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Abstract

In the field of metabolic engineering, where cells are treated as “factories” that synthesise
industrial compounds, it is essential for cell metabolism to accommodate the energy and re-
dox cofactor demands of synthetic pathways. A balanced supply and consumption of ATP and
NAD(P)H directly influences biotechnological performance. This study develops computational
and experimental frameworks to explore how ATP and NAD(P)H limit the yield of synthetic
pathways during bioproduction.

Constraint-based modelling was used to develop a novel computational protocol, CBA (Co-
factor Balance Assessment), which tracks how ATP and NAD(P)H contribute to cell target pro-
duction, as opposed to cell maintenance, biomass and waste release, in the presence of a synthetic
pathway. Using butanol pathways (a non-native product in E.coli) with varying cofactor de-
mands, CBA discerned the network-wide effects of cofactor variations on butanol yield. Results
indicate that yields could be boosted by up to 13% if the introduced pathway is balanced both
in terms of energy and redox. CBA simplified cofactor balance assessments and provided insights
into how to improve the efficiency of recombinant strains.

Physiological and metabolic responses to cofactor perturbations were also experimentally as-
sessed. The predominant phenotypes of strains harbouring the ATP synthase and PCK knockouts
included high glycolytic flux, lower biomass and ATP. These strains were used to improve ethanol
production, resulting in yields 10% and 29% higher than the WT overproducing ethanol and
reaching over 70% of the theoretical maximum. The low but positive ATP yields boosted ethanol
production and minimised unrestricted growth.

This research posits that early-stage in silico cofactor usage profiling serves as an instrument
to select better performing pathways. Significant yield improvements can be achieved experi-
mentally with a small number of cofactor-driven modifications that reduce the waste of cofactors,
illustrating the potential of these strains as platforms to improve bioproduction of cofactor-neutral
or cofactor-surplus synthetic pathways.
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maintenance and (4) target production (this category is target product specific). (B) and (C)

show a toy classification of ATP and NAD(P)H reactions, respectively, into the aforementioned

categories by the CBA protocol. Cofactor fluxes are dependent on the cofactor stoichiometric

coefficient and flux calculated by COBRA. . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Components of the Cofactor Balance Assessment (CBA) pipeline and

summarised workflow. Stoichiometric models contain reaction information, such
as whether they consume or produce ATP and NAD(P). The E.coli Core stoichio-
metric model and the COBRApy package were used, and selected reactions were
implemented to build the path to novel products. CBA classifies reactions in the
model according to whether they are involved in the consumption or production of
NAD(P)/ATP, assigns them a cofactor balance score, and groupins them into cat-
egories as represented above. Finally, the total balance per category is calculated
the total sum of flux and adjusted to provide a final value for each category. The
result is a profile displaying the fraction of the total cofactor produced involved in
maintainenance, biomass, target and waste production. . . . . . . . . . . . . . . . . 85

5.3 CBA-derived network cofactor usage profiles. After FBA optimization, the
CBA protocol calculated the net ATP and NAD(P)H production and classified
ATP and NAD(P)H-related reactions according to whether these cofactors were
consumed or produced during biomass, waste, target production or cellular main-
tenance. All models were initially unconstrained and simulated under both aerobic
and anaerobic conditions. (A) ATP and NAD(P)H profiles under aerobic condi-
tions; (B) ATP and NAD(P)H profiles under anaerobic conditions. . . . . . . . . . 88



5.4 Identification and removal of futile cycles. (A) examples of cofactor futile
cycles identified in this study - pairs of cycling reactions in which ATP is consumed
through one reaction and the original metabolites are recycled through the pair
reaction; (B) ATP-burning and high-flux futile cycles were identified by directly
comparing the engineered strain and the wild-type flux distributions; (C) The
identified ATP-burning reaction or futile cycle was constrained by limiting the
upper bound to the maximal flux observed for the equivalent reaction in the wild
type; (D) After optimization, the flux distributions of the wild type and engineered
system were compared again and the next high-flux futile cycle was detected and
constrained accordingly (as per C). Steps (C) and (D) were repeated until no more
futile cycles were detected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5 CBA-derived cofactor usage profiles after manual curation of the models
to minimize futile cycling and carbon yield comparison. The engineered
models were manually constrained to minimize high-flux ATP futile cycles as de-
scribed in Section 5.3.3, and led to (A) curated ATP and NAD(P)H CBA profiles
under aerobic conditions and (B) ATP and NAD(P)H CBA profiles under anaerobic
conditions. (C) Carbon yields estimated by pFBA and using the RPCs. uDugar
– unadjusted RPCs ; uFBA – unconstrained pFBA (prior to manual curation);
aDugar – adjusted RPCs after accounting for ATP and NAD(P)H imbalances;
cFBA – curated pFBA carbon yields estimates, obtained after manually constrain-
ing high-flux futile cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 Flux ranges gathered from Haverkorn Van Rijsewijk et al. (2011), Ishii
et al. (2007) and Long and Antoniewicz (2019). Flux ranges were derived
from flux datasets in the original studies, assuming that the fluxes estimated for the
same reaction across all mutant strains comprised the full catalytic range of such
reaction. Only the ranges of cofactor-related reactions were kept and presented
here. (A) flux ranges of cofactor-related reactions from Haverkorn Van Rijsewijk
et al. (2011), which presented average ranges between 1.3-15.3; (B) flux ranges from
Ishii et al. (2007), which captured ranges between 0.01-9.8; (C) flux ranges from
Long and Antoniewicz (2019), which spanned flux ranges between 0.06-30. . . . . . 98



5.7 MFA-derived estimates compared to FVA and MOMA estimates. Flux
ranges were extracted from a pre-existing MFA flux dataset (Long and Antoniewicz,
2019), using a Python algorithm to select the minimal and maximal flux ranges and
assuming that the fluxes estimated for the same reaction across all mutant strains
used in the study comprised the full catalytic range of such reaction. Only the
ranges of cofactor-related reactions were kept and presented here. These flux ranges
are indicated as “Long et al.” in the figure, and were compared against (A) FVA
flux ranges (orange stripes), and (B) MOMA-derived flux ranges (green). MOMA
ranges were estimated using the wild type solution as a reference and sequentially
implementing the single-gene knockouts in Long and Antoniewicz (2019), with
biomass formation as the objective function. . . . . . . . . . . . . . . . . . . . . . . 102

5.8 CBA cofactor profile comparison across unconstrained, manually cu-
rated and experimentally constrained solutions and carbon yield com-
parison. (A) ATP (blue) and NAD(P)H (yellow) CBA-derived cofactor usage
profiles compared across all approaches evaluated in this study; (B) Carbon yields
of butanol and butanol precursor models, compared across all approaches evaluated
in this study: unconstrained pFBA (labelled “FBA”); manually curated pFBA so-
lutions with minimized high-flux futile cycling (labelled “cFBA”); experimentally-
constrained solutions using MFA-derived flux data (labelled “mFBA”); experimentally-
constrained solutions using MFA-derived flux data with further capping in cofactor
cycling reactions (labelled “cmCBA”). . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.9 aerobic butanol rates (mmol gDW−1hr−1) of engineered E.coli strains in
response to changes in ATP and NAD(P) demands. Each model repre-
sents a unique pathway variant for butanol production, which has previously been
manually-curated and optimized for the selected objective under aerobic conditions.
(A) BuOH-0 model, comprised of route AtoB + AdhE2; (B) BuOH-1, including
reactions NphT7 + AdhE2; (C) tpcBuOH made up of AtoB + TPC7; (D) BuOH-2,
comprising reactions NphT7 + TPC7. . . . . . . . . . . . . . . . . . . . . . . . . . 106



5.10 anaerobic butanol rates (mmol gDW−1hr−1) of engineered E.coli strains
in response to changes in ATP and NAD(P) demands. Each model repre-
sents a unique pathway variant for butanol production, which has previously been
manually-curated and optimized for the selected objective under aerobic conditions.
(A) BuOH-0 model, comprised of route AtoB + AdhE2; (B) BuOH-1, including
reactions NphT7 + AdhE2; (C) tpcBuOH made up of AtoB + TPC7; (D) BuOH-2,
comprising reactions NphT7 + TPC7. . . . . . . . . . . . . . . . . . . . . . . . . . 107

Chapter 6 111
6.1 Knockout targets selected in this study. (1) The PCK knockout eliminates

the scope of a potential PCK-PPC ATP futile cycle to rebalance any ATP surplus;
and (2) A full knockout of the ATP synthase operon prevents ATP production
through oxidative phosphorylation, interferes with the main link between ATP and
NADH and also potentially redirects flux through glycolysis, as a means to produce
ATP via substrate-level phosphorylation instead. . . . . . . . . . . . . . . . . . . . 114

6.2 Gene deletion method, following (Jensen et al., 2015) and (Datsenko and
Wanner, 2000). (A) recombination primers are designed to include (i) a 20bp
priming region which binds the FRT-flanked ends of the KanR cassette in plasmid
pKD13, as well as (ii) a 50bp homology region which binds upstream/downstream
of the target gene(s) to be knocked out; (B) PCR product is created by polymerase
chain reaction (C) gene deletion is performed by electroporation of the PCR prod-
ucts, which then integrate by recombination of the 50bp homology arms with the
target gene(s) (D) KanR cassette removal is performed through the induction of a
fippase gene that recognizes the FRT regions of the cassette. . . . . . . . . . . . . . 115

6.3 Gene Delection Implementation. (A) PCR amplification of pKD13’s KanR

casette with ATPs-complementary arms (100% amplification efficiency, n=4); (B)
Gene deletion of the ATPs operon by electroporation of KanR PCR product us-
ing 250ng PCR product for electroporation. Three primer combinations (labelled
PS1, PS2 and PS3 here) were used to confirm amplification. 40% of the colonies
checked using this procedure contained the correct knockout mutation (n=5); (C)
PCR validation of ATPs cassette removal. 80% of rhamnose-induced colonies got
the antibiotic casette successfully removed (n=5); (D) PCK cassette removal vali-
dation.75% of colonies tested were positive. . . . . . . . . . . . . . . . . . . . . . . 116



6.4 Growth curve and uptake and secretion measurements of WT and knock-
out strains ATPs and PCK. Data was gathered over a 10h labeling experiment,
with samples taken every 2h-4h. (A) Growth analysis shown as averaged OD600

measurements (n=4) over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.5 Workflow for 13C MFA. [1–13C] and [U–13C] labelled D-glucose were selected

as tracers for a 10h parallel labelling experiment. Meanwhile, 1mL samples were
taken every 2h for growth and secretion product evaluation using high-performance
liquid chromatography (HPLC). Labelled cultures were prepared by hydrolysing
the protein and derivatizing the amino acids. Labelled amino acid fragments were
detected using GC-MS and quantified. Finally, data was corrected and fed into
WUFlux (He et al., 2016) for metabolic flux estimation, using the measured growth
rate, glucose uptake and metabolite secretion rates as constraints. Goodness-of-fit
measurements as well as confidence intervals for the internal fluxes were obtained
(figure adapted from Zamboni et al. (2009)). . . . . . . . . . . . . . . . . . . . . . . 121

6.6 13C-flux maps of central carbon metabolism. Determined from best fitting with 76 reactions

and measurements of glucose uptake, byproduct secretion and growth rates from 13C labelling ex-

periments (n=4) as per Table 6.1. The WUFlux software was used for fitting (He et al., 2016).

Values represent the best fit and standard deviation. The width of the black arrows is proportional

to the estimated flux values. (A) Wild type; (B) PCK mutant, in which the PCK reaction was

knocked out; (C) ATPs mutant, in which the ATP synthase reaction was knocked out. Abbrevi-

ations: ACCOA, acetate; AKG, a-ketoglutarate; CIT, citrate; ETOH, ethanol; E4P, erythrose-4-

phosphate; CO2, carbon dioxide/formate; FUM, fumarate; GLX, glyoxylate; G3P, glyceraldehyde-

3-phosphate; GLYC, glycerol; HIS, histidine; H6P, hexose-6-phosphate; Lac, lactate; MAL, malate;

OAA, oxaloacetate; PEP, phosphoenolpyruvate; PYR, pyruvate; R5P, pentose-phosphates; SUCC,

succinate; S7P, sedoheptulose-7-phosphate; 6PGC, 6-Phospho-D-gluconate. . . . . . . . . . . . 122
6.7 Biosynthetic pathway of ethanol in engineered E. coli. (A) Relevant

metabolic routes for in vivo production of ethanol in E.coli, and relevant fermen-
tation products monitored in this study. (B) Plasmid construct used for ethanol
production (hereinafter known as PDC), and the empty vector control (hereinafter
known as pCDF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



6.8 Protein expression evaluation of ethanol bioproduction strains WT and ATPs. Ethanol

production was assayed by inducing 3 biological replicates with 0.25mM, 0.5mM or 0.75mM IPTG

and cultivating them in M9 minimal medium + 2% (w/v) glucose for 48h. Samples collected 24h

and 48h after induction. (A) growth profiles of WT and ATPs strains over the 48h incubation

period. The red arrow indicates the Induction Point (IP), at the 4h timepoint. Empty-vector

controls were also made but not included in the figure; (B) glucose consumption for strains in

A over the 48h incubation period. To calculate glucose consumption, the glucose in the medium

was measured at 24h and 48h, an subtracted from the initial glucose concentration in order to

determine how much glucose was consumed at the relevant time points; (C) Ethanol titer (in mM)

for strains in A at 24h and 48h timepoints. Titer measures the amount of ethanol in the medium;

(D) Ethanol yield (as mol/mol glucose) for strains in A at the 24h and 48h timepoints. Ethanol

yield indicates mol of ethanol in the medium per mol glucose consumed by the culture. . . . . . 126
6.9 Ethanol bioproduction evaluation of best producing WT and ATPs strains.

The WT strain bearing the PDC system was induced with 0.5mM IPTG, while the
ATPs system was induced with 0.25mM IPTG at the Induction Point (IP) indi-
cated by a red arrow at the 4h timepoint. (A) growth profiles, as OD600 over time
(h), of WT-PDC, ATPS-PDC and their corresponding empty-vector and reference
(no plasmid) controls. Non-induced controls were excluded. Strains were cultivated
for a total period of 48h.; (B) glucose consumption for strains in A; (C) Ethanol
yield, as mol ethanol per mol glucose, for strains in A. Samples were taken 24 and
48h after induction with the selected inducer concentrations. Asterisks indicate
significant difference between independent samples (* P ≤ 0.05; *** P ≤ 0.005).
Data is illustrated as the average from 3 biological replicates and the error bars
represent the standard deviation across biological replicates of the same sample. . 128

6.10 Carbon profile of best producing WT and ATPs strains. The WT strain
bearing the PDC system was induced with 0.5mM IPTG, while the ATPs system
was induced with 0.25mM IPTG. Secretion profiles were assessed by collecting sam-
ples every 24h and performing High-performance liquid chromatography to detect
the most common fermentation products in E.coli: ethanol, acetate, succinate,
formate and lactate. (A) product profile at 24h; (B) product profile at 48h. . . . . 129



6.11 ATPs-PCK double mutant implementation. (A) Amplification of pKD13’s
KanR cassette using recombination primers that include a 50-bp homology arm com-
plementary to the 3’ and 5’ ends of the PCK gene (100% amplification efficiency,
n=3); (B) after electroporation of the PCR products in A into E.coli, dreamtaq
amplification was used to check that the KanR cassette was successfully inserted to
replace the PCK gene (20% electroporation efficiency, n=10); (C) Q5 PCR ampli-
fication of the PCK knockout after removal of the KanR cassette. Positive bands
(300bp) found in all identified hits (100% efficiency, n = 8). PCR amplification
and gel electrophoresis were followed by gel extraction for further DNA sequencing
(Appendix D Figures 7-9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.12 Protein expression evaluation of ethanol bioproduction in the PCK and
ATPs-PCK strains. (A) growth profiles of PCK (single-knockout strain) and
ATPs-PCK (double-knockout strain) induced with 0.25mM, 0.5mM or 0.75mM
IPTG. The red arrow indicates the Induction Point (IP), at the 4h timepoint.
Empty-plasmid controls were made but not included in the figure; (B) glucose
consumption for strains in A; (C) Ethanol production by introducing enzyme PDC
into the PCK and ATPs-PCK strains and overexpressing this at with 0.25mM,
0.5mM and 0.75mM IPTG. Measurements were performed at 24h and 48h. . . . . 132

6.13 Ethanol bioproduction evaluation of best producing PCK and ATPs-
PCK strains. The PCK strain was induced with 0.75mM IPTG, while the ATPs-
PCK system was induced with 0.25mM IPTG. The PCK and ATPs-PCK strains
bearing the PDC system were compared against their empty-vector and reference
(no plasmid) controls. Non-induced controls were not made. All strains were
cultivated in M9 minimal medium and 2% (w/v) glucose for a total incubation
period of 48h. Samples were taken 24 and 48h after induction. (A) Growth profiles,
as OD600 over time (h). (B) glucose consumption for strains in A; (C) Ethanol titer
(mM) for strains in A. Asterisks indicate significant difference between independent
samples (* P ≤ 0.05; *** P ≤ 0.005). Data is illustrated as the average from 3
biological replicates and the error bars represent the standard deviation across
biological replicates of the same sample. . . . . . . . . . . . . . . . . . . . . . . . 133
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7.1 MetEOr demonstration (taken from Davidson et al. (2019)). (A) Home
page, where users can select one of the provided standard models or upload their
own SBML file (format-compliant) to start running tests. (B) Options form. Users
can add, edit or remove selected reactions, modify FBA settings (inc.applying con-
straints and changing the objective function) and specify how to categorise some
cofactor related reactions. (C) Results page, including bargraphs to show the CBA
profiles, network visualisation and editing functions and flux display. (D) slider
function filters the network by flux. . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
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“At the heart of the challenge is the need to decouple eco-
nomic growth from environmental degradation […] Grand
challenges need not be insurmountable obstacles leading
to economic despair, but rather the chance to rebuild in-
dustry and society in a sustainable manner” - (OECD,
2018)

1
Motivation

1.1 Setting the scene:

1.1.1 Global challenges faced by society’s overall sustainability

Environmental, political and socio-economic factors, as well as humanity’s unprecedented demand
on global resources, are transforming our manufacturing needs. Our planet’s population growth
has sky-rocketed to an annual rate of 83 million people per year (United Nations, 2017). People are
living longer, expecting greater mobility, and quicker access to improved products and services
(HM Government UK, 2018). As technological developments flourish, so increases our global
carbon footprint.
There is growing awareness of the negative environmental effects of fossil fuels, as well as their
finite nature and fast diminishment (OECD, 2018). Still, oil, coal and natural gas continue to
account for around 80% of the total energy supplied globally (BP, 2019). However, due to the fast
accumulation of global atmospheric greenhouse gas emissions, the increase in air pollution, urban
development and the industrialisation of developing countries, as well as the energy demand from
an ever wider range of industries (IPCC, 2018), we cannot rely on fossil fuels to meet our demands
any longer (HM Government UK, 2018). It is our duty to find sustainable alternatives, protect
the environment and tackle the effects of climate change.
Growing calls for more sustainable industrial processes have fed the quest for sustainable energy
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sources. After making it into the United Nations agenda as part of the global sustainable de-
velopment goals (SDGs), first proposed in 2015 (United Nations, 2015), and becoming a crucial
theme in the 2015 Paris Climate Agreement (UNFCC, 2015), this search is now a major global
milestone. However, this issue moves beyond politics. 2019 marked the year with the highest
number of wildfires in the Amazon (Escobar, 2019), the highest temperatures on record (NOAA,
2019, WMO, 2020), and the earliest Overshoot Day 1 thus far (WWF, 2019). As extreme weather
gauged mediatic protagonism, exemplified by the catastrophic floods in East Africa in early 2019
through to the Bahamas devastation following Hurricane Dorian only a few months later, it is
not surprising that the generations of today and tomorrow are demanding urgent climate action.
The global climate urgency is faced up against conflicting national priorities and political agendas,
making it hard to align environmental policies at a global scale. While some world leaders have
attempted to enforce regulations and policies to maintain low emissions through the Conference
of Parties (COP), countries like the United States (USA) have ceased participation in the Paris
Agreement, and cut oil prices and funding for clean energy projects. Moreover, oil prices have been
subject to great price fluctuations in recent years, driven by volatile market dynamics and the tense
geopolitical landscape of supplier countries. Further uncertainty as to what the petrochemical
industry might look like in the years to come has been triggered by the widespread industry and
travel restrictions arising from the covid-19 crisis, which caused the oil prices to plunge to record
negative levels in 2020 (IEA, 2020)
Therefore, if we are to sustain the global population whilst remaining below the 2◦C threshold set
out by the Paris Agreement, and ease any political tensions while achieving energy independence,
it is in everyone’s interest that the next generation of energy sources is pursued, having minimal
carbon emissions (or ideally are carbon negative), improved chemical and physical properties
(Nielsen and Keasling, 2016), and entail less competition for natural resources (Kitney et al.,
2012, Zhou et al., 2008). This search will define our generation, and have an unprecedented
impact on our industries and how we shape our future development. Investing in the bioeconomy
is one such strategy to realise sustainable industries and societies.

1.1.2 The emergence of the bioeconomy

The bioeconomy is the set of economic activities that harnesses bio-based processes based on
biotechnology, instead of on their fossil-fuel-derived counterparts. In other words, it is the econ-

1Earth Overshoot Day (EOD), is commonly defined as the calculated date on which society’s resource consump-
tion exceeds Earth’s capacity to regenerate those resources that year.
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omy’s smaller pocket based on biology and the biosciences. Since 2009, the bioeconomy has been
at the forefront of politics (OECD, 2018). In 2014, 13% of the world’s trade involved bio-based
products, worth an average of $2trillion (El-Chichakli, 2016). More specifically at home, the
UK bioeconomy contributed over 5.2 million jobs in the country and was worth £220bn gross
value added that same year (HM Government UK, 2018). By now, over 50 nations globally have
proposed to boost their bioeconomy (Figure 1.1) (OECD, 2018), with over 35% of all products
expected to be partly or fully manufactured using industrial biotechnology by 2030 (Maia et al.,
2016). The bioeconomy has also grown from being biologics-centric to becoming a platform tech-
nology spreading across a vast number of sectors such as agri-food, chemicals, materials, health
and biologics, energy and fuel, and the environment (Carlson, 2016). In the UK, the sector is
growing at a rate of 8-10% per year and is predicted to continue beyond 2025 (BBSRC, 2019).
A world-class, robust and diversified bioeconomy would remove reliance on finite resources (i.e.
fossil fuels) and disrupt how we address societal challenges. These developments are expected to
deliver healthier foods, more productive agricultural systems, better medicines, sustainable fuels,
and novel materials whilst contributing to a cleaner environment. The potential benefits are so
great that the UK government has identified it as one of the four “Grand Challenges” within
its own Industrial Strategy, and is expecting to double its size within the next 10-15 years (HM
Government UK, 2018).

1.1.3 The potential of microbial production with metabolic engineering

The shift from chemical to biotechnological synthesis of desired chemicals and fuels (hereinafter
called “biosynthetic production”, or “bioproduction”) represents one of the cornerstones of sustain-
able production processes. Biosynthetic production may proceed via isolated enzymatic reactions
(i.e. “in vitro”) or via whole-cell systems (“in vivo”, also called microbial production) (Dai et al.,
2015, Stephanopoulos, 2012). The use of biological organisms for chemical production, although
it has existed for thousands of years, has been increasingly exploited as an alternative to chemical
conversions (Nielsen and Keasling, 2016). Microbes are inherently advantageous factories because
of their self-regeneration capabilities and extended life cycles (Siedler et al., 2011). They have
naturally evolved over millions of years to carry out essential biochemical conversions to guarantee
their own survival, without the need for enzyme purification and processing. Their metabolic di-
versity also enables them to thrive on a large repertoire of substrates. Numerous microorganisms
can produce a range of commercially relevant molecules, or their precursors, by harnessing their
existing catalytic machinery and metabolism (Clomburg et al., 2017), albeit at low production
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Figure 1.1: Regions implementing bioeconomy policies span 5 continents. This includes countries with
dedicated bioeconomy strategies and bioeconomy-related strategies. It also accounts for countries with strategies
that are currently under development. (Adapted from OECD (2018))

rates (Liao et al., 2016). The idea of using genetic modifications to improve production has been
widely employed as an exciting avenue for higher yield accumulation since the 1990s, when the
field of metabolic engineering was first coined (Bailey, 1991).
Metabolic engineering, also recently termed synthetic metabolism (Erb et al., 2017), involves
rerouting a microbe’s metabolism to drive the carbon flux towards particular pathways for optimal
production of selected chemicals (Nielsen and Keasling, 2016). Metabolic engineering strategies
may involve fine-tuning existing microbial pathways to optimise native production, or introducing
new pathways and enzymes into an organism of interest. Even though native producers may
exist, heterologous production has unarguably taken much of the recent focus, because selected
organisms may be easier to grow from a practical and economic perspective, and vast amounts of
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literature may facilitate their use, application, engineering and characterisation.

1.1.4 Biosynthetic production in Escherichia coli

Metabolic engineering has popularised the use of model systems as platform strains, such as
Saccharomyces cerevisiae, Escherichia coli or Bacillus subtilis. The gram negative bacterium
Escherichia coli (E.coli) is one of the most important organisms used in the industry, and was
selected as the organism of choice for this PhD study. E.coli has been extensively studied, both
at the fundamental and applied levels and, as a result, a myriad of molecular cloning and genome
editing techniques are now available. Furthermore, E.coli has excellent properties, including rapid
proliferation and growth rates, high cell density, and low production costs (Pontrelli et al., 2018),
as well as the fact that it is easy to handle and culture and is robust at industrial scale (Burdette
et al., 2018). These characteristics make E. coli one of the bacteria of choice for for producing a
wide range of molecules, from native products, such as amino acids or organic acids (Figure 1.2),
to heterologous compounds, including biofuels, both at the proof-of-concept and commercial-scale
(Chen et al., 2013). The physiology, biochemistry, genomics and regulation of this microorganism,
as well as its suitability as laboratory workhorse and industrial production platform have been
reviewed in great detail by Chen et al. (2013) and Pontrelli et al. (2018), and thus fall outside of
the scope of this introduction.

1.2 The problem:

1.2.1 Economic and technical bottlenecks in metabolic engineering

Microbial production is selective, and proceeds at low temperature and pressure, presumably
making any bio-based approach technologically simpler and more attractive in economic terms
(Clomburg et al., 2017). The financial commitment, capital investment and risks associated
with bio-processing are theoretically lower than large-scale, capital-intensive, infrastructure-heavy
chemical projects (Carlson, 2016, OECD, 2018). It is believed, that with the right incentives,
enough funding opportunities and international cooperation, biotechnological production will lead
to faster innovation, a more circular economy, and prompt response to market drives and policy
changes (Clomburg et al., 2017). However, it is fair to say that developing new commercial
strains (i.e. strains that meet the economic and scale requirements for industrial production) is
still difficult due to the time and financial investment still required to develop a viable working
system, requiring an average project duration of 6–8 years and over $50 million investment (Nielsen
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Figure 1.2: Schematic diagram of synthetic pathways for the production of a wide variety of chemicals
in Escherichia coli (adapted from Chen et al. (2013)). E.coli strains have been engineered to produce a wide
variety of chemicals in the past two decades (indicated by black arrows). In this thesis, I will focus primarily
on butanol and ethanol as case studies for further improvements in biochemical production. TCA, tricarboxylic
acid; CoA, coenzyme A.

and Keasling, 2016).
Limitations span several fold. A major challenge in commercialising new biotechnological pro-
cesses is economic sustainability. For the industry to capitalise on this opportunity, not only
should cell factories be attractive alternatives from the energetic and carbon efficiency perspec-
tive (Zomorrodi et al., 2012), but such a shift can only be successful if the designed processes are
as financially viable as their petrochemical counterparts. It is crucial that biological conversion
rates are higher than, or at least match, chemical conversion rates. To materialise this, microbial
production shall reach near optimal yields (gram of product per gram of substrate) and productiv-
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ities (production rate per volume) (Hädicke and Klamt, 2015). More efficient bio-based processes
would lower production costs and make it more cost-competitive (OECD, 2018). The lower the
market value of the competing, fossil-fuel derived equivalents, the greater this challenge becomes.
To exacerbate this issue, given the recent price volatility of fossil fuels, additional pressures on
the biotech industry to operate at near optimal values have been imposed. This, certainly, raises
challenges in selecting the best approach to achieve the highest productivity levels.
Technical difficulties include scale-up, which is often hampered by lower microbial performance
at larger scale, unlike the reliable economies of scale of the petrochemical industry. Identification
of the best choice of target chemical, and also what microorganism to use for production is also
not trivial. E.coli may also not always be a suitable host. This platform strain does not perish
in extremes of pH or temperature, and it is also incapable of producing glycosylated products
and/or complex proteins (Pontrelli et al., 2018). It is for these reasons that researchers are hunting
for alternative microbes that can withstand more extreme manufacturing conditions (Eisenstein,
2016).
Arguably the most important issue is how internal cellular complexity also plays a key role. In
reality, some microbial systems are more efficient than others, even when they have been designed
to produce the same target chemical (Pasztor et al., 2015). This study focuses on the ability of the
cells’ native metabolism to accommodate the demands of synthetic pathways, as these pathways
will alter the homeostasis of cellular energy and electron metabolism.

1.3 Defining a solution framework:

1.3.1 Metabolic cofactors: suitable targets for metabolic engineering

For any complex biological system, it is difficult to precisely pin-point the most important fac-
tors, and parameters thereof, influencing optimal catalytic performance. Traditionally, the focus
has been on enhancing carbon flow towards the product by, for instance, targeting rate-limiting
enzymes through either genetic modifications, enzyme engineering or synthetic biology. However,
carbon metabolism alone cannot achieve efficient accumulation of target products. One reason
for this is that the efficient production of a target chemical requires redox and energy as well
as carbon (De Kok et al., 2012, Wang et al., 2017, ?). Cofactors such as NAD+ (nicotinamide
adenine dinucleotide), NADP+ (nicotinamide adenine dinucleotide phosphate) and ATP (adeno-
sine triphosphate) provide the energy and electrons needed for carbon metabolism to proceed
effectively.
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ATP is the energy currency of the cell. Although it is not always classified as a cofactor (Fischer
et al., 2010), ATP is required for DNA replication, biosynthesis, protein assembly, biochemical
transport, energy supply and cell maintenance (Hara and Kondo, 2015). This makes ATP an
indispensable building block in cellular metabolism. On the other hand, the fundamental role
of the nicotinamide cofactors NAD+ and NADP+ is the smooth transfer of electrons between
chemical reactions in the cell (Fischer et al., 2010). Conjointly referred to as NAD(P)(H) in
this study, the NADH/NAD+ and NADPH/NADP+ cofactor pairs adjust the intracellular redox
state, control energy metabolism, and regulate carbon flux and the cell life cycle more generally
(Chen et al., 2014).
In any biological system, carbon assimilation inevitably results in the phosphorylation of ADP
(adenosine diphosphate) and AMP (adenosine monophosphate) to form ATP, and the reduction
of NAD+ and NADP+. These cofactors are subsequently hydrolysed and oxidised, respectively,
when carbon source(s) is converted into biomass and by-products. Cofactor recycling is essential
to allow central carbon metabolism to continue, i.e. to enable homeostasis (Varma et al., 1993).
It follows that a balanced supply and consumption of both ATP and NAD(P)H, here termed
cofactor balance, will have great influence in biotechnological performance. It is for these reasons
that the ATP and NAD(P)(H) pools have become attractive targets for engineering, as I discuss
in detail in Chapter 2. However, due to their functional relevance, both ATP and NAD(P)H
are highly connected molecules, and consequently any small change in cofactor availability can
result in substantial downstream ramifications in other areas of metabolism (Holm et al., 2010).
Identifying the optimal cofactor profile for the production of a particular target can thus be very
exhaustive and time-consuming work experimentally. So, how can we overcome this challenge
while minimising experimental testing?

1.3.2 Modelling cofactor systems aids biosynthetic production

Fortunately, the physiology, biochemistry, genetics and metabolism of E.coli have been extensively
studied. The advent of high-throughput technologies and their exponential decrease in price have
facilitated the integration of biological information to capture the inner works of this organ-
ism (Bordbar et al., 2014). Genome-scale network reconstructions (or GENREs) are structured
knowledge bases that contain the majority of all identified metabolic reactions in an organism
of interest, including substrate and product information, stoichiometric coefficients, reaction re-
versibility and intracellular location, associated genes and gene products (Feist et al., 2008). To
our benefit, these databases also provide reaction-specific cofactor information.
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Building and curating a GENRE requires collating species-specific information from genome an-
notations (genomics), high-throughput experiments, literature searches and publicly available
databases (O ’brien et al., 2015). GENREs can now be generated in an automated manner (Feist
et al., 2008), although they require extensive validation against experimental data to improve
their quality and accuracy. Once a reconstruction has been curated to a satisfactory level, it
can be converted into a mathematical format (known as Genome-scale Model, or GSM), which
can be queried by a myriad of modelling tools (Section 2.3.1) to predict potential phenotypes,
analyse network properties and evaluate the effect of perturbations such as gene knockouts or
the implementation of biosynthetic pathways (King et al., 2015). Most curated reconstructions
are now available in standard formats such as SBML (systems biology markup language), which
can be imported into most software applications. To our advantage, the E.coli metabolic net-
work has reached the genome-scale, and the available genome-scale reconstructions can be used
to computationally assess phenotypic properties.
The growing completeness of computational models has improved our understanding of the holis-
tic approach to cell dynamics. Together with the availability of experimental studies we have
been able to better depict the flow, roles and relevance of cofactors in cell physiology and allowed
these insights to inform metabolic engineering. But our understanding is still incomplete. Using
both computational and experimental frameworks, E.coli as a model system, and the attractive
fuel molecules butanol and ethanol as proof-of-concept targets, the work underpinning this study
focuses specifically on how network-wide cofactor usage profiles across biosynthetic pathway vari-
ants impacts bioproduction, and uses cofactor manipulations as a tool to improve bioproduction.

1.4 Research summary

As outlined in the Research Plan (Figure 1.3), this PhD study can be broadly grouped into three
components, which directly align with the three core objectives of this project:

• to evaluate existing frameworks for the assessment of cofactor balancing, identify limitations
and areas for improvement;

• to develop a novel, more versatile cofactor balancing algorithm that can help users better
select optimal pathway variants; and

• to evaluate metabolic and physiological responses to selected cofactor perturbations, and
harness these modifications to improve bioproduction.
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Table 1.1: Outline of thesis structure

Chapter 2 Background: cofactor manipulations for advancing bioproduction

Refining the initial research questions, Q1: what cofactor manipulations and modelling ap-
proaches have been proposed for the assessment of cofactor balancing of metabolic engineering
designs?

Chapter 3 Materials and Methods

Chapter 4 Energy and redox impact on butanol production

Q2: how does varying cofactor demand affect the performance of butanol production pathways
in E.coli?

Chapter 5 Development of a Cofactor Balance Assessment (CBA) protocol

Q3: Is it possible to propose a new pathway selection method to track cofactor usage and classify
synthetic pathway variants?

Q4: How can the underdetermined nature of cofactor-related reactions be minimized?

Chapter 6 Energy and redox perturbations for enhanced bioproduction

Q5: How robust is central carbon metabolism in E.coli to changes in ATP and NAD(P)H
availability?

Q6: Can bioethanol production be improved by reducing the ATP pool and targeting futile cycles?

