containing
3034, 705, and 111 seconds of data, respectively. The number of matrices labelled 0 (normal
data) was 3895, while the number of those matrices with labels 1, 2, or 3 was also 3895
combined. The number of samples for seizure and non-seizure data were kept the same
intentionally so that the data were balanced for machine learning. The complete description
of the dataset can be found on the Mendeley data platform [33].
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3.2. Random Neural Network-Based Epilepsy Prediction Scheme

Erol Gelenbe first introduced RNN in his groundbreaking work in 1989 [34]. RNNs
have been widely used as a classification algorithm in a variety of fields such as energy
conservation [35], intrusion detection in IoT [36], and fall detection [37,38]. However, the
effectiveness of RNN has not been reported in the literature for the prediction of epilepsy.

In RNN, a neuron triggers an excitatory and inhibitory state whenever it receives a
signal with positive or negative potential. The accumulated signal received is represented
by a non-negative integer that describes the potential state of the neuron. Neurons con-
tained in RNN layers exchange excitatory and inhibitory signals in a probabilistic manner.
When a neuron receives a +1 signal, it enters an excitation state, and a −1 signal represents
an inhibition signal. The spiking signals are sent between neurons as impulses. A vector
of non-negative integers kl(t) represents the potential state of a neuron i at time t. When
kl(t) ≤ 0, a neuron is considered idle. Similarly, a neuron is considered to be excited if
kl(t) > 0. A neuron can send a spike signal in the excited state at a rate of r(l) ≥ 0, which
reduces its potential by 1. The activation function fl can be expressed mathematically as
follows.

fl =
λ+

l
rl + λ−l

(1)

where excitatory and inhibitory inputs are λ+
l and λ−l , respectively:

λ+
l =

N

∑
j=1

f jrj p+j,l (2)

and

λ−l =
N

∑
j=1

f jrj p−j,l (3)

The firing rate of neuron j is rj, and rl is the firing rate of neuron l. The probability of
whether a signal transmitted from neuron j to neuron l is excitatory or inhibitory is p+j,l or

p−j,l , respectively.
The activation function fl can also be expressed as follows:

fl =
∑N

j=1 f jrj p+j,l
rl + ∑N

j=1 f jrj p−j,l
(4)

Also,
N

∑
j=1

[
p+l,j + p−l,j

]
+ d(l) = 1,∀l (5)

Here, the probability of a signal leaving the network is represented by d(l). In (5), N
represents the total number of neurons. The sum of all probabilities in the network must be
equal to 1. When a neuron is in the excited state, the rate of positive and negative spikes it
sends is expressed as follows:

w+(l, j) = rl p+l,j ≥ 0, (6)

w−(l, j) = rl p−l,j ≥ 0, (7)

where rl represents the firing rate of neuron l, which is derived by Gelenbe in [34] from
Equations (5)–(7),

rl = (l = d(l))−1
N

∑
j=1

[w+(l, j) + w−(l, j)] (8)
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The weights w+(l, j) and w−(l, j) are similar to the weights in a classical neural net-
work, according to Gelenbe [34], and traditional optimization algorithms such as gradient
descent may be used to train the neural network.

In this study, a novel RNN-based deep learning model was proposed for the multi-class
classification of epilepsy data. The data were obtained from a publicly available dataset [33].
Each sample in the dataset contained 19 channels, and each channel represented a data
stream coming from a single electrode with a sampling rate of 500 Hz. The total number of
samples in the training and testing data was 7011 (90%) and 779 (10%), respectively. In the
pre-processing phase, features (standard deviation, kurtosis, skewness, and mean) were
extracted from every 1 s segment of each electrode, as shown in Figure 1. The extracted
features, i.e., standard deviation, kurtosis, skewness, and mean, have been used in literature
for the classification of EEG data of patients with Alzheimer’s disease and mild cognitive
impairment [39] achieving 95% accuracy and epilepsy [40] with an accuracy of 99.7%.
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Figure 1. EEG-focused data pre-processing and feature extraction using the RNN algorithm.

The features were normalized by scaling the numbers between 0 and 1 using the
equation below:

Xnormalized =
X − Xmin

Xmax − Xmin
(9)

Classification of the data was performed using the RNN model, as shown in Figure 2.
The input layer consisted of 76 nodes, which was the number of values acquired in each
sample after pre-processing. After optimizing the network values for the hidden layer,
as depicted in Figure 2, the total number of neurons in hidden layers was 100 and 80,
respectively. Since there were a total of four data classes, the number of nodes at the output
layer was kept at 4.
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Figure 2. Deep RNN model for different types of epilepsy detection and classification.

