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Machine learning models

Prediction of powder flow to study the viability of the pharmaceutical 
material for direct compression in early-stage development to save time 

and resources
Number of pharmaceutical 
powders:

Data (pure materials and 
mixtures):
• Particle size distribution

• Aspect ratio distribution

• Sphericity distribution

• Bulk density

• FFc

Introduction:
The lack of understanding of powder flow adds cost and time to the development of robust production routes and compromises manufacturing process 
performance in the pharmaceutical industry. In this work, implementing machine learning models enables rapid decision-making regarding manufacturing 
route selection, thus, minimizing the time and amount of material required. This work focuses on using ML models to predict powder flow behavior of 
pharmaceutical materials for routine, widely available materials.

Parameter Ranges (µm) Median (µm)

D10 9-225 54.84

D50 25-644 149.19

D90 53-1892 328.87

D[3,2] 19-393 94.63

FFc Behaviour N. 
Observations

< 4 Cohesive 29

4 < FFc < 10 Easy flowing 34

> 10 Free flowing 55

APIs Excipients Blends
30 43 40

Conclusions:
1. The 118 materials analyzed exhibited a wider range of PSD, particle shape distributions, and bulk densities, and covered 3 classes of FFc (cohesive, easy-flowing, and free-

flowing). 
2. The best performing algorithm for Step 1 achieved a performance of 0.835, and for Step 2, 0.84. 
3. The external validation of the classification models showed that 5/8 were correctly classified. 
4. Implementing machine learning models in the early stages of drug development could help determine suitable manufacturing strategies for a given material, providing a 

rapid digital screening tool for advanced pharmaceutical development. 
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• Particle size and shape analysis 
using QICPIC.

• Bulk density and flow function 
coefficient measurement using 
FT4.
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ALGORITHM

Feature importance analysisExternal validation: 8 powders

• Support Vector Machines (SVM), Random
Forests, neural networks, Naïve Bayes, k-
Nearest Neighbours (kNN), Logistic
Regression, and Adaboost were all
investigated for classification capabilities
of powder flow into three categories:
cohesive, easy-flowing, free-flowing.

• The performance of each algorithm was
evaluated using area under the curve
receiver operating characteristics (AUC –
ROC).
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• Feature importance was analysed to
improve the knowledge of how the
model makes the predictions.

• Feature importance is calculated
based on the decrease in AUC – ROC
when each individual feature is
replaced by noise after 10
permutations
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