Chapter 7 Conclusions and Future Work

Overall conclusions from Chapters 4, 5 and 6, including opportunities for future research

The thesis structure outline is summarised in Table 1.1. I begin in Chapter 2 with a detailed
review of the existing cofactor manipulation strategies used in Escherichia coli that target the
ATP and NAD(P)H pools specifically. Further, I present the state-of-the-art computer-aided and
analytical tools that have facilitated the study of cofactor manipulation and cofactor balancing.
Following a comprehensive outline of the materials and methods used in this study in Chapter
3, I set off my modelling analysis in Chapter 4 by exploring how varying cofactor demands limit
butanol and butanol precursor production in E.coli. Using 8 different pathway variations with
different demands for ATP and NAD(P)H, the relationship between cofactor usage and final
yield is evaluated using two existing methods: First, I apply the analytical method developed by
Dugar and Stephanopoulos (2011), which is pathway-specific and adjusts the maximal theoretical
pathway yield based on ATP and NAD(P)H imbalances. Second, I use Flux Balance Analysis
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(FBA) to estimate butanol production in E.coli at the network scale, and evaluate how changes in
ATP and NAD(P)H demands across pathways routes trigger changes both in the internal fluxes
and target production in this organism. The maximum theoretical yields obtained with these two
methods are compared.
Chapter 5 presents the first attempt at developing a python-based Cofactor Balance Assessment
(CBA) protocol that tracks cofactor production across central metabolism and estimates cofactor
contributions to biomass and waste release, target production and metabolic maintenance. CBA
can be used to evaluate how variations in ATP and redox demands contribute to yield efficiency
when a synthetic pathway is introduced into a host. Using the butanol and butanol precursor
pathways from Chapter 4, the CBA protocol helped explain why some pathways were predicted
to achieve higher yields than others from a cofactor usage perspective. The study highlighted the
underdetermined nature of some of the modelling systems (meaning there are several possible flux
patterns that reach the same theoretical maximum), demonstrated by considerable dissipation of
any excess ATP and NAD(P)H in high-flux futile cycles. In this chapter, a manual curation
method to minimise this in silico flexibility was developed, as well as the use of experimentally-
derived flux ranges as flux constraints. Adjusted yields from these two curation methods were
compared to the estimates calculated in Chapter 4.
Chapter 6 then turns to assess cofactor futile cycling experimentally, as well as the connectiv-
ity between the ATP and NADP)H pools. First, I evaluated the physiological and metabolic
responses of E.coli to cofactor perturbations induced by knocking out the ATP synthase and
phosphoenolpyruvate kinase (PCK) reactions, which are directly associated with ATP production
(and NAD+ recycling) and ATP burning through futile cycling, respectively. Redirected internal
fluxes led to industrially-attractive features such as increased glucose consumption and glycolysis
flux, at the expense of lower ATP production and biomass formation. These phenotypes were
then tested as potential bioproduction platforms for the accumulation of ATP-neutral targets,
using ethanol as proof-of-concept. Finally, Chapter 7 concludes this thesis with a discussion of
the impact of these results, contributions to the field, a critical analysis of this study’s limitations
and areas for improvement, as well as recommendations for further studies.
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“If I have seen further it is by standing on the shoulders
of giants” - Isaac Newton, 1675.

2
Background: Cofactor Manipulation for Advancing

Bioproduction

2.1 The relevance of cofactors in cellular homeostasis

It is widely understood that enzyme function often relies on the enzyme’s association with one or
more cofactors. Cofactors are catalytically-relevant organic molecules or ions that associate with
enzymes to enable, regulate and/or fine-tune their activity (Broderick, 2001). With over half of all
known proteins known to associate with at least one cofactor (Akhtar et al., 2014), it is undeniable
that cofactors play a crucial role in catalysis (Fischer et al., 2010). As a result, manipulation of
cofactor pools has long been identified as a valuable metabolic engineering strategy for enhanced
bioproduction (Hädicke and Klamt, 2015).
Three of the most important, most connected cofactors are ATP, NADH and NADPH. ATP is the
cell’s energy-storage workhorse. Its dephosphorylation converts its high-energy form to low-energy
molecules ADP or AMP, with chemical energy being fast released in the process (Equations 2.1
and 2.2). ATP is one of the most widely connected cofactors in any metabolic network (Vemuri
and Aristidou, 2005), with more than 600 ATP-related reactions listed by KEGG since 2015 (Hara
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and Kondo, 2015).

Pi+ ADP ⇐⇒ ATP (2.1)

ATP+ H2O → AMP+ PPi (2.2)

NAD+ and NADP+, which differ only on the presence of a phosphate group, are reversible electron
carriers. The reduced forms, NADH and NADPH, respectively, carry two additional electrons.
Collectively referred to as NAD(P)H in this study, the NADH/ NAD+ and NADPH/NADP+

cofactor pairs are involved in 740 and 887 biochemical reactions and interact with 433 and
462 enzymes, respectively (Chen et al., 2014). ATP and NAD(P)H play a crucial role in cen-
tral metabolism and thus are popular targets for engineering. To achieve the desired metabolic
changes, however, it is important to understand the core metabolic processes that are specifically
controlled by these cofactors.
Substrate take-up by cellular metabolism results in the oxidation of sugars to generate metabolic
building blocks, as well as the phosphorylation of ADP and AMP to form ATP and the reduc-
tion of electron carriers NAD+ and NADP+ to produce NADH and NADPH (Saini et al., 2016).
For the sake of simplicity, I will hereinafter refer to these metabolic events as “synthesis” and
“consumption” of ATP (also called “energy”) and NAD(P)H (also called “redox”). ATP is pri-
marily produced through glycolysis (via reactions PFK and PGK, Figure 2.1) and by oxidative
phosphorylation (ATPS4r, Figure 2.1) powered by the electron transport chain, or ETC (reac-
tion NADH11 in Figure 2.1), which is in turn fueled by NADH. During aerobic respiration of
redox cofactors, free energy is conserved as a proton motive force across the cell’s inner cyto-
plasmic membrane, used to power ATP production via the proton-translocating ATPase complex
(hereinafter referred to as ATPase) (De Kok et al., 2012).
NADH is produced during catabolism, linking substrate utilization to biosynthesis and product
formation. Alternatively, NADPH primarily drives anabolic reactions. To fulfill their distinct
roles, these two redox carriers are generally not in thermodynamic equilibrium (Holm et al., 2010).
NADPH can be produced by the isocitrate dehydrogenase reaction (ICD) in the Tricarboxylic Acid
Cycle (TCA), but is primarily produced in the oxidative branch of the Pentose Phosphate Pathway
(PPP) (Fuhrer and Sauer, 2009) by glucose-6-phosphate dehydrogenase (G6PDH2r in Figure 2.1,
encoded by gene zwf ) and 6-phosphogluconate dehydrogenase (reaction GND, encoded by gnd) to
produce ribulose 5-phosphate (Siedler et al., 2011). Many organisms also have a transhydrogenase
systems that can interconvert NADH and NADPH. E.coli, for example, heavily relies on its two
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transhydrogenases (Fuhrer and Sauer, 2009). The soluble transhydrogenase encoded by the gene
sthA catalyzes the reaction:

NAD+ + NADPH → NADP+ + NADH (2.3)

which oxidizes NADPH to produce extra NADH (labelled NADTRHD in Figure 2.1). The
membrane-bound transhydrogenase encoded by pntAB couples reduction of NADP+ with inward
proton translocation, catalyzing the reaction:

NADP+ + NADH+ H+
out ⇐⇒ NADPH+ NAD+ + H+

in (2.4)

pntAB therefore contributes to an increased NADPH pool at the expense of NADH (reaction
THD2 in Figure 2.1). Cofactor recycling is essential to enable homeostasis (Varma et al., 1993).
NAD+ is regenerated from NADH when intermediate metabolites in central catabolism are sub-
sequently reduced. This process in E.coli usually leads to the production of various organic acids
(such as lactate, succinate, acetate) and neutral compounds (like ethanol) (Ingram et al., 1987).
By-product release enables E.coli to maintain the NAD+/NADH and NADP+/NADPH redox
balance to ensure the continued operation of cellular metabolism.
Metabolic systems resulting in cofactor balance and robustness to environmental changes has
evolved to facilitate survival of the species, rather than to act as a host for biocatalysis serving
human objectives (Figure 2.2.A). Hence, it is not surprising that an organism engineered to include
a synthetic metabolic pathway does not have optimal cofactor balance. Such an imbalance in the
production and consumption of redox and/or energy by the engineered target pathway will result
in the dissipation of cofactors by native metabolic processes such as cell maintenance and waste
release, or promotion of growth over bioproduction (Figure 2.2.B). An increase in the waste
product profile is therefore an indicator of imbalance in the metabolic network, compromising
the overall efficiency of the biocatalytic conversion of carbon towards the target (Dugar and
Stephanopoulos, 2011). In fact, even small changes in cofactor pools can have wide effects on
metabolic networks and bio-production (Holm et al., 2010), and the inability of engineered systems
to reach homeostasis can lead to partial or even full disruption of the cell’s physiological state
(Dugar and Stephanopoulos, 2011, Holm et al., 2010, Varma et al., 1993). In order to maximize
our ability to engineer optimal bio-catalysts, it is therefore essential to carefully consider cofactor
balancing and identify the constraints that pathway-specific cofactor imbalances may impose on
the wider metabolic network.
Several articles have discussed this topic. For example, De Kok et al. (2012) suggested a positive
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Figure 2.1: Central Carbon Metabolism. Key reactions that either consume or produce ATP or NAD(P)H
are involved in relevant areas of central metabolism such as glycolysis, pentose phosphate pathway (PPP),
tricarboxylic acid (TCA) cycle, oxidative phosphorylation, cofactor maintenance and waste production. These
reactions have been highlighted in the diagram with thick black edges, and labelled according to standard
GENRE labelling. Metabolites are shown as blue circles. No other cofactors are shown.

yield theory whereby optimal biosynthetic pathway flux is more likely when there is small, positive
ATP excess remaining after the target pathway has utilised what it needs, enabling some but
limited biomass production to keep the culture alive. To support this argument, they compared
the low ethanol yield from a high-biomass producing Saccharomyces cerevisiae strain, against
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the higher ethanol yield in a low-biomass producing Zymomonas mobilis strain. They argued
that the cause of the difference was due to excess ATP production by the S.cerevisiae strain and
that ATP surplus caused too much cell growth, burdening metabolism and decreasing product
formation. Notably in this case, the authors referred to ‘pathway’ as the entire metabolic network
of the cell (De Kok et al., 2012). Albeit with different terminology, Dugar and Stephanopoulos
(2011) reached a similar conclusion based on a proposed theoretical framework (outlined in Section
2.3.3), concluding that the most effective equilibrium between substrate and product optimization
was found in fully balanced (net zero) or ATP-requiring (negative ATP yield) pathways. In this
article, ‘pathway’ referred to the leading route towards target production from a central carbon
metabolite, not the entire metabolic network of the cell (Dugar and Stephanopoulos, 2011)
Both De Kok et al. (2012) and (Dugar and Stephanopoulos, 2011) illustrate the negative relation-
ship between target product yield and bacterial growth, i.e. the more ATP is used for biomass
production the less will be available for product synthesis (Hädicke and Klamt, 2015). Similarly,
because of redox neutrality, pathways producing excess NAD(P)H are inefficient from a yield per-
spective as the surplus will need to rebalanced through either the activation of futile pathways or
side-product(s) formation, which leads to diversion of additional substrate-generated energy away
from the product (Dugar and Stephanopoulos, 2011). This basic principle is fundamental to any
cofactor engineering project, because the choice of approach will depend on whether the target
biosynthetic pathway is cofactor-neutral, cofactor-demanding or cofactor-generating. Targeting
the ATP pool as an engineering strategy involves either increasing or decreasing the net amount of
ATP that is available for biomass synthesis (Hara and Kondo, 2015). If the biosynthetic pathway
is ATP-neutral or ATP-consuming, ATP conservation or ATP-generating strategies supplying the
additional ATP required by the pathway shall be explored. Alternatively, if the pathway is ATP-
producing, it would logically follow that ATP-wasting approaches would minimise the activation
of futile cycles or generation of excess biomass. Similarly, if the biosynthetic pathway requires
the supply of additional NAD(P)H (this is commonly the case for reduced products), the cell’s
network will need to generate sufficient NAD(P)H to supply the pathway, after it has utilised
the redox and energy it needs to guarantee its own survival (Figure 2.2.C). Alternatively, if the
pathway is redox generating, an redox-consuming sink that consumes surplus energy would be an
effective strategy.
Redox and energy manipulation strategies have been extensively reviewed previously (Chen et al.,
2014, De Kok et al., 2012, Hädicke and Klamt, 2015, Wang et al., 2013, Zhao and Van Der Donk,
2003). The aim of this background chapter is therefore not to provide an in-depth analysis of
the strategies available. Instead, the objective is primarily to introduce the reader to the options
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Figure 2.2: Understanding cofactor metabolism, adapted from Dugar and Stephanopoulos (2011). (A)
Theoretical energy and redox flow in a non-engineered, biomass producing system. Substrate oxidation leads to
the production of surplus ATP and redox, which is consumed by the system to guarantee cellular maintenance
and biomass formation. (B) Theoretical energy and redox flow in an engineered, target-producing system. In
this case, some ATP and redox released from substrate oxidation is used for target production, after the system
has used what it needs for cellular maintenance and biomass formation. Imbalances are dealt with by the
activation of futile cycles and release of side products. (C) Cofactor-neutral or cofactor-demanding pathways
can use up any surplus cofactor generated from substrate oxidation, and thus are generally assumed to lead
lower side product release and higher yields. Cofactor conservation or cofactor regeneration strategies are best
when dealing with this sort of pathways. Pathways producing excess ATP or NAD(P)H are termed ‘surplus’
pathways and are deemed inefficient from a yield perspective because of the need to balance the excess cofactor,
often met via futile pathways, side-product formation or surplus biomass formation.



available and challenges of modifying ATP and NAD(P)H metabolism within the context of Es-
cherichia coli. This is followed by an overview of the existing computational tools built to this
date to facilitate the study of cofactor metabolism and implementation of cofactor modification
strategies for enhanced bioproduction. I will close this chapter by presenting the gaps and limita-
tions identified during the review of the literature, which inspired the key areas of focus for this
PhD study.

2.2 Experimental manipulation of cofactor pools

Cofactor engineering strategies can generally be subdivided into three key areas of focus: (i)
genetic modifications for increased/decreased availability of desired cofactors (either by regulating
endogenous cofactor systems or introducing heterologous ones), (ii) changes in enzyme-cofactor
preferences (by engineering enzyme specificity), and (iii) introduction of novel, synthetic cofactor
systems (Wang et al., 2017, 2013). This PhD study concentrates on the first of these areas, and
therefore (ii) and (iii) are outside the scope of this review.

2.2.1 Manipulation of ATP pools

ATP supply is one of the most critical factors for bioproduction (Hara and Kondo, 2015). The
negative relationship between growth and product yield outlined in Section 2.1 makes the ATP
pool a highly relevant target for the design of metabolic engineering strategies for increased
bioproduction (Hädicke and Klamt, 2015). Targeting the ATP pool involves either increasing or
decreasing the net amount of ATP that is available for biomass synthesis (Hara and Kondo, 2015).
As described previously, the choice of approach will depend on whether the target biosynthetic
pathway is ATP-neutral, ATP-demanding or ATP-generating, as this will inform whether ATP
conservation, ATP wasting or ATP futile cycling strategies apply.
Hädicke and Klamt (2015) suggest that for product synthesis pathways that are ATP-neutral
or ATP-demanding, ATP conserving manipulations are particularly appropriate. ATP conserva-
tion guarantees that other ATP-forming reactions in the network meet the demands for sufficient
growth and maintenance alongside product formation. Popular ATP conservation strategies in-
clude modifications of substrate uptake and product export (De Kok et al., 2012), manipulating
exchanges between anaplerotic reactions around phosphoenolpyruvate (PEP), pyruvate, malate,
or oxaloacetate (OAA) pools (Kim et al., 2012), and modulating the intracellular ATP/ADP ratio
(Toya et al., 2012)
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The carboxylation of phosphoenolpyruvate (PEP) to oxaloacetate (OAA) by phosphoenolpyruvate
carboxylase (PPC) is one such anaplerotic reaction (Equation 2.5). Under glycolytic conditions
in E.coli, PPC is the primary pathway for the production of OAA from PEP. This reaction is
deemed irreversible because of the energy loss suffered from the release of inorganic phosphate
(Zhang et al., 2009). Under gluconeogenic conditions, the reverse reaction is catalysed by the
ATP-consuming phosphoenolpyruvate kinase enzyme (PCK) instead (Equation 2.6) (Chao et al.,
1993). PCK is normally repressed by high glucose concentration, and is reported to theoretically
function only under gluconeogenesis conditions in E.coli. However, succinate-producing bacteria
present an analogous ATP-producing PEP carboxykinase that functions as the primary PEP
carboxylating enzyme, with the consequent conservation of energy as ATP (Zhang et al., 2009).

Glycolysis →→→ PEP+ CO2 + H2O → OAA+ Pi+ H+ (2.5)

OAA+ ATP ⇐⇒ PEP+ ADP+ CO2 →→→ gluconeogenesis (2.6)

ATP-conserving PCK has been used as a target for higher intracellular energy content, because it
can produce ATP instead of a phosphate group, unlike PPC. Its industry relevance was tested by
Singh et al. (2011), who showed that heterologous overexpression of the ATP-generating PCK from
Actinobacillus succinogenes in E.coli led to enhanced succinate production and higher cell growth
in the presence of sufficient CO2. Kwon et al. (2014) showed that PCK overexpression led to twice
the intracellular ATP concentration. This was followed by Kim et al. (2012)’s demonstration of the
biotechnological benefit of this approach by showing that a strain overexpressing PCK produced
85% more GFP (Green Fluorescent Protein) and 37% less biomass than the control strain. Albeit
with no introduction of heterologous genes or elimination of competing pathways, Zhang et al.
(2009) achieved a 5-fold increase in succinate yield in minimal media by increasing the expression
of PCK and truncating the PEP-dependent phosphotransferase system. The PEP-dependent
phosphotransferase system is the primary mechanism for glucose uptake in E. coli, and represses
glucose uptake when there is high intracellular PEP. Zhang et al. (2009) reported that these
changes, together, increased the intracellular PEP as well as net ATP production through PCK,
thereby increasing PEP carboxylation and succinate production.
ATP conservation may also be achieved by indirect modulation of the ATP/ADP ratio through
the truncation of global regulatory factors, such as the regulatory factor for anoxic response
control (ArcA), which is known to be involved in NADH and ATP-dependent reactions and thus
can change the cofactor turnover. To illustrate this, Toya et al. (2012) reported a 4.4-fold increase
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in TCA cycle activity as well as a 2-fold increase in the ATP/ADP ratio after deleting ArcA in
E.coli.
Alternatively, pathways that are ATP-generating can benefit from interventions that trigger a
decrease in ATP availability (Hädicke and Klamt, 2015). For example, expressing the soluble
F(1) part of the membrane-bound F(1)F(0) H+-ATPase (hereinafter known as ATPase, or ATPs),
which constantly consumes ATP without pumping protons, has been shown to increase substrate
uptake, glycolytic flux, and acetate overflow, while decreasing biomass production (Holm et al.,
2010, Koebmann et al., 2002). Similarly, mutant E. coli strains lacking respiratory chain enzymes
exhibited up to 30% lower growth rates, accelerated generation of glycolytic ATP and enhanced
production of pyruvate and acetate (Kihira et al., 2012).
Another well-known strategy for lowering the net ATP is triggering elevated ATP wasting (i.e.
burning surplus ATP in the system) through ATP futile cycling. ATP burning through futile
cycles enhances ATP turnover and increases biosynthetic production (Erdrich et al., 2014). As
early as 1992, Patnaik et al. (1992) discovered a futile cycle in E.coli between PEP and pyruvate
(Equations 2.7 and 2.8) which, if overexpressed, led to increased oxygen and glucose consumption,
as well as higher excretion of pyruvate and acetate in minimal media. Similar findings were
reported by Chao and Liao (1994b) two years later. Shortly after, Chao and colleagues reported
another cyclic futile pathway between PEP and OAA by overexpressing PCK and PPC (Equations
2.5 and 2.6 above) in E.coli. Similar observations regarding increased oxygen and glucose uptake,
reduced growth yields and pyruvate and acetate excretion were reported.

Pyruvate+ ATP+ H2O → PEP+ AMP+ 2H+ (2.7)

PEP+ ADP+ H+ → Pyruvate+ ATP (2.8)

Over two decades later, Hädicke et al. (2015) implemented an IPTG-inducible system encoding
PEP synthase (PPS) and pyruvate kinase (PYK), giving rise to an ATP consuming cycle that
exhibited 25% higher specific lactate productivity, 8% higher yield, and 14% higher substrate
uptake rate.
Additional strategies include the addition of energy generating substrates such as ATP and citric
acid into the media, and controlling the environmental pH (lower pH generates a proton-motive
force between the inner and outer surfaces of prokaryotes and drives ATP synthase activity) (Hara
and Kondo, 2015), but these fall outside the scope of this review.
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2.2.2 Manipulation of NAD(P)H pools

Interventions targeting the NAD(P)H pool are mainly characterised by either one of the following
strategies. First, knocking out competitive pathways involving reduced cofactor consumption
(Wang et al., 2017) so that product excretion is the only possibility to regenerate the oxidized
redox cofactors NAD(P) (Hädicke and Klamt, 2015). This approach is especially appropriate
for relatively reduced products like organic acids, alcohols or terpenoids. Successful examples
included already mentioned studies such as Singh et al. (2011), where they knocked out ldhA
(lactate release) and pflB (formate release) to increase succinate production, or Zhou et al. (2008),
whereby ethanol production was enhanced after knocking out all other NADH-dependent organic
acid fermentation pathways. Similarly, a modified clostridial 1-butanol pathway was introduced
into E. coli, where competing pathways had been removed to accumulate sufficient NADH and
acetyl-CoA to help direct the flux towards the target. E. coli’s native AtoB reaction was used
for the formation of acetoacetyl-CoA, which is one of the initial precursors required for butanol
formation.
Alternatively, there are various other means to increase the net supply of reducing power (Hädicke
and Klamt, 2015). This can be achieved either by overexpressing existing cofactor regeneration
routes, or by introducing heterologous cofactor regeneration systems. Often, NADPH will be the
reduced cofactor needed for catalysis (Celton et al., 2012), but it is well-known that the NADPH
turnover in E.coli is lower than NADH (Fuhrer and Sauer, 2009). Great efforts have therefore
been directed towards modulating the NADH/NADPH ratio and increasing the availability of the
latter. Sources of NADPH include the PPP, ICD and NAD(P)-specific malic enzyme, and the
following studies report that it is possible to increase NADPH availability either by increasing
carbon flux into PPP, or decreasing the carbon flux through glycolysis. For example, direct
overexpression of enzymes involved in PPP, such as glucose-6-phosphate dehydrogenase (zwf, or
G6PDH2r in Figure 2.1) and/or gluconate-P dehydrogenase (gnd, or GND in Figure 2.1) have
been reported to increase the carbon flux through PPP, and thus augment the overall NADP(H)
availability (Lakshmanan et al., 2015). Another option to increase carbon flux through the PPP is
the the deletion of phosphoglucose isomerase (pgi), which theoretically leads to the full disruption
of glucose catabolism via the glycolytic pathway and results in 100% glucose being metabolized
via the PPP, yielding 2mol NADPH per mol glucose.
An alternative approach to increase the overall NAD(P)H turnover involves the direct phospho-
rylation of NADH to form NADPH by overexpressing NADH kinase. Lee et al. (2013) expressed
the NADH kinase from S.cerevisiae and enhanced the availability of NADPH by 51% and 96%
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compared to the wild type strain (Lee et al., 2013). Another commonly-used strategy is to simply
increase the activity of transhydrogenases that can convert excess NADH into NADPH (Wang
et al., 2013). As described in detail in Section 2.1, two transhydrogenase systems exist in E. coli:
(i) the membrane-associated PntAB and the soluble the Sth systems (Fuhrer and Sauer, 2009).
Wang et al. (2013) is just one example of how this strategy can be combined alongside other host
strain modifications to improve NADPH-dependent pathway performance where NADPH avail-
ability is measured in the presence of a NADPH utilizing reaction or ‘sink’. Increased NADPH
availability has also been used as a strategy to increase 1,3-propanediol production in Siedler et al.
(2011). Moreover, there are times when it is useful to remove any excess NADH in its reduced
form, i.e. to reduce the pool of NADH in the cell. NADH oxidase removes excess NADH and
helps regenerate the oxidized product (Holm et al., 2010)
Although it will not be the focus of this study, modifying cofactor preferences has also been
an important consideration in the field, and is worth mentioning briefly. Protein engineering of
enzyme-cofactor specificity prompting the conversion of enzyme specificity into the desired char-
acteristics is a promising technique, and the growing number of protein sequences and structures
enable the precise identification of binding regions as potential targets for engineering. By cre-
ating an enzyme that reacts with NADP+ instead of NAD+, or vice versa, Wang et al. (2013)
showed that replacement of the E. coli native NAD+ dependent GAPDH gapA by NADP+ depen-
dent GAPDH gapB from B. subtilis increased product formation and the strain showed enhanced
NADPH-dependent biosynthesis when NAD kinase was co-expressed (Martínez et al., 2008). For-
mation of artificially created active complexes are also commonly used strategies. Other alter-
natives include modification of ferrodoxin genes, cytochrome P450 reactions, or by altering the
environmental conditions of the cultures (Chen et al., 2014, Wang et al., 2013), which have been
successful strategies but also fall outside the scope of this review.

2.2.3 Limitations of cofactor manipulation strategies

A review of the experimental literature gave rise to the following observations. Firstly, it was
noted that most studies focused on either energy or redox optimisation. Aside from Holm et al.
(2010), no or very little research has so far focused on the shared regulatory roles of ATP and
NAD(P)H. Secondly, the literature demonstrates that most (if not all) studies have taken a
late-stage and somewhat narrow approach to cofactor manipulation, i.e. increasing flux through
already selected pathways by improving cofactor availability or cofactor recycling in those sys-
tems for which maximum yield is the ultimate objective. Thirdly, target genes and reactions for
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deletion/manipulation have often been selected based upon manual inspection of the pathway
itself (Zhou et al., 2008). This simple, manual approach to cofactor manipulation is not always
successful or straightforward. Achieving cofactor balance in more complex systems may not be
a trivial task, especially because direct knockouts, overexpression or replacement of target reac-
tions may lead to new metabolic burdens needing further manipulation (Liu et al., 2015). This
is exacerbated by the fact that, in reality, some bio-catalysts are more efficient than others, even
when they have been designed to produce the same target chemical (Dugar and Stephanopoulos,
2011, Pasztor et al., 2015). Given that pathway variants that produce the same target will not
be energetically equivalent from a cofactor usage perspective, it becomes crucial to accurately
predict the designs likely to be superior and identify the most optimal strategies for production
at earlier stages of the design process. This would speed up pathway and host selection, minimise
experimental testing and optimise the use of available resources.

2.3 Cofactor balancing analytical approaches

Computational studies have attempted to estimate cofactor balancing. Most of the work to date
has been performed using genome-scale models (or GSMs, briefly introduced in Section 1.3.2).
Using appropriate modelling tools, GSMs enable the systematic assessment of different types of
growth media, pathway routes, end products, biological and environmental conditions, or even
the use of different strains and host organisms. This type of approach enables the community
not only to select between various pathways according to their potential, but also evaluate how
these pathways integrate with selected hosts, before moving on to the experimental stages of
bioproduction. GSMs have the advantage that they contain vast reaction information, providing
the opportunity to track reactions that consume and produce energy and reducing equivalents.

2.3.1 Computer-aided tools for metabolic engineering

GSMs can be queried using a number of techniques for network analysis. Elementary mode
analysis is one such approach, which identifies network structures by decomposing a highly in-
terconnected, complex metabolic network into its discrete, organized components (Trinh et al.,
2009). Information about the elementary pathways that make up the larger network can be used
to characterize network properties, such as cellular phenotypes, network regulation and robust-
ness, facilitating an understanding of cell physiology and implementation of metabolic engineering
strategies. Some computational tools that perform elementary mode analysis are MetaTool and
FluxAnalyzer, reviewed by Fernández-Castané et al. (2014).
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Alternatively, Constraint-based Reconstruction and Analysis methods (COBRA) (Schellenberger,
J. et al., 2011) is another widely-used approach that estimates the flux distributions metabolic net-
works. COBRA takes a stoichiometric model, such as a GSM, and puts it into mathematical form
by generating a stoichiometric matrix (S), with rows indicating the available metabolites, columns
indicating the reactions, and their associated stoichiometries acting as limits (or constraints) in
the potential flux patterns that the network can take. Because most biological networks are
underdetermined, i.e. the number of reactions greatly exceeds the number of metabolites (Gian-
chandani et al., 2010), there are insufficient linear-independent balances to solve the intracellular
fluxes (Bonarius et al., 1997), so further constraints must be included to solve the linear problem.
These are often either taken from the literature or experimentally-derived parameters, such as
substrate uptake rates or secretion rates. Additional constraints may also be imposed by adding
“upper” and “lower” bounds to any reaction, which represent the maximum and minimum allow-
able fluxes for such reaction. These constraints further shrink the possible range of phenotypes
(Price et al., 2004), also referred to as solution space. These limits also ensure that the total
amount of any compound being produced is equal to the total amount being consumed. Finally,
a list of all flux values for each reaction in the network can be calculated. The so called “flux
vector” (also known as flux distribution) represents a unique ‘‘network state’’ related to the phys-
iological state of the metabolic network under the selected conditions. The computed candidate
representation can then be directly compared to the experimental version of the target organism
under the conditions considered (Price et al., 2004).
COBRA is widely used to predict phenotypic behaviours and study model properties using user-
selected parameters. One of the most commonly-used applications of COBRA is Flux Balance
Analysis (FBA) (Figure 2.3), which will receive particular attention and be regularly implemented
throughout this PhD study. FBA is a mathematical framework that predicts optimal flux dis-
tributions in an organism of choice (Kauffman et al., 2003, Orth et al., 2010). FBA overcomes
the issue of underdetermination by optimising for a particular “objective function” while ensur-
ing mass balance. This objective function is generally assumed to be biomass production, given
that cells thrive to optimise their own growth. An FBA solution will thus consist of both the
maximal theoretical value achievable by the objective (e.g. maximal growth rate if biomass is set
as the optimisation criterium), as well as the flux distribution of the resulting metabolic network
solution.
One of the most widely used COBRA approaches is FBA. FBA is a simple yet powerful tool, which
overcomes the underdetermination problem by specifying an objective function as an additional
constraint. Examples of objective functions include target production maximization, optimization
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of biomass formation, ATP production or minimization of O2 consumption (Fernández-Castané
et al., 2014). By harnessing only the stoichiometric information, FBA is able to provide a fairly
accurate measure of optimal theoretical yields, insights into whether a specific modification to
a genome-scale model is theoretically feasible or not, and a quick test of the consequence of a
potential engineering strategy. As already discussed, biosynthesis of a product requires redox and
energy as well as carbon. Redox and energy are generated during carbon conversions between
substrate and products. Therefore, under the FBA framework, the maximum theoretical yield will
be limited not only by the stoichiometry of the reactions in the metabolic network, but also by the
consumption and regeneration of metabolic cofactors, because an inadequate production of redox
and energy would in turn require the oxidation of additional substrate in order to provide the
required redox and energy (Varma et al., 1993), and this would be reflected in the final solution.
FBA solutions thus capture how biosynthetic pathways integrate with selected hosts, and how
their efficiency is limited by cofactor dynamics in the wider network.
A caveat of FBA, however, is that it can still often lead to many, non-unique, optimal solutions that
satisfy the imposed constraints and solve the mathematical objective. This is particularly relevant
when the selected genome-scale model contains thousands of reactions, because optimisation will
often lead to more than one flux distribution that satisfies the objective. Flux Variability Analysis
(FVA) (Mahadevan and Schilling, 2003), also regularly used in this PhD study, was developed
to address this issue. Instead of unique flux values, FVA calculates the minimum and maximum
allowable flux ranges for each reaction in a model, whilst satisfying mass balance conditions and all
other constraints imposed on the system. In other words, FVA discerns the complete flux range,
capturing all possible phenotypes the network can generate. Several other extensions to FBA
have been developed over the years that have allowed COBRA to be more broadly applicable to
specific problems in metabolic engineering and systems biology. One of these extensions is MOMA
(Minimisation of Metabolic Adjustment) (Segre et al., 2002), which was also of interest in this
study. MOMA is particularly useful when modelling reaction knockouts, because it assumes that
there is a transition period during which the cell is not necessarily optimising for the predetermined
objective function, but it is instead undergoing a period of “cellular adjustment” in which it is
trying to restore its original state. This is achieved by calculating the minimal distance between
the network of the modified strain and the reference strain. Extensive reviews of the extensions
to FBA and their application in metabolic engineering have now been published (Copeland et al.,
2012, Gianchandani et al., 2010, Simeonidis and Price, 2015).
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Figure 2.3: Introducing Flux Balance Analysis (FBA) (adapted from (Orth et al., 2010) and (Maia et al.,
2016)). FBA is a mathematical framework that simulates fluxes through metabolic reactions in a biological
system of choice and predicts the optimal growth rate (or yield). (A) FBA requires a metabolic network
reconstruction, often a genome-scale model, containing stoichiometrically balanced metabolic reactions. (B) A
Stoichiometric Matrix (S(m, r)) is derived, where rows represent metabolites and columns represent reactions. S
is sparse, filled with positive or negative coefficients depending on the stoichiometry of each metabolite in each
reaction. Assuming equilibrium, the flux distribution is Sv = 0, where v is the flux value through each reaction.
(C) An objective function Z = Cv must then be specified, where the contribution of each reaction to the total
flux is accounted for via C, a vector of weights. Solutions can be constrained by manipulating flux values and
flux ranges (lower and upper bounds). Constraints may be verified rates, intracellular fluxes or cellular growth
rates, inferred from interpretation of gene expression data. A linear programming solver then computes the
optimal flux distribution out of the available solution space defined by the constraint space, ensuring that steady
state is satisfied.