3.3. Convolutional Neural Network-Based Epilepsy Detection

Due to its ability to learn features in images and excellent classification results on data
with multiple classes, CNN has been proven to be ideal for image-based data. Researchers
have shown a lot of interest in recent years in CNN for image recognition and it has been
used in the analysis of medical X-ray images [41], magnetic resonance imaging (MRI) for
brain tumor segmentation [42], and histopathological images for cell segmentation [43].
However, there has been limited research on the use of CNN with physiological signals. A
CNN is made up of a convolution layer (Conv) and a pooling layer (Pool) with a rectified
linear unit (ReLU) activation function, as well as batch normalization. It also has fully
connected, drop-out, softmax, and classification output layers in the final layers. Filters in
the Conv layer recognize various features in an image such as edges, objects, and shapes.

Table 1 shows the architecture of a CNN used for the classification of epilepsy data.
The first layer of the proposed model was a two-dimensional convolutional layer (Conv2D),
which takes a three-dimensional array (19 × 500 × 1) as input. Instead of an image, the
input data contained 1 second of raw data with a sample rate of 500 from 19 channels of
electrodes. Moreover, the first layer had 32 filters with an 8 × 8 kernel size.

Table 1. Detail structure of the CNN architecture used in this research.

Type of Layer Output Shape Parameters

conv 2d (Conv2D) (None, 12, 493, 32) 2080
dropout (Dropout) (None, 12, 493, 32) 0
conv2d 1 (Conv2D) (None, 8, 489, 64) 51,264
dropout 1 (Dropout) (None, 8, 489, 64) 0
conv2d 2 (Conv2D) (None, 6, 487, 64) 36,928
dropout 2 (Dropout) (None, 6, 487, 64) 0

flatten (Flatten) (None, 187,008) 0
dense (Dense) (None, 32) 5,984,288

dropout 3 (Dropout) (None, 32) 0
dense 1 (Dense) (None, 4) 132

There were two additional hidden Conv2D layers with 64 filters each, and a kernel size
of 5 × 5 and 3 × 3, respectively. The final layer of the model was a dense layer consisting
of 4 outputs, each output represented normal data or one of the 3 types of seizure. After
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optimization, the total number of epochs to train the network considering the size of EEG
data was tuned to 20, and the learning rate was set at 0.001.

3.4. Extremely Random Tree Algorithm for Epileptic Seizure Detection

The extremely randomized trees approach, also known as extra-trees and was in-
troduced in 2006, is an ensemble methodology that employs a large number of decision
trees (DT) [44]. The ensemble approach is widely used in a variety of classification and
regression tasks. The ensemble technique’s concept is to aggregate the decisions of sev-
eral models and produce a decision based on that combination, which ultimately results
in higher performance compared to that of a single decision or model. The DT-based
ensemble technique can achieve better performance through randomization, provided
the base learners are independent. Randomization improves the diversity of the trees
and makes it easier to reduce correlation when developing trees. The ensemble learning
approach works on the divide-and-conquer principle (or collective wisdom) to improve
performance. In supervised machine learning tasks, an ensemble technique may be used
to build a more stable and robust classifier (model) with precise predictions, minimizing
factors such as noise, bias, and variance. However, the use of ensemble learning can be
relatively expensive in terms of computational complexity due to the need to train a number
of individual classifiers.

The ERT method consists of a number of DTs, each with a root node, child or split
nodes, and leaf nodes. At the root node of a dataset, ERT chooses a split rule based on
a random selection of characteristics and a somewhat predictable cut point. Each child
node undergoes the same method until a leaf node is reached. The number of trees in
the ensemble, the number of attributes/features to chosen randomly, and the minimum
number of samples/instances necessary to divide a node are the three key parameters
of ERT.