2.3.2 COBRA methods for the study of cofactors

Given the extensive availability of cofactor-related information in stoichiometric models, a grow-
ing number of COBRA-based modelling approaches have been increasingly employed to guide
metabolic engineering strategies to improve cofactor availability. Chin et al. (2009) represents
one of the first early attempts at using constraint-based modelling to investigate how xylitol theo-
retical yields were affected by central metabolism knockouts directly affecting NAD(P)H supply in
E.coli. While deletion of the membrane-bound transhydrogenase pntAB, TCA activity or glucose-
6-phosphate dehydrogenase activity reduced xylitol yield by up to 60%, deleting phosphoglucose
isomerase (PGI) increased xylitol yield around 59%. Although they identified possible metabolic
sources of imbalance and their contributions towards overall NADP(H) supply, they did not report
any specific strategies to improve cofactor balance in these specific systems experimentally. Later,
Ahn et al. (2011) used a genome-scale model of E.coli to understand how a mutant strain lacking
PGI activity grew better with fructose as a carbon source during enhanced shikimate production,
and found that it was due to the tight coordination between PPP, TCA and transhydrogenase
activity. Furthermore, Ghosh et al. (2011) used constraint-based modelling to study, for the first
time, the effects of cofactor balancing for the specific case of yeast producing ethanol from L-
arabinose and D-xylose. Further, Ghosh et al. (2011) explored the effect of altering the cofactor
specificity of various enzymes among the non-native xylose catabolic pathways of Saccharomyces
cerevisiae upon its cellular growth and ethanol production.
These initial applications of COBRA to analyse redox balancing, although successful and in-
formative, were, again, particularly targeted. More comprehensive, widely-applicable in silico
methods began to be proposed to improve the regeneration of desired cofactors at the system-
wide scale, with a particular focus on cofactor swapping, reaction knockouts and overexpression
strategies. Flux Sum Analysis (Kai et al., 2009) became a widely-used tool to calculate total co-
factor turnovers. Cipher for Evolutionary Design was the first algorithm to propose single, double
and triple gene deletion targets which can improve intracellular NADP(H) availability (Chemler
et al., 2010). Two additional in silico methods, cofactor modification analysis (CMA) (Kai-Sheng
Chung et al., 2013) and OptSwap (King and Feist, 2013), were also proposed to identify relevant
cofactor specificity engineering targets which can augment the yield of several native and non-
native products in E. coli and S. cerevisiae by improving the overall redox balance. Kai-Sheng
Chung et al. (2013)’s CMA optimises for modifications of oxidoreductase specificity to improve the
yield of terpenoids in yeast. On the other hand, King and Feist (2013)’s OptSwap is a bilevel opti-
misation method to identify modifications of oxidoreductase specificity using knockout strategies.
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OptSwap’s developers followed up with a more comprehensive, system-wide global analysis of co-
factor swapping. They presented a COBRA approach that identifies optimal cofactor-specificity
swaps that can increase the theoretical yields for a large number of molecules. They concentrated
on two of the most important production hosts, E. coli and S. cerevisiae, and were able to iden-
tify the minimal number of cofactor swaps needed to maximise theoretical yields (King and Feist,
2014).
At this point in time, cofactor engineering targets were usually predicted by either simulating
the redox cofactor swaps (Kai-Sheng Chung et al., 2013, King and Feist, 2013) or specific gene
knockouts (Chemler et al., 2010). In Lakshmanan et al. (2015), several techniques were for the first
time integrated, whereby flux-sum analysis was first used to quantify the NADPH turnover rates of
four commonly used industrial workhorses , E. coli, S. cerevisiae, B. subtilis, and Pichia pastoris.
They found that, unlike all other organisms, E.coli showed remarkably high ability to produce
NADPH, thanks to its strong transhydrogenase systems. Using CMA (Kai-Sheng Chung et al.,
2013), Lakshmanan et al. (2015) also identified the optimal enzyme targets that could improve the
overall NADP(H) turnover, which increased by 20-fold with cofactor engineering. They were able
to show that cofactor engineering of GAPD almost reverses the NAD(H)/NADP(H) ratios. GAPD
is a central enzyme in glycolysis, so most of the carbon needs to be processed by this reaction
in order to reach any downstream nodes relevant for bioproduction. Lakshmanan et al. (2015)
suggest that generating NADPH-specific GAPD-modified strains can be a suitable strategy for
NADPH-dependent bioproduction.This approach was followed by structural analysis to identify
the cofactor binding sites in these target enzymes and propose mutation strategies to switch their
cofactor specificity from NADH to NADPH. In fact, as was also briefly mentioned in Section
2.2.2, engineered strains bearing the NADPH-specific GAPD showed a substantial improvement
in NADPH-dependent product yields (Martínez et al., 2008).
Despite these success stories, state-of-the-art techniques focused on optimisation, and only King
and Feist (2014) seemed to have provided a comprehensive tool for the evaluation of the impact
of changing cofactor specificity on a system-wide scale. No methods for the a priori assessment of
system-wide cofactor balance exist. Flux sum analysis provides insights into the optimal cofactor
turnovers, but does not inform the user of what these cofactors are doing, where they originate, or
where they are going. The sector still lacked an easy-to-implement approach that could capture
a system’s cofactor usage profile at the network scale, in order to gain insights into which type of
follow-up modifications may be more suitable.
Some attempts at capturing cofactor usage profiles discerning energy balancing have been at-
tempted, particularly in the fluxomics sector. Fluxomics determines the intracellular metabolic
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fluxes that most reasonably reproduce phenotypic behaviour. Flux estimates are often deter-
mined using 13C Metabolic Flux Analysis (13C-MFA, or simply MFA), which combines a feeding
experiment using isotopically-labelled carbon source(s), measurements of physiological parameters
gathered from such feeding experiment (growth rate, sugar uptake and product excretion rates)
and fitting techniques to estimate the internal metabolic flux distribution that best describe the
observed phenotype(s) (Crown and Antoniewicz, 2013, Gianchandani et al., 2010). These flux
estimates and can be directly compared to predicted phenotypes gathered from COBRA models
(Chen et al., 2011). Chen et al. (2011) shows some early attempts to verify energy balancing in
E.coli using synergies between FBA and 13C-MFA (Chen et al., 2011). Similarly, Garcia Martin
et al. ((2015) also provided cofactor balance information by constraining genome-scale models
using 13C labelled data (Garcia Martin et al., (2015). He et al. (2016) found all ATP-generating
and ATP-consuming reactions and their fluxes from MFA data and determined how much energy
was consumed across biomass synthesis/amino acid production as opposed to energy used for cell
maintenance. These model-driven studies provided valuable insights regarding intracellular co-
factor usage. However, MFA is a fitting technique used to reproduce experimental observations.
Still, a predictive in silico analysis of how metabolic pathway implementation can influence a
system’s redox usage was not available. Accessibility to such information would help experimen-
talists to rationally select the preferred microbial host, design the best-performing pathway, and
optimise the culture media appropriate for the product of interest (Lakshmanan et al., 2015)

2.3.3 Analytical estimation of pathway potential

As a means to move away from targeted assessments and towards the ability to predict optimal
catalysts, Dugar and Stephanopoulos (2011) published a theoretical framework that assessed the
imbalance of metabolic pathways and the effect this has on theoretically optimal product yield
(Dugar and Stephanopoulos, 2011). Using stoichiometric and energetic calculations, they quan-
tified the relative potential of synthetic pathways, concluding that the most effective equilibrium
between substrate and product optimisation was found in fully balanced (net zero) or ATP-
requiring (negative ATP yield) pathways. Assuming the cell’s goal of redox neutrality, driven
by the laws of thermodynamics which govern chemical equilibria and determine the energetically
favourable directionality of chemical reactions (Noor et al., 2014),Dugar and Stephanopoulos
(2011) suggest that pathways generating excess ATP, NAD(P)H or CO2 along with the product
are inefficient from a carbon yield perspective because, on a per carbon-mol basis, excess carbon
is being diverted towards biomass production, maintenance of redundant pathways and waste re-
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lease, instead of contributing towards carbon accumulation in the form of target production. On
the other hand, balanced or energy-requiring pathways are better at transducing substrate energy
into product, resulting in better yields. Dugar and Stephanopoulos (2011) use both biomass and
glycerol sinks to channel excess energy and electrons. In fact, limiting byproduct formation such
as glycerol production during yeast fermentation is one such strategy shown to have improved
bioproduction (Wang et al., 2013).
In Dugar and Stephanopoulos (2011), “pathway” referred to the leading route towards target
production from a central carbon metabolite, not the entire metabolic network of the cell. Their
calculations facilitated a comparison between different pathway yields after adjusting for any
imbalances, providing insights into where the imbalance in question may be occurring and an
adjusted theoretical yield estimate. This information can then be used to select better performing
pathways and guide engineering strategies to render the pathway more balanced and thus more
yield-efficient. However, their approach is built on a set of case-specific and not easily generalisable
assumptions, does not consider various experimental conditions or biological settings, nor does the
method scale up to larger metabolic networks or address the implications of pathway imbalance
at the genome scale. Given that an understanding of cofactor metabolism is very useful and
informative to predict the superiority of biosynthetic pathways, but the method published by
Dugar and Stephanopoulos (2011) suffers from a lack of flexibility, I asked whether it would be
possible to integrate both pathway-specific and network-specific balance assessments and carry
out a similar analysis but using alternative computational frameworks.

2.3.4 Knowledge gap: early-stage cofactor profiling at the network scale

A review of the literature revealed that most state-of-the-art COBRA modelling approaches were
either too narrow, or focused on the later stages of optimisation, i.e. biosynthetic pathways had
already been selected and the focus had shifted to enhancing the carbon flux towards the target.
Furthermore, those systematic, more comprehensive tools applicable to a wider number of scenar-
ios, enabling the potential comparison between pathway candidates, focused on cofactor swaps
more specifically, or provided insights into cellular turnover rates. Interestingly, most approaches
also focused on redox availability or regeneration strategies, but there were no alternatives avail-
able for ATP.
Dugar and Stephanopoulos (2011) recognised that understanding the relevance of both ATP
and NAD(P)H, as well as identifying the source of imbalance at an early stage would enable
the metabolic engineering community to more easily select between various pathway variants

31



according to their maximal potential and their level of imbalance. In their study, Dugar and
Stephanopoulos (2011) acknowledge that, beyond their proposed analytical method, genome-
scale models (GSMs) may also be used to perform analogous assessments. In fact, GSMs would
facilitate an evaluation of how biosynthetic pathways integrate with selected hosts and how they
are limited by cofactor usage.
Having identified these gaps, this PhD study proposed a more pragmatic approach to cofactor
engineering. Instead of using cofactor manipulations as an optimisation strategy for the later
stages of a metabolic engineering project, a computational framework for the assessment of co-
factor usage profiles, cofactor balancing techniques and potential cofactor-driven manipulations
should be proposed from the early stages of pathway and host selection.
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3
Materials & Methods

3.1 Computational methods

3.1.1 Programming packages

All work described in this study was done using the Constraint-Based Reconstruction and Analysis
toolbox for Python (COBRApy version 0.13.3) (Ebrahim et al., 2013) and Gurobi solver (version
5.5.0) (Gurobi Optimization, Inc., 2016). All scripts and functions extensively used in this study
were run using Python 3 (version 3.7.4) and the Anaconda environment (version 4.7.12) (Anaconda
Software Distribution, 2020).
Packages MatPlotLib and Mplot3D (version 3.2.1) (Hunter, 2007), and Seaborn (0.9.0) (Waskom
et al., 2020) and were used for result visualization.

3.1.2 Stoichiometric models of Escherichia coli

All simulations in this PhD study employed the original Escherichia coli Core Model created
by Orth et al. (2010b), which contains 77 reactions and 63 metabolites from Central Carbon
Metabolism (CCM). This stoichiometric model excluded all reactions for butanol production and
fatty acid biosynthesis. To enable butanol and butanol precursor production in silico, reactions
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corresponding to the biosynthetic pathways were added as per COBRApy standards (Table 3.1)
into separate copies of the E.coli core model, to yield stoichiometric models iDAG85, iDAG87,
iDAG86, iDAG88, iDAG91, iDAG83, iDAG84_butyr and iDAG84_butal, referred to as BuOH-0,
BuOH-1, tpcBuOH, BuOH-2, fasBuOH, CROT, BUTYR, BUTAL for simplicity.
All engineered models included target-specific production, transport and sink reactions, i.e. reac-
tions that drain the final product out of the metabolic network.

3.1.3 Parsimonious FBA

All models were simulated using parsimonious FBA (pFBA) for computing optimal phenotypes
(Lewis et al., 2010). pFBA is a bi-level optimisation method that minimises the total sum of flux
whilst optimizing for the selected objective using FBA. Net flux is minimised subject to optimal
biomass as follows:

min
m∑
j=1

virrev,j

subject to maxvobjective = vobjective,lb

subject to Sirrev × virrev = 0

0 ≤ virrev,j ≤ vmax

(3.1)

Where m = number of irreversible reactions in the network, Sirrev = stoichiometric matrix; virrev =
non-negative, steady-state flux; vobjective = approximates the theoretical objective; and vobjective,lb =
lower bound for the objective rate.
This is followed by the maximization of target per unit flux, which optimizes the ratio of the
objective to the square of the total network flux:

max
vobjective∑n

i=1 v
2
i

subject to Sxv = 0

vmin < vi < vmax

(3.2)

Modified models were optimized for the drain of butanol or butanol precursor, whilst the wild
type had maximal growth rate selected as the optimization principle. All models were initially
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unconstrained. Prior to optimization, the model was pre-processed to set the primary carbon
source, glucose, to a maximum intake rate of -10 mmol gDW−1 hr−1. Constraints necessary for
computational minimal media conditions were set as default (Feist et al., 2007). The presence
or absence of oxygen was also modulated to run simulations under both aerobic and anaerobic
conditions. In aerobic simulations, the oxygen uptake rate was set to a maximum of -10 mmol
gDW−1 hr−1. Alternatively, oxygen uptake was constrained to zero under anaerobic conditions.

3.1.4 Flux Variability Analysis

Flux variability analysis (FVA) was used to calculate the minimum and maximum allowable flux
values within the E.coli Core model (Orth et al., 2010b) whilst satisfying FBA mass balance
conditions and all other constraints in the system (Mahadevan and Schilling, 2003). The feasible
range of reaction fluxes by maximization and minimization was calculated at 100% of the maximal
value of the objective function, unless explicitly stated otherwise. Similarly, FVA was run on all
reactions in the model, unless stated otherwise. The mathematical formulations for maximization
and minimization are shown below:
Maximization

maxvj
subject to Sij × vj = 0

CTv = Zobjective

vminj ≤ vj ≤ vmaxj

(3.3)

Minimization

minvj
subject to Sij × vj = 0

CTv = Zobjective

vminj ≤ vj ≤ vmaxj

(3.4)

Where Zobjective = value of the objective function. If n is the number of fluxes, then 2n LP problems
are solved under FVA.
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3.1.5 Minimization of Metabolic Adjustment

Minimization of Metabolic Adjustment (MOMA) (Segre et al., 2002) searches for a vector x that
presents minimal distance from a given flux vector L so that the euclidean distance is minimized
as:

minf(x) = L(x) +
1
2
xTQx (3.5)

Where L = vector of length N; Q = NxN matrix defining the linear and quadratic part of the
objective function; xT = transpose of x; x = vector with minimal euclidean distance from L

3.1.6 Cofactor Balance Assessment

Cofactor Balance Assessment (CBA) is an algorithm built to track intracellular production of
ATP, NADH and NADPH across a selected metabolic network and determine the total cofactor
flux contributing to biomass, waste, cell maintenance and target chemical production (if a syn-
thetic pathway is introduced and used as objective function). The algorithm was written as a
Python script, and built using the COBRApy package. CBA requires two main inputs. First, a
stoichiometric model, often a GSM, is the source of co-factor related reaction information. Second,
FBA estimates or equivalent (pFBA or MOMA estimates, for example) provide flux information
for all reactions contained in the selected model.
The CBA algorithm evaluates all reactions involving ATP or NAD(P), and determines whether
such cofactors are either consumed or produced by multiplying the reaction flux (from FBA or
equivalent) and cofactor stoichiometry (from the stoichiometric model). This value is recorded
as a reaction-specific cofactor flux score (CFS), symbolising the level at which said cofactor is
being consumed or produced by the reaction under evaluation. For total ATP and NAD(P)H
production, all positive CFSs in the network are summed up. Then, cofactors fluxes are grouped
into categories: (1) ATP produced (Net ATP produced within CCM); (2) ATP target (total ATP
consumed for target optimization); (3) ATP waste (total ATP burned to produce ADP and/or
AMP, or ATP consumed or produced during the release of CO2 or fermentation by-products); (4)
ATP biomass (ATP consumed during biomass formation); (5) NAD(P)H produced (Net NAD(P)H
produced within CCM); (6) NAD(P)H target (NAD(P)H released during target production); (7)
NAD(P)H biomass (NAD(P)H released during biomass production); and (8) NAD(P)H waste
(NAD(P)H generated or consumed during CO2 or fermentation by-product release). Finally, the
scores are added together into summed flux values that describe the overall “weight” of each
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category. Only ATP and NAD(P)H related reactions were considered within the scope of this
study. Further information about CBA’s foundations, function development and assumptions can
be found in Chapter 5, Section 5.2.

3.2 Experimental methods

3.2.1 Strains, plasmids and primers

The lambda red recombinase-integrated Escherichia coli strain SIJ488 (hereinafter SIJ488)was
used as the parental strain throughout this study. This E.coli strain, developed by Jensen et al.
(2015) was kindly provided by the Bacterial Cell Factory Optimisation Laboratory, at the Tech-
nical University of Denmark (Kemitorvet, Denmark).
All engineered strains and plasmids developed and used in this study were included in Tables 3.2
and 3.3. Strains were maintained as glycerol-based cryo stocks (see below) and kept at −80◦C. All
primers were synthesized and ordered from Integrated DNA Technologies (IDT, Belgium), and
are listed in Table 3.4. Primer stocks were maintained at −20◦C.

Table 3.2: List of strains used in this study.

Strain Name Description Source
SIJ488 E.coli K-12 MG1655Tn7::para-exo-beta-gam;prha-FLP;xy1Spm-Iscel

containing the genome-integrated lambda red recombinase system
(Jensen et al., 2015)

ATPs As per SIJ488, inc. ΔatpIBEFHAGDC This study
PCK As per SIJ488, inc. Δpck This study
ATPs-PCK As per SIJ488, inc. ΔatpIBEFHAGDC Δpck This study
PDC DH5α carrying pyruvate decarboxylase (PDC) gene under the PAlacO−1

promoter in the pCDF plasmid backbone
This study

pCDF DH5α carrying pCDF plasmid This study

Table 3.3: List of plasmids used in this study.

Plasmid name Description Source
pKD13 ApR, FRT-KmR-FRT, oriR6K, includes a kanamycin resis-

tance cassette
(Datsenko and Wanner, 2000)

pCDF-empty pCDF plasmid backbone This Study
pCDF-PDC pCDF plasmid backbone carrying the pyruvate decarboxy-

lase (PDC) gene under PAlacO−1 promoter
This Study
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Table 3.4: List of primers used in this study. All primers were designed during this study unless otherwise
stated.

Primer Name Primer Sequence References
F_kt_val CGG CCA CAG TCG ATG AAT CC (Datsenko and Wanner, 2000)
R_kt_val CGG TGC CCT GAA TGA ACT GC
F1_ATPS4r AAA AAA GCC AGC CTG TTT CCA GAC TGG CTT

TTG TGC TTT TCA AGC CGG TGG TGT AGG CTG
GAG CTG CTTC

R2_ATPS4r TTT TAT ACG ACA CGC GGC ATA CCT CGA AGG
GAG CAG GAG TGA AAA ACG TGA TTC CGG GGA
TCC GTC GACC

F_PPCK CAA AAA GAC TTT ACT ATT CAG GCA ATA CAT
ATT GGC TAA GGA GCA GTG AAG TGT AGG CTG
GAG CTG CTTC

R_PPCK CGT TTT GCT TTC TAT AAG ATA CTG GAT AGA
TAT TCT CCA GCT TCA AAT CAA TTC CGG GGA
TCC GTC GACC

F_seq_ATPS4r AGC GTC AGG TGG ATG TTT TTG
R_ATPS4r CGG GGG CGC ACC GTA TAA TT
seq_F_PPCK TCG TGA CAG GAA TCA CGG AG
seq_R_PPCK GCA GGG CAC GAC AAA AGA AG

3.2.2 Media and reagents

3.2.2.1 LB, SOC and M9 media

Lysogeny Broth (LB) liquid medium was prepared by dissolving 6 g of LB Broth powder (g/L: 10
tryptone, 5 yeast extract, and 5 NaCl) (Sigma Aldrich, Dorset, UK) in 300mL deionized water in
a 500mL duran bottle (Sigma Aldrich). The LB medium was sterilized by autoclaving for 15min
at 15psi (121◦C) and cooled down to room temperature prior to use.
SOC medium (0.5% yeast extract, 2% tryptone, 10mM NaCl, 2.5mM KCl, 10mM MgSO4 and
20mM glucose), prepared and kindly provided by my colleague Jessica Rollit (then a PhD student),
was utilized to recover mutants after electroporation. M9 minimal medium, prepared as per
standard procedure using 5X M9 Salts (MgSO4, CaCl2) (Sigma Aldrich) was used for growth and
labelling experiments.
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Table 3.5: Antibiotic concentrations for antibiotic stock preparation

Antibiotic Stock conc. (mg/mL) Working conc. (mg/L) Solvent

Kanamycin 50 50 deionized water

Spectinomycin 50 50 deionized water

3.2.2.2 LB Agar medium

LB agar medium (1.5% w/v) was prepared by adding 4.5g agar powder (VWR International, UK)
to 300mL LB liquid medium in a 500mL duran bottle (Sigma Aldrich). The LB agar medium
was sterilized by autoclaving for 20 min at 15psi (121◦C). The hot mix solution was cooled down
to 50-60◦C before antibiotic(s) was added appropriately. After cooling, 10-20mL of LB agar were
aseptically poured into 10cm petri dishes (VWR) to make “agar plates”. The agar plates were
then used when the medium had hardened completely after cool-down.

3.2.2.3 Antibiotic preparation

To create a stock solution of antibiotic (Table 3.5), antibiotic powder was dissolved in deionized
water and filter-sterilized with sterile 0.2 m syringe filters. Stock solutions were stored at −20◦C
and thawed at room temperature prior to use. Antibiotics were added at 30 μg mL−1 or 50μg
mL−1, where appropriate.

3.2.2.4 Other chemicals

Other chemicals and reagents, unless otherwise stated, were ordered from Sigma-Aldrich, VWR
or Thermo Fischer Scientific (Fisher Scientific Ltd. UK).

3.2.3 Molecular biology techniques

3.2.3.1 Plasmid DNA extraction

QIAprep Spin Miniprep Kit (QIAGEN) was used for routine plasmid DNA extraction from E. coli
liquid cultures according to the manufacturer’s instructions. In brief, 5mL of overnight culture
was centrifuged in a Heraeus Megafuge 16R benchtop centrifuge (Thermo Fisher Scientific) at
4,000 x g for 5min. The supernatant was discarded and the cell pellet resuspended in 250μL
Buffer P1 containing RNase A and transferred to a 1.5mL microcentrifuge tube (VWR). 250μL
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Buffer P2 was added to lyse the cells and the microcentrifuge tube was inverted 4-6 times until
the solution became clear. 350μL neutralization Buffer N3 was added and the sample was mixed
immediately by inverting the tube 4-6 times. Samples were then centrifuged for 10min at 17,900
x g in an an Eppendorf 5424R microcentrifuge (Eppendorf, UK) to separate the cell debris and
proteins from the supernatant. The supernatant was transferred to the provided QIAprep 2.0
spin column and centrifuged for 1min at 17,900 x g. The flow-through in the collection tube was
discarded and the QIAprep 2.0 spin column was washed twice with 750μL and 500μL Buffer PE
(containing ethanol) by centrifugation for 1min at 17,900 x g. The flow-through was discarded
and the empty QIAprep 2.0 spin column was centrifuged one final time to remove any residual
PE Buffer. The QIAprep 2.0 spin column was removed from the collection tube and placed onto
a sterile 1.5mL microcentrifuge tube (VWR). To elute the plasmid DNA, 30μL of filter-sterilized
deionized water was added to the QIAprep 2.0 spin column and incubated at room temperature
for 1min before it was centrifuged for 1min at 17,900 x g. The concentration of the eluted plasmid
DNA was then quantified using a NanoQuant plate (see Section 3.2.3.6).

3.2.3.2 Q5®High-Fidelity DNA Polymerase Chain Reaction

To amplify DNA fragments, Q5®High-fidelity DNA polymerase (New England BioLabs, Hitchin,
UK) was used. Stock solution of 10mM dNTPs was also purchased from New England Bio-
Labs. All solutions provided with the PCR kit were thawed on ice and mixed according to the
manufacturer’s protocol (Table 3.6) in a PCR tube (VWR).

Table 3.6: Q5®High-Fidelity DNA Polymerase PCR reaction components.

Component Volume (μL)

5X Q5 Reaction Buffer 4

Forward primer (10 M) 1

Reverse primer (10 M) 1

10 mM dNTPs 0.4

Template DNA 1

Q5 High-fidelity DNA Polymerase 0.2

Sterile deionized water up to 20μL

The PCR was then performed in a thermocycler (Biometra Professional Trio, Biometra) following
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the thermal cycling conditions outlined in Table 3.7. The PCR products were then analysed with
agarose gel electrophoresis (see Section 3.2.3.4).

Table 3.7: Q5®High-Fidelity DNA Polymerase thermal cycling conditions.

Step Temperature (◦C) Time Number of cycles

Initial denaturation 98 30s 1

Denaturation 98 10s

Annealing 55-57 30s

Extension 72 45 (30s/kb) 35

Final extension 72 2min 1

Hold 4 ∞

3.2.3.3 Colony PCR

To validate electroporation and knockout validation, DreamTaq Green PCR Master Mix (2X)
(Thermo Fisher Scientific) was used. The DreamTaq Green PCR Master Mix (2X) solution was
gently vortexed and briefly centrifuged after it was thawed on ice. The composition of PCR
reaction solution is listed in Table 3.8.

Table 3.8: DreamTaq Green PCR Master Mix PCR reaction components.

Component Volume (μL)

DreamTaq Green PCR Master Mix (2X) 7.5

Forward primer (10 M) 0.8

Reverse primer (10 M) Template DNA 0.8

Sterile deionized water up to 20μL

To provide the template DNA, a single E.coli colony was picked from an LB agar plate using a
a sterile disposable inoculating loop (VWR) and resuspended in the PCR reaction solution by
scrubbing the tip on the wall of the PCR tube. The PCR was then carried out in a thermocycler
(Biometra Professional Trio, Biometra) by following the thermal cycling conditions as outlined in
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Table 3.9. The PCR products were then analysed with agarose gel electrophoresis (see Section
3.2.3.4).

Table 3.9: DreamTaq Green PCR Master Mix (2X) thermal cycling conditions.

Step Temperature (◦C) Time Number of cycles

Initial denaturation 95 3min 1

Denaturation 95 30s

Annealing 55-57 30s

Extension 72 1.5min (1min/kb) 35

Final extension 72 15min 1

Hold 4 ∞

3.2.3.4 Agarose gel electrophoresis

To prepare an agarose gel, 1g agarose (Sigma Aldrich) was mixed with 100mL 1X TAE buffer
(40mM Tris, 20mM acetic acid, 1mM EDTA pH 8.3) in a 500mL duran erlenmeyer flask and
dissolved by heating the mix until all agarose was completely dissolved. After cool-down, 7μL
SYBR Safe DNA gel stain (Thermo Fisher Scientific) was added to the solution and mixed well.
Next, the mix was poured into a gel casting tray, and an appropriate comb (Bio-Rad Laboratories,
Watford, UK) was inserted to create the required number of wells for the loading of PCR products.
The agarose solution was allowed to solidify for 30mins at room temperature, which was followed
by the removal of the comb from the gel. Next, the gel (in its casting tray) was transferred to an
electrophoresis tank (Bio-Rad Laboratories), and filled with 1X TAE buffer solution. Prior to gel
loading, Q5®PCR products (20μ/L total volume) were mixed with 4μL of gel loading dye (6X)
(New England BioLabs) and loaded into the gel wells. DreamTaq Green PCR products required
no gel loading dye, so the PCR products were loaded onto the gel directly. To determine the size
of the PCR products, 2μL of DNA ladder (New England BioLabs) were loaded onto the gel for
reference. Finally, the gel tank was covered, and the gel was run at 100V for 30min. To visualize
the DNA samples, the gel was placed on a blue-light transilluminator (Clare Chemical Research)
or in a UV gel imager (GelDoc-It, Ultra-Violet Products, Cambridge, UK).
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3.2.3.5 DNA extraction from agarose gel

To extract the PCR products from the agarose gel, the gel was placed on a blue-light transillu-
minator and the DNA bands of interest were excised using a washable metal scalpel. The excised
gel was transferred to a 1.5mL microfuge tube (VWR) and the weight of the gel was determined
using a weighing scale. The DNA was purified using QIAquick Gel Extraction Kit (QIAGEN),
following the manufacturer’s instructions. In brief, three volumes of QG Buffer were added to 1
volume of gel (e.g. 300μL of Buffer QG was mixed with 100mg gel). The gel slice was dissolved in
the buffer by incubating the mixture at 50◦C and vortexing occasionally until the solution became
homogenous. One volume of isopropanol (e.g.100μL for 100mg gel) was added to the solution and
mixed accordingly by pipetting. The solution was then transferred into the provided spin column
placed in the provided collection tube. The spin column together with the collection tube were
then centrifuged at 17,000 x g for 1min (Eppendorf). The flow-through solution in the collection
tube was discarded and 700μL of the provided PE Buffer was added into the spin column followed
by centrifugation at 17,000 x g for 1min. The flow-through solution was discarded and the spin
column was centrifuged one more time to remove any left over PE Buffer. Finally, the spin column
was placed into a fresh 1.5mL microcentrifuge tube and 30μL nuclease-free water (New England
BioLabs) was added directly into the membrane matrix in the spin column and incubated at room
temperature for 1min. To elute the DNA, the column was centrifuged for 1 min at 17,900 x g.
The concentration of the purified DNA was determined using the NanoQuant plate (see Section
3.2.3.6).

3.2.3.6 Quantification of plasmid DNA concentration

The concentration of plasmid DNA was quantified in a NanoQuant plate using a Tecan Infinite
M200 Pro plate reader (Tecan AG, Reading, UK). Briefly, 2μL of filter-sterilized deionized water
were loaded as blank to the sample well in a NanoQuant plate to calibrate the machine. After
wiping the water droplet with lint-free Kimtech Science Kimwipes (Kimberly-Clark) 2μL of sample
was loaded onto the sample well. Absorbance of nucleic acid sample was measured at 260nm, as
well as an additional measurement at 280nm to assess the purity of the nucleic acid and to
indicate the presence of proteins. Samples with 260/280 ratio between 1.8-2.0 were used for
further experiments.
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3.2.4 Culturing conditions

3.2.4.1 Cryopreservation of E.coli liquid cultures

70% glycerol was used to cryopreserve all E.coli strains used in this study. A 70% (v/v) glycerol
stock solution was prepared by mixing 30mL of glycerol (Sigma Aldrich) with 70mL deionized
water. The glycerol solution was then sterilized by autoclaving for 20min at 15 psi (121◦C) and
cooled down to room temperature prior to use. To prepare the E.coli glycerol stocks, 750μL
of 70% (v/v) glycerol were mixed aseptically with 250μL of E.coli overnight culture in a 2mL
cryogenic vial. Glycerol stocks were stored in -80◦C freezer.

3.2.4.2 Bacterial cultivations

Under aseptic conditions, performed in class I or class II biosafety cabinets under continuous
laminar flow, a sterile disposable inoculating loop (VWR) was used to restreak the E. coli glycerol
stock on an LB agar plate containing appropriate antibiotic(s). LB agar plates were incubated
in a Labnet Mini Incubator (Appleton Woods Ltd., UK) overnight at 37◦C. The next day, liquid
cultures were inoculated by picking individual colonies using a 1mm plastic inoculation needle and
mixing it with 5mL liquid LB medium supplemented with the appropriate antibiotics in 50mL
centrifuge tubes. Agar plates were sealed with plastic paraffin film (VWR), stored at 4◦C fridge
and discarded when no longer needed. Cultures were grown overnight at 37◦C and 200 r.p.m.
orbital shaking in a shaker incubator (New Brunswick 44R, Eppendorf, UK). Tube caps were
loosened to allow proper aeration of the cultures. Liquid cultures were then processed for further
experimental use.
To cultivate E. coli for the production of ethanol, the overnight pre-cultures were washed twice by
centrifugation at 4,000 x g for 5min and resuspended in fresh M9 minimal medium. The OD600 of
resuspended cultures in M9 minimal medium was measured and adjusted to a starting OD of 0.1
in 25mL M9 minimal medium supplemented with 2% (w/v) glucose in 100 mL erlenmeyer flasks.
All strains were incubated at 37◦C and 180 r.p.m. orbital shaking for 4h before inducing with
0.25mM, 0.5mM or 0.75mM IPTG. After induction, culturing proceeded at 30◦C and 150 r.p.m.
orbital shaking for 48h. Samples were taken every 24h.

3.2.5 Generation of mutant strains and bioproduction strains

Knockout strains were constructed using the method specified by Jensen et al. (2015), and val-
idated as suggested by Datsenko and Wanner (2000). Briefly, recombination primers including
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a 50bp homology arms complementary to the upstream and downstream regions flanking the
target gene(s) were designed (Table 3.4), and used to amplify by Q5®PCR (Section 3.2.3.2) the
FRT-flanked kanamycin resistance (kanR) gene of plasmid pKD13 (purified from DH5α E.coli
following the plasmid extraction instructions outlined in Section 3.2.3.1). After validation using
gel electrophoresis and PCR product gel extraction (Sections 3.2.3.4 and 3.2.3.5), gene deletions
were performed by mixing 50μL aliquots of electrocompetent SIJ488 with up to 500ng of purified
PCR product (containing the 50-bp arms homologous to the 5’ and 3’-ends of the target gene(s))
on ice, electroporated at 2.5kV, 25F, 100Ω and recovered in 1mL of SOC or LB medium at 30◦C
for 4h prior to positive selection.
Positive selection of successful mutant strains on LB Agar + kan plates (prepared at the appro-
priate antibiotic concentration as per Table 3.5) provided an initial preliminary confirmation that
kanR PCR products (flanked by the target gene’s homology regions) had been successfully inte-
grated into the E.coli genome. This was followed by further validation using DreamTaq Green
Mix (2X) colony PCR (Section 3.2.3.3) using validation sequencing primers (Table 3.4). Vali-
dated colonies were then subjected to removal of their antibiotic resistance cassette, by inducing
the expression of the genome-integrated flipase gene contained in the SIJ488 strain, which is con-
trolled by a rhamnose-inducible promoter. Briefly, colonies were picked and grown in 5mL liquid
cultures overnight in LB medium as per Section 3.2.4.2 and then diluted to a starting OD of
0.05. Cultures were incubated in the same conditions until they reached an OD 0.1-0.4. Then,
L-rhamnose was added to a final concentration of 50 mM L-rhamnose (Sigma Aldrich) and in-
duction was performed at 30◦C, in LB medium for 4-6h. Finally, cassette removal was verified by
negative selection on LB Agar + kan plates, GreenTaq Colony PCR and finally DNA sequencing
(Appendix D Figures 1-9).
Ethanol bioproduction strains harbouring the pCDF-empty and pCDF-PDC plasmid systems
were implemented by electroporation (2.5kV, 25F, 100Ω). Electroporated E.coli were recovered
in 1mL of LB at 30◦C for 4h prior to positive selection in LB-Agar plates containing spectinomycin
at the required concentration (Table 3.5).

3.2.6 Analytical methods

3.2.6.1 Amino acid labelling and GC-MS detection of 13C-labelled amino acids

For estimation of intracellular fluxes, a tracer experiment using [1–13C] D-glucose and [U–13C]
D-glucose and 13C Metabolic Flux Analysis (MFA) was performed following the widely recognized
protocol by Zamboni et al. (2009). Briefly, colonies were first grown on LB plates from cryo
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stocks, and biological replicate colonies (n=4) were picked and cultivated in 5mL LB medium at
37◦C and 180 r.p.m. orbital shaking in Innova-44 incubators overnight. 50μL of pre-culture were
transferred into 5mL of M9 medium supplemented with 2% (w/v) unlabelled glucose and grown
at 37◦C overnight before growth analysis and 13C labelling experiments.
The labelling experiment was performed out in 300mL shake flasks with a working volume of
30mL at 37◦C, using a mixture of 20% (wt/wt) 99% pure [U–13C] D-glucose (Cambridge Isotopes,
Cambridge, UK) and 80% [1–13C] D-glucose, up to a final glucose concentration in medium of
0.3% (w/v). 1mL samples were taken every 2-4h for growth and physiological parameter analysis
(Section 3.2.6.2). Biomass samples were harvested at mid-exponential phase (OD600 0.8), and
centrifuged at 5000 r.p.m. for 10min at 4◦C, washed in 0.9% NaCl, and hydrolyzed in a fume
hood with 200μL of 6M HCl at 105◦C for 24h, to break down the protein-based cell content
(which amounts to almost half of the total cell content) down to its amino acids. Then, also in a
fume hood, samples were dried at 85◦C. Dried amino acids in the hydrosylate were then carefully
solubilized in 40μL of dymethylformamide (DMF) and derivatized with 40μL of TBDMSTFA at
85◦C for 1h. During this procedure, the amino acids become volatile so that they can be later
separated and quantified by Gas Chromatography Mass Spectrometry (GC-MS). After incubation,
the derivatized samples were transferred to a vial insert (5183-2085, Agilent) in a GC vial with a
silicon sealed cap (Agilent Technologies, Cheadle, UK), and analyzed using GC-MS.
GC-MS analysis was performed using a 7890B Series gas chromatograph equipped with a 30m
× 0.25mm × 0.25μm ZB-5MSi column (Agilent Technologies). Helium flow was held at 1.5mL
min−1. 1μL samples were injected 3 times at a split ratio of 1:5. The temperatures for the inlet,
interface, and ion source were 230◦C, 250◦C, and 200◦C, respectively. After a 2.4min solvent delay
at 80◦C, the oven temperature was increased by 5◦C min−1 up to 310◦C at which it was held for
6min before dropping back to 80◦C for the next cycle. At the interface between the GC and
MS, electron impact ionization caused the fragmentation of the derivatized amino acids. Electron
impact (70eV) mass spectra were recorded from m/z 50 to 600 at 1.4 scans sec−1. The instrument
was autotuned for mass calibration.
To guarantee analytical accuracy, analytical amino acid standards were tested first, as well as
unlabelled biomass samples, in replicates and each injected three times. A quantification table
was set up in the Enhanced Data Analysis software (Agilent GC-MS 5975, Agilent Technologies)
to automate the integration of the ion chromatogram peak areas of all ion fragments of interest
corresponding to the amino acid isotopes under evaluation in this study, which included all single
ion traces of masses up to 3 a.m.u. heavier than a fully labeled fragment.
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3.2.6.2 Growth and physiological parameter analysis

Throughout the labelling experiment, physiological parameters such as growth rate, fermentation
product release, biomass yield and glucose uptake rate were measured. 1mL samples were taken
every 2-4h. As an indicator for growth, cell optical density (OD) at 600nm (OD600) was measured
in a 1.5mL cuvette (Brandtech Scientific, Inc.) using a Tecan200P microplate reader and fresh
M9 minimal medium as a blank. After optical density measurements, the 1mL samples were
transferred to 1.5mL microcentrifuge tubes (VWR) and centrifuged at 13,000 r.p.m. for 5min. The
supernatant was transferred into a 2mL HPLC vial (Agilent Technologies) with a silicon sealed
screw cap and stored at -20◦C for further High-performance Liquid Chromatography (HPLC)
analysis.
An Agilent 1200 series HPLC instrument equipped with an Aminex HPX-87H column (Bio-Rad
Laboratories) and a reflective index detector RID-10A was used to determine the concentrations
of glucose, ethanol, lactate, formate, succinate and acetate in 100μL samples, using 5mM H2SO4 as
the mobile phase, a flow rate of 0.6mL min-̂1 and a column temperature of 60◦C. For HPLC char-
acterization serial dilutions of glucose (Sigma Aldrich), sodium acetate (Sigma Aldrich), sodium
lactate (Sigma Aldrich), sodium formate (Sigma Aldrich), sodium succinate (Fisher Scientific)
and absolute ethanol (VWR) were used to create standard curves for determining the amounts of
these compounds in the samples (an example of such standard curves is included in Appendix E
Figure 10).
Specific growth rates were determined from log-linear regressions of time-dependent changes in
optical density. (Appendix E Figure 11). Given the clearly linear relationship between time (h)
and OD600, 2 data points were used to calculate the growth rate (4h and 8h for WT and PCK,
and 6h and 10h for ATPs), using the formula below:

μ =
(log10 ODt2 − log10 ODt1)x2.303

t2 − t1
(3.6)

Where; ODt2 = OD600 at timepoint 2; ODt1 = OD600 at timepoint 1; t2 = timepoint 2; t1 =
timepoint 1
Generation time, which provides the number of generations produced in the selected timeframe,
can be calculated as follows:

g =
log10 ODt2 − log10 ODt1

log10 2
(3.7)
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The relationship between growth rate and generation time can be verified by:

μ =
ln 2
g

(3.8)

Growth rates and generation times are shown in Appendix E Table 14.
The OD600 values were converted to cell dry weight concentrations (gDW L−1) using a linear fit
calibration curve (Appendix E Figure 12). Briefly, strains were first grown overnight in LB at
37◦C before washing with M9 minimal medium and incubating in M9 at 37◦C and 180 r.p.m.
orbital shaking until enough biomass accumulated to prepare triplicates of biomass dilutions at
OD 0.8, 0.4, 0.2, 0.1 and 0.05. Biomass samples were filtered using filter paper (47mm diameter,
0.7μm pore size) and dried at 60◦C until the weight remained constant. The increase in weight of
the filter paper represented the dried biomass weight of the samples, which were plotted to find
a linear relationship between OD600 and gDW L−1 values.
Uptake and secretion rates were determined using two timepoints, one from the start of exponen-
tial growth and mid-exponential growth (4h and 8h for WT and PCK, and 6h and 10h for ATPs)
and calculated using the following equation, adapted from Chen et al. (2011) and Sauer et al.
(1999):

v =
Ct2 − Ct1

gDWt2 − gDWt1
μ (3.9)

Where, Ct and gDWt are the extracellular metabolite concentrations and biomass dry weight at
time t; and μ is the growth rate of the culture.

3.2.6.3 Metabolic Flux Analysis

From the isotope distribution patterns of the proteinogenic amino acids (Section 3.2.6.1), relative
pathway contributions (metabolic flux ratios) were computed, internal metabolic fluxes were esti-
mated using the WUFlux software, following its specifications (He et al., 2016). WUFlux includes
a data correction routine to perform batch-wise comparison between all measured amino acid frag-
ments and theoretical mass isotopic distributions. It also normalizes the integrated areas such
that the sum of all mass isotopes for a given fragment is 1, and flags measurement inaccuracies.
WUFlux uses a stoichiometric model including all relevant reactions in central carbon metabolism,
including the Embden-Meyerhof-Parnas pathway, oxidative pentose phosphate pathway (PPP),
Entner–Doudoroff pathway, the TCA cycle, Calvin cycle (only in the cyanobacterial template), the
C1 (including 5-methyl-tetrahydrofolate and 5,10-methylene-tetrahydrofolate) metabolism path-
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way, and anaplerotic pathway. The model used in this study is shown in Appendix F Table
15.

3.2.7 Statistical analysis

Assuming a normal distribution (Fay and Gerow, 2013), a two-sided student’s t-test was used to
determine statistically significant changes across independent samples, with asterisks indicating
significance (* = P ≤ 0.05; ** = P ≤ 0.01; *** = P ≤ 0.005). All experimental data presented in
this study is shown as average ± SD from three (or four, if it is a labelling experiment) biological
replicates, unless stated otherwise. All individual data points have also been included in the
figures.
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4
Energy and Redox Impact on Butanol Production

Notes from the Author:
This chapter builds on previously submitted work for an earlier qualifying degree (de Arroyo Garcia, 2016).
Using the same case studies as a proof-of-concept, some elements of the analysis were replicated, but the
modelling approach was updated, run using a different stoichiometric model and pre-existing conditions,
as well as additional analytical frameworks.
Part of the work in this chapter has also been published in Paper I: de Arroyo Garcia, L., Jones, P. R.
(2020) “in silico co-factor balance estimation using constraint-based modelling informs metabolic engineer-
ing in Escherichia coli” . PLoS Comput Biol 16(8): e1008125. https://doi.org/10.1371/journal.pcbi.1008125
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4.1 Introduction

The primary objective of producing industrially-attractive chemicals using metabolic engineering is to
obtain the highest possible conversion of desired product from the original substrate. Here, microbes are
treated as factories that synthesize industrial compounds, so it is essential to consider the capability of
the cells’ native metabolism to mesh with the demands of synthetic pathways, as these pathways will alter
cellular homeostasis. The maximum theoretical yield will be affected, amongst other factors, by the fine
balance between consumption and production of metabolic cofactors in the metabolic network (Dugar and
Stephanopoulos, 2011, Varma et al., 1993). It is difficult to precisely pin-point the most important cofactors
influencing the performance of a catalytic system. However, as I show in Chapter 2, it is well understood
that glucose catabolism inevitably results in the creation of ATP and NAD(P)H, which are essential for the
conversion of available carbon source into target chemical, biomass and by-products, and must be recycled
to achieve mass balance in central metabolism.
When growing in steady state conditions, microorganisms coordinate the production of energy and redox
to match consumption. Their network structures and regulatory systems will assist in performing this
balancing act. It is therefore no surprise that cofactor balancing is poorly optimized for any synthetic
objectives, and cofactor balancing will therefore need to be optimized if we are to effectively introduce non-
native pathways that rely on native cofactor concentrations (King and Feist, 2014). Ideally, an optimal
catalyst would divert most resources towards mass production of the target product, whilst retaining enough
energy to guarantee cell maintenance. With this ideal scenario in mind, metabolic waste products would
result when a major portion of the flux is forced through a pathway that is imbalanced with respect to
ATP or NAD(P)H. Waste production would thus be symptomatic of imbalances in the metabolic network.
Particularly with regards to industrial compounds, numerous pathway variants may also exist. Some
pathways may be better than others with respect to the total energy content and efficiency, so it is essential
that these are carefully selected to ensure high energy content and an efficient production route (Dugar
and Stephanopoulos, 2011). To aid with these early stages of pathway design and strain selection, I
asked whether it would be possible to harness ATP and NAD(P)H balance information to identify better-
performing pathways. To what extent does cofactor usage affect target production across a range of
biosynthetic pathway variants? To answer this question, 8 pathway variations for the production of butanol
were selected as a case study.

4.1.1 Bio-based butanol as an alternative fuel molecule

Butanol is a four-carbon alcohol and important chemical feedstock (Saini et al., 2014). It has received
particular attention because of its superior physical specifications than ethanol (the number 1 biofuel in
terms of market demand, as per International Energy Agency (2018)), including higher density (29.2 vs
19.6 MJ L−1), higher air-to-fuel ratio (11.1 vs 9.0), and lower hygroscopicity, which results in less corrosion
of fuel-storage vessels. Moreover, it can be blended with gasoline at any concentrations and used with
existing pipeline and engine infrastructures (Pasztor et al., 2015).
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Butanol can be naturally produced by distinct routes present in Clostridium species of gram-positive
bacteria (Lan and Liao, 2012), however, it is currently commercially produced from propylene (which
is derived from petroleum) because the traditional acetone–butanol–ethanol (ABE) fermentation using
Clostridium acetobutylicum became economically infeasible in the 1960s (Pasztor et al., 2015). Nonetheless,
various novel microbial routes towards the production of butanol have now been reported (Dellomonaco
et al., 2011, Menon et al., 2015, Pasztor et al., 2015) most of which are in any event derived from the native
clostridial butanol-producing pathways reported in Lan and Liao (2012). Butanol is particularly interesting
because in each case, the pathways can be extended to produce 1-hexanol and other higher alcohols. The
CoA-dependent butanol pathway from clostridia can also be hijacked to produce other attractive chemicals
such as propane, making this core pathway a very appealing biochemical route (Menon et al., 2015).
What was of particular interest about this compound in relation to this study is that the direct synthesis of
n-butanol from glucose can cause a NADH/NAD+ redox imbalance because more NADH is required in the
synthetic pathway than is generated by glycolysis. The production titer can be improved by manipulating
the reactions such as pyruvate dehydrogenase (PDH) in glycolysis to increase the NADH availability in
the cell, or even increasing flux through PPP to produce surplus NADPH which can then be converted
into NADH by enhancing transhydrogenase activity (Saini et al., 2016). Furthermore, as I will explore
shortly, not only is butanol production redox limited, but it can also become ATP-limited, depending on the
biosynthetic pathway used. These observations make butanol a very interesting chemical for these purposes:
(i) there is a considerable number of pathway variants that can be studied systematically, and (ii) these
pathways consume cofactors at different levels, making butanol an ideal starting point to systematically
evaluate the impact of varying cofactor usage in the process of pathway selection.

4.1.2 Chapter overview

Using 8 different pathway variations for the production of butanol and butanol precursors, the relation-
ship between varying demands for ATP and NAD(P)H and butanol production were evaluated using two
different methods.
First, I used the energetic and stoichiometric calculations developed by Dugar and Stephanopoulos (2011),
which are pathway-specific. Described in more detail in Section 2.3.3, this method adjusts the maximal
theoretical pathway yield based on ATP and NAD(P)H imbalances, thereby estimating the relative, max-
imal theoretical potential of the synthetic pathway in question. Dugar and Stephanopoulos (2011) used
this method to predict the relative potential of a number of industrial chemicals, including the original
clostridial route for butanol production. In the same paper, they acknowledged that genome-scale models
(GSMs) may also be used for such calculations, but did not attempt to implement this, present preliminary
results or a comparative analysis.
Therefore, the second method evaluated in chapter was to follow Dugar and Stephanopoulos (2011)’s
suggestions and use the COBRA methods flux balance analysis (FBA) and flux variability analysis (FVA)
to assess how biosynthetic pathways integrate with the wider metabolic network, using E.coli as the model
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system.
aim of this chapter was to implement and compare two different methods for the a priori assessment of
how cofactor usage limits microbial performance and target yields.
The ultimate goal was to determine whether COBRA methods like FBA and FVA could enhance our
understanding as to why some pathways perform better than others from a cofactor usage perspective.
Ultimately, the field would greatly benefit from a similar assessment of pathway potential to that by
Dugar and Stephanopoulos (2011) but using using the more flexible, transferable and easier to implement
computational framework Flux Balance analysis (FBA).

4.2 Results

4.2.1 Biosynthetic pathways for butanol and butanol precursor production

8 synthetic pathways for the production of butanol and butanol precursors were selected for this study
due to their distinct energy and redox requirements (Figure 4.1). These pathways correspond to the
same synthetic pathways as originally proposed and experimentally introduced by Menon et al. (2015) and
Pasztor et al. (2015).
Seven out of 8 pathways comprise parallel variations of the Clostridial butanol pathway, differing from one
another in the conversion of acetyl-CoA to acetoacetyl-CoA (atoB vs. NphT7 routes) and butyryl-CoA to
butyraldehyde (AdhE2 vs. TPC7 routes), whilst one pathway relies on fatty acid biosynthesis. Interestingly,
Pasztor et al. (2015) proposed the FAS route in 2015 with the initial idea to construct a synthetic pathway
for the biosynthesis of propane using an acyl-ACP thioesterase with a specificity for butyryl-ACP and
an oxygen-insensitive carboxylic acid reductase (CAR) (Kallio et al., 2014). They observed that butanol
accumulated as an undesirable by-product and proposed the pathway as a platform to effectively produce
butanol instead.

4.2.2 Implementation of Relative Potential Calculations

The calculations presented by Dugar and Stephanopoulos (2011) were used to estimate the relative synthetic
pathway potential of all previously described butanol and butanol precursor production pathways (Figure
4.1). For simplicity, I will refer to these calculations as relative potential calculations, or RPCs.
First, Dugar and Stephanopoulos (2011) present an energetic calculation of maximum yield (YE) to assess
the maximum amount of product that can be produced from the substrate, measured in moles of product
per mol of substrate (equation 4.1).

YE =
γS
γP

(4.1)

Where γS = degree of reductance of the substrate and γP = degree of reductance of the product. The degree
of reductance is calculated by first determining the number of electrons that each atom in a molecule can
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Figure 4.1: Engineered pathways used in this study and their cofactor requirements. 8 pathways that
produce butanol (dark blue circle) and butanol precursors (light blue circles) were selected for this study. These
pathways are based on variations of the so called “core pathway” (module 1, grey), which is redox dependent
and ATP neutral. By combining modules 1 to 4, 8 unique pathway variations are possible with varying demands
for energy and redox. Butanol pathways include: BuOH-0: module 1, including the AtoB and AdhE2 route;
BuOH-1: modules 2 and 1, NphT7 and AdhE2 route; tpcBuOH: modules 1 and 3, AtoB and TPC7 route; BuOH-
2: modules 2 and 4, NphT7 and TPC7 route; fasBuOH: modules 3 and 4, fas and CAR; Butanol precursor
pathways include: CROT: module 1, AtoB route for the production of crotonic acid; BUTYR: AtoB route for
the production of butyric acid; and BUTAL: AtoB route for butyraldehyde production. CP – Core Pathway; ACP
– acyl carrier protein; AtoB – acetyl-CoA acetyltransferase; AdhE2 – aldehyde alcohol dehydrogenase; NphT7 –
acetoacetyl-CoA synthase; TPC – acyl-ACP thioesterase; CAR – carboxylic acid reductase.

donate or take up to reach a full valence shell, and multiplying this value by the number of atoms of that
type in the molecule. For example, the degree of reductance of glucose (C6H12O6) is γS = 4 x 6 + 1x12
-2x6 = 24.
Next, Dugar and Stephanopoulos (2011) use a system of linear equations v1 to v4 (biochemical equations
4.2-4.6), where stoichiometric coefficients a, b, c, d and e (NADPH requirement, product yield, ATP release,
NADH production and CO2 release, respectively), which are pathway specific, can be estimated for each
catalyst. Equation 4.2 represents the stoichiometric pathway balance for product formation per carbon-mol
of substrate. Equations 4.3 and 4.4 account for substrate consumption to produce NADPH (via PPP) and
ATP (via oxidative fermentation). Equation 4.4 is only included in the calculations when ATP is required
for product synthesis, i.e. when c < 0. Equation 4.5 accounts for the energy and redox requirement to
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produce glycerol for cofactor regeneration, and equation 4.6 accounts for the additional ATP requirement
to produce biomass. Here, α represents mol ATP required per mol carbon fixed as biomass, and ε represents
the fraction of carbon lost to CO2 in the process of biomass formation. From Dugar and Stephanopoulos
(2011), it is assumed that α = 2.42 mol ATP/mol carbon in biomass, ε = 0.1; and x is calculated from
Equation 4.7, where κ is the degree of reduction of biomass, κ = 4.2.

v1 = −CH2O− aNADPH+ bProduct+ cATP+ dNADH+ eCO2 (4.2)

v2 = −CH2O+ 2NADPH+ CO2 (4.3)

v3 = −CH2O+ 4.82ATP+ CO2 (4.4)

v4 = −CH2O− 1
3
ATP− 1

3
NADH+ CH 8

3
O(glycerol) (4.5)

v5 = −CH2O− α
(1+ ε)

ATP+
1

(1+ ε)
CH1.83O0.56N0.17(Biomass)+ x

(1+ ε)
NADH+

α
(1+ ε)

NADH+ CO2 (4.6)

x =
4(1+ ε− κ)

2
(4.7)

Assuming a carbon feedstock of glucose and glycolytic fermentation, these calculations consider a 1 mol
glucose assimilation into 2 mol of acetyl-CoA, resulting in the release of 2 mol ATP, 2 CO2 and 4 mol
NADH prior to product formation, given the primary precursor for all pathways was acetyl-CoA. The
available redox, a total 4 mol NADH, can then be directly used to produce 1 mol of butanol, or precursors
thereof. After analyzing the pathways stoichiometrically from their initial building block, acetyl-CoA,
until their final product, pathway specific coefficients a to e as mentioned above were calculated (Table
4.1) and normalized per glucose carbon atom (Table 4.2). It is important to note that pathway fasBuOH
assumes that butyryl-ACP is produced from the preliminary steps of fatty acid synthesis from acetyl-CoA,
consuming 1 additional NADPH and releasing an extra 2 mol CO2 in the process.
Next, pathway yield (YP) is defined as:

YP = Y
v1

(v1 + v2 + v3)
(4.8)

where Y is the product yield from equation 4.2. It can also be expressed as:

YP = Y
1

1+ a
2 − ( c

4.82 )|(if c<0;else c=0)
(4.9)
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Table 4.1: Pathway coefficients for NADPH demand, product release, ATP release, NADH release
and CO2 release of all butanol and butanol precursor pathways under investigation. Reaction-specific
stoichiometric coefficients were calculated per reaction involved in the synthetic pathway, and the so called
pathway coefficient retrieved as the sum across all reactions. Respiro-fermentative conditions assumed that
a net release of 2 mol of acetyl-CoA yields 2 mol ATP, 2 CO2 and 4 mol NADH per mol of carbon source
assimilated (glucose, C6H12O6) prior to product formation. This was accounted for in the below calculations.
Pathways are labelled as per Section 4.2.1

Pathway Product Formula a (NADPH) b (product) c (ATP) d (NADH) e (CO2)

1 BuOH-0 Butanol (C4H10O) 0 1 2 0 2

2 BuOH-1 Butanol (C4H10O) 0 1 1 0 3

3 tpcBuOH Butanol (C4H10O) 1 1 1 1 2

4 BuOH-2 Butanol (C4H10O) 1 1 0 1 3

5 fasBuOH Butanol (C4H10O) 2 1 0 2 4

6 CROT Crotonate (C4H6O2) 0 1 2 3 2

7 BUTYR Butyrate (C4H8O2) 0 1 2 2 2

8 BUTAL Butyraldehyde (C4H8O) 0 1 2 1 2

Where the condition is applied only when ATP is required by the pathway, i.e. when c < 0. YP was then
adjusted to account for pathway inefficiencies. Firstly, assuming that cells thrive to be redox-neutral, any
excess NAD(P)H is depleted using an electron sink (i.e. glycerol excretion) via equation 4.10, to yield YP,G.

YP,G =
v1

(v1 + v2 + v3 + v4)
= Y

1
1+ a

2 + ( d−c
4.82 |(if d - c <0; else d - c=0)) + 3d

(4.10)

Next, YP,G is then further adjusted after any excess ATP is diverted towards biomass formation, using
equation 4.6 to produce YP,G,X.

YP,G,X = Y
v1

v1 + v2 + v3 + v4 + v5
= Y

(α + x)
(1+ a

2 )(a+ x) + c(3x+ 1+ ε) + d(3a− (1+ ε))
(4.11)

Ultimately, Pathway efficiency (η) is calculated by doing the ratio of YP,G,X and YE (equation 4.12).

η =
YP,G,X

YE
(4.12)

All of the target pathways in this study to which the RPCs were applied comprise more than one chemical
reaction, so these calculations were applied by calculating the net balance of ATP, redox and CO2 for all
carbon-carrying reactions from the original carbon source (glucose) to the end product.
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Table 4.2: Normalized pathway coefficients a (NADPH), b (product), c (ATP), d (NADH) and e
(CO2) of all butanol and butanol precursor pathways. Stoichiometric coefficients were normalized per
carbon-mol of glucose.

Pathway a (NADPH) b (Product) c (ATP) d (NADH) e (CO2)

1 BuOH-0 0.000 0.167 0.333 0.000 0.333

2 BuOH-1 0.000 0.167 0.167 0.000 0.500

3 tpcBuOH 0.167 0.167 0.167 0.167 0.333

4 BuOH-2 0.167 0.167 0.000 0.167 0.500

5 fasBuOH 0.333 0.167 0.000 0.333 0.667

6 CROT 0.000 0.167 0.333 0.500 0.333

7 BUTYR 0.000 0.167 0.333 0.333 0.333

8 BUTAL 0.000 0.167 0.333 0.167 0.333

Table 4.3: Maximum yield (YE), pathway yield (YP), adjusted pathway yields (YP,G and YP,G,X) and
pathway efficiency (η) of all butanol and butanol precursor pathways..

Pathway YE YEa YP YP,G YP,G,X η

1 BuOH-0 1.000 0.411 1.000 1.000 0.884 0.884

2 BuOH-1 1.000 0.411 1.000 1.000 0.915 0.915

3 tpcBuOH 1.000 0.411 0.923 0.632 0.626 0.626

4 BuOH-2 1.000 0.411 0.923 0.618 0.665 0.665

5 fasBuOH 1.000 0.411 0.857 0.447 0.498 0.498

6 CROT 1.333 0.637 1.000 0.395 0.409 0.306

7 BUTYR 1.200 0.587 1.000 0.500 0.493 0.411

8 BUTAL 1.091 0.437 1.000 0.667 0.623 0.571



Maximum yield (YE), pathway yield (YP) and adjusted pathway yields YP,G and (YP,G,X) are compiled in
Table 4.3. The final yield value, YP,G,X represents the highest possible yield achievable, assuming there are
no competing pathways. Energetically and stoichiometrically balanced pathways are when YE = YP,G,X, but
this was not the case for any of my selected pathways. This is because all engineered pathways included
imbalances at either the redox or energy levels, if not both. Upon inspection, it was noticed that the less
efficient pathways were those that released more CO2 and reducing power. BuOH-0 and BuOH-1 were the
most efficient pathways, as they were electron balanced and were only adjusted for ATP surplus. tpcBuOH,
BuOH-2 and fasBuOH presented NADH surplus under the RPC assumptions, because they both included
an NADPH-consuming step in order to produce the final target. As such, the need to supply NADPH
into the system had to be accounted for. Across these models, it was noticed that when excess reducing
equivalents were formed (i.e. NADH generated as a “product” of the reaction), a lower pathway yield was
observed relative to the theoretical maximum. Butanol precursor pathways CROT, BUTYR and BUTAL
had their yields penalised the most as these models are imbalanced both in terms of redox and ATP under
the RPC framework.

4.2.3 Modified genome-scale models of E.coli

As an alternative to the RPCs, I then aimed to estimate the theoretical limits of butanol production by
applying a flux balance based approach using the bacterium E.coli as a model system. It was expected that
this approach would enable not only an exploration of how cofactor systems place limits on bioproduction,
but also how pathway requirements are accommodated by the cell.
In order to enable butanol or butanol precursor production in Escherichia coli, the selected synthetic
pathways were implemented into separate copies of the E.coli Core Model (Orth et al., 2010b), generating
a total of 8 models with unique redox and energy features. I therefore analysed a total of 9 models: (1)
iDAG85 (hereinafter known as BuOH-0), a butanol producer, includes the combination of reactions AtoB
and AdhE2 along with the so-called Core Pathway (CP) shown in Figure 4.1. It comprises a total of 85
reactions and 70 metabolites and is ATP neutral; (2) iDAG87 (hereinafter BuOH-1) produces butanol
via the ATP consuming reaction NphT7 (Lan and Liao, 2012). BuOH-1 includes 87 reactions and 72
metabolites; (3) iDAG86 (hereinafter tpcBuOH), a butanol-producing pathway that integrates enzymes
AtoB and converts butyryl-CoA into butyraldehyde via a thioesterase and an ATP-dependent carboxylic
acid reductase reaction (referred to as TPC7 in Menon et al. (2015)). This model is made up of 86 reactions
and 71 metabolites; (4) iDAG88 (hereinafter BuOH-2), which incorporates reactions NphT7 and TPC7
and includes 88 reactions and 73 metabolites; (5) iDAG91 (hereinafter fasBuOH), an ACP-dependent
butanol pathway that relies on Fatty Acid Synthesis (FAS), a thioesterase to release butyric acid and an
ATP-dependent carboxylic acid reductase to generate the aldehyde. It is comprised of 91 reactions and
77 metabolites; (6) iDAG83 (hereinafter CROT), which produces crotonic acid via CP and is made up of
83 reactions and 68 metabolites; (7) iDAG84_butyr (hereinafter BUTYR), a butyrate producer via CP,
which includes 84 reactions and 69 metabolites; (8) iDAG84_butal (hereinafter BUTAL), which yields
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butyraldehyde via CP and is made up of 84 reactions and 69 metabolites; and finally (9) Wild Type, or
WT, the version of the E.coli Core Model that excludes all reactions required for butanol production and
fatty acid biosynthesis, containing a total of 77 reactions and 63 metabolites. Model features have been
summarised in Table 4.4.

4.2.4 Butanol production potential shows lower efficiency upon higher ATP de-
mand

Figure 4.2 shows the theoretical carbon yields of each pathway and ATP and NAD(P)H coefficients of
each synthetic pathway. Pathway coefficients for ATP and NAD(P)H were calculated as the sum of each
reaction stoichiometric coefficients, from acetyl-CoA through to the final target. For convenience, these
stoichiometric coefficients are referred to as cofactor demand (negative values, indicating that the cofactor
is consumed by the introduced pathway) and cofactor surplus (positive values, indicating cofactor pro-
duction by the introduced pathway). For modelling purposes, I assumed that NADH and NADPH are

Figure 4.2: Cofactor requirements of the engineered pathways selected for this study. Cofactor re-
quirements of all pathways introduced into the E.coli Core model to simulate butanol and butanol precursor
production, and the aerobic (black) and anaerobic (red) carbon yields shown as a percentage of glucose carbon
influx after target production maximization. Cofactor requirements are calculated as the sum of stoichio-
metric coefficients in all reactions starting from acetyl-CoA through to the final target molecule. Negative
ATP/NAD(P)H coefficients represent cofactor demand, which refers to the consumption of a particular cofactor
by the introduced pathway, i.e. ATP/NAD(P)H going into the reaction. Cofactor surplus, alternatively, is used
to describe any cofactor being produced or released by a pathway. NAD(P)H surplus is indicated as positive
NAD(P)H released by the pathway (subsequently from NAD(P) going into the reaction).
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interchangeable for modelling purposes, meaning if a hypothetical pathway consumes 1 NADPH and 1
NADH, the total redox produced is deemed to be -2 NAD(P)H, instead of each cofactor being consid-
ered separately. Under this assumption, all butanol pathways had the same redox demand (i.e. a net of
4 NAD(P)H required for butanol production) but varied in ATP demand, whilst the butanol precursor
pathways had no ATP demand but instead vary in redox demand (Table 4.4).
Maximal product yield was obtained by selecting their corresponding sink reaction as the objective func-
tion and maximizing these reactions using parsimonious FBA (pFBA) (Lewis et al., 2010) (Section 3.1.3).
For the wild type model, growth rate optimization was selected as the objective function. Under aerobic
conditions, carbon yields ranged between 59.94-66.67%, not far from reported carbon yields in experimen-
tal studies (58.67% in (Shen et al., 2011)) and within the range of reported carbon yields for butanol
production calculated using alternative methods (Dugar and Stephanopoulos, 2011) (Table 4.3). Under
anaerobic conditions, the range increased to span 35.14-66.67%. It became noticeable, however, that the
butanol models with highest ATP demands (tpcBuOH through to fasBuOH) had lower target production
efficiencies. I suspected that these differences may stem from the need to utilise oxidative PPP to supply
additional redox and the recycling of AMP and ADP, since these were not accounted for by the calculations
presented in Dugar and Stephanopoulos (2011).

4.2.5 Engineered models present high flux variability in cofactor-related reac-
tions

The solution space of all models was investigated by flux variability analysis (FVA) (Mahadevan and
Schilling, 2003) (Appendix A Table 1). A single solution was found with the wild type and models tpcBuOH,
BuOH-2 and fasBuOH. In contrast, the butanol producing models BuOH-0 and BuOH-1 had varying flux
ranges in 17 out of 85 and 87 reactions, respectively, and butanol precursor producers CROT, BUTYR
and BUTAL had varying flux ranges in 36 reactions, out of a total of 83, 84 and 84 reactions, respectively.
This was not all that surprising, given that the models had been left mostly unconstrained, so some flux
variability was expected. Notably, however, none of the reactions displaying multiple possible solutions
were directly in the path towards butanol, i.e. the models displayed no flux variability in their target
product pathways. Instead, 16 reactions common to these models were cofactor related reactions, and were
often involved in futile cycling, as I will later continue to explore in Section 5.3.3 of this thesis.
From Figure 4.3, it was observed that CROT’s solution had the highest flux variability ranges. CROT was
also the model with the lowest cofactor demands (Figure 4.2). In contrast to this, BuOH-1 had the least
amount of variation, and it was also the model with the highest cofactor demands (Figure 4.2). This seems
to be suggesting that surplus cofactor is one such factor contributing to flux variability. I also noticed that
the reactions that show the highest range variation were all ATP related (ADK1, ATPM, ATPS4r, FBP,
PPCK, PPC, PPS, PYK) whereas redox-related reactions showed smaller ranges of variability. This was an
interest observation, given that, for example, the biosynthetic pathway in CROT did not actually engage
any ATP at all. Dugar and Stephanopoulos (2011) would classify this pathway as an ATP-neutral pathway,
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Figure 4.3: Ranges of flux variability of cofactor related reactions across models BuOH-0, BuOH-1,
CROT, BUTYR and BUTAL. Flux Variability Analysis (FVA) was used to investigate the range of fluxes
across cofactor related reactions, i.e. reactions that either consume or produce ATP and/or NAD(P)H across
the models that showed non-unique solutions. Ranges were calculated by subtracting the minimum flux from
the maximum flux recorded by FVA.

yet CROT showed a great deal of variation in ATP related reactions. This seems to be contradicting what
has been captured experimentally in (Holm et al., 2010), which reported denser networks as a result
of perturbations at the ATP level (i.e. ATP restoration had a more focused response) whereas redox
perturbations seemed to invoke more widespread metabolic changes.
These observations hinted towards the connectivity between ATP and NAD(P)H balancing, and suggested
that FBA could capture additional insights at the network level that the RPCs could not (Dugar and
Stephanopoulos, 2011).

4.2.6 Butanol production capabilities of the E.coli metabolic network

To evaluate the metabolic responses to changes in cofactor demands during biosynthetic production in
E.coli, flux distributions corresponding to the maximal possible butanol yield achievable were illustrated
(Figure 4.4). These solutions represent the fluxes that result in the maximum carbon conversion towards
the particular target from the initial carbon source.
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Upon a general inspection of the numerical results (Appendix B Tables 4 and 5), it became clear that all
solutions relied heavily on glycolysis as the backbone carbon route between glucose (the original carbon
source) and the final target. The redox demand of the butanol biosynthetic route was mainly satisfied by
the interplay between glycolysis and the and the Pyruvate Dehydrogenase reaction (PDH). PDH not only
decarboxylates pyruvate to produce acetyl-CoA, but also releases additional NADH, required for butanol
production. Experimentally, butanol production was initially hindered by the limited NADH output from
glucose catabolism, as producing 1 mol n-butanol from 1 mol glucose requires more NADH than that
provided by glycolysis (Saini et al., 2016). To boost NADH availability experimentally and thus drive
butanol production, increasing the activity of PDH has been used as a successful strategy (Lim et al.,
2013, Saini et al., 2016, Shen et al., 2011). This is also validated by my in silico observations. PDH also
contributes to the release of CO2, which has a direct impact on the final carbon conversion (Varma et al.,
1993).
It was also observed that, as the butanol producers (especially tpcBuOH, BuOH-2 and fasBuOH in Figures
4.4.C, 4.4D and 4.4.E) increased in energy demand, other areas of metabolism became engaged, particularly
the Pentose Phosphate Pathway (PPP). Models tpcBuOH and and BuOH-2 both included an NADPH-
consuming, AMP-producing step in order to produce the final target. As such, these systems needed
to generate enough NADPH, supplied by PPP. PPP has two net consequences: (1) More NAD(P)H per
glucose, likely the driving force to increase NADPH availability for the TPC7 route in these models, and
(2) loss of carbon as CO2.
These internal flux differences affecting the core carbon routes did not seem to have much impact on the final
carbon yields (Figure 4.2). More generally however, differences in ATP were generally solved by burning
excess ATP via reverse ATPS4r (ATP synthase) or reaction ATPM. Excess redox power was dealt with
by either activating NADH11 (Electron Transport Chain, or ETC) and ATPS4r then burning the excess
ATP, or by cycling between THD2 (NADP transhydrogenase) or NADTRHD (NAD transhydrogenase) to
balance the NAD(P) redox pools. Surplus AMP was recycled by engaging ADK1. These reactions were also
the same reactions that appeared to have wide flux variability ranges in Figure 4.3. The underdetermined
nature of the systems (i.e. the possibility of many flux patterns to reach the same objective) was mainly
driven by cofactor related reactions and was a clear issue that needed addressing.
Analogous simulations were also run under anaerobic conditions (Appendix B Table 5). In this new set
of conditions, the engineered models used the introduced pathways as a major sink for electrons, aided
however by the release of acetate in the case of tpcBuOH, BuOH-2 and fasBuOH in order to reach balance.
Furthermore, unsurprisingly, no models had flux running through the biomass reaction. This is because, by
selecting the butanol (or butanol precursor) sink reaction as the optimization criterium, FBA ignored any
alternative routes that deviate resources away from the selected objective. Biomass production competes
with the pathways for cellular resources because the biomass equation, in addition to the synthesis of many
other metabolites, involves energy and redox, so producing any biomass at all would reduce the maximum
yield of butanol, contradicting the assumption of optimal yield under pFBA. Under experimental conditions,
balanced growth and product formation is essential in a bioprocess.
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Figure 4.5: Flux maps of Escherichia coli CCM during butanol and butanol precursor production. Flux
variation according to biomass production. The biomass reaction of all engineered models was fixed at 100%,
80%, 60%, 40%, 20% and 0% of the growth observed in the wild type. Models were then optimized for target
production.