The ERT method is similar to the conventional random forest in that it is an ensemble
of individual trees; however, there are two main distinctions. To begin, instead of training a
bootstrap sample, each tree is trained using the whole learning sample. Secondly, the tree’s
top-down splitting uses entirely random splits rather than the optimum splits. Instead
of determining the locally optimal cut-point for each attribute being evaluated, based on
Gini impurity or information gain, a random cut-point is employed. This point is chosen
from the training set’s samples with a uniform distribution from the domain of the feature.
Following that, the split with the highest score among all the randomly produced splits
is chosen to split the node. The ERT method makes it significantly faster to train than
a regular random forest approach as calculating the optimal split at each node for each
feature takes a long time when constructing a DT. ERT also performs better compared to
a random forest when there are instances with high noise in the data, which is common
with sensors.

Moreover, when a test sample is passed through each DT and child node, the best
splits are selected and the test sample is passed to the right/left child node until it reaches a
leaf node. The leaf node in any DT determines the class for the test sample, and a majority
of votes in the k decision trees decide the final prediction of the ERT algorithm.

The aggregate of unique errors, i.e., bias and variance, is the generalization error of the
ML model. Underfitting, which may be computed as the capacity to correctly generalize
unseen data, can be caused by a high bias. In other cases, a high variance can lead to
overfitting, which is caused by the model’s high sensitivity to minor deviations in the
training data. The ET algorithm reduces bias and variance error more effectively than
any other randomization approach, such as a random forest. The cut-point selection and
explicit randomization of the subset of characteristics reduce the variance, while the entire
usage of the original training set to learn the individual DT reduces the bias.

Furthermore, one of the key benefits of ERT during implementation is that a great deal
of focus is not necessary while selecting hyperparameter values. As the ERT model is so



Sensors 2022, 22, 2466 8 of 17

resistant to noise from a single DT, pruning is rarely necessary. In practise, the number of
trees is regarded as the only parameter that must be addressed while building the ET model.

In this work, we implemented an ERT algorithm to detect seizure episodes using the
EEG data as a benchmark for comparison with the performance of the RNN. Primarily,
batch-mode operation was considered, which is based on a supervized algorithm that
considers the machine learning problem presented by the total number of input values
and one of its associated target values. The algorithm started with the addition of extra or
additional trees using systematic empirical evaluation.

3.5. Enhanced ResNet Tuned for Epilepsy Detection

ResNet is a type of deep-learning algorithm that has been used in various applications,
especially in the healthcare sector for monitoring patients through data acquisition and
data analysis [45]. This work essentially utilized the enhanced residual convolutional
neural network to identify epileptic seizure episodes exploiting EEG sensor data. A novel
approach known as skin connection was used to train and validate the network model.
The input layer that was used to give data, was utilized to feed the output higher layer
to stack up the layers. The aim was to train the specific classification model to obtain the
optimized target function values, such as f (x). In case the ResNet input and output were
linked together, such that link connected was formed, the classification network model
was generated to produce the model h(x) = f (x)− x instead of f (x). This state is known
as residual learning [46]. The conventional deep neural network was initialized using
zero weights, thus presenting zero values at the output side as well. On the contrary, the
skip connection method introduced in ResNet presented similar values at the output side
when fed at the input side, known as the objective function that accelerated the training
and testing process. The skip connection method, in tandem with the objective function,
efficiently traversed the EEG signals for the entire network. This work exploited the hyper-
parameters to train the enhanced ResNet algorithm to detect epileptic seizure episodes
as indicated in Table 2. The typical enhanced ResNet architecture used in this work is
described in Figure 3.

Table 2. Parameters used for training the deep ResNet algorithm.

Algorithm Parameters

ResNet epochs 20
activation function relu

optimizer adam
loss categorical-crossentropy

As the deep neural network algorithms, such as the enhanced ResNet algorithm,
improved their specific classification structure became deeper and deeper with the addi-
tion of extra layers; the deep network layers boosted the performance of complex feature
extraction because of the “gradient explosion” that accommodated the limitations and
time complexity of the conventional deep network algorithms, including taking a longer
period of time to train the specific classification algorithm (time complexity), which caused
the convergence to be more challenging or non-convergent. Additionally, the deep net-
work algorithm’s performance accuracy, precision, F-measure and kappa values started
saturating gradually due to degradation. To resolve both these issues that were encoun-
tered in the classification algorithm, we introduced very deep layers, i.e., 1000 layers, as
indicated in Figure 3. This indicated that the identity mapping in the ResNet algorithm
induced the changes in the output Fc to a function value known as Fc + x. The training
error of the enhanced ResNet algorithm, as derived, was relatively higher than that of
the traditional convolutional networks. On the contrary, introducing various layers to the
network mapping to the traditional convolutional network, such that the values of x = y,
transformed the deep neural network algorithm’s layers and presented similar training
error values. This mathematically indicated that the constant mapping introduced in the
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enhanced ResNet algorithm would perform better in terms of time complexity and hidden
layers. When the enhanced ResNet algorithm’s values were 0, the stacking layer (1000)
introduced would keep the network stable and constant when a large amount of EEG data
were fed.