To address the industrially relevant trade-off between growth and product formation, I ran an additional
test where the biomass reaction of the engineered strains was fixed to 100%, 80%, 60%, 40%, 20% and 0% of
the WT biomass (Figure 4.5). As expected, butanol production was negatively correlated with the gradual
increase in biomass formation, indicative of the trade-off between growth and bioproduction metabolism.
Not surprisingly, there is no butanol production when biomass is fixed to 100% WT.
It was also noted how the fluxes across all ATP/NAD(P)H related reactions changed gradually with the
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Figure 4.6: Carbon yield efficiencies calculated by FBA and by implementing the RPCs. Carbon yields
of butanol and butanol precursor models were compared across the two approaches evaluated in this study:
unconstrained pFBA (labelled “uFBA”), the initial estimates obtained by applying the RPCs from Dugar and
Stephanopoulos (2011) (labelled unadjusted Dugar, or ”uDugar”) and the final estimates after adjusting the
RPC for any energy and redox imbalances (labelled adjusted Dugar, or ”aDugar”).

gradual change in biomass formation. The results illustrate that there is an undeniable relationship between
changes in biomass, cofactor metabolism, and ultimately target production.

4.2.7 Limitations of the existing methods

Figure 4.6 displays a carbon yield comparison between the butanol production estimates obtained from
FBA (uFBA) and the unadjusted (uDugar) and adjusted (aDugar) pathway yield estimates after applying
the RPCs from Dugar and Stephanopoulos (2011). The adjusted pathway yields were calculated after
accounting for redox, CO2 and ATP imbalances (shown as YP,G,X in Section 4.2.2). Both methodologies
report similar unadjusted theoretical yields for all models, and both methodologies agree on the best
performing pathways. However, there are certainly a number of limitations to both methods.
The RPCs were proposed by Dugar and Stephanopoulos (2011) as an easy-to-use pathway selection tool
to ensure high energy content of the final product as well as an efficient production route. They consider
cofactor demand and any ATP and redox surplus generated by the target pathway(s) as potential limits on
the maximal theoretical yield achievable. These parameters can be determined before pathway engineering
commences and with minimal data, which is greatly beneficial if we are to minimise experimental testing.
However, Dugar and Stephanopoulos (2011) allow for only one possibility to address each potential im-
balance: excess ATP can only be resolved via biomass production, whilst excess NADH is consumed by a
glycerol sink, which leads to quite a narrow method that only allows for testing a very restricted number
of conditions. Furthermore, it is acknowledged in the paper that the yields are valid assuming glucose as
the substrate, but numerous other assimilation pathways are available for other sugars that might lead to
better yields for certain products, compared to glucose.
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Unlike the theory suggested by Dugar and Stephanopoulos (2011), under the FBA framework, the butanol
producing models with increasing ATP demands (tpcBuOH through to fasBuOH) also presented lower
target production efficiencies. There are also discrepancies with carbon balance between the two methods.
To illustrate this, using the RPCs, BuOH-1 and BuOH-2 both appeared to release excess CO2, however
FBA was able to account for the fact that HCO3 is formed from CO2 in these models so in fact the net
balance is zero. FBA thus provides a more complete depiction of pathway potential and the limits they
impose on the wider biological network. FBA yields the maximum amount of desirable product that can
be converted from glucose, and this is calculated purely based on the assumption that the full conversion
from all available glucose to product with no other products being formed can be achieved (Pasztor et al.,
2015). This is similar to the calculation of pathway yield in Dugar and Stephanopoulos (2011), which
looks at the maximum amount of product which can be made from the selected substrate. However, with
FBA it is possible to can account for both the synthetic pathway(s) own cofactor requirements, as well
as the metabolic network’s overall need to balance its cofactor pools. The maximum theoretical efficiency
will inherently be limited by the effective balancing of both the pathway and network-specific cofactor
demands (Varma et al., 1993). Thus, the flux of cofactors and their rebalancing across different subsections
of metabolism are more comprehensible captured by this method. However, FBA suffered from excessive
flexibility due to the underdetermined nature of cofactor related reactions (Section 4.2.5). Related to this
latter point, from the flux distribution vectors obtained by FBA I was unable to pin-point precisely where
exactly in the network the cofactor imbalance is being incurred. Even accompanied by comprehensive
visualization (e.g. Figures 4.4 or 4.5), it was challenging to note any inefficiencies in cofactor usage. It
became evident that FBA alone would not suffice to make meaningful observations as to the effective use
of cofactors in a metabolic network using COBRA methods.

4.3 Conclusion

In this chapter, maximal yields of butanol and butanol precursor production capabilities were assessed by
pathway-specific energetic and stoichiometric calculations, Dugar and Stephanopoulos (2011)’s RPCs, as
well as by incorporating butanol (or butanol precursor) pathways into the E. coli metabolic network and
maximizing them using FBA. These values represent the maximal theoretical stoichiometric production
capability of the metabolic network.
I show that the RPCs are built upon a set of strong assumptions, do not consider any biological or environ-
mental cues and are not easy to extend to various pathways, carbon sources and products. This method is
constrained to specific sets of conditions, and does not take into account other metabolic constraints such
as pathway rigidity, competing pathways, feedback repression, kinetics, additional regulation or alternative
environmental conditions, to name a few.
It is undeniable that FBA is a powerful alternative as it easily enables the assessment of any sort of
environmental conditions, different kinds of media and carbon feedstocks, different growth and metabolic
states. Despite this observation, it became clear that FBA alone did not suffice to discern cofactor usage
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differences between systems. FBA also suffered from the excessive underdetermined nature of cofactor
related reactions.
I thus proposed the design of a Cofactor Balance Assessment protocol (hereinafter known as CBA) to track
cofactor production across the metabolic network as well as their contributions to biomass, waste, target
production and metabolic maintenance. The ultimate goal was to use CBA to determine the optimal
cofactor profile required for optimal yield efficiencies and facilitate understanding why some pathways
perform better than others, from a cofactor usage perspective.
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5
Development of a Cofactor Balance Assessment (CBA)

Protocol

Notes from the Author:
Part of the work in this chapter has also been published in Paper I: de Arroyo Garcia, L., Jones, P. R.
(2020) “in silico co-factor balance estimation using constraint-based modelling informs metabolic engineer-
ing in Escherichia coli” . PLoS Comput Biol 16(8): e1008125. https://doi.org/10.1371/journal.pcbi.1008125
This work was also presented at the Data-Driven Biotechnology Conference, organized by Novo Nordisk
Foundation in Hillerod, Denmark. I thank them greatly for sponsoring my attendance, which was instru-
mental to improve on my work.
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5.1 Introduction

5.1.1 Is it possible to track cofactor balancing using FBA?

In Chapter 4, I concluded that, whilst the calculations developed by Dugar and Stephanopoulos (2011)
are powerful and informative, they relied on stringent assumptions and did not easily extend to various
pathways, products, or enabled the systematic assessment of varying environmental and biological cues.
Although pFBA solutions elucidated butanol biosynthetic potential in E.coli, the source of cofactor im-
balance was challenging to identify. Moreover, FVA solutions illustrated that cofactor related reactions
presented non-unique fluxes that could equally satisfy the objectives, indicating the excessively underde-
termined nature of the models.
Given that an understanding of cofactor balancing would very useful and informative to predict the yield
superiority of synthetic pathways, but pFBA alone does not suffice, I asked, would it be possible to develop
a data analysis protocol to gain insights into cofactor usage? And would it be possible to reduce the
underdetermination of FBA?
Constraint-based tools developed to assist with cofactor manipulation have been reviewed in detail in
Section 2.3.2 (Chapter 2). However, proposals so far have either focused on optimization of already
experimentally-implemented systems or cofactor specifity swaps. The very few more comprehensive tools
concentrate narrowly on NADH/NADPH balancing. The community still lacked a systematic framework
that can inform the earlier stages of pathway and strain selection and which can pinpoint the sources
of imbalance in particular systems. Predicting the optimal cofactor profile required for optimal yield
efficiencies would facilitate the a priori assessment of cofactor metabolism across a selection of metabolic
engineering designs before these are experimentally implemented, and provide a better understanding as
to why some pathways perform better than others, from a cofactor usage perspective.

5.1.2 Chapter summary

This chapter focuses on the development of a Cofactor Balance Assessment protocol, hereinafter known
as CBA, to track cofactor metabolism in metabolic engineering designs, using well-known modelling tech-
niques, such as parsimonious FBA (Lewis et al., 2010), FVA (Mahadevan and Schilling, 2003), and MOMA
(Segre et al., 2002).
Building on Chapter 4, I use the Core stoichiometric model of E.coli and the production of butanol and
butanol precursors to evaluate how variations in ATP and redox demands contribute to yield efficiency.
The study highlighted once again the underdetermined nature of some of the butanol and butanol precursor
models, demonstrated by considerable dissipation of excess ATP and NAD(P)H in high-flux futile cycles.
Although some futile cycling may take place naturally, I assumed that futile cycling would not vary as
much as constraint–based modelling predicted due to internal regulation, insufficient enzyme quantities
and/or thermodynamic constraints imposed by both the chemistry of each reaction and in vivo metabolite
concentrations (Noor et al., 2014, Russell, 2007). Two methods to reduce the underdetermination of
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these models were attempted. The first one, based on manual constraints, resulted in solutions with no
apparent futile cycles and in the formation of biomass in 7 out of 8 engineered models, even when butanol
production was set as the objective function for optimization. The second approach was based on the use
of experimentally-derived constraints, but this approach did not remove futile cycling in its entirety. The
CBA analysis helped explain why some pathways were predicted to achieve a higher yield than others.
Furthermore, the manually curated FBA solutions and the solutions obtained by implementing the RPCs
in Chapter 4 reached similar theoretical yield values and agreed on the highest yielding pathway. However,
they differed in the way cofactor imbalances are adjusted both at the ATP and NAD(P)H level. The
CBA algorithm was further supplemented with a sensitivity analysis addressing the relationship between
changing ATP and NAD(P)H demands and improvements in theoretical yield. This provided insights
into the balance sweet spot and the degree of imbalance across pathway variants, as well as an additional
validation framework to select the best-performing catalysts.

5.2 CBA protocol development

The CBA protocol was designed to provide insights into the energy spending of a modelled organism, by
tracking the production of cytoplasmic cofactors ATP and NAD(P)H across the metabolic network and
their contributions to biomass, waste, target production and metabolic maintenance (Figure 5.1). The
ultimate goal was to use CBA to inform how a synthetic pathway’s cofactor demands integrate with the
host cell’s own cofactor pools and influence yield efficiency.
CBA was written as a COBRApy-compatible Python function, so it can easily complement any COBRApy
simulations run in the Python environment. Briefly, CBA sums the energy and redox synthesis fluxes of
all reactions involving each of the two relevant cofactors, and splits it into four categories: (1) biomass
production, (2) product production, (3) waste release and (4) cellular maintenance (Figure 5.2). For
example, a strain of E.coli engineered to produce butanol diverts a particular amount of energy and redox
to produce the chemical target, whilst the rest is distributed across reactions that lead to biomass formation,
metabolic maintenance and waste release. Upon linear optimization, the CBA protocol determines the net
flux through each category, and this information can be used to understand how effective an engineered
system is at producing a chemical target, with respect to the resources being dissipated to achieve the
optimal objective.
I detail below the method foundations, inputs, method parameters, functions and key assumptions.

5.2.1 Method foundations

The CBA protocol is built based on the following foundational concepts. Firstly, knowing that energy
and redox cofactors can be either phosphorylated and reduced, or hydrolysed and oxidized, respectively,
depending on the biological state of the cell, the first assumption I was able to make was that the flow of
cofactors (i.e. whether they are produced or consumed) will depend not only on the stoichiometry of the
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reaction involving such cofactor, but also on the reaction flux directionality (Figure 5.1).
Second, stoichiometric information can be gathered from stoichiometric models, which function as databases
that specify all components involved in a particular reaction. As a result, they can be used to identify all
reactions involving ATP and/or reducing equivalents in a particular metabolic network. Then, reaction
fluxes can be determined using COBRApy methods, which estimate the flux distribution across the entire
network. Because ATP, NADH and NADPH are highly connected cofactors and key players in carbon
metabolism, by tracking these cofactors alone all major portions of central carbon metabolism are accessed.
Finally, cofactor usage can be classified according to whether cofactors produced or consumed in the process
of generating biomass, producing a particular target, contributing to cellular maintenance or releasing
waste, amongst other biological processes that are not considered within the scope of this study. With
this, cofactor metabolism is divided into the following categories, represented graphically in Figure 5.1.B:

• Cofactor production, accounts for all reactions that generate a positive cofactor flux.

• Biomass production, any cofactor involved in the generation of additional biomass.

• Target production, any cofactor consumed or produced during target optimization. The target
category is pathway-specific, and accounts for only those synthetic reactions introduced into the
stoichiometric model. This category will be either net positive or negative according to whether
the synthetic pathway produces or drains intracellular cofactors, respectively. For example, if the
synthetic pathway is ATP-neutral, the net value for this category will be zero, whereas if the pathway
requires the consumption of 20mmol ATP, then the net will be -20 (Figure 5.1).

• Waste release, accounts for any cofactor consumed or produced at the expense of waste release.
This includes, at the ATP level, any ATP produced at the expense of acetate excretion, as well as
any ATP burned in ATP-hydrolysing reactions, such as ATPM and ADK1. At the redox level, this
category includes any reduced cofactors recycled through the release of fermentation by-products
(such as in reactions LDH_D and AdhE2), or any oxidized cofactors reduced at the expense of CO2

release (such as reactions GND, PDH, AKGDH and ICDHyr)

• Cellular maintenance, any cofactor consumed in any additional metabolic activities not considered
in the above categories.

When an organism is engineered to produce a target chemical the flux dynamics of the metabolic network
will change, and so will its cofactor metabolism. The above categories represent the “stress” placed on
cellular metabolism during biochemical overproduction, which will vary accordingly depending on the redox
and energy content of the original carbon source, its point of entry into the metabolic network, the nature of
the final target, and the metabolic routes activated during biochemical overproduction. I hypothesised that,
considering the categories described previously, unique cofactor profiles could be captured from whole-cell
metabolic models by systematically tracking all cofactor related reactions. I specify the details of function
development in Section 5.2.2.
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Figure 5.1.A shows how cofactor pools (shown as blue and yellow circles for ATP and NAD(P)H, re-
spectively) are maintained by reactions that contribute to their production (arrows going into the circles
representing cofactor production), while other reactions contribute to their drain or consumption (arrows
pointing away from the circles). Thus, cofactor production accounts for all reactions that generate a positive
cofactor flux. The waste category accounts for both any cofactor reduced during CO2 or acetate excretion,
as well as any cofactor oxidized during fermentation product release or hydrolysed in cofactor burning
reactions. For instance, reactions such as GND or PDH reduce NAD+ to produce produce NADH, but
also release CO2 in the process, which directly impacts the carbon conversion. This means that reducing
equivalents can be produced (and thus have a positive value) regardless of the direction in which the carbon
is flowing and shall be considered to be contributing to waste release in these circumstances. The biomass
category includes any cofactor flux involved in biomass formation. The target category is pathway-specific,
and accounts for only those synthetic reactions introduced into the stoichiometric model, and will lead to
a positive or negative flux according to whether the synthetic pathway leads to the formation or drain of
intracellular cofactors, respectively. E.g. If the synthetic pathway is ATP-neutral, the net value for this
category will be zero. The maintenance category any cofactor consumed in additional metabolic activities
and not considered in the aforementioned categories. For categories including both positive and negative
cofactor fluxes, the net is calculated for that category.

5.2.2 CBA function development

The CBA protocol was built as a single, all-encompassing function (see Table 5.1 below) that can be called
out to calculate the sum of all energy and redox synthesis fluxes, and subsequently categorise cofactor
fluxes according to: (1) biomass production, (2) product production, (3) waste release and (4) cellular
maintenance requirements.
CBA relies on the following inputs, all of which can be specified by the user: a stoichiometric model
(normally a GSM), a matching flux distribution (obtained by FBA, pFBA, MOMA, or equivalent), and
an array of so called “target reactions”, in the event that the user is implementing synthetic reactions and
wants to maximize for target production. Alternatively, the CBA function will accept an empty array.
First, the CBA function uses the stoichiometric model as a source of cofactor stoichiometry information.
It uses a for loop to search for an identify all reactions involving ATP, NADH and NADPH, and stores the
identified reactions and relevant cofactor stoichiometry (Table 5.1, 2-12). It then matches the identified
reactions to their corresponding flux estimates to determine which of the identified reactions are carrying
any flux at all, and then specify the level at which ATP or NAD(P)H is being either produced or consumed,
known as cofactor flux score (CFS):

CFSi,j = Si,jvj (5.1)

where; Si,j = stoichiometry of cofactor i (ATP or NAD(P)H) in reaction j; and vj = flux of reaction j (Table
5.1, 13-24).
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CFS calculation is followed by the categorisation of reactions. This procedure is similar for both ATP and
NAD(P)H so I will deal with them simultaneously. This is also the stage at which NADH and NAD(P)H
are pooled to calculate the total redox flux in the system. To calculate the amount of cofactor flux involved
in target production (i.e. either consumed or produced in the process), the CFSs of the “target reactions”
specified by the user are summed to calculate the total cofactor involved (Table 5.1, 43-48 for ATP and
78-85 for NAD(P)H). The estimation of cofactor flux involved in biomass production is straightforward,
i.e. it will correspond to the CFSs calculated for the biomass reaction. In the case of redox flux, the net
CFS is calculated from the nadh and nadph CFSs.
In categorising cofactor waste flux, the procedure differed, because I wanted the CBA function to also
account for cofactor-related reactions that released CO2, in order to measure the amount of cofactor
involved in diverting carbon away from target production. As such, the CBA function first identifies
which of the ATP and NAD(P)H-related reactions also release CO2. Once identified, their CFSs are
calculated as previously described and stored (Table 5.1, 26-33 for ATP and 63-70 for NAD(P)H). Next,
the CBA function also accounts for specific reactions known to either hydrolyse ATP (like ATP and ADK1)
or release fermentation products (like ACKr for acetate production and LDH_D for lactate release) in this
category. Once all CO2-releasing reactions and waste reactions have had their CFSs calculated and stored,
the total cofactor flux is calculated by summing up all CFSs.
Cofactor maintenance flux is calculated by adding up all negative CFSs (which indicate cofactor consump-
tion), and adjusting the net value by subtracting the total cofactor flux involved in biomass, waste and
target production if any of these categories have a net negative value (Table 5.1, 56-61 for ATP and 97-106
for NAD(P)H). In a similar manner, cofactor production is calculated by adding up all positive CFSs
(which indicate cofactor generation), and adjusting the net value by subtracting the total cofactor flux
involved in waste, target, and biomass release if these categories have a net positive value (Table 5.1, 50-55
for ATP and 87-96 for NAD(P)H). These net final scores consist of summed flux values that describe the
overall “weight” of each category. In addition to Table 5.1, which outlines the technical procedure of how
the CBA function was built, please refer to Figure 5.2 for a summary diagram of this procedure.
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Table 5.1: CBA Function

1: procedure CBA_calculation(model, solution, target reactions [array])
2: Initialize dicts for storing reaction:cofactor stoich information for atp, nadh and nadph
3: for reaction in model.reactions do
4: for metabolite, stoich in reaction.metabolites do
5: if metabolite is atp then
6: append reaction:stoich pair into atp stoich dict
7: if metabolite is nadh then
8: append reaction:stoich pair into nadh stoich dict
9: if metabolite is nadph then
10: append reaction:stoich pair into nadph stoich dict
11: end for
12: end for
13: Initialize new dicts for storing reaction:cofactor balance information for atp, nadh and nadph
14: for reaction, flux in solution.fluxes do
15: if reaction is in atp stoich dict then
16: CFS = flux x atp stoich of reaction
17: append reaction:CFS pair into atp balance dict
18: if reaction is in nadh stoich dict then
19: CFS = flux x nadh stoich of reaction
20: append reaction:CFS pair into nadh balance dict
21: if reaction is in nadph stoich dict then
22: CFS = flux x naph stoich of reaction
23: append reaction:CFS pair into nadph balance dict
24: end for

atp waste flux calculation
25: initialize atp waste dict
26: for reaction in model.reactions do
27: for metabolite, stoich in reaction.metabolites do
28: if metabolite == CO2 and atp is in reaction.metabolites then
29: temporarily store atp stoich using temp_stoich = stoich
30: CFS = flux x temp_stoich
31: append reaction:CFS pair into atp waste dict if CFS >0
32: end for
33: end for
34: for reaction, CFS in atp balance dict do
35: if reaction is ATPM then (ATPM hydrolyses atp into adp and pi)
36: append reaction:CFS pair into atp waste dict
37: if reaction is ADK1 then (ADK1 hydrolyses atp and uses amp to yield 2 adp)
38: append reaction:CFS pair into atp waste dict
39: if reaction is ACKr then (ACKr produces atp and releases acetate)
40: append reaction:CFS pair into atp waste dict
41: end for
42: sum atp waste dict



atp target flux calculation
43: initialize atp target dict
44: for reaction in target reactions [user-inputted array] do
45: if reaction is in atp balance dict then
46: append reaction:CFS pair into atp target dict
47: end for
48: sum total atp target dict

atp biomass flux calculation
49: total atp biomass = CFS of biomass reaction in atp balance dict

atp production flux calculation
50: initialize atp production dict
51: for reaction, CFS in atp balance dict do
52: if CFS >0 then
53: append reaction:CFS pair into atp production dict
54: end for
55: sum atp production dict, less total atp waste if total atp waste >0, less total atp target if

total atp target >0

atp maintenance flux calculation
56: initialize atp maintenance dict
57: for reaction, CFS in atp balance dict do
58: if CFS <0 then
59: append reaction:CFS pair into atp maintenance dict
60: end for
61: sum atp maintenance dict, less total atp biomass if total atp biomass <0, less total atp waste

if total atp waste <0, less total atp target if total atp target <0

nad(p)h waste flux calculation
62: initialize redox waste dict
63: for reaction in model.reactions do
64: for metabolite, stoich in reaction.metabolites do
65: if metabolite == CO2 and nadh or nadph is in reaction.metabolites then
66: temporarily store redox stoich of CO2 reaction using temp_stoich = stoich
67: CFS = flux x temp_stoich of reaction
68: append reaction:CFS pair into redox waste dict if CFS >0
69: end for
70: end for
71: for reaction, CFS in nadh balance dict do
72: if reaction is LDH_D then (LDH_D produces lactate at the expense of nadh oxidation)
73: append reaction:CFS pair into redox waste dict
74: if reaction is ADHEr then (ADHEr produces ethanol at the expense of nadh oxidation)
75: append reaction:CFS pair into atp waste dict
76: end for
77: sum redox waste dict



nad(p)h target flux calculation
78: initialize redox target dict
79: for reaction in target reactions [user-inputted array] do
80: if reaction is in nadh balance dict then
81: append reaction:CFS pair into redox target dict
82: if reaction is in nadph balance dict do
83: append reaction:CFS pair into redox target dict
84: end for
85: sum total redox target dict

nad(p)h biomass flux calculation
86: total redox biomass = CFS of biomass reaction in nadh balance dict + CFS of biomass reaction

in nadph balance dict

nad(p)h production flux calculation
87: initialize redox production dict
88: for reaction, CFS in nadh balance dict do
89: if CFS >0 then
90: append reaction:CFS pair into redox production dict
91: end for
92: for reaction, CFS in nadph balance dict do
93: if CFS >0 do
94: append reaction:CFS pair into redox production dict
95: end for
96: sum redox production dict, less total redox waste if total redox waste >0, less total redox

target if total atp target >0, less total redox biomass if total redox biomass >0

nad(p)h maintenance flux calculation
97: initialize redox maintenance dict
98: for reaction, CFS in nadh balance dict do
99: if CFS <0 then
100: append reaction:CFS pair into redox maintenance dict
101: end for
102: for reaction, CFS in nadph balance dict do
103: if CFS <0 then
104: append reaction:CFS pair into redox maintenance dict
105: end for
106: sum redox maintenance dict, less total redox biomass if total redox biomass <0, less total

redox waste if total redox waste <0, less total redox target if total redox target <0
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5.2.3 CBA assumptions

The CBA protocol relies on the following assumptions:

• CBA solely tracks ATP and NAD(P)H metabolism, while all other cofactors are excluded from the
analysis.

• For modelling purposes, it assumes that NADH and NADPH are interchangeable, even though in
reality NADH and NADPH are not biologically equivalent

• It is assumed in this work that the above categories specified in Section 5.2.1 are the main categories
contributing towards cofactor metabolism, whilst other cofactor assisted biological functions such as
intracellular and extracellular transport, cell motility, cell division, stress, gene and protein expres-
sion, are excluded from analysis (or believed to be considered within the maintenance category, if at
all).

5.3 Results

5.3.1 CBA produces distinct energy and redox profiles under aerobic and anaer-
obic conditions

The CBA function was tested on all eight models originally implemented in Section 4.2.3 (Chapter 4),
which included butanol or butanol precursor production pathways (Figure 4.1) under both aerobic (Figure
5.3.A) and anaerobic (Figure 5.3.B) conditions, using the Core stoichiometric model of E.coli (Orth et al.,
2010b). The selected biosynthetic pathways were suitable case studies due to their varying demands for
ATP and redox carriers. First, flux distribution data optimised for target production was gathered as per
Sections 3.1.1-3.1.3 under both aerobic and anaerobic conditions.
Under aerobic conditions, solutions for the engineered models displayed smaller magnitude fluxes for ATP
synthesis and consumption than WT (Fig. 5.3.A), in line with a lower requirement for ATP by the product
pathways given that the backbone route towards butanol production is ATP neutral. As well as ATP
neutral, the pathway backbone, referred to as “Core Pathway” in this study (as shown in Figure 4.1), is
also strongly dependent on four NAD(P)H-driven steps (Saini et al., 2016). All butanol models relied on
glyceraldehyde-3-phosphate dehydrogenase and the pyruvate dehydrogenase reaction (PDH) for the supply
of redox. The PDH reaction is known to provide the extra redox needed for butanol production (Lim
et al., 2013, Saini et al., 2016, Shen et al., 2011). As illustrated in Figure 5.1, PDH is labelled as ”waste”,
because NADH formation contributes to the loss of carbon through CO2 release (hence the positive value
observed for NAD(P)H waste under aerobic conditions (Figure 5.4.A, yellow). However, it simultaneously
supplies the target pathway a key limiting factor, NADH, which is essential to optimize flux towards butanol
production.
In the absence of O2, however, the ATP production levels were similar for all models apart from BuOH-2
and fasBuOH, which also presented the lowest yields (Figure 5.4.A). This was an interesting observation,
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especially given that the butanol producers differed specifically in ATP demands. Under both aerobic and
anaerobic conditions, solutions for the engineered models showed no biomass accumulation. For BuOH-0,
one of the highest yielding butanol models, more than half of the generated ATP went into the waste
category.
Under the assumption that NADPH and NADH are interchangeable as explained in Section 4.2.4, all
metabolic pathways with the same end-product will have the same net redox requirements unless there
is a change in non-target products (e.g. fermentation products, or biomass). However, I observed con-
siderable variation in NAD(P)H categories between models, both under aerobic and anaerobic conditions.
Examining individual reactions (Appendix B Tables 4 and 5), it was noticed that the TPC route in models
tpcBuOH, BuOH-2 and fasBuOH, which included a carboxylic acid reductase reaction that consumed 1
mol NADPH and produced 1 mol AMP from ATP, was causing the coupling of electron metabolism with
energy metabolism. As a result, I noted (1) 18.8%, 18.2% and 23.3% of total NAD(P)H was produced
by the PPP resulting in a higher yield of NADPH per glucose and (2) the activation of the ADK1 reac-
tion to recycle AMP produced by TPC7. Even though the butanol pathways all have the same demand
for electrons, they have differing requirements for ATP. Homeostatic adjustments to the different ATP
requirements resulted in changes in metabolism influencing also NAD(P)H. Moreover, although the flux
through PPP was lower under anaerobic conditions relative to aerobic for models BuOH-2 and fasBuOH,
flux through PPP surprisingly increased for tpcBuOH under anaerobic conditions. Further differences in
the CBA redox profiles may arise from the fact that flux may or may not be directed via cofactor-dependent
routes, e.g. PFL, where electrons are channeled into H2 or excreted formate under anaerobic conditions
vs. PDH, where electrons are channelled back into NAD+ (as per Appendix B Tables 4 and 5), a concept
known as “degeneracy” or “genetic buffering”, brought by identical reactions coded by different genes that
constitute alternative yet functionally overlapping pathways (Stelling et al., 2004).
More generally, it was also observed that in order to cater to the increasing demands for ATP across the
butanol pathways, the systems simply produced more net ATP, as depicted by the steady increase in ATP
production along the x-axis (e.g. compare BuOH-2 with BuOH-0 on Figure 5.4A, blue). In contrast to
these observations, the butanol precursor models (CROT, BUTYR and BUTAL), which did not demand
ATP and only partly involved the Core Pathway, simply produced less ATP and also less NAD(P)H,
decreasing the redox production by up to 2-fold. So, here I asked, is bacterial metabolism that flexible?
i.e. is the range of flux solutions predicted by stoichiometric modelling greater than what is possible in
reality? This question was explored in detail in the following three sections of this thesis, both through
the use of manual curations (Section 5.3.3) and through the implementation of constrained informed by
MFA-derived flux data (Section 5.3.4). Particularly in Section 5.3.4, where experimental data was used, it
became evident that constraint-based modelling presents higher flux variability than what has so far been
observed experimentally.
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Figure 5.3: CBA-derived network cofactor usage profiles. After FBA optimization, the CBA protocol
calculated the net ATP and NAD(P)H production and classified ATP and NAD(P)H-related reactions according
to whether these cofactors were consumed or produced during biomass, waste, target production or cellular
maintenance. All models were initially unconstrained and simulated under both aerobic and anaerobic conditions.
(A) ATP and NAD(P)H profiles under aerobic conditions; (B) ATP and NAD(P)H profiles under anaerobic
conditions.



5.3.2 CBA shows cofactor dissipation occurs as result of FBA’s underdetermi-
nation

The general metabolic cost for non-growth-associated energy requirements, ATPM (reaction 2.4.1), is
represented by an artificial reaction that breaks down ATP into ADP and Pi (equation 5.2):

ATP −→ ADP+ Pi (5.2)

In contrast to the wild type (estimated at 7.6 mmol gDW−1 hr−1 by Varma and Palsson (1994)), all
models displayed a flux increase through the ATPM or ADK1 reaction of up to 3-fold, ranging between
7.6-25 mmol gDW−1 hr−1 under aerobic conditions (Appendix B Table 4). Up to 71.4% of the total ATP
produced was dissipated through these reactions alone, suggesting surplus energy in most models. The
ATP neutrality of the Core Pathway (Figure 4.1) could be causing the net ATP excess in these systems, as
ATP is generated by substrate-level phosphorylation during glycolysis in order to produce acetyl-CoA, the
initial building block for target production. This results in an increased need to hydrolyse ATP in models
including pathways with low or no ATP demand, such as BuOH-0 (where 66.7% of total ATP produced
went into the waste category). As the ATP demand of the synthetic pathways increased, the fraction
of ATP wasted also gradually dropped, (Figure 5.3.A, blue). The observation that artificially enforced
ATP-hydrolysis can enhance product yield with engineered E. coli (Boecker et al., 2019) supports the
idea that ATP availability influences the allocation between biomass and other carbon-products. Model
BuOH-1, which included an ATP-consuming step to produce Malonyl-CoA from Acetyl-CoA in the butanol
route, had 33.3% of the total ATP produced being wasted, with the remainder being consumed by the
NphT7 enzyme, which catalyses this additional ATP-consuming step as the main route towards target
optimization. Particularly for models with no ATP demands (BuOH-0, CROT, BUTYR, and BUTAL),
50-71.8% of the ATP went into waste. Even under anaerobic conditions, where most models produced
similar ATP yield, the fraction of ATP wastage ranged between 13% to 66.6% (Figure 5.3.B, indicating
that models with no or low ATP demands still dissipated surplus energy through ATP-burning reactions
or cycles (described further in Section 5.3.3).
I also noticed that any redox imbalances in models tpcBuOH, BuOH-2 and fasBuOH were circumvented
by the activity of NAD(P) transhydrogenase THD2 (reaction 2.4.2):

NADH+NADP+ H+ −→ NAD+ +NADPH (5.3)

The non-growth-associated dissipation of excess ATP, also referred to as “energy spilling” or ATP burning,
has been proposed as a principle for cells to handle energy surplus (Russell and Cook, 1995), but the extent
to which E.coli does so is less understood (Russell, 2007). The reversible nature of ATP synthase has also
been suggested through the action of the rotational mechanism of the F1 subunit, but only under stress
conditions (Rühle and Leister, 2015). In the case of redox balance, transhydrogenase activity is also known
to be one of the various mechanisms to guarantee redox homeostasis (Fuhrer and Sauer, 2009). Some
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fermentative bacteria can also alter their net ATP production as they change their end products (Russell
and Cook, 1995). However, given the limited understanding of E.coli’s capabilities to dissipate surplus
energy (Russell, 2007), and earlier reports suggesting the flexible nature of stoichiometric models including
synthetic pathways that are cofactor imbalanced (Ghosh et al., 2011), these cofactor burning observations
were suggestive of FBA having more flexibility than what would be expected in reality. In contrast, based
on observations from fermentation studies, the analysis by Dugar and Stephanopoulos (2011) assumed the
cell’s ability to rebalance energy and redox through biomass and glycerol formation, respectively (Dugar
and Stephanopoulos, 2011). Left unconstrained, FBA did not resort to such solutions in the core wild-type
model.