Figure 3. The architecture of the enhanced ResNet algorithm used in this work for epilepsy detection.
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3.6. Feature Extraction for Enhanced ResNet Algorithm

In general, when extracting features from each channel from the ResNet algorithm,
the time scalar values were required to estimate the weight values right before the scalar
function values, known as global average pooling (GAP). The GAP method used in this
work simplified the de-averaging of the discarded values obtained using the specific
algorithm. To obtain the adequate amount of features from the diversity method of each
ResNet layer/channel, the GAP was provided as the most feasible way to obtain the discrete
function values and generalize the method across all used EEG data. Mathematically, it can
be written as follows:

att = sigmoid( f c(gap(X))) (10)

Here the att values show the vector, the sigmoid values are the function for the sigmoid,
the values contained in variable f and variable c are the mapping values of the enhanced
ResNet algorithm, and gap indicates the GAP as discussed above. As soon as the vector
values were received, each layer among the 1000 ResNet layers was scaled up by the
associated elements using the channel retention method as follows:

X∗: , i :, := atti X :, i, :, :, s.t. i ∈ 0, 1, . . . , C− 1 (11)

In Equation (11), X∗ shows the attendion method, atti is the ith value of the vector in
Equation (11), and X is the ith channel of the EEG input values. This is further elaborated
in Equation (12):

fk =
L−1

∑
i=0

xi cos(πk/L(i + 1/2)), s.t. k ∈ 0, 1, . . . , L− 1 (12)

In Equation (12) the value of f indicates newly acquired values and x are the EEG data
after pre-processing and can be written as follows:

x2d
i,j =

H−1

∑
h=0

W−1

∑
w=0

f 2d
h,w cos(πh/H(i + 1/2)) cos(πw/W(j + 1/2))

s.t. i ∈ 0, 1, . . . , H − 1, j ∈ 0, 1, . . . , W − 1

(13)

As indicated in Equation (13), the mathematical modeling for the feature extraction
and ResNet algorithm was dependent on the GAP function introduced earlier and also the
sum of the weight of all 1000 layers used in the specific algorithm.

4. Results and Discussion

This section presents the experimental results and discussion about the RNN-based,
CNN-based, ERT-based, and ResNet-based models adapted for epilepsy seizure episode
detection. The performance evaluation parameters included the True Positives (TP), True
Negatives (TN), False Positives (FP), and False Negatives (FN). The TP represented the number
of correctly identified positive instances whereas TN was the number of correctly identified
negative observations. The FP was the number of positive predictions where the actual
input was negative and, similarly, the FN showed the number of falsely negative predicted
instances. These measures were presented in a confusion matrix, given in Figure 4.

The results were presented in commonly used performance metrics given by Equa-
tions (14)–(17).

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)
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F1-score = 2×
(

Recall × Precision
Recall + Precision

)
(17)

Figure 4. TP, TN, FP, and FN illustration using a confusion matrix.

Before training any algorithm the data were shuffled to mix the observations from
different classes. This technique usually reduces the model’s bias towards any class samples.
After shuffling we first selected 90% of the data for training and the remaining 10% for
testing. All the experiments were performed with the same training and testing data.

The ResNet algorithm was implemented using the Python tool in tandem with the
NumPy libraries. The performance was given for identifying four classes of epileptic
seizure using EEG signals. The grid search method was applied to obtain the optimal
parameters of the algorithm during training where the total number of epochs was tuned
to 20. The performance of the trained ResNet was evaluated in terms of accuracy, precision,
and F-score values using test data. The model achieved a precision of 99.5%, F1-score of
96.3%, recall of 94.3%, and an accuracy of 96.1%.

Figure 5 shows the confusion matrix of the results obtained from the ERT applied for
the classification of four classes including “normal”, “complex partial seizures”, “electro-
graphic seizures” and “video-detected seizures”. As shown, the normal, complex partial,
and electrographic seizure classes were classified with respective accuracies of 83%, 90%,
92%, and the video-detected seizures with an accuracy of 100%. The highest number of
mis-classifications in the complex partial class, of more than 11%, was noted when the
normal class was given as input. On the other hand, more than 5% of actual complex partial
classes were mis -classified as the normal class. These mis-classifications resulted because
of high overlapping patterns among these classes. The least mis-classifications were seen
between the normal and complex partial and electrographic seizure classes of about 1.98%.
The point to be noted here is the classification in the case of the “video-detected” class,
which surprisingly showed100% true classifications.

Furthermore, Table 3 depicts the ERT report based on 3 evaluation metrics: precision,
recall, and F1-score. As can be seen, a score of more than 75% was secured by each metric
for the normal and complex partial classes. Precision was highest reported with an almost
100% score for the electrographic seizures class. However, the score degraded slightly in
terms of recall and F1-score for the complex partial and electrographic seizures classes.
Nevertheless, the overall accuracy attained by ERT was 86%.
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Figure 5. The ERT report in terms of a confusion matrix for four classes presenting epileptic seizures.

Table 3. Accuracy, precision, recall, and F1-Score obtained by the ERT model.

Type of Seizure Accuracy Precision Recall F1-Score

Normal (No seizure) 83.26% 81.26% 95.40% 89.52%
Complex Partial 90.91% 89.51% 79.24% 84.74%

Electrographic seizures 92.50% 92.84% 55.32% 67.31%
Video-detected with no visual change 100% 100.00% 13.23% 29.30%

The results obtained by the CNN model are given in Table 4, showing the overall
precision of 94.7% achieved by this model. The overall accuracy, recall, and F1-score were
94.0%, 94.1%, and 94.4%, respectively. Here, again, the precision, recall, and F1-score
obtained resulted in 100% for the “video-detected” class. These results also showed that
the classification of “complex partial” was comparatively challenging among all classes
with a recall of 89.97% and an F1-score of 92.53%.

Table 4. Accuracy, Precision, Recall, F1-Score and Accuracy obtained by CNN model.

Type of Seizure Accuracy Precision Recall F1-Score

Normal (No Seizure) 97.40% 93.75% 97.36% 95.52%
Complex Partial 90.00% 95.24% 89.97% 92.53%
Electrographic 91.20% 98.41% 91.18% 94.66%

Video-detected with no visual change 100.0% 100% 100% 100%

The confusion matrix shown in Figure 6 shows the accuracy of the CNN model
achieved during the classification of the different classes, including normal and epilepsy
seizures. It could be noted that the CNN model classified “complex partial seizures” with
90% accuracy, while “electrographic seizures” and “video-detected seizures” were classified
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with an accuracy of 91% and 100%, respectively. The normal signals were identified with
97.40% accuracy.

Figure 6. Confusion matrix for CNN-based epilepsy detection.

The RNN-based classification model was implemented using Matlab. The training of
this algorithm took approximately 21 h with the system specifications of the AMD Ryzen 7
3700X processor and 16 GB RAM. After training, the model was used to classify unseen
testing observations and the results are given in Table 5. These results showed that the
RNN algorithm was able to achieve an accuracy of 97.6%.

Table 5. Accuracy, precision, recall, and F1-Score obtained by the RNN model.

Type of Seizure Accuracy Precision Recall F1-Score

Normal (No seizure) 95.27% 93.76% 97.60% 95.64%
Complex Partial 95.65% 95.37% 92.73% 94.04%

Electrographic seizures 99.49% 98.48% 95.59% 97.01%
Video-detected with no visual change 100.0% 100.00% 100.00% 100.00%

The readings in Table 6 showed the results obtained after applying 10-fold cross-
validation. It could be seen that the results were slightly improved; however, the difference
was negligible with any variation in results being less than 0.5%.

Table 6. Accuracy, precision, recall, and F1-Score obtained by the RNN model after cross validation.

Type of Seizure Accuracy Precision Recall F1-Score

Normal (No seizure) 95.42% 93.78% 97.84% 95.64%
Complex Partial 95.91% 95.41% 93.43% 94.04%

Electrographic seizures 99.61% 98.51% 95.59% 97.01%
Video-detected with no visual change 100.0% 100.00% 100.00% 100.00%
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It can be seen that the RNN-based classification model could achieve a satisfactory
performance of up to 91% and 96% accuracy when it came to the classification of “complex
partial seizures” and “electrographic seizures”, respectively. The confusion matrix in
Figure 7 shows the true positives, true negatives, false positives, and false negatives.