5.3.3 Manual constraint of futile cycles leads to yield-efficient and biomass-
viable solutions

During the assessment of the case studies, I asked whether constraining the underdetermination of FBA
would result in more realistic flux distributions. The first possibility was to manually correct this flexibility,
with the explicit assumption that the non-growth associated maintenance requirements (captured by the
ATPM reaction in the E.coli core model) reported by Varma and Palsson (1994) already captured the
natural ATP dissipation levels that can occur in the E.coli metabolic network. Consequently, given that
the ATPM flux value observed in the wild type when optimized for biomass formation was 7.6mmol gDW−1

hr−1, this value was treated as a “cut-off” for the ATPM reaction, so I constrained the ATPM reaction of
the engineered models to a maximum flux of 7.6 mmol gDW−1 hr−1.
When ATPM was constrained, the updated flux distributions (now ATPM-constrained) would instead
divert the surplus energy through high-flux, cofactor spilling reaction pairs, also known as “futile cycles”.
Futile cycles are pairs of anabolic and catabolic reactions that act in an antagonistic fashion, consuming
either ATP or NAD(P)H through one reaction whilst phosphorylating or reducing a particular reactant,
and a complementary reaction that regenerates the initial metabolite to close the loop (Russell and Cook,
1995). Reactions like phosphoenolpyruvate carboxylase (PPC) and phosphoenolpyruvate carboxykinase
(PCK) are known to combine experimentally to form a futile cycle that potentially dissipates ATP (Kim
and Copley, 2007, Meza et al., 2012, Yang et al., 2003), but this is highly likely to be conditional, as
observed by Yang and colleagues when varying the dilution rate (Yang et al., 2003), or lead to an increase
in biomass yield due to higher ATP production rather than less ATP turnover (Chao and Liao, 1994a,
Chao et al., 1993). Even when over-expressed, the potential antagonistic activity between pyruvate kinase
(PYK) and phosphoenolpyruvate synthase in E. coli did not result in any significant futile cycle (Patnaik
et al., 1992). It has now become apparent that futile cycles are tightly regulated to prevent energy waste
(Russell, 2007, Russell and Cook, 1995). Consequently, unrealistic futile cycles were identified manually
and systematically, by identifying new cyclic fluxes between reaction pairs (or more than 2 reactions in
rare instances) that in all cases involved cofactor metabolism and appeared as a result of changes to the
original, unmodified model. Examples of such identified high-flux, futile cycles are shown in Figure 5.4.A.
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Table 5.2: Candidate reactions for manual curation

Reaction ID Name Gene Models constrained
NAD(P)H metabolism
THD2 NAD(P) transhydrogenase

(periplasm)
pnt tpcBuOH, BuOH-2, fasBuOH, CROT, BU-

TYR, BUTAL
ME1 malic enzyme (NAD) sfc BuOH-1, tpcBuOH, BuOH-2, fasBuOH,

BUTYR
ME2 malic enzyme (NADP) mae BuOH-1, tpcBuOH, BuOH-2, fasBuOH,

CROT, BUTYR, BUTAL
NADTRHD solublre transhydrogenase sthA CROT
THD2 membrane-bound transhy-

drogenase
pntAB tpcBuOH, BuOH-2, fasBuOH, CROT, BU-

TYR, BUTAL
SUCCt2b succinate efflux via proton

import
dcuc tpcBuOH, BuOH-2, fasBuOH

PFL pyruvate formate lyase pflc tpcBuOH, BuOH-2, fasBuOH
ATP metabolism
ATPM ATP maintenance reaction BuOH-0, BuOH-1, tpcBuOH, BuOH-2, fas-

BuOH, CROT, BUTYR, BUTAL
FBP fructose bi-phosphate al-

dolase
fbp BuOH-0, BuOH-1, tpcBuOH, BuOH-2, fas-

BuOH, CROT, BUTYR, BUTAL
ADK1 aldenylate kinase adk CROT, BUTYR, BUTAL
PPC phosphoenolpyruvate car-

boxylase
ppc BuOH-0, BuOH-1, tpcBuOH, BuOH-2, fas-

BuOH, CROT, BUTYR, BUTAL
PPS phosphoenolpyruvate syn-

thase
ppsa BuOH-0, BuOH-1, tpcBuOH, BuOH-2, fas-

BuOH
ATPS4r ATP synthase atpIBEFHAGDC BuOH-0, BuOH-1, CROT, BUTYR, BU-

TAL

To decide whether such cycles were actually unrealistic futile cycles, no cut-off values were used. Instead,
typically, these reaction pairs presented identical (or proportional) fluxes, and carried and obvious and
significant amount flux, always exceeding 5 mmol gDW−1 hr−1. These in silico cycles also involved the
transhydrogenases THD2 and/or NADTRHD, and redox-driven reactions linking Glycolysis, PPP and the
TCA cycles (Saini et al., 2016). In a stepwise manner, futile cycles were identified by directly comparing
the flux distributions of the engineered models to that of the wild type (Figure 5.4.B). After the detection
of a futile cycle, the non-cofactor-consuming reaction was capped by limiting its upper or lower bound
according to the maximal flux value observed for the same reaction in the wild type (Figure 5.4.C). This
also meant that if the corresponding reaction was inactive in the wild type, the flux of the same reaction
in the engineered system would become zero. Like a whack-a-mole, with each constrained cycle appeared
another. This iterative, manual curation was repeated, followed by optimization and flux distribution
evaluation until no more futile cycles were observed (Figure 5.4.D). All reactions considered during manual
constraining are included in Table 5.2.
Manually curated models without any apparent futile cycles (Figure 5.5), simulated to optimise target
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production, led to single-flux solutions across all models both under aerobic and anaerobic conditions
(Appendix A Tables 2 and 3) and resulted in solutions that channelled excess cofactors through the biomass
equation. Under aerobic conditions (Figure 5.5.A, Appendix B Table 6), 7 out of 8 engineered models
yielded solutions that led to both target and biomass accumulation. Under anaerobic conditions (Figure
5.5.B, Appendix B Table 7), three of the models yielded solutions that were fully balanced both in terms
of ATP and NAD(P)H through the use of fermentation product release only, and without any biomass
production. Here, biomass production appears not to be contradicting the optimisation principle, but
instead placing an upper limit on the maximum yield achievable, which is in line with suggestions made
by Dugar and Stephanopoulos (2011) that biomass is used as a sink for energy surplus to achieve cofactor
balance, at the expense of product yield. From a biotechnological perspective, an engineered organism
having no ATP or redox flux consumed in a biomass reaction would be considered the most balanced, as
all the key resources (ATP and redox) are utilised by the target biosynthetic pathway. In this respect,
BuOH-1 appears to have the most balanced pathway after applying manual constraints as it has the highest
carbon yield (64.43%) and lowest biomass yield. In reality, some biomass accumulation is clearly essential
in all strains in order to synthesize the biocatalyst in the first place.
tpcBuOH, BuOH-2 and fasBuOH, which included butanol pathways with the highest ATP demands (Table
4.4), displayed an AMP imbalance in the TPC7 pathway, which had an impact on yield, dropping their
yield to 56.3%, 61.3% and 51.07%, respectively. In these cases, 21%, 22.6% and 16.6% of the total ATP
was set aside for AMP recycling through ADK1 (Appendix A Table 1 and Appendix C Table 10), so
the metabolic network flux distribution required further readjustment to produce enough ATP for target
production and maintenance through CCM, further altering the redox balance along the way. These results
illustrate that the more intertwined the imbalance of a synthetic pathway is, the more the host needs to
put in a larger proportion of its energy budget trying to reach balance at the expense of product yield, as
previously suggested by Weusthuis et al. (2010), who coined this concept as “incomplete oxidation”. The
methodology in Dugar and Stephanopoulos (2011), which states that ATP-neutral or requiring pathways
are more efficient is only confined to pathway potential (i.e. it excludes a network-wide analysis) and does
not account for the adjustment of additional cofactor imbalances throughout the network. In contrast, the
CBA protocol illustrates that a higher ATP (or redox) demand by the synthetic pathways may not always
translate into higher productivity, because the host network may need to accommodate the increased ATP
demand by the synthetic pathway, with with subsequent knock-on effects. For example, an imbalance
in ATP homeostasis is typically solved by changes in the flux of pathways that involve electron transfer
(Varma et al., 1993, Weusthuis et al., 2010). In contrast to previous studies that have studied the behaviour
of cofactors in isolation (Chen et al., 2011, Dugar and Stephanopoulos, 2011, Garcia Martin et al., (2015,
Ghosh et al., 2011), the CBA protocol strongly suggests that ATP and NAD(P)H balancing cannot be
assessed in isolation from each other, or even from the balance of additional cofactors, such as AMP and
ADP.
The manually curated models were also compared against the RPC estimates calculated in Section 4.2.2
of Chapter 4, based on Dugar and Stephanopoulos (2011). Figure 5.5.C displays a comparison of the
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Figure 5.4: Identification and removal of futile cycles. (A) examples of cofactor futile cycles identified in
this study - pairs of cycling reactions in which ATP is consumed through one reaction and the original metabolites
are recycled through the pair reaction; (B) ATP-burning and high-flux futile cycles were identified by directly
comparing the engineered strain and the wild-type flux distributions; (C) The identified ATP-burning reaction
or futile cycle was constrained by limiting the upper bound to the maximal flux observed for the equivalent
reaction in the wild type; (D) After optimization, the flux distributions of the wild type and engineered system
were compared again and the next high-flux futile cycle was detected and constrained accordingly (as per C).
Steps (C) and (D) were repeated until no more futile cycles were detected.



Figure 5.5: CBA-derived cofactor usage profiles after manual curation of the models to minimize futile
cycling and carbon yield comparison. The engineered models were manually constrained to minimize high-
flux ATP futile cycles as described in Section 5.3.3, and led to (A) curated ATP and NAD(P)H CBA profiles
under aerobic conditions and (B) ATP and NAD(P)H CBA profiles under anaerobic conditions. (C) Carbon
yields estimated by pFBA and using the RPCs. uDugar – unadjusted RPCs ; uFBA – unconstrained pFBA (prior
to manual curation); aDugar – adjusted RPCs after accounting for ATP and NAD(P)H imbalances; cFBA –
curated pFBA carbon yields estimates, obtained after manually constraining high-flux futile cycles.



carbon yields between the unadjusted pathway yield estimates, known as YP in Dugar and Stephanopoulos
(2011), but here labelled as uDugar, and adjusted estimates after accounting for redox, CO2 and ATP
imbalances, known as YP,G,X in Dugar and Stephanopoulos (2011) but here labelled aDugar, as well as the
pFBA-derived estimates before and after manual curation of high-flux futile cycles. To remind the reader
briefly, yield and efficiency estimates using the RPCs are pathway-specific and depend on the pathways’
NADPH demand, product release, and ATP, NADH and CO2 surplus coefficients between their initial
building block (i.e. acetyl-CoA), and their final target. For further information on how these estimates are
calculated, please refer to Section 4.2.2 of Chapter 4.
Manually curated solutions presented lower carbon efficiencies and more closely approximated the adjusted
RPC estimates of BuOH-0 and BuOH-1. Both CBA and RPC frameworks agreed that BuOH-1 is the most
yield efficient solution. In line with their theory (Dugar and Stephanopoulos, 2011), this solution includes
a synthetic pathway that is both ATP-requiring and puts in the least amount of cofactor towards biomass
production (Figure 5.5.A), yielding the highest butanol production while diverting the least amount of
energy towards waste and/or futile cycles.
Obvious discrepancies still remain though. Under the RPC framework, tpcBuOH, BuOH-2 and fasBuOH,
which are NAD(P)H-dependant, exhibited an NADH surplus of up to 2 mol, so the maximal theoretical
yield is in fact penalized twice: it is first adjusted for redox and CO2 imbalances, then adjusted once more
to account for any ATP imbalance. Similar consequences arise for CROT, BUTYR, and BUTAL, which are
both redox and energy imbalanced under this framework. This explains the considerable drop in carbon
yield for the adjusted dugar estimates. Alternatively, with stoichiometric modelling, both redox and ATP
imbalances can be systematically addressed, as both cofactors are needed for the biomass reaction to carry
any flux at all. Furthermore, the need for these solutions to recycle AMP and address NADPH demand
are handled by fine tuning the wider metabolic network to render both the pathway and the entire system
at balance, so the impact on the final theoretical yield is lower.
I concluded that, although both methodologies reported similar unadjusted theoretical yields for all mod-
els, and both methodologies agreed on the best performing pathway, the CBA protocol provided a more
complete depiction on the metabolic potential of pathways and the limits they may pose on a biological
network upon implementation. Recycling of cofactors by by-product formation, cofactor maintenance re-
actions and the tight coordination between different subsections of metabolism are just a few examples of
the very interesting observations that can be made with a network-centric protocol that would otherwise
not be possible to account for with alternative methods.

5.3.4 Evaluation of alternative methods to reduce high-flux futile cycles

pFBA solutions inherently rely on the objective function used to calculate the optimal flux distribution
(García Sánchez and Torres Sáez, 2014, Schuetz et al., 2007). Changing the objective function to the
production of a particular excreted molecule determines the maximal production potential of the metabolic
network, i.e. the maximum amount of product that can be converted from glucose. This widely used
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optimization criterion (Bonarius et al., 1996, 1997, Savinell and Palsson, 1992, Varma et al., 1993) is
applied purely based on the assumption that we can achieve the full conversion from all available glucose
to product with no by-products being formed (Pasztor et al., 2015), which is arguably not a realistic
assumption, but does still represent examples of ideal catalysts. As the objective of my study was to
implement a more versatile approach to the RPC analysis by Dugar and Stephanopoulos (2011), I adhered
to single linear optimizations based on product maximization, but results, as far as cofactor metabolism
is concerned, were mostly underdetermined. In Section 5.3.3, it was shown that high-flux futile cycles
could be addressed through manual curation of carefully selected cofactor reactions (Figure 5.4, Table
5.2). From this, it became evident that the more constraints from known biochemical principles were
added to the model, the narrower the range of phenotypes would be. In this section, I asked whether
a similar outcome could be obtained by other approaches, including (1) “loopless” FBA (Schellenberger
et al., 2011), (2) constraining the model with flux data from 13C-MFA, and (3) using ’Minimization Of
Metabolic Adjustments’ (MOMA) for predicting gene knock-out phenotypes (Segre et al., 2002).
I first implemented the COBRApy “loopless_solution” function (Ebrahim et al., 2013), however, this did
not eliminate the futile cofactor cycles (excel file available upon request). Alternatively, I turned to flux
data. First, I wanted to understand how much larger the flux ranges of the E.coli metabolic network
were compared to observations captured experimentally. The following landmark “omics” studies have
gained insights into the physiological and metabolic responses of the E.coli metabolic network following
environmental and/or genetic perturbations (Haverkorn Van Rijsewijk et al., 2011, Ishii et al., 2007, Long
and Antoniewicz, 2019, Long et al., 2016). One approach is to truncate reactions within central carbon
metabolism (Ishii et al., 2007), as CCM carries the bulk of the carbon flux and is also responsible for the
generation of energy, cofactors and most other cellular functions. Regulators of central carbon metabolism
are also of great interest (Haverkorn Van Rijsewijk et al., 2011), as well as modifications related to energy
and redox metabolism (Holm et al., 2010), given that cofactor availability is fundamental to manipulate
and rewire fluxes to increase metabolic yields. Ishii et al. (2007) studied metabolic robustness responses
to both genetic and environmental changes, using 24 single-gene knockout strains of E.coli from the Keio
Collection (Baba et al., 2006) bearing single-gene disruptions from glycolysis and PPP (Ishii et al., 2007).
In Haverkorn Van Rijsewijk et al. (2011), the metabolic responses to knockouts of 91 transcriptional
regulators from CCM were evaluated, in an attempt to discern the key regulatory processes governing
central metabolism (Haverkorn Van Rijsewijk et al., 2011). More recently, Long and Antoniewicz (2019)
carried out a comprehensive metabolic characterization of wild-type E. coli and 20 knockout strains of CCM
under identical growth conditions and using current best practices in 13C-MFA. As such, three flux datasets
were initially selected (Haverkorn Van Rijsewijk et al., 2011, Ishii et al., 2007, Long and Antoniewicz,
2019) because they were specific to E.coli MG1655, the stoichiometric models used for fitting the data
were similar to the E.coli core model, they evaluated a large number of targets and implemented a holistic
omics approach to the generation, curation and analysis of the data.
Assuming that, for each particular reaction estimated by MFA, the flux estimated across all mutant strains
for that reaction represented the available catalytic range of that particular reaction, minimal and maximal
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flux ranges were derived for 19 cofactor related reactions that were both experimentally measured and
present in the E.coli Core model (Figure 5.6). In Ishii et al. (2007), ranges between 0.01-9.8 were observed,
with an average of 4.6 ±3.4. In Haverkorn Van Rijsewijk et al. (2011), fluxes spanned ranges between 1.3
to 15.3, with the average range being 5 ± 3.8, similar to Ishii et al. (2007). The Long dataset presented
the most flexible ranges between 0.06 to 30, with an average flux range of 8.17 ± 8.8, 1.7-fold higher than
the previous two datasets. Interestingly, this dataset also presented considerably high ranges through the
THD2 (NAD(P)H transhydrogenase) and ATPS4r (oxidative phosphorylation) reactions (10.2 and 18.5,
respectively). In the case of THD2, fluxes spanned both positive and negative flux values, indicative of
a high reaction flexibility able to manipulate redox availability according to changes in demand. Also
from the Long dataset, I noticed that all TCA reactions had very narrow flux ranges, apart from ICDHyr.
This reaction also controls flux entry into the glyoxylate shunt, so the wide flux range was a surprising
observation.
All datasets showed discrepancies across important nodes in metabolism. While reactions like GND and
G6PDH2r, which propagate flux down PPP, appeared to have wider fluxes in Ishii et al. (2007) and
Haverkorn Van Rijsewijk et al. (2011), they presented fluxes up to 3.8 fold narrower in Long and Antoniewicz
(2019). Similarly, PYK, a key reaction enabling acetyl-CoA and fermentation product release from pyruvate
after glycolysis, was 2-fold narrower in Long and Antoniewicz (2019) when compared to Ishii et al. (2007)
and Haverkorn Van Rijsewijk et al. (2011). In the contrary, ICDHyr, a key node reaction in the TCA cycle,
presented a small flux range in both Ishii and Haverkorn datasets (of 8.7 and 3.7, respectively) whilst the
range was 8 fold more flexible in the Long dataset. Furthermore, all datasets also disagreed on the flux
ranges within glycolysis. While the Long and Haverkorn datasets presented similar flux ranges for the
GAPD reaction, the Ishii dataset observed a 2.5-fold narrower range; and while Long et al. reported a very
wide catalytic range across PFK, Ishii et al. (2007) and Haverkorn Van Rijsewijk et al. (2011) did not.
Discrepancies across the flux range profiles may arise not only from the fact that the goals and purpose
of the selected studies were different (each of these studies explored specific parts of the metabolic and
regulatory network), but also from the wide differences in the experimental setup and the MFA predictive
methods used. It is well understood that the experimental and culturing conditions dramatically affect
the flux estimates (Long and Antoniewicz, 2014). For example, aerobic vs. anaerobic conditions, as well
as substrate-limited vs. substrate-rich conditions lead to cellular responses and metabolic states that are
significantly different. While Ishii et al. (2007) carried out their evaluation in glucose-limited, chemostat
conditions at several different dilution rates and using bioreactors with a 1L total working volume, both
Haverkorn Van Rijsewijk et al. (2011) and Long and Antoniewicz (2019) used an aerobic batch format,
albeit with different working volumes (35mL working volume vs 10 mL, respectively). Media conditions
also differed across these studies, with Ishii et al. (2007) using their own synthetic medium recipe, whilst
Haverkorn Van Rijsewijk et al. (2011) and Long and Antoniewicz (2019) used M9 Medium. Differences in
the experimental setup are further exacerbated by differences in 13C-MFA methodology employed, including
tracer selection, data correction, software usage and metabolic map selection for internal flux estimation,
which varied across all three studies. The conclusion I gather from this is that we have to be extremely
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Figure 5.6: Flux ranges gathered from Haverkorn Van Rijsewijk et al. (2011), Ishii et al. (2007) and
Long and Antoniewicz (2019). Flux ranges were derived from flux datasets in the original studies, assuming
that the fluxes estimated for the same reaction across all mutant strains comprised the full catalytic range of
such reaction. Only the ranges of cofactor-related reactions were kept and presented here. (A) flux ranges of
cofactor-related reactions from Haverkorn Van Rijsewijk et al. (2011), which presented average ranges between
1.3-15.3; (B) flux ranges from Ishii et al. (2007), which captured ranges between 0.01-9.8; (C) flux ranges from
Long and Antoniewicz (2019), which spanned flux ranges between 0.06-30.

prudent when selecting and handling flux datasets, as it is often difficult to deconvolute the effects of
knockout mutations and environmental (experimental) changes.
Because I wanted to examine the differences across the range of flexibility of in silico and experimental
E.coli using the aforementioned datasets, the initial intention was to compare these datasets to FVA data.
However, this would potentially lead to an unfair comparison between 13C-MFA and FVA variability. There
are various reasons for this. First, knocking-out a single gene (as was the case in the three selected MFA
studies) would certainly not push the reactions of the network to their optimal range, as is the case in
FVA. Secondly, FBA predicts a long-term, balanced optimal flux distribution, and because the 13C-MFA
datasets were gathered using knockout strains, often this evolutionary objective is not reached. I concluded
that these should instead be better compared against MOMA (Segre et al., 2002).
MOMA provides a flux distribution corresponding to a knockout strain, and approximates this to a reference
model. However, it does not produce a range of fluxes. To create a flux range for comparison with the
ranges derived from MFA data (Figure 5.6), I needed to simulate the knockout strains in the flux dataset.
The Haverkorn dataset implemented knockouts of transcriptional factors, and then measured the effect of
these on central metabolism with MFA. This meant that it was not possible to implement these knockouts
with MOMA as suggested, because the E.coli Core model did not capture transcriptional information.
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Finally, I settled on the most recent dataset provided by Long and Antoniewicz (2019). As far as I know,
this is the highest quality dataset available which also can be modelled. This study evaluated the effects
of 20 reactions in central metabolism, 15 of which were in the model used in this study. The flux ranges
derived from this dataset are shown in Table 5.3.

Table 5.3: Upper and lower bound constraints derived from 13C-MFA. Reactions displayed are the cofactor
related reactions measured in Long and Antoniewicz (2019). Ranges were calculated by recording all of the
reaction fluxes across all mutant strains evaluated in Long and Antoniewicz (2019). The maximal and minimal
fluxes observed were used to derive upper and lower bound constraints, respectively, assuming that the full range
comprised the catalytic range of the reaction in question. Units shown in mmol gDW−1hr−1

Reaction Name Lower Bound Upper Bound Range
PFK 2.843 25.962 23.119

GAPD 2.721 15.845 13.124
PGK 2.721 15.845 13.124
PYK -0.273 3.326 3.599

G6PDH2r 0.019 2.695 2.676
GND 0 2.605 2.605
PDH 1.846 11.2 9.354

ICDHyr 0 29 29
AKGDH 0 1.512 1.512
SUCOAS -0.061 1.366 1.427

MDH 0.356 3.445 3.089
ME2 0 0.044 0.044
ME1 0 0.302 0.302

PPCK 0 1.058 1.058
ACKr -0.076 7.69 7.766

ATPS4r 7.417 25.821 18.404
THD2 -0.984 8.058 9.042

Applying each of these knockouts as a separate MOMA simulation,I again assumed that the resulting flux
for each measured reaction in Long and Antoniewicz (2019) across all MOMA solutions comprised the full
catalytic range of the reaction. These are hereinafter referred to as “MOMA” ranges, and are displayed in
Table 5.4. Finally, and for the sake of completion and comparison, the E.coli FVA range was also included,
as it helps to provide context, given that pFBA is used in the CBA calculation. This time, however, FVA
ranges were simulated at 97% of the optimum to capture the deviation in growth rate found in Long and
Antoniewicz (2019). The FVA ranges are shown in Table 5.5.
The flux variability ranges captured in Long and Antoniewicz (2019) were directly compared against the
MOMA ranges (Figure 5.7.A) and the FVA ranges (Figure 5.7.B). 10 out of 17 and 12 out of 17 reactions
displayed a greater variability range in silico (FVA and MOMA, respectively) compared to that measured
with 13C-MFA (Tables 5.3-5.5). The MFA data indicated that some reactions were more “plastic” (i.e. more
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Table 5.4: Upper and lower bound constraints derived from MOMA (Mahadevan and Schilling, 2003).
Using MOMA, each of the knockout strains evaluated in Long and Antoniewicz (2019) was simulated, and the
flux running through the cofactor related reactions displayed here was recorded. Ranges were calculated by
finding the maximal and minimal flux values across all mutant strains, assuming that they captured the full
catalytic range of the reaction. Units shown in mmol gDW−1hr−1

Reaction Name Lower Bound Upper Bound Range
GAPD 0 17.257 17.257
PGK 0 17.257 17.257
PYK 0.329 4.453 4.124

G6PDH2r 0 21.332 21.332
GND 0 21.332 21.332
PDH 0 10.906 10.906

ICDHyr 0 7.82 7.82
AKGDH 0 6.932 6.932
SUCOAS 0 6.932 0

MDH 0 5.35 5.35
ME2 0 1.582 1.582
ME1 0 0.795 0.795

PPCK 0 50.85 50.85
ACKr 0 0 0

ATPS4r 0 5.573 43.269
THD2 0 5.604 5.604

flexible, able to change flux more widely according to changes in demand), such as PFK, GAPD and PGK
in glycolysis, whilst other reactions were more “rigid” (i.e. showing no or very little change in flux, such as
ME1, ME2 and PPCK (ranges of 1.3). Interestingly, some of the reactions that were rigid in reality were
predicted to display wide flux ranges using both FVA (Table 5.5) and MOMA (Table 5.4). These rigid
reactions were also commonly involved in high-flux futile cycling in the unconstrained engineered models,
very likely stemming from the underdetermination of the unconstrained models.
The MFA flux ranges derived from Long and Antoniewicz (2019) were also implemented as upper and lower
bound constraints for the same reactions in the engineered butanol models followed by optimization using
the CBA algorithm (Fig. 5.8.A), in an attempt to evaluate whether this could replace manual capping of
futile cofactor cycles. The use of MFA flux constraints was not sufficient to eliminate all cofactor dissipation
in the engineered models, and the use of MFA constraints did not result in any biomass formation. ATP
burning through ATPM was still present in all solutions, with the exception of BuOH-2 and fasBuOH
(Appendix B Table 8). Furthermore, redox balancing through the THD2 and NADTRHD reactions was
active in all models except CROT. Interestingly, all models except BuOH-2 and fasBuOH presented fluxes
through PFL (Appendix B Table 8). This could be explained by the narrower flux range of the neighbouring
PDH reaction (Table 5.3). If experimental constraints were also combined with additional capping of the

100



Table 5.5: Upper and lower bound constraints derived from Flux Variability Analysis. Flux variability
analysis of the E.coli core model calculated at 0.972 of the optimum

Reaction Name Lower Bound Upper Bound Range
PFK 4.981 11.906 6.925

GAPD 13.588 17.774 4.186
PGK 13.588 17.774 4.186
PYK 0 7.626 7.626

G6PDH2r 0 12.559 12.559
GND 0 12.559 12.559
PDH 6.575 15.254 8.679

ICDHyr 0.903 8.178 7.275
AKGDH 0 7.274 7.274
SUCOAS 0 7.274 7.274

MDH 2.431 10.7 8.269
ME2 0 5.007 5.007
ME1 0 3.641 3.641

PPCK 0 4.155 4.155
ACKr -1.093 0 1.093

ATPS4r 34.67 43.043 8.373
THD2 0 12.559 12.559

ATPM maintenance reaction and FBP (and in the case of tpcBuOH also PPCK) following the manual
curation procedure outlined earlier (Figure 5.4, Table 5.2), the predicted maximum target product yield
was markedly reduced and in most models except for BuOH-0 and BuOH-1 they were similar to that
predicted through the RPCs (Figure 5.8.B, Appendix B Table 9).
The results obtained from the CBA protocol, in conjunction with a comparison of the carbon yields
across unconstrained and constrained models are shown in Figure 5.8. The protocol now captured lower
waste and biomass metrics for the butanol producers, and higher waste metrics for the butanol precursor
models, more in line with the findings presented by Dugar and Stephanopoulos (2011). The CBA protocol
confirmed again the superiority of the BuOH-1 solution at channeling cofactors towards optimal butanol
secretion. Interestingly, engineered models presented objective values that were on average 36% lower than
when manually curated, resulting in theoretical yields closer to the adjusted estimates reported by the
calculations of Dugar and Stephanopoulos (2011). This suggests that the use of experimental constraints,
rather than manual curation, may be a more suitable approach to obtaining reasonable flux estimates, as
they capture competing pathways (such as succinate release, as per Appendix B Table 8) and additional
intracellular metabolic complexity that may impact the calculation of biosynthetic capabilities. However,
MFA-derived constraints alone did not achieve this outcome, whack-a-mole manual curation of futile cycles
was still needed to minimize cofactor dissipation. I thus concluded that MFA-based constraints, based
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Figure 5.7: MFA-derived estimates compared to FVA and MOMA estimates. Flux ranges were extracted
from a pre-existing MFA flux dataset (Long and Antoniewicz, 2019), using a Python algorithm to select the
minimal and maximal flux ranges and assuming that the fluxes estimated for the same reaction across all mutant
strains used in the study comprised the full catalytic range of such reaction. Only the ranges of cofactor-related
reactions were kept and presented here. These flux ranges are indicated as “Long et al.” in the figure, and were
compared against (A) FVA flux ranges (orange stripes), and (B) MOMA-derived flux ranges (green). MOMA
ranges were estimated using the wild type solution as a reference and sequentially implementing the single-gene
knockouts in Long and Antoniewicz (2019), with biomass formation as the objective function.

on the Long and Antoniewicz (2019) dataset, although they assisted in minimizing manual curation, were
therefore not an ideal replacement for manual whack-a-mole futile cycle capping.

5.3.5 Sensitivity analysis identifies optimal cofactor balance

The CBA analysis seemed to suggest that models having the least amount or no flux towards biomass are
the most balanced ATP and redox-wise. For example, the manually curated BuOH-1 model had the least
amount of futile cycling and ATP burning, the highest butanol yield and lowest biomass yield (Section
5.3.3). Is this the optimum or could the catalytic system be improved even further? Here, I define the
optimal balance as the cofactor profile that results in maximal theoretical target yield. It is assumed
that the optimal solution would minimise carbon-containing waste release, and energy and redox waste
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Figure 5.8: CBA cofactor profile comparison across unconstrained, manually curated and experi-
mentally constrained solutions and carbon yield comparison. (A) ATP (blue) and NAD(P)H (yellow)
CBA-derived cofactor usage profiles compared across all approaches evaluated in this study; (B) Carbon yields
of butanol and butanol precursor models, compared across all approaches evaluated in this study: unconstrained
pFBA (labelled “FBA”); manually curated pFBA solutions with minimized high-flux futile cycling (labelled
“cFBA”); experimentally-constrained solutions using MFA-derived flux data (labelled “mFBA”); experimentally-
constrained solutions using MFA-derived flux data with further capping in cofactor cycling reactions (labelled
“cmCBA”).



streams. Under aerobic conditions, any excess is generally in the form of CO2 release, whereas under
anaerobic conditions, fermentation products should also be carefully monitored. To better understand the
effect of cofactor balancing on product yield, a sensitivity analysis was designed to assess the relationship
between changing ATP and NAD(P)H demands and improvements in theoretical yield. Such an approach
could also potentially be used to generate a metric indicative of the cofactor imbalance in each model. The
cofactor sensitivity analysis was applied to the manually-curated, aerobic, butanol models BuOH-0, BuOH-
1, tpcBuOH and fasBuOH, by introducing an artificial NADH and ATP sink/generator that modifies the
pathway’s ATP and NADH stoichiometric coefficients, to simulate pathways with both cofactor surplus
(excess ATP/NADH produced by the target pathway) and cofactor demand (ATP/NADH going into the
pathway). I anticipated that this evaluation may be particularly relevant to pathway variants producing
the same target, as theoretical yield differences could be triggered by cofactor usage differences across
synthetic pathways.
To develop the cofactor sensitivity analysis, the demand for ATP and NAD(P)H was artificially varied
to assess any improvements in theoretical yield, by introducing into the existing stoichiometry of the
aldehyde reductase reaction (Equation 5.4), the final step in the butanol production chain, an artificial ATP
production step (Equation 5.5). By looping through this reaction’s A(X)P and NAD(P)H stoichiometries
in a stepwise manner, from cofactor production (Equation 5.6), through to cofactor consumption (Equation
5.7), I built a landscape plot using the full range of possible metabolic scenarios. I evaluated a range of
-10 to +10 (consumption of -10 ATP/NAD(P)H to a surplus of +10). With each step, every time the
stoichiometry changed, I optimised for the selected objective (butanol production) and stored the butanol
and biomass yields for further evaluation.

butyraldehyde+ NADH+ H+ → n− butanol+ NAD+ (5.4)

butyraldehyde+ NADH+ H+ + ADP+ Pi → n− butanol+ NAD+ + ATP (5.5)

butyraldehyde+ XNAD+ + YADP+ YPi → n− butanol+ XNADH+ XH+ + YATP (5.6)

butyraldehyde+ XNADH+ XH+ + YATP → n− butanol+ XNAD+ + YADP+ YPi (5.7)

The resulting 3D landscapes describe the impact of changes in cofactor demand on product yield under
aerobic conditions (Figure 5.9) and anaerobic conditions (Figure 5.10). Under aerobic conditions, models
BuOH-0 and BuOH-1, which result from the implementation of pathway combinations AtoB + AdhE2
and NphT7 + AdhE2 (Figure 4.1), accordingly, could withstand growing pathway ATP demands and
redox surplus by forming a plateau at a theoretical carbon yield of 66.67%, without displaying biosynthetic
deficiency (Figures 5.9.A and 5.9.B), a behaviour associated with more robust systems (Wu et al., 2016).
These pathways exhibit high glycolytic flux under aerobic conditions and the increasing demand for ATP is
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satisfied by higher respiration thanks to the increasing redox availability . The original synthetic pathways
in these two engineered systems reached carbon yields of up to 58.53% and 64.47% (Figure 4.2), but artificial
cofactor dissipation boosted the yield by 8.14% and 2.2%, accordingly. The highest biomass rates were
recorded in the presence of both growing ATP and NADH surplus, at the expense of butanol production
(Figures 5.9.A and 5.9.B).
The tpcBuOH and fasBuOH models displayed limited capability to accommodate any change in cofactor
demand, thus forming a cliff and causing a drop in product yield (Figures 5.9.C and 5.9.D). Both of these
CAR-dependent models have high ATP demand, as AMP needs to be recycled via an ATP-consuming
ADK1 reaction, consuming further ATP in the process. They also have a high requirement for NADPH,
resulting in increased flux through the Pentose Phosphate Pathway. As so referred in (Wu et al., 2016),
these more unstable models (tpcBuOH and fasBuOH) were highly sensitive to changes in cofactor demand
and manifested sharp cliffs upon changes in cofactor usage. They achieved carbon yields of 56.43% and
51.1%, respectively, without the artificial cofactor variation, but by manipulating their cofactor demands
the maximal carbon yields increased up to 61.3% and 56.67%, accordingly. Under anaerobic conditions, all
models displayed more unstable behaviours, lower butanol carbon yields and only BuOH-0 and BuOH-1
produced biomass. These observations suggest that if the sweet spot for optimal balance between the
introduced pathway and host metabolism is small, it reduces the chances that a high-yielding integrated
combination of pathway and host cell metabolic network can materialise. It doesn’t exclude the possibility
of high yield, but it makes it less likely and prone to higher metabolic instability.
These results suggest that it would be possible to determine a stoichiometrically “optimal” ATP/NAD(P)H
ratio for each pathway in relation to the rest of the network, providing insights into the yield and cofactor
profiles of optimally balanced strains. This analysis helps define both the optimal balance and the level
of imbalance in a particular metabolic engineering design, which is indicated by the distance between
the optimal solution and the current solution. The smaller this distance is, the closer the current design
is to the optimum achievable by the biosynthetic pathway. Knowing this, pathway engineering can be
theoretically guided both in terms of selecting the optimal host strain background and by indicating the
cofactor robustness of the pathway and likelihood that high yield is achieved. This information opens
up a new horizon for further metabolic engineering adjustments that can potentially lead to more rapid
implementation of high-yielding production strains.

5.4 Chapter summary

This chapter presents the first attempt at developing a stoichiometric-modeling-based cofactor Balance
Assessment (CBA) protocol to monitor cofactor usage and its system-wide impact on cell behaviour and
the design of optimal catalysts. With this, metabolic engineering designs can be selected based not only
on the highest yield achievable but on knowledge of the stress imposed by cofactor metabolism. The CBA
protocol describes cofactor (im)balance as the fraction of cofactor diverted to biomass, maintenance or
waste, instead of target production, and captures how organisms may be limited by pre-existing redox
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Figure 5.9: aerobic butanol rates (mmol gDW−1hr−1) of engineered E.coli strains in response to
changes in ATP and NAD(P) demands. Each model represents a unique pathway variant for butanol
production, which has previously been manually-curated and optimized for the selected objective under aerobic
conditions. (A) BuOH-0 model, comprised of route AtoB + AdhE2; (B) BuOH-1, including reactions NphT7
+ AdhE2; (C) tpcBuOH made up of AtoB + TPC7; (D) BuOH-2, comprising reactions NphT7 + TPC7.



Figure 5.10: anaerobic butanol rates (mmol gDW−1hr−1) of engineered E.coli strains in response
to changes in ATP and NAD(P) demands. Each model represents a unique pathway variant for butanol
production, which has previously been manually-curated and optimized for the selected objective under aerobic
conditions. (A) BuOH-0 model, comprised of route AtoB + AdhE2; (B) BuOH-1, including reactions NphT7
+ AdhE2; (C) tpcBuOH made up of AtoB + TPC7; (D) BuOH-2, comprising reactions NphT7 + TPC7.



and energy constraints. Only three elements are used as inputs in this modelling framework: (1) the
stoichiometry of cofactor related metabolic reactions, (2) measured intracellular fluxes and (3) a set of
reactions leading to target optimization. The contributions of ATP and NAD(P)H to biomass, target
production, waste release or maintenance can then be estimated as the sum of fluxes of all cofactor related
reactions consuming and/or producing such cofactors.
The CBA function hinges on the following assumptions. First, it relies on ATP and NAD(P)H track-
ing, whilst all other cofactors are not considered. Selecting ATP and NAD(P)H amongst all available
cofactors was a reasonable approach because, after all, they are three of the most widely used and widely
connected cofactors, and therefore their availability (or lack therefore) will have a considerable impact
on bioproduction. By only considering ATP and NAD(P)H it was possible to simplify the development,
testing and interpretation of results. Nonetheless, the flexibility of the COBRApy environment allows
for the CBA protocol to be modified to consider alternative cofactors or to be amplified to incorporate
further cofactors into the analysis in the future. Second, CBA also assumes that NADH and NADPH
are interchangeable. In reality, NADH and NADPH are chemically and biologically distinct, but CBA
accounts for the consumption and and production of these two cofactors in an overall “redox” category,
instead of having two separate groups. This approach eased the redox classification, especially given that
the transhydrogenase system is allowed to freely channel electrons between the two cofactor pools when
needed. Computationally, however, this classification had no impact on the behaviour of the system itself,
i.e. the models and their corresponding solutions do not change as a result of this joint categorisation,
it only affects the way in which results are presented. Finally, it is also assumed that only biomass, cell
maintenance, target and waste release contribute to cofactor usage. For biotechnological purposes, it is
reasonable to assume that these categories are generally the key areas of focus for cofactor flux evaluation,
enabling a systematic comparison between the amount of cofactor flux being put towards target production,
compared to everything else. Tracking the waste and biomass profiles is particularly relevant, as it enables
us to discern the extent of cofactor excess that is currently imbalanced by the system. Nonetheless, this
particular categorisation approach is not fixed, and it would accept modifications and expansion both on
the nature and number of categories, particularly when regulatory or transcriptional data is incorporated
into the constraint-based modelling approach, or when moving into more complex systems such as yeast,
which may require a categorisation scheme that incorporates compartmentalisation.
These results suggest that introducing cofactor-balanced pathways reduces the burden placed on the rest of
the metabolic network. They also indicate that ATP and NAD(P)H balance cannot be assessed in isolation
from each other, or from the balance of additional cofactors, such as AMP and ADP. A manual curation
method was also evaluated whereby solutions were constrained to reduce their flexibility. I showed that
subject to appropriate constraints, solutions had no apparent futile cycles, but it is vital that we do not
forget FBA’s flexible nature and optimistic estimates when using this in silico approach.
In this chapter, I also present an approach whereby the “optimal”, artificial cofactor stoichiometry can
be directly compared to the stoichiometry of the existing design to gain an understanding of the level of
imbalance presented by the design under evaluation, providing insights into the yield and cofactor balance
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sweet spot of engineered strains. Identifying the optimal balance is especially relevant when narrowing
down pathway variants, as identification of the most efficient and robust pathway for target production
becomes an essential step in the design approach. I believe it is very important to understand how far an
existing synthetically modified organism’s cofactor profile may be from the optimal, as diverging away from
the optimal profile represents non-optimally balanced solutions. These results indicate that it is possible
to substantially increase target production if we modify the ATP and redox demands of the introduced
pathway(s). This information opens up a new horizon for further metabolic engineering adjustments
that can lead to better yields, whereby strategies reviewed in Chapter 2, such a synthetic build-up of
NAD(P)H/ATP or a synthetic sink for NAD(P)H/ATP, could be introduced into the system to better
cater to the optimal network-wide cofactor profile.
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6
Energy and Redox Perturbations for Enhanced

Bioproduction
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6.1 Introduction

In Chapter 5, I presented the CBA protocol, a COBRA-based modelling framework for the study of cofactor
balancing at the network-scale. CBA elucidates how a synthetic pathway’s cofactor demands integrate with
the wider metabolic network. Thus, CBA informs the earlier stages of pathway selection by distinguishing
cofactor-efficient pathways from more wasteful pathways prior to experimental implementation.
The results from the CBA protocol brought about two significant outcomes warranting further investigation.
First, it emphasised the importance of not considering energy and redox in isolation from each other, or even
from the roles of additional cofactors, such as AMP and ADP. It is widely understood that the biochemical
roles of ATP and NAD(P)H are tightly connected through selected metabolic nodes, for example, through
ATP generation from oxidative phosphorylation, which is fueled by NADH from the ETC. Furthermore,
both cofactors are needed for biomass production. Despite their inherent interdependence, the field has
continued to study ATP and NAD(P)H as isolated entities, providing in the process only a partial insight
into their regulatory potential (Please refer to Chapter 2 for a detailed review of the literature). Secondly,
the CBA results were also characterised by the dissipation of surplus redox and energy through futile
cycling. Both under aerobic and anaerobic conditions, models responded to surplus ATP and NAD(P)H
by activating reaction pairs that could consume any excess cofactor (Figure 5.4). One such commonly-
appearing futile cycle was that involving anaplerotic reactions PCK and PPC, which has been shown
to dissipate excess ATP when overexpressed experimentally (Chao and Liao, 1994b), but whose native
components seem to be tightly regulated in reality (Yang et al., 2003).
Therefore, in this chapter, I set out to answer some of these questions from the in silico analysis using wet
lab experiments. Specifically, what is the effect of the ATP synthase (ATPs) knockout on cellular energy
and redox? How does the presence or absence of PCK affect futile cycling? Is there even any futile cycling
in E.coli? And, can these cofactor-related perturbations be harnessed to improve ethanol bioproduction in
E.coli?

6.1.1 Chapter overview

In Chapter 6, I first investigated the coordinated roles of ATP and NADH, and the existence of futile
cycling in E.coli by evaluating the physiological and metabolic responses of E.coli to cofactor perturba-
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tions implemented by knocking out: (i) the ATP synthase operon (ATPs), the node linking redox and
energy metabolism; and (ii) PCK, which is involved in the PCK-PPC anaplerotic futile cycle (Figure
6.1). To characterise the strains, a growth analysis was performed. Furthermore, the absolute central
carbon metabolism fluxes of the wild type and mutant strains were estimated relative to their extracellular
glucose uptake rates using a labelling experiment and metabolic flux analysis (MFA) using the software
WUFlux (He et al., 2016). Next, these cofactor manipulations were further studied in combination with
an ethanol-producing plasmid system to assay their effect on ethanol bioproduction.
With this study, I thus proposed that, in order to achieve any desired metabolic changes in an engineered
system, it is crucial to first understand the effect of cofactor-related modifications on the cell’s native
system, before using them as optimisation strategies for bioproduction of target products.

6.2 Results

6.2.1 Target energy and redox manipulations

To answer the above research questions, I selected the ATPs operon and PCK genes as knockout targets
to trigger perturbations at the protein (and cofactor) level (Figure 6.1).
The ATPs enzyme catalyses ATP formation using the free energy conserved as a proton motive force across
the bacterial inner membrane by the electron transport chain (simplified as Equations 6.1 and 6.2).

ATPase : NADH+ ADP+ Pi → 3ATP (6.1)

ATPase : FADH2 + ADP+ Pi → 2ATP (6.2)

Unlike Holm et al. (2010), where an evaluation of the regulatory effect of energy and redox was performed
through the heterologous overexpression of water-forming NADH oxidase and the soluble F1 component
of the ATPs enzyme, in this study I wanted to assess the regulatory effect of truncating the connecting
node between energy and redox on cofactor availability. In particular, what is the regulatory effect of
ATP availability (or lack thereof) on central carbon metabolism? Enforced ATP dissipation has been
previously reported to stimulate substrate-level phosphorylation in other areas of metabolism to rebalance
the intracellular ATP supply, namely by glycolysis and ATP-producing acetate formation (Hara and Kondo,
2015, Holm et al., 2010, Kihira et al., 2012, Koebmann et al., 2002).
Alternatively, a knockout of the PCK gene was also implemented (Equation 6.3). PCK is a crucial com-
ponent in anaplerotic metabolism, substantially studied previously in the context futile cycling, which
involved the heterologous overexpression of PCK in conjunction with PPC (Chao and Liao, 1994b, Patnaik
et al., 1992). Apart from the Keio collection knockout (Baba et al., 2006) and the study of its regulated
activity in Yang et al. (2003), the physiological and metabolic responses of this knockout have not been
further studied. I would have presumed that, if PCK futile cycling existed in wild type E.coli under normal
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Figure 6.1: Knockout targets selected in this study. (1) The PCK knockout eliminates the scope of a
potential PCK-PPC ATP futile cycle to rebalance any ATP surplus; and (2) A full knockout of the ATP synthase
operon prevents ATP production through oxidative phosphorylation, interferes with the main link between ATP
and NADH and also potentially redirects flux through glycolysis, as a means to produce ATP via substrate-level
phosphorylation instead.

conditions, the PCK knockout would instead activate futile cycling elsewhere to dissipate the excess ATP.
This is because if there is no PCK activity, the system would need to find an alternative means to burn
the surplus energy. This presumption arose from my in silico observations, in which excess energy and
redox led to a whack-a-mole behaviour upon constraining high-flux futile cycles, as discussed in detail in
Section 5.3.3.

PCK : oxaloacetate+ ATP → phosphoenolpyruvate+ ADP+ CO2 (6.3)

The two knockout strains PCK and ATPs were constructed using the method specified by Jensen et al.
(2015), and validated as suggested by Datsenko and Wanner (2000), following the method outlined in figure
6.2. For more information, please refer to Section 3.2.5 (Chapter 3). Figure 6.3 shows successful KanR

cassette amplification (A), gene deletion (B) and cassette removal (C) for the ATPs strain. The PCK
strain had been previously generated in an earlier study (Ripoll Sanchez, 2018) and was thus only subject
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Figure 6.2: Gene deletion method, following (Jensen et al., 2015) and (Datsenko and Wanner, 2000).
(A) recombination primers are designed to include (i) a 20bp priming region which binds the FRT-flanked ends of
the KanR cassette in plasmid pKD13, as well as (ii) a 50bp homology region which binds upstream/downstream
of the target gene(s) to be knocked out; (B) PCR product is created by polymerase chain reaction (C) gene
deletion is performed by electroporation of the PCR products, which then integrate by recombination of the
50bp homology arms with the target gene(s) (D) KanR cassette removal is performed through the induction of
a fippase gene that recognizes the FRT regions of the cassette.

to cassette removal validation with Colony PCR and sequencing analysis (Figure 6.2.D). Please refer to
Appendix D Figures 1-6 for sequencing validation results.
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Figure 6.3: Gene Delection Implementation. (A) PCR amplification of pKD13’s KanR casette with ATPs-
complementary arms (100% amplification efficiency, n=4); (B) Gene deletion of the ATPs operon by elec-
troporation of KanR PCR product using 250ng PCR product for electroporation. Three primer combinations
(labelled PS1, PS2 and PS3 here) were used to confirm amplification. 40% of the colonies checked using this
procedure contained the correct knockout mutation (n=5); (C) PCR validation of ATPs cassette removal. 80%
of rhamnose-induced colonies got the antibiotic casette successfully removed (n=5); (D) PCK cassette removal
validation.75% of colonies tested were positive.

6.2.2 Growth and secretion product profiles show physiological responses to
cofactor perturbations

To assess the physiological responses to changes in cofactor metabolism, the wild type and mutant strains
were subject to a 10h growth assessment in M9 minimal medium (Section 3.2.6.2, Chapter 3). Figure
6.4.A shows the growth profile, as OD600 measurements over the 10h incubation period, of the WT and
knockout strains ATPs and PCK. As expected, the WT strain was the best growing strain, followed by
PCK, and finally by ATPs. The specific growth rate of the ATPs strain decreased by 11% compared to the
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Table 6.1: Physiological parameters and external fluxes (shown as mmol gDW−1 hr−1) of WT and
mutant strains ATPs and PCK. Timepoints used for calculations were 4h and 8h for WT and PCK and 6h
and 10h for ATPs. μ is the growth rate (h−1). Glucose (glc), acetate (ac), formate (for), succinate (suc), lactate
(lac) and ethanol (Etoh) concentrations were measured using high-performance liquid chromatography (HPLC).
Values are given as the mean SD n= 4. n.d.: Not detected.

Wild Type ATPs PCK

μ ( h−1) 0.376 ± 0.017 0.333 ± 0.015 0.375 ± 0.015

Vglc 8.325 ± 1.548 21.047 ± 1.479 9.824 ± 0.380

Vac 2.934 ± 0.594 11.102 ± 0.133 1.755 ± 0.418

Vetoh 0.424 ± 0.100 1.096 ± 0.068 n.d.

Vlac 0.100 ± 0.116 n.d. 0.105 ± 0.122

Vfor n.d. n.d. 0.270 ± 0.113

Vsuc n.d. n.d. 0.051 ± 0.010

reference, which is a smaller decrease than previously reported in a separate study that overexpressed a
heterologous soluble F1-ATPase to decrease the intracellular cellular ATP pool (Holm et al., 2010). These
results suggested there could potentially have been issues with oxygenation during the growth evaluation,
which may have negatively impacted the growth of the WT strain. The PCK mutation appeared not to
have a no major effect on growth rate compared to WT.
Figure 6.4.B shows that both mutants increased their glucose consumption rates. More specifically, ATPs
presented a considerable increase glucose uptake rate of 82%, compared to the WT. Certainly, one of the
effects of lower ATP availability could be the increase in the specific substrate uptake rate. In principle,
the cell might counteract the loss of ATP completely by increasing the substrate uptake rate by the amount
required to synthesize the lost ATP (so that the growth rate is not impaired) (Hädicke and Klamt, 2015).
However, the observed increased substrate uptake rates upon ATPase shutdown could not completely
restore the original growth rate (Figure 6.4.A). Similarly, faster glucose consumption in the PCK strain
did not seem to be channeled towards higher growth. What was most striking about the ATPs strain
was the level of acetate overflow (Figure 6.4.C), which almost doubled with respect to the WT, whereas
it decreased by 31.5% in the PCK strain. This seems to be an example of overflow metabolism. Small
amounts of other acids were also measured (Figure 6.4.D-G).

6.2.3 Metabolic flux redistributions of the PCK and ATPs strains

To elucidate the impact of the knockouts in the internal flux redistribution, I estimated the internal fluxes
of both the wild type and mutant strains using a tracer experiment and 13C metabolic flux analysis (13C-
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Figure 6.4: Growth curve and uptake and secretion measurements of WT and knockout strains ATPs
and PCK. Data was gathered over a 10h labeling experiment, with samples taken every 2h-4h. (A) Growth
analysis shown as averaged OD600 measurements (n=4) over time.



MFA, or simply MFA). The experimental procedure, performed following the widely recognised protocol
by Zamboni et al. (2009) summarised in Figure 6.5, can be widely subdivided into the following three
steps. First, a growth experiment using [1–13C] and [U–13C] labelled D-glucose was performed to label
the cell’s protein and detect the 13C-labelled amino acids using GC-MS. Amino acid fragment patterns
were quantified, corrected for natural abundance of isotopes, and fed into the MFA software WUFlux (He
et al., 2016) for further flux analysis. Metabolic fluxes (Appendix F Table 16) were estimated using best-
fitting techniques, relative to the measured glucose uptake rates, fermentation product secretion profiles
and growth rates (Table 6.1). The best fit and standard deviations are shown in Figure 6.6. Please refer
to Section 3.2.6.1 (Chapter 3) for a more detailed outline of this procedure.
The WT flux map (Figure 6.6.A) was characterised by significant glycolytic flux during the exponential
growth phase, and flux diversions into PPP, the TCA and glyoxylate cycles. About 26% of glucose went
into the PPP, while flux through the citrate synthase (CS) and aconitase (ACONT) reactions in TCA
accounted for 23% of glucose consumption. This was moderately higher than reported in earlier studies
(Chen et al., 2011, Fischer et al., 2004, Nicolas et al., 2007). Interestingly, no flux was recorded through
the PCK reaction, suggesting that, under this particular set of conditions, there was no evidence of futile
cycling between PCK and PPC. From the literature, it appears that the role of conditions is relevant in
futile cycling. For example, environmental or even genotypic and strain-specific conditions are likely to
have a major impact on the experimental setup, subsequent observations, and therefore ultimately also the
conclusions. While I sampled in batch conditions and during exponential growth (i.e. at pseudo-steady
state for flux analysis purposes), Yang et al. (2003) reported considerable futile cycling rates using across
fed-batch cultures with increasing dilution rates (Yang et al., 2003). It is very possible that there will be a
range of conditions where no futile cycling is observed, and some conditions were it is. But, how could this
be approached experimentally? One possibility could be to gradually upregulate ATP production under
the control of an inducible promoter and evaluate the effect of this on central and overflow metabolism,
and similarly gradually reduce ATP production, either using the soluble F1-ATPase which hydrolyses ATP
(Holm et al., 2010), or through the supply of partial or absolute ATPase inhibitors (Dadi et al., 2009,
Nakanishi-Matsui et al., 2016).
Another interesting observation from the WT was that there was no or very little flux flowing between
metabolites α-ketoglutarate (AKG) and succinate (SUC), indicating that the tricarboxylic acid (TCA) cycle
was incomplete. Chen et al. (2011) reported similar observations, while Nicolas et al. (2007) and Fischer
et al. (2004) observed complete TCA cycles. To support their findings, Chen et al. (2011) performed
an additional CO2/HCO3 labelling experiment and FBA modelling blocking flux through AKGDH and
SUCOAS to zero, which showed no major effects on growth rate. Although I was unable to perform
additional validation, their findings support the plausibility of this study’s results. Furthermore, the fact
that TCA reactions AKGDH and SUCOAS produce both ATP and NADH (which aerobically can be
converted into additional ATP), raised the question of whether the lack of complete TCA activity may be
reflecting the lack of oxygenation, noted previously due to the lower WT growth than expected (Section
6.2.2). When I measured the growth rate of the WT, it was found to be around 37% lower than the rate
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predicted by pFBA, if this was simulated at the same glucose uptake rate as experimentally measured
(Table 6.1). As Chen et al. (2011) also point out, lower oxygenation could be decreasing the rates through
oxidative phosphorylation, which would reduce the regeneration of NAD+ through the electron transport
chain and subsequently lower production of additional NADH, hence the modest TCA cycle fluxes seen in
the flux map through ATP and NADH-producing reactions.
However, these observations would require further validation through additional labelling experiments with
increased oxygenation, measurements of gas exchange, and even transcriptional analysis as suggested by
Chen et al. (2011).
Moving on to the PCK strain in Figure 6.6.B, metabolic flux analysis revealed that abolishing PCK activity
increased the glucose uptake rate by 75% to 10.204 mmol gDW−1 hr−1, but this did not translate into higher
growth rate. The PCK knockout was estimated to produce lower biomass per glucose consumption, and
presented increased glycolytic and PPP flux, though fluxes remained proportional to the change in glucose
uptake, with upper glycolysis processing about 72% of total glucose, lower glycolysis constant at 175%
total glucose, and PPP at 26-27% glucose, in line with WT. Previous observations from fed-batch cultures
recorded PCK-PPC futile cycling of up to 8% of the total ATP produced in the WT, and a consequent
decrease in flux through PPC and an increase in glyoxylate activity as a result of the PCK knockout (Yang
et al., 2003). In contrast to these findings, no futile cycling between PCK and PPC was experimentally
estimated in the WT, either by Chen et al. (2011) or in this work, neither was futile cycling captured by
pFBA simulations in the WT in aerobic conditions. I also notice that the PPC flux doubled, while the
TCA and glyoxylate activity decreased with respect to the WT.
The PCK knockout appeared to trigger higher PPC fluxes into the TCA cycle and upregulation of the
malic reaction flux driving the flux back out of TCA towards pyruvate formation (PYR). Even though
it was previously highlighted that futile-cycling could be condition-specific, this distinct cyclic behaviour,
not captured in the WT strain, would simply not occur as a result of knocking out a gene allegedly
inactive in the wild type. Therefore, although inconclusive, this observation suggested that there was
also a possibility that the labeling experiment was not resolving PCK activity, resulting in the MFA data
prep and analysis algorithms not being detecting the reaction in the WT. The use of alternative MFA
softwares, such as FiatFlux (Zamboni et al., 2005), could help answer this question. The cyclic behaviour
between phosphoenolpyruvate (PEP), oxaloacetate (OAA) and malate (MAL) also seemed to suggest that
PCK activity is in fact more intricate and complex beyond mere futile cycling to waste ATP. After all,
PCK is one of the key players controlling the concentrations of PEP and OAA. PEP controls glucose
uptake by regulating the activity of the phosphotransferase (PTS) system. It also regulates the reactions
catalyzed by phosphofructokinase (PFK), pyruvate kinase (PYK) and PPC. High PEP downregulates
glucose uptake and upregulates pyruvate kinase, which produces ATP. Thanks to PCK, PEP can be
regenerated gluconeogenically from the TCA cycle when its concentration drops. This is supported by the
fact that PCK overexpression showed lower glycolysis activity (Kwon et al., 2014). Abolishment of PCK
activity could be leading to a drainage of PEP (hence the higher glucose uptake, which is ATP-consuming)
and an inability of PEP carboxylase to fulfil the anaplerotic balancing between PEP and OAA, thus
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Figure 6.5: Workflow for 13C MFA. [1–13C] and [U–13C] labelled D-glucose were selected as tracers for a
10h parallel labelling experiment. Meanwhile, 1mL samples were taken every 2h for growth and secretion
product evaluation using high-performance liquid chromatography (HPLC). Labelled cultures were prepared
by hydrolysing the protein and derivatizing the amino acids. Labelled amino acid fragments were detected
using GC-MS and quantified. Finally, data was corrected and fed into WUFlux (He et al., 2016) for metabolic
flux estimation, using the measured growth rate, glucose uptake and metabolite secretion rates as constraints.
Goodness-of-fit measurements as well as confidence intervals for the internal fluxes were obtained (figure adapted
from Zamboni et al. (2009)).

engaging the malic enzyme to restore metabolite concentrations via a non-ATP-producing route towards
pyruvate.
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This three-way cycle between PEP-OAA-MAL is suggestive of two propositions. The first proposition
is that the ATP-consuming role of PCK is somewhat restored through the uptake of additional glucose
(which is ATP-consuming), and the diversion of flux through OAA and MAL, with a consequent reduction
in enolase activity (which is ATP-producing). Second, PCK appears to have a fundamental regulatory role
that is not simply to waste ATP via futile cycling, but instead to regulate metabolite pools and anaplerosis.
Indeed, these results suggest that there is an inherent interplay between these reactions as a result of the
PCK knockout, suggesting a more significant role beyond mere regulation of energy pools. Yang et al.
(2003) also suggested that PCK’s role in balancing metabolite concentrations may be more significant than
its role in regulating of the ATP/ADP ratio. Nonetheless, the inferences made from the present flux study
cannot be concluded upon until they are further supported with measurements of metabolite concentrations
and enzyme activity.
Finally, Figure 6.6.C displays the flux map of the ATPs mutant. This strain was characterised by a 3-fold
increase in glucose consumption with respect to the wild type, and high glycolytic flux. Upper and lower
glycolysis were about 15% and 20% higher in ATPs than WT, respectively, consistent with less efficient
use of carbon for biomass production (growth). Furthermore, no or very little flux was recorded through
PPP and the relative TCA cycle activity decreased by 15% in ATPs relative to the WT, indicating that
the higher glycolytic flux in ATPs was mostly being released as acetate in ATP, instead of being redirected
into the TCA cycle. Interestingly, nonetheless, the flux through the glyoxylate cycle was 22% of glucose
uptake in the ATPs strain, compared to 17% in the WT. Acetate overflow was 17.2% of the total glucose
consumed in the PCK strain with respect to 43.2% in the WT, a 40% decrease between these two strains,
while it was 56% of the total glucose in the ATPs strain.
The faster operation of glycolysis in the ATPs strain also led to flux redistributions around key branch
points. At the phosphoenolpyruvate and pyruvate branch points, which produce pyruvate from phospho-
enolpyruvate via pyruvate kinase (PFK) and acetyl-CoA from pyruvate via the pyruvate dehydrogenase
reaction (also known as PDH), the flux increased by 107% and 103%, respectively in the ATPs strain. This
prominent increase in flux through these two branchpoints, which produce key metabolic precursors and
building blocks for many bioproduction pathways was an exciting finding from a metabolic engineering
perspective, suggesting that this strain’s flux redirection could prompt an increase in flux for any pathways
relying on these precursors as a starting point.
These observations are supported by the findings in Holm et al. (2010), which showed that hijacking ATP
production by overexpressing the soluble F1-unit of the ATP synthase which constantly consumes ATP
without pumping protons was shown to increase substrate uptake, glycolytic flux and decrease biomass
production under aerobic conditions. Furthermore, it is somewhat not surprising that the flux map of
ATPs somewhat resembles that of Chen et al. (2011)’s anaerobic E.coli. In the absence of oxidative
phosphorylation, the ATPs strain effectively works as a pseudo-anaerobe, an E.coli strain that can be
grown in oxic conditions but behaves like an anaerobic organism, with most of the pyruvate consumed
as acetate to restore the energy balance through ATP production, byproduct release to regenerate the
NAD+ to allow central metabolism to continue (Ingram et al., 1987), and a remarkable increase in the
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transhydrogenase flux to restore the NADH and NADPH ratios (Fuhrer and Sauer, 2009) (Appendix F
Table 16).

6.2.4 ATPs and PCK as platforms for ethanol production in E.coli

Both the ATPs and PCK strains were characterised by higher glucose uptake rates, higher glycolytic
activity, metabolic readjustments geared towards reduced ATP burning, and what appeared like a flux
redirection to regenerate metabolite pools across key metabolic branch points. We know from Dugar and
Stephanopoulos (2011) that pathways that are ATP-neutral or ATP-producing are deemed inefficient from
a yield perspective because they generate excess ATP either through the pathways themselves or through
surplus across the glycofermentative network, and any excess energy must be consumed elsewhere, often
through either the activation of futile pathways or excess biomass production. I therefore wondered whether
the ATPs and PCK strains could serve as attractive platforms for enhanced bioproduction of ATP-neutral
and/or ATP-producing pathways for the production of targets that are more reduced than pyruvate, in
order to create redox and energy coupling between target production and cellular growth.
To answer these questions, I turned to ethanol production as a proof-of-concept. Ethanol is the number
one biofuel, used prominently in the transport industry as an environmentally friendly renewable additive
(and potential alternative) to gasoline (Larsen et al., 2009). It is produced mostly from fermentation
of conventional feedstocks, and its production is expected to reach 104bn liters in 2020 (International
Energy Agency, 2018). Ethanol demand increased drastically between 1975 and 2003, and because of
its potential to adversely affect feedstock availability, ethanol production soon became another landmark
biotechnological reality (Ingram et al., 1999, 1987). Today, ethanol production is the main biotechnological
application of yeast (Semkiv et al., 2016), but many other organisms have been tested for production at
high productivity and yields (Zhou et al., 2008), so its pathway biochemistry is very well understood. For
these reasons, it seemed like a sound starting point to gain further understanding of the behvaiour, growth
profile and dynamics of the ATPs and PCK strains in a bio-production setting.
Therefore, in this section, a study was conducted to assess ethanol bioproduction capabilities in four dif-
ferent strains of E.coli: the WT strain (with no gene deletions), the ATPs strain (full knockout of the
ATPase operon), the PCK strain (full knockout of the PCK gene) and a ATPs-PCK strain (a double
knockout strain containing full gene knockouts of the ATPase operon and PCK gene). Because the final
ethanol yield could be adversely affected by the release of alternative fermentation products, the excre-
tion of organic acids formate, lactate, acetate and succinate was also monitored as a function of glucose
consumption (Figure 6.7.A). Enhanced ethanol production was achieved by introducing the pyruvate decar-
boxylase gene from Zymomonas mobilis as an IPTG-inducible vector system, which was evaluated against
an empty-vector control (Figure 6.7.B). In other words, two strategies were simultaneously evaluated to
enhance ethanol overproduction, namely targeted gene knockouts of select genes and transformation of a
heterologous plasmid system.
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Figure 6.7: Biosynthetic pathway of ethanol in engineered E. coli . (A) Relevant metabolic routes for in
vivo production of ethanol in E.coli, and relevant fermentation products monitored in this study. (B) Plasmid
construct used for ethanol production (hereinafter known as PDC), and the empty vector control (hereinafter
known as pCDF).

6.2.5 ATPs marginally improves ethanol bioproduction in E.coli

I began the ethanol bioproduction assay by first comparing ethanol production across the WT and ATPs
strains. Briefly, to enable ethanol overproduction in E.coli, I electroporated the pCDF empty vector and
PDC expression vector into the WT and ATPs mutant strains, as per Section 3.2.5. First, I wanted to
understand the differences across the WT and ATPs strains of varying protein stability and its impact on
ethanol production. I thus evaluated growth and ethanol production at varying levels of protein expression.
Briefly, 3 biological replicates were grown in 25mL of M9 minimal medium with 2% (w/v) glucose at 37◦C
and 180 r.p.m. for 4h before inducing with 0.25mM, 0.5mM or 0.75mM IPTG and incubating for 48h at
30◦C and 150 r.p.m.
Figure 6.8 shows the growth profiles (as OD600 over time), glucose consumption and ethanol production of
the WT and ATPs harbouring the pCDF and PDC plasmids after protein expression with three different
levels of inducer. The growth of the WT and ATPs strains did not seem to be significantly affected by
the IPTG concentration. It was expected that the growth of the ATPs strain would be severely impacted
during bioproduction, due its inherent mutation as well as the enhanced expression of a heterologous system.
However, similarly to observations made during the labelling experiment previously (see Section 6.2.2), the
difference in growth between the WT and ATPs was not as sharp as would have been expected, suggesting
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Figure 6.8: Protein expression evaluation of ethanol bioproduction strains WT and ATPs. Ethanol production was
assayed by inducing 3 biological replicates with 0.25mM, 0.5mM or 0.75mM IPTG and cultivating them in M9 minimal
medium + 2% (w/v) glucose for 48h. Samples collected 24h and 48h after induction. (A) growth profiles of WT and
ATPs strains over the 48h incubation period. The red arrow indicates the Induction Point (IP), at the 4h timepoint.
Empty-vector controls were also made but not included in the figure; (B) glucose consumption for strains in A over the
48h incubation period. To calculate glucose consumption, the glucose in the medium was measured at 24h and 48h, an
subtracted from the initial glucose concentration in order to determine how much glucose was consumed at the relevant
time points; (C) Ethanol titer (in mM) for strains in A at 24h and 48h timepoints. Titer measures the amount of ethanol
in the medium; (D) Ethanol yield (as mol/mol glucose) for strains in A at the 24h and 48h timepoints. Ethanol yield
indicates mol of ethanol in the medium per mol glucose consumed by the culture.



once again the possibility that the experimental setup could have suffered from a lack of oxygenation,
which should be addressed in future studies. With respect to glucose consumption (Figure 6.8.B), it was
somewhat not surprising to record considerable increases in glucose consumption upon expression of the
PDC systems with respect to the reference strains, both in the context of the WT and ATPs strains, given
that PDC overexpression would require the influx of additional carbon.
Ethanol excretion is shown as titer (mM in the medium, Figure 6.8.C) and yield (mol ethanol per mol
of glucose consumed, Figure 6.8.D). The best performing ATPs strain was grown with 0.25mM IPTG at
48h, both in terms of titer (22.825mM) and yield (0.357mol/mol glucose). In contrast, the WT strain
that produced the highest titer at 48h after induction with 0.25mM IPTG, but when the ethanol in the
medium was normalized per mol of glucose consumed, the best performing strain in terms of yield was in
fact the strain incubated with 0.5mM IPTG at 48h, so because this achieved a higher ethanol production
per unit of carbon, I decided to proceed for further analysis using 0.5mM IPTG as the selected inducer
concentration. It is also noteworthy that there were also clear physiological differences across the strains.
This is illustrated by differences in growth in relation to ethanol production. The yields for the WT
remaining fairly constant across the 24h and 48h timepoints, while the ATPs strain seemed to perform
better (both in terms of yield and titer) at the 48h timepoint. This is likely stemming from the fact that
ATPs grows considerably slower, so ethanol is more likely to accumulate over longer periods of incubation
that the wild type.
Once the optimal inducer concentration was selected, I analysed ethanol production across the best pro-
ducing WT and ATPs strains, in comparison to the reference and empty-vector strains. Figure 6.9.A
illustrates the growth curve of the reference and empty-vector pCDF strains, as well as the WT and ATPs
strains bearing the PDC system. Interestingly, the ATPs strains harbouring the plasmid systems grew
better than the reference ATPs strain to some degree. Figure 6.9.B shows the glucose consumption of
these strains over the 48h incubation period. Both the WT and ATPs strains harbouring the PDC system
consumed considerably more glucose than the controls, as expected.
All strains of E.coli including the PDC system resulted in enhanced ethanol titer and yield with respect to
the reference (no plasmid) strains and empty-vector controls (Figure 6.9). PDC-driven ethanol production
in the WT strain reached a yield of 0.326 ± 0.016 mol/mol glucose and titer of 18.316 ± 1.310 mM after 48h,
with respect to a yield of 0.130 ± 0.009 mol/mol glucose and titer of 5.401 ± 0.411 mM for the reference
strain (P ≤0.005). Expression of the PDC vector system into the ATPs strain boosted the yield and titer
up to 0.357 mol/mol glucose and 22.825 ± 1.314 mM, respectively, with respect to the reference strain (P
≤ 0.005). Ethanol yield in the ATPs strain was 9% higher than in the WT strain overexpressing PDC (P
≤ 0.01) and reached 70% of the theoretical maximum (Yang et al., 2014). This illustrates that the ATPs
strain can increase the product yield further than the wild type, and although results were statistically
significant, improvements were small. Previous work by Yang et al. (2014) on the overexpression of PDC
and ADHb for homoethanol expression in E.coli showed that while TCA and ethanol production proteins
were dramatically upregulated in their PDC strain with respect to the wild type, glycolytic proteins were
down-regulated, which was an interesting observation given that glycolysis is the main route towards ethanol
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Figure 6.9: Ethanol bioproduction evaluation of best producing WT and ATPs strains. The WT strain
bearing the PDC system was induced with 0.5mM IPTG, while the ATPs system was induced with 0.25mM IPTG
at the Induction Point (IP) indicated by a red arrow at the 4h timepoint. (A) growth profiles, as OD600 over
time (h), of WT-PDC, ATPS-PDC and their corresponding empty-vector and reference (no plasmid) controls.
Non-induced controls were excluded. Strains were cultivated for a total period of 48h.; (B) glucose consumption
for strains in A; (C) Ethanol yield, as mol ethanol per mol glucose, for strains in A. Samples were taken 24 and
48h after induction with the selected inducer concentrations. Asterisks indicate significant difference between
independent samples (* P ≤ 0.05; *** P ≤ 0.005). Data is illustrated as the average from 3 biological replicates
and the error bars represent the standard deviation across biological replicates of the same sample.

production. Similar observations were reported in yeast, where higher ethanol concentrations produced
anaerobically from pyruvate inhibited glycolytic activity (Ghiaci et al., 2013). Nonetheless, Yang et al.
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Figure 6.10: Carbon profile of best producing WT and ATPs strains. The WT strain bearing the PDC
system was induced with 0.5mM IPTG, while the ATPs system was induced with 0.25mM IPTG. Secretion
profiles were assessed by collecting samples every 24h and performing High-performance liquid chromatography
to detect the most common fermentation products in E.coli: ethanol, acetate, succinate, formate and lactate.
(A) product profile at 24h; (B) product profile at 48h.