Figure 7. Confusion matrix for RNN-based epilepsy detection.

The advantage of RNN over other ML algorithms, including ResNet, ERT, and CNN,
is that it requires less computational resources to predict the output, as is evident in
our previous works [35,37]. It was estimated that the RNN required almost 50% of the
computational resources than that required by a CNN with a similar number of layers
while producing almost equal accuracy. Furthermore, the RNN had better generalization
capabilities over other ML algorithms. The overall Accuracy, Precision, Recall and F1-Score
is highlighted in Table 7.

Table 7. Overall Accuracy, Precision, Recall, and F1-Score.

Classification Method Accuracy Precision Recall F1-Score

ResNet 96.1% 99.5% 94.3% 96.3%
RNN 97.6% 96.9% 96.48% 96.7%
ERT 86% 96.4% 61.9% 70%

CNN 94% 96.9% 94.6% 95.7%
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5. Conclusions

In this work, a novel RNN-based epileptic diagnosis method was presented, and the
application of various state-of-the-art machine learning algorithms to detect the different
types of epileptic seizure episodes, which showed signs of confusion and loss of awareness
using the electroencephalogram signals, was critically analysed. The machine learning
algorithms used to detect the specific critical events included RNN, CNN, ERT, and ResNet,
where four different classes of epileptic seizure were classified. Firstly, statistical features,
such as standard deviation, kurtosis, skewness, and mean, were extracted from each
EEG data channel containing 1 s of data. Secondly, the experiments were performed
by using 90% of the data for training and the rest for testing purposes. Lastly, the ML
models (RNN, CNN, ERT, and ResNet) were trained using features extracted from the
aforementioned training data. The outcome concluded that the RNN algorithm provided
the best classification accuracy of 97% without cross validation. However, after applying
10-fold cross validation, there was negligible improvement in the performance using RNN.
Future work will evaluate the performance of these models under the unbalanced data
problem between multiple classes.
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32. Übeyli, E.D.; Güler, İ. Features extracted by eigenvector methods for detecting variability of EEG signals. Pattern Recognit. Lett.
2007, 28, 592–603. [CrossRef]

33. Handa, P.; Mathur, M.; Goel, N. Open and free EEG datasets for epilepsy diagnosis. arXiv 2021, arXiv:2108.01030.
34. Gelenbe, E. Random neural networks with negative and positive signals and product form solution. Neural Comput. 1989,

1, 502–510. [CrossRef]
35. Ahmad, J.; Larijani, H.; Emmanuel, R.; Mannion, M.; Javed, A.; Phillipson, M. Energy demand prediction through novel random

neural network predictor for large non-domestic buildings. In Proceedings of the 2017 Annual IEEE International Systems
Conference (SysCon), Montreal, QC, Canada, 24–27 April 2017; pp. 1–6. [CrossRef]

36. Qureshi, A.u.H.; Larijani, H.; Ahmad, J.; Mtetwa, N. A Heuristic Intrusion Detection System for Internet-of-Things (IoT). In
Intelligent Computing; Arai, K., Bhatia, R., Kapoor, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 86–98.

37. Tahir, A.; Ahmad, J.; Morison, G.; Larijani, H.; Gibson, R.M.; Skelton, D.A. Hrnn4f: Hybrid deep random neural network for
multi-channel fall activity detection. Probab. Eng. Inf. Sci. 2021, 35, 37–50. [CrossRef]

38. Shah, S.Y.; Larijani, H.; Gibson, R.; Liarokapis, D. A Novel Random Neural Network-based Fall Activity Recognition. In
Proceedings of the 2020 International Conference on UK-China Emerging Technologies (UCET), Glasgow, UK, 20–21 August
2020; pp. 1–4.