(2014) achieved a 0.449 g/g glucose yield (88% theoretical yield), and propose to focus on the overexpression
of glycolytic proteins to enhance ethanol production further. To our benefit, the ATPs knockout naturally
boosts glycolytic activity without the need for further modifications. Nonetheless, I show in this study that
the higher glycolytic flux in the ATPs strain only yielded marginal yield improvements. Yang et al. (2014)
report 99 significant changes in protein expression during PDC-drive ethanol overproduction, including
an upregulation of TCA activity as well as the coordination of changes needed for the cells to adapt to
internal and external environments with high ethanol content. It is very likely that these changes are
posing an added pressure on the ATPs strain, which already must handle its stringent energy metabolism
requirements as a result of the ATPs knockout, which could be translating into marginal improvements in
ethanol production.
I also wondered whether additional carbon was being dissipated by the ATPs strain, so I examined the
mass balance i.e. products in the medium as a function of the glucose consumption (Figure 6.10). The
first important observation was that while the ATPs control strains produced considerable acetate, as was
expected from the earlier flux analysis, engineered ATPs strains overproducing ethanol did not, which was
unexpected but not unreasonable. It is possible that the ethanol-producing ATPs did not produce any
acetate because it simply did not need it, as overproduction of ethanol is ATP-neutral and enough ATP is
possibly being generated by the higher glycolytic flux which guarantees biomass maintenance and renewal
of relevant catalytic functions (Hädicke and Klamt, 2015). Furthermore, applying the theory from De Kok
et al. (2012), the low but positive yields of ATP are sufficient to maintain cellular performance but not to
allow for unrestricted growth, and this is illustrated by the smaller accumulation of biomass and higher
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ethanol yield in the ATPs strain, compared to the larger biomass accumulation and lower ethanol yield
of the WT. This indicates the effectiveness of the ATPs strain as a platform strain for overproduction of
ATP-neutral pathways benefitting from reduced ATP turnover.
Most importantly, however, after performing a carbon balance based on the glucose consumed by the
cultures, I noticed that only up to 30% of the carbon was being recovered (Figure 6.10). A number of
suggestions can be made from these results. Firstly, it is common knowledge that some ethanol can be
lost by evaporation during incubation, but that would certainly not make up for over 70% of the total
carbon. CO2 is one additional dissipation, but it would be surprising if these loses would explain the
difference, especially in the ATPs mutant which did not present much oxidation through the TCA cycle.
It was therefore very possible that something else was being lost and not being experimentally measured.
In fact, Kihira et al. (2012) evaluated the effects on glucose metabolism of genetic mutations affecting the
respiratory chain in E.coli and they showed that all of the strains excreted 2-oxoglutarate as a product, as
well as pyruvate and acetate. Interestingly, the strain with the highest number of mutations also excreted
glutamic acid. This study provides a number of useful clues as to the unique secretion profile we might
expect from the ATPs strain. Noting from Figure 6.6.C that the ATPs mutation results in only partial
TCA and PPP activity, the secretion of acids such as fumarate, citrate, and oxaloacetate might also be
crucial to track either by HPLC or LC-MS techniques in the future. If the ATPs strain, which effectively
already behaves like an anaerobe, can effectively perform bioproduction under anaerobic conditions, an
additional alternative could be to perform the fermentation in serum bottles, which would eliminate the
chances of loss of any products, and also allow for the CO2 to be quantified.
Albeit with a considerable number of areas for troubleshooting and avenues for future work, these results
are exciting nonetheless. It was possible to conclude that deletion of the ATPs operon significantly increases
target production, and although only small improvements were achieved within the context of ethanol, this
strain may be an even better platform for ATP-producing biosynthetic pathways, which may couple target
production to additional ATP release for enhanced cellular maintenance. Although unexplored in this
study, acetate overproduction could be one such target to benefit from this strategy, given that the ATPs
strain already naturally diverts a vast amount of carbon towards the production of this compound.

6.2.6 The PCK knockout significantly improves ethanol production in E.coli

Given the small improvement in ethanol yield observed with the ATPs strain, I then asked whether the
deletion of the ATP-consuming PCK reaction would have an even more significant effect on ethanol biopro-
duction. To date, the role of PCK on cofactor manipulation has been studied within the context of futile
cycling only, by overexpressing PCK in conjunction with PPC. This particular futile cycle has previously
shown to increase biofuel production in cyanobacteria (Erdrich et al., 2014). Similar observations were
made using Saccharomyces cerevisiae, which accumulated more ethanol compared to the wild-type strain
during alcoholic fermentation on glucose (Semkiv et al., 2016). With the aim to study the metabolic effects
of knocking out this gene, this PhD study found that the PCK knockout appeared to also decrease the
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net ATP flux by increasing ATP-consuming glucose uptake and reducing flux through ENO. I therefore
asked, could the knockout of the PCK reaction positively influence ethanol bioproduction? To answer this
question, I used the PCK strain and also knocked out the PCK gene in the ATPs strain using already
outlined methodologies (Figure 6.2, and Section 3.2.5 for more information), which resulted in a double
mutant hereinafter known as ATPs-PCK (Figure 6.11).

Figure 6.11: ATPs-PCK double mutant implementation. (A) Amplification of pKD13’s KanR cassette using
recombination primers that include a 50-bp homology arm complementary to the 3’ and 5’ ends of the PCK gene
(100% amplification efficiency, n=3); (B) after electroporation of the PCR products in A into E.coli, dreamtaq
amplification was used to check that the KanR cassette was successfully inserted to replace the PCK gene (20%
electroporation efficiency, n=10); (C) Q5 PCR amplification of the PCK knockout after removal of the KanR
cassette. Positive bands (300bp) found in all identified hits (100% efficiency, n = 8). PCR amplification and
gel electrophoresis were followed by gel extraction for further DNA sequencing (Appendix D Figures 7-9).

In an analogous experimental procedure as previously outlined, mutant strains (PCK and ATPs-PCK)
bearing the PDC plasmid and their negative controls were cultivated in in M9 minimal medium with 2%
(wt/vol) glucose, and induced with three different concentrations of IPTG inducer to assess the effect of
protein expression on bioproduction. Results are illustrated in Figure 6.12.
A number of observations can be made. Firstly, cellular growth of the PCK strain appeared to be enhanced
by the addition of 0.75mM IPTG (Figure 6.12.A, PCK panel), while all other PCK strains, as well as the
ATPs-PCK double mutants did not appear to be significantly affected by the IPTG concentration, as
far as growth was concerned (Figure 6.12.A , ATPs-PCK panel). Similarly, glucose consumption of the
PCK strain grown in 0.75mM IPTG also increased considerably (Figure 6.12.B). Ethanol titers (mM) are
shown in Figure 6.12.C. Judging by the titer, as well as growth and glucose consumption, it appeared
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Figure 6.12: Protein expression evaluation of ethanol bioproduction in the PCK and ATPs-PCK
strains. (A) growth profiles of PCK (single-knockout strain) and ATPs-PCK (double-knockout strain) induced
with 0.25mM, 0.5mM or 0.75mM IPTG. The red arrow indicates the Induction Point (IP), at the 4h timepoint.
Empty-plasmid controls were made but not included in the figure; (B) glucose consumption for strains in A; (C)
Ethanol production by introducing enzyme PDC into the PCK and ATPs-PCK strains and overexpressing this
at with 0.25mM, 0.5mM and 0.75mM IPTG. Measurements were performed at 24h and 48h.



that 0.75mM was the optimal concentration tested for ethanol production in the PCK strain. In contrast
to this, the three inducer concentrations tested in the ATPs-PCK double mutant strains did not have a
significant impact on ethanol production, so I selected the smallest concentration (0.25mM) to proceed
with the analysis.

Figure 6.13: Ethanol bioproduction evaluation of best producing PCK and ATPs-PCK strains. The
PCK strain was induced with 0.75mM IPTG, while the ATPs-PCK system was induced with 0.25mM IPTG. The
PCK and ATPs-PCK strains bearing the PDC system were compared against their empty-vector and reference
(no plasmid) controls. Non-induced controls were not made. All strains were cultivated in M9 minimal medium
and 2% (w/v) glucose for a total incubation period of 48h. Samples were taken 24 and 48h after induction.
(A) Growth profiles, as OD600 over time (h). (B) glucose consumption for strains in A; (C) Ethanol titer (mM)
for strains in A. Asterisks indicate significant difference between independent samples (* P ≤ 0.05; *** P ≤
0.005). Data is illustrated as the average from 3 biological replicates and the error bars represent the standard
deviation across biological replicates of the same sample.
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After selecting for the optimal IPTG concentrations, I analysed the growth profile, glucose consumption
and ethanol production across the best ethanol producers (Figure 6.13). I noticed that the 24h glucose
consumption timepoints for some of the PCK measurements were generally too low across some of the
samples, which led to the identification of technical errors with the HPLC glucose standard during one of
the HPLC runs. Hence, to avoid any mismeasurements, I analysed these results as titer measurements only
(in mM). Figure 6.13 shows the growth profile, glucose consumption and ethanol titers of the PCK and
ATPs-PCK ethanol-producing strains, compared to their reference (no plasmid) strains and empty-vector
controls. These results were also compared to the ethanol producers from Section 6.2.5 which lacked the
PCK knockout. Once again, all strains harbouring the PDC system resulted in enhanced ethanol titer
with respect to the reference (no plasmid) strains and empty-vector controls. However, the PCK knockout
significantly improved ethanol production, amounting to a titler of 37.824 ± 3.764 after 48h, compared to
18.316 ± 1.310 mM in the WT strain and 22.825 ± 1.314 mM in the ATPs strain (P ≤ 0.005). In contrast
to this, the ATPs-PDC double mutant adversely affected ethanol production, recording the lowest titer out
of all engineered strains, specifically 12.949 ± 3.156.
These results were exciting, because although Zhou et al. (2008) reported 44.5 mM ethanol, 38 mM were
produced in this study using a strain bearing a single gene mutation and a single plasmid for PDC over-
expression, with no further modifications to the strain’s fermentation product profile. The above assay
supports earlier suggestions of the role of the PCK reaction in E.coli’s central metabolism being more
complex than mere regulation of futile cycling. Interestingly, referring back to Figure 6.6.B, flux redirec-
tion in the PCK strain not only reduces ATP availability by increasing glucose consumption and diverting
flux away from glycolysis into the TCA and malic reactions, it also appears to be making additional redox
readily available for bioproduction, which is a limiting factor in ethanol production. This additional redox
is likely to be driving ethanol production forward. Although inconclusive until further metabolite assess-
ments are performed, it is possible to infer from the flux analysis results that the PCK knockout may also
be causing changes in key metabolite pools, such as PEP, OAA and pyruvate, in a way which is favourable
for ethanol production. It is undeniable that PCK and potentially other anaplerotic reactions such as
PPC and NADH and NADPH-specific malic reactions have a fundamental role in regulating metabolite
pools, and may potentially respond very flexibly not only to changes in cofactor demands but also to the
availability of key cellular metabolites.

6.3 Chapter summary

In this study, I began by evaluating the coordinated roles of ATP and NADH and the presence of futile
cycling in E.coli by evaluating the physiological and metabolic flux responses to two targeted genetic
manipulations affecting E.coli’s native cofactor pools: the ATP synthase operon and the PCK gene.
While futile cycling between PCK and PPC was not recoded in the wild type, the predominant phenotypes
of E.coli harbouring both the ATPs and PCK knockouts were characterised by high glycolytic flux at
the expense of biomass production. The ATPs strain increased its acetate overflow to restore energy
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balance, in line with previously reported studies (Hara and Kondo, 2015, Holm et al., 2010, Kihira et al.,
2012, Koebmann et al., 2002). The PCK strain reduced its ATP flux and made additional redox readily
available. Furthermore the cyclic behaviour between phosphoenol pyruvate, oxaloacetate, malate and
pyruvate suggested that PCK activity is more intricate and complex than mere ATP modulation through
futile cycling.
These cofactor manipulation strategies were evaluated within the context of ethanol bioproduction as
a proof-of-concept. All strains including the PDC system for enhanced ethanol production resulted in
enhanced ethanol titer and yield. Ethanol yield in the ATPs strain was 9% higher than in the WT strain
overexpressing PDC (P≤ 0.01) and reach 70% of the theoretical maximum (Yang et al., 2014). As suggested
by (De Kok et al., 2012), the low but positive yields of ATP in this strain were sufficient to maintain cellular
performance but not to allow for unrestricted growth, illustrated by the smaller accumulation of biomass
and higher ethanol yield, compared to the larger biomass accumulation and lower ethanol yield of the WT.
The strain harbouring the PCK knockout significantly improved ethanol production up to 37.8 mM, likely
benefiting from the flux redirection away from glycolysis and into the TCA and malic reactions, which
provides the additional redox necessary for ethanol formation. Compared to 44.5mM ethanol recorded in
the landmark study by Zhou et al. (2008), the PCK strain bearing only one genetic mutation and the
introduction of one inducible plasmid for overexpression of PDC,
This study is supported using readily available data and demonstrates that significant improvements can
be made with very few, targeted modifications. Certainly though, mainly question remain unresolved,
namely, do NADH and ATP share regulatory control? Does oxygen availability regulate metabolism
beyond influencing the presence of ATP? How and why is the ATPs strain dissipating so much carbon?
Nonetheless, and albeit through small improvements, these results show the effectiveness of the ATPs strain
as a platform strain for overproduction of ATP-neutral pathways benefitting from reduced ATP turnover,
and supports, as per Hädicke and Klamt (2015), that even better yields may be achieved if the product
synthesis pathways are ATP-producing, since a higher fraction of the substrate must be directed to the
product to generate the ATP needed for biomass synthesis.
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7
Conclusions and Future Work

7.1 Summary

How can we better harness cofactor metabolism to improve bioproduction?
Metabolic engineering represents one of the cornerstones of sustainable industrial production since its
inception in the final decades of the 20th century, and for many more decades to come. Traditionally,
the focus has been on the development of engineering strategies to maximise the carbon flux towards the
chemical target. However, carbon metabolism alone cannot achieve efficient bioproduction, because it
requires the appropriate redox and energy supply as well as the effective regeneration of such cofactors.
Using computational and experimental strategies, butanol and ethanol as case studies, and E.coli as a model
system, this study proposes assessing the impact and limitations of cofactor usage on bioproduction at an
early stage, and uses selected cofactor manipulations to develop platform strains to improve bioproduction.
In Chapter 4, I began by evaluating how two existing frameworks enable the study of ATP and NAD(P)H
metabolism and the limits these cofactors impose on bioproduction. The analytical calculations devel-
oped by Dugar and Stephanopoulos (2011) were used to adjust the final yields of eight different butanol
and butanol precursor pathways based on their sources of cofactor imbalance. Secondly, using the same
biosynthetic pathways, I used pFBA to maximise butanol production in E.coli. pFBA yields represented
the maximal production capabilities of the E.coli metabolic network, after accounting for any limits im-
posed by cofactors on the rest of the network. The method developed by Dugar and Stephanopoulos (2011),
although effective for pinpointing the source of imbalance, was pathway-specific, not easily implemented,
and unable to account for environmental cues or host selection. Alternatively, pFBA, although an easy-to-
implement and powerful alternative, did not alone suffice to easily discern cofactor usage differences across
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biosynthetic designs.
Consequently, in Chapter 5, I designed the Cofactor Balance Assessment (CBA) protocol, a COBRA-
compatible framework that tracks ATP and NAD(P)H metabolism across metabolic engineering designs.
Building on Chapter 4, CBA was tested using butanol and butanol precursor production and the E.coli
Core model to evaluate how variations in energy and redox demands affect butanol production. This
study highlighted the excessively underdetermined nature of the E.coli metabolic network, characterised
by significant futile cycling involving cofactor-consuming reaction pairs. As a result, I evaluated three
curation methods. First, I manually capped unrealistic futile cycling. Manually-curated results confirmed
that pathways that divert the least amount to biomass are more cofactor-balanced, as these pathways reduce
the burden placed on the rest of the metabolic network. After unsuccessfully running loopless FBA, I then
used fluxomic data to apply biologically plausible flux ranges as constraints to reduce the solution space
of the models. Experimentally-constrained solutions more closely resembled the yield estimates calculated
by the method in Dugar and Stephanopoulos (2011), suggesting that the use of experimental constraints,
in combination with some manual capping if any futile cycles remain, may be a quicker and more suitable
approach to obtain flux estimates that account for competing pathways, intracellular complexity and
cofactor demands across the wider network. Finally, in this chapter I also present a complementary tool
that evaluates the three-dimensional relationship between target yield, ATP and NADH usage for more
accurate pathway ranking. This framework identifies the cofactor-to-yield sweet spot and yields insights
into its stability. This analysis helps metabolic engineers identify how far away from the optimum their
selected target pathway is, and the chances that a high-yielding system can materialise.
As well as the relevant role of futile cycling in restoring cofactor balance, CBA also highlighted that ATP
and NAD(P)H balance cannot be assessed in isolation from each other. Thus, in order to investigate the
existence of futile cycling and the energy-redox connectivity in E.coli, in Chapter 6 I performed a fully
experimental analysis in which I first evaluated the physiological and metabolic effects of knocking out the
ATP synthase and PCK genes on E.coli’s central metabolism. Although wild type E.coli did not show
any futile cycling between PCK and PPC, both knockout strains were characterised by higher glucose
uptake rates, high glycolytic flux at the expense of biomass production, lower ATP fluxes and considerable
rewiring of metabolic reactions across key metabolite pools. Assuming that higher glycolytic flux, lower
ATP production and readily available redox would make up a suitable phenotype for the production of
ATP-neutral chemical targets, I evaluated the biotechnological performance of these strains using ethanol
bioproduction as proof-of-concept. All strains incorporating a plasmid system including the IPTG-inducible
PDC gene resulted in enhanced ethanol titers and yields. Although the ATPs strain increased ethanol
production by 9% with respect to the wild-type and reached 70% of the theoretical maximum, the strain
harbouring the PCK knockout produced significantly more ethanol. The lower but positive yields of ATP
in both of these strains were sufficient to maintain cellular performance but not to allow for unrestricted
growth, illustrated by the smaller accumulation of biomass and higher ethanol yield, compared to the larger
biomass accumulation and lower ethanol yield of the WT.
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7.2 What new contributions to knowledge have been achieved?

Combining pathway and host engineering has had a great impact on the generation of effective biocata-
lysts, but it is undeniable that improving energy and redox chemistry through cofactor manipulation has
the potential to considerably improve bioproduction. Fundamental studies of pathway fluxes and global
responses to cofactor manipulations have provided further essential information for better understanding
the regulatory roles of cofactors, and advances in systems engineering on a larger and more precise scale
have additionally contributed to improving the availability of the desired cofactors necessary improved
bioproduction.
Undoubtedly, the CBA protocol remains the striking novelty and primary contribution of this work. The
main objective was to integrate the need to consider cofactor-related information with the identification
of the most efficient pathway(s) for chemical production at the early stages of any metabolic engineering
project. With CBA, I propose an exploratory method that can aid with pathway selection by quantifying
the extent of cofactor imbalance and discerning how organisms handle their pre-existing redox and energy
imbalances. Additional tools are facilitated to help users understand how to improve a system’s cofactor
usage profile. The method’s foundations and results were initially presented in May 2017 at the Data-Driven
Biotechnology international conference in Hillerod, Denmark and later published on a peer-reviewed journal
(see Publications Section at the start of this thesis).
Earlier work had explored the effects of cofactor swapping on the global network using COBRA-based
modelling (Ghosh et al., 2011, King and Feist, 2014). Further studies were aimed at depicting cofactor bal-
ance profiles to explain and interpret experimental data (Chen et al., 2011, Garcia Martin et al., (2015, He
et al., 2016). Instead, the overarching aim of CBA is to elucidate, prior to experimental implementation, a
system’s cofactor contributions to biomass, target, maintenance and waste release, and pinpoint potential
areas for engineering in response to particular sources of imbalance before adventuring into the wet lab-
oratory. Pathway and host selection is thus based on knowledge of cofactor balances of the best possible
pathway solution, not just of the highest possible yield. Only three elements are used in this modelling
framework: (i) the stoichiometry of cofactor-related metabolic reactions, (ii) measured intracellular fluxes,
and (iii) an optimisation principle. Cofactor balance can then be expressed as summed fluxes of consumed
and produced ATP and NAD(P)H contributing to biomass, waste, maintenance or target formation. This
method also hinges on a very simple assumption: organisms strive to be redox and energy neutral. This
assumption is not only at par with existing modelling frameworks (King et al., 2015, Orth et al., 2010,
Wiechert, 2001), which are based on the assumption of steady-state, but it is also widely supported and
accepted in the community (De Kok et al., 2012, Dugar and Stephanopoulos, 2011, Varma et al., 1993).
CBA also emphasised the need to consider the coordination between ATP and NAD(P)H, thus pointing
towards the need to close the gap in our understanding of both energy and redox in combination, and not as
isolated entities, as they have been mostly studied so far. Furthermore, CBA also highlighted the relevant
role of futile cycling (at least under in silico conditions) to regenerate any surplus cofactors. I took these
two features and evaluated them in parallel in a fully experimental study which, although presented at its
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early stage in this PhD study, is worthy of consideration because it brings some interesting contributions.
Firstly, I concluded that, under the pseudo steady state conditions tested, PCK and PPC did not appear
to form a futile cycle in E.coli, confirming earlier literature that this ATP-burning cycle might be tightly
regulated and condition-specific (Russell, 2007, Russell and Cook, 1995, Yang et al., 2003). Nonetheless,
the distinct phenotype of the PCK knockout strain, characterised by the rewiring of reactions controlling
key metabolite pools, highlighted the inherently complex role of the PCK gene, which seems to expand
beyond mere futile cycling, and certainly warrants further investigation. Finally, I report that the ATPs
strain increases ethanol production yields by 9% with respect to the wild type engineered to overproduce
ethanol, and reaches 70% of the theoretical optimum, with no further genetic modifications added. PCK
considerably improved the ethanol titer compared to ATPs, and was the best producer in this study.
Although the characterisation of these strains was confined solely to physiological and flux analyses and
they were only tested for the production of ethanol within the scope of this study, these results indicate the
potential of these strains as platforms for the production of cofactor-neutral or cofactor-surplus biosynthetic
pathways.

7.3 Reflection on the methods developed

Although this study presents a number of exciting contributions, which have been highlighted in Section
7.2, many limitations still exist.

7.3.1 Limitations of the CBA method

The CBA protocol is currently centred on the use of flux balance analysis (and variations thereof, such
as pFBA, FVA MOMA), which is based on linear optimisations. As I show in this PhD study, FVA
was performed to test the size of the systems’ solution space (Appendix A Table 1), and even though
theoretically many solutions may exist, as it turns out, regardless of what the objective function was, no
or very little variation amongst the individual reactions was found with most of the models. Two of the
models displayed variation in 15% of the reactions (14/99 or 18/101) but none of these reactions were
directly in the pathway towards butanol, and all were directly involved in futile cofactor cycling. The
limited solution space in these models is most likely due to the fact that a minimal core model was used,
and because the focus was placed on the optimal solutions (not suboptimal solution spaces). Hence, for
the purpose of this work, the single solution provided by FBA was sufficiently representative and simpler
to use, and once constraints from MFA or manual elimination of futile cycling was applied, there only ever
was a single solution. However, although I highlight the strength of the CBA approach and its usefulness in
integrating with any metabolic model, it may become increasingly difficult for estimates to be informative
as models increase in size and complexity. This is not an issue when applying the analysis using a core
model, as I already show, but it can certainly become an issue when dealing with models that do not
result in unique solutions. In these alternative scenarios, it would be better for CBA to be compatible with
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FVA solutions instead. However, in its current form, CBA does not allow for this as it is only capable of
processing a flux vector, and not a range of fluxes.
Although the methodology is focused on the use of flux balance analysis, solutions were subject to exten-
sive manual and systematic curation of reaction constraints. Arguably, the manual capping procedure to
eliminate futile cycles may be perceived as somewhat problematic, because it is capping the fluxes with
values from the wild-type flux distribution, which was obtained by maximizing biomass production, which
would narrow the solution space to be more akin to the predicted fluxes under growth metabolism. This
approach also potentially excludes other reactions that could be used but would not be active the con-
dition of maximum biomass production. Indeed, no curation strategy will ever be perfect, as it will be
based on human judgement. However, this approach represents a reasonable compromise as it still allows
for biomass synthesis (essential to synthesise the biocatalyst), and indeed when the artificial cofactor cy-
cles were minimised, new cycles appeared, and eventually biomass was the only final sink for excess ATP,
thereby connecting the present study with earlier theories (De Kok et al., 2012, Dugar and Stephanopoulos,
2011) where biomass was assumed to act as a sink for excess ATP. In any event, in reality, biomass and
bioproduction compete for resources, so there will always be a trade-off between growth and bioproduc-
tion metabolism, and this may entail somewhat sacrificing mathematical accuracies to reach theoretical
outcomes which represent a fair compromise of what would be expected also in experimental conditions.
As an alternative to manual curation, I also explored the use of experimentally-derived flux data to constrain
the FBA solutions to more biologically plausible regimes. In this ambit, arguably the reliance on MFA data
from multiple mutant strains could make the approach only available for E. coli or yeast as host strains,
and may instead limit the approach to other organisms that may not have been as well characterised,
or may not be as straightforward to cultivate and be subject to labelling a flux analysis studies. In
this respect, the aim of the present study was mainly to highlight some of the underdetermination issues
with COBRA in the absence of constraints, in particular the appearance of futile cycles which cannot be
overcome with alternative tools such as loopless FBA. The use of MFA data was useful to get an idea of
how a synthetic pathway could be limited in different hosts, but in the case that MFA data is not available,
manual curations or MOMA could be considered instead. The ultimate goal is that other researchers can
carry out CBA analyses with or without MFA data as constraints, or alternatively plug in any alternative
curation methods which they consider suitable.
A further limitation of the CBA protocol could be that NADPH and NADH are analysed interchangeably.
For modelling purposes, CBA pools NADH and NADPH fluxes to present an overall “redox” category.
In reality, however, NADH and NADPH are biologically and chemically distinct. Biologically speaking,
NADH and NADPH are used in very distinct areas of metabolism and under distinct physiological states.
Chemically, they are produced via different means, and they are used up by different enzymes, meaning a
reaction that is NADH-specific will not be active under high NADPH concentrations unless its specification
is fine-tuned with enzyme engineering. Therefore, the distinct nature of these cofactors will have a direct
impact on metabolism. Computationally, however, their usage within the model will still continue to be
very much dependent on which cofactor is used by which reaction, i.e. NADPH generated by the PPP will
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be captured by CBA, so in fact, the models and their respective solutions are in fact not affected by this
joint categorisation of redox metbolism, but it is of course, something that the user should always keep in
mind. Similarly, apart from ATP and NAD(P)H, no further cofactors are considered in this study, which
does limit its wider application, if alternative cofactors are of interest to the user.
Finally, it is important to bear in mind that the current analysis is a theoretical analysis, performed in a
theoretical manner which relies on the usage of stoichiometries recorded in the GSMs. As a result, many
model parameters, such as the accuracy of biomass equations, reaction directionality, cofactor specificities
of enzymes, and any further constraints applied during the implementation and modelling stages will
significantly influence the internal flux distributions, and thus the cofactor profiles of the networks under
analysis. It is therefore vital that the accuracy of the input model(s) and parameters is questioned and
evaluated prior to modelling. In this particular study, for instance, it was concluded that the curated E.
coli core model is a very well-established and simple model, and one that has been used by many others
previously. Arguably, it is possibly one of the most accurate models available to query central metabolism,
given that increasingly complex models shift the focus away from central metabolism and are more likely
to also incorporate reactions that do not reflect reality. Indeed, the E. coli core model lacks some of the
metabolic features in other systems, but this does not reduce its value or the value of the principles evaluated
with it, which should be applicable also to other larger and more complex models. Whenever a new concept
is evaluated, I would argue that it makes most sense to commence with the simplest, most well-understood
system available, which will likely have been questioned, curated and informed by a large number of players
in the community. In order to clarify any possible ambiguities, it is possible to always elaborate further
by incorporating new reactions or additional constraints from 13C-labelling experiments and carrying out
a more in-depth comparison. However, it is important that the field of computational modelling remains
prudent, and that we do not forget to always consider the limitations of GSMs and COBRA as a querying
tool more generally. Although FBA-based modeling has previously exhibited significant success (Simeonidis
and Price, 2015, Yim et al., 2011), certainly not every FBA prediction can be trusted and FBA may not
always be the most suitable predictive method (Stanford et al., 2015, Zomorrodi et al., 2012).

7.3.2 Limitations of the experimental approach

The analysis of the experimental results was complex and not easy to interpret. One of the main reasons
for this may be that, although the cofactor modifications evaluated in this study were triggered by the
implementation of a single gene knockout, the fact that ATP is a highly connected cofactor, together
with its inherent interconnectivity with NADH, led to complex downstream metabolic ramifications which
were difficult to detect and interpret just from the existing flux data. The systems clearly need further
investigation, and although I mention throughout the relevant sections of Chapter 6 and also in Section
7.4.3 specific experiments that could be pursued to supplement and improve the analysis, I focus on a
number of areas below.
On the question of whether PPC-PCK futile cycling exists in E.coli, it is still not known with certainty
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whether this is actually the case, and if so, when exactly it happens in vivo. As far as this study is
concerned, I could only conclude that the wild type strain showed no flux running through the PCK
reaction under the particular pseudo steady-state conditions tested and suboptimal oxygenation, which
contrasts from the observations made in Yang et al. (2003). However, the strain including the PCK
knockout had a distinct phenotype to the wild type, characterised by higher glucose uptake and glycolytic
rates and considerable flux redirection across its anaplerotic reactions and some TCA reactions. If these
consequences were brought about as a result of the PCK knockout, PCK activity in the wild type should
indeed be investigated further, because either the conditions tested did not capture PCK activity in the
wild type, or the flux analysis setup was not able to appropriately estimate the flux of this reaction. I
elaborate on the limitations of the MFA approach below more specifically. With respect to the phenotype
of the PCK strain, although there is apparent flux rewiring across reactions linking PEP, OAA, MAL and
PYR, any observations made about the dynamics of these metabolites were inferred from the flux data
itself, and further characterisation of metabolite pools, transcription and protein levels is needed for these
points to be concluded upon (see Section 7.4.3).
Similarly, on the characterisation of the ATPs strain, what was evident from this study’s flux data was that
the ATPase knockout led to the redirection of flux across most of central metabolism for the restoration
of both energy and redox, so it was clear that such an energy perturbation triggers adjustments across
redox reactions. However, whether energy and redox are jointly regulated, or whether the regulation of
redox reactions occurs as a result of E.coli’s attempt to restore its energy state could not be answered
from a metabolic flux analysis alone. Holm et al. (2010) elaborate nicely on the question of regulation,
especially regarding ATP and NADH. In this particular study, they integrated metabolic flux, protein
interaction and transcriptional regulation data and observed that ATP-related reactions had a higher de-
gree of enzymatic and transcriptional regulation and higher robustness against perturbations. Reducing
ATP availability upregulated proton-translocating mechanisms, prompting a more widespread response,
whereas lower NADH was narrowly addressed by activating reactions that produced more NADH. Fur-
thermore, Holm et al. (2010) concluded that some transcriptional factors are cofactor specific, while others
regulate both ATP and NADH. Thus, there appears to be a distinct hierarchical organization governing
transcriptional responses to energy and redox perturbations, with a global regulatory shared response be-
tween energy and redox, and a local response that is cofactor-specific. In any event, there is an inherent
difficulty in experimentally measuring energy and redox balancing more generally, and further linking this
to regulatory data. One option could be to infer cofactor balancing from the MFA reaction fluxes using
stoichiometry and flux information from the estimated reactions (Chen et al., 2011, Garcia Martin et al.,
(2015, He et al., 2016), akin to the foundations upon which CBA was developed and feeding this into the
global network developed by Holm et al. (2010), but until these evaluations are performed, this area of
research remains open for further investigation.
More specifically on the MFA front, medium composition was an important consideration in flux anal-
ysis. Most 13C flux analysis studies published to date involved experiments in minimal medium with a
single carbon source, because this minimises the number of degrees of freedom and the possibility of dy-
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namic transition between carbon sources during data fitting. This is the approach that was pursued in
this study. However, the reality is that almost none of the high-producing strains reported are actually
optimal in minimal medium. Instead, generally, media conditions will be supplemented to allow the cells
to be more productive. So, here the question becomes, how much are we willing to sacrifice data fitting
accuracy in order to use environmental conditions that more closely resemble what we would expect in real
biotechnological settings? From the flux analysis perspective, the goal should be to produce the highest
possible flux resolution. Every system subject to flux analysis should thus be optimized for the selection of
optimal tracers and design of parallel experiments (using two or more different types of isotopes), which
have been shown to dramatically improve flux measurement precision (Long and Antoniewicz, 2014). Sig-
nificant efforts have been directed towards proper reporting, error analysis, transparency of methods and
reproducibility. However this all comes at a cost, not only in the literal (economic) sense, which is ex-
tremely relevant and a key limiting factor in science, but also concerns the investment of human capital
and resources, because this takes time and effort, and it is an area of research in itself.
Finally, it is worth mentioning that an important limitation of MFA is that it only generally applies to
central metabolism and amino acid metabolism, and is fitted using core metabolic models. This is because
of the assumption that a small number of reactions in central metabolism will carry the bulk of the flux,
so there is no or very little need to track fluxes in other parts of metabolism. This is not very useful if
we are working with biotechnological systems requiring flux redirections through alternative sub-systems,
such as lipid or nitrogen metabolism, as these will not be included as part of the final flux map unless
these pathways’ isotope patterns and intermediates are resolved