39. Ieracitano, C.; Mammone, N.; Bramanti, A.; Marino, S.; Hussain, A.; Morabito, F.C. A Time-Frequency based Machine Learning
System for Brain States Classification via EEG Signal Processing. In Proceedings of the 2019 International Joint Conference on
Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8. [CrossRef]

40. Deivasigamani, S.; Senthilpari, C.; Yong, W.H. Machine learning method based detection and diagnosis for epilepsy in EEG
signal. J. Ambient Intell. Humaniz. Comput. 2021, 12, 4215–4221. [CrossRef]

http://dx.doi.org/10.1103/PhysRevE.64.061907
http://dx.doi.org/10.1016/0167-2789(90)90103-V
http://dx.doi.org/10.1007/s004220000183
http://dx.doi.org/10.1016/S1388-2457(99)00099-1
http://dx.doi.org/10.1007/BF00217660
http://dx.doi.org/10.1016/0013-4694(95)00240-5
http://dx.doi.org/10.1016/0013-4694(96)95638-2
http://dx.doi.org/10.1007/BF01128848
http://www.ncbi.nlm.nih.gov/pubmed/2641481
http://dx.doi.org/10.1016/S1388-2457(99)00013-9
http://dx.doi.org/10.1007/s004220050385
http://www.ncbi.nlm.nih.gov/pubmed/9394442
http://dx.doi.org/10.1007/BF01464480
http://dx.doi.org/10.1109/TBME.2006.886855
http://dx.doi.org/10.1103/PhysRevE.67.046204
http://dx.doi.org/10.1109/TITB.2009.2017939
http://dx.doi.org/10.1109/JBHI.2015.2457093
http://dx.doi.org/10.1016/j.eswa.2011.07.008
http://dx.doi.org/10.1016/j.cmpb.2005.06.012
http://dx.doi.org/10.1109/TITB.2006.884369
http://www.ncbi.nlm.nih.gov/pubmed/17521078
http://dx.doi.org/10.1016/j.patrec.2006.10.004
http://dx.doi.org/10.1162/neco.1989.1.4.502
http://dx.doi.org/10.1109/SYSCON.2017.7934803
http://dx.doi.org/10.1017/S0269964819000317
http://dx.doi.org/10.1109/IJCNN.2019.8852240
http://dx.doi.org/10.1007/s12652-020-01816-3


Sensors 2022, 22, 2466 17 of 17

41. Kallenberg, M.; Petersen, K.; Nielsen, M.; Ng, A.Y.; Diao, P.; Igel, C.; Vachon, C.M.; Holland, K.; Winkel, R.R.; Karssemeijer, N.;
et al. Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans. Med.
Imaging 2016, 35, 1322–1331. [CrossRef]

42. Pereira, S.; Pinto, A.; Alves, V.; Silva, C.A. Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.
IEEE Trans. Med. Imaging 2016, 35, 1240–1251. [CrossRef]

43. Hatipoglu, N.; Bilgin, G. Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial
relationships. Med. Biol. Eng. Comput. 2017, 55, 1829–1848. [CrossRef]

44. Saeed, U.; Jan, S.U.; Lee, Y.D.; Koo, I. Fault diagnosis based on extremely randomized trees in wireless sensor networks. Reliab.
Eng. Syst. Saf. 2021, 205, 107284. [CrossRef]

45. Zhu, Z.; Zhai, W.; Liu, H.; Geng, J.; Ji, C.; Zhou, M.; Jia, G. Juggler-ResNet: A Flexible and High-Speed ResNet Optimization
Method for Intrusion Detection System in Software-Defined Industrial Networks. IEEE Trans. Ind. Inform. 2021, 18, 4224–4233.
[CrossRef]

46. Wang, W.; Wang, Z.; Zhou, Z.; Deng, H.; Zhao, W.; Wang, C.; Guo, Y. Anomaly detection of industrial control systems based on
transfer learning. Tsinghua Sci. Technol. 2021, 26, 821–832. [CrossRef]

http://dx.doi.org/10.1109/TMI.2016.2532122
http://dx.doi.org/10.1109/TMI.2016.2538465
http://dx.doi.org/10.1007/s11517-017-1630-1
http://dx.doi.org/10.1016/j.ress.2020.107284
http://dx.doi.org/10.1109/TII.2021.3121783
http://dx.doi.org/10.26599/TST.2020.9010041

	Introduction
	Related Work
	Methods and Materials
	EEG Dataset for Epilepsy
	Random Neural Network-Based Epilepsy Prediction Scheme
	Convolutional Neural Network-Based Epilepsy Detection
	Extremely Random Tree Algorithm for Epileptic Seizure Detection
	Enhanced ResNet Tuned for Epilepsy Detection
	Feature Extraction for Enhanced ResNet Algorithm

	Results and Discussion
	Conclusions
	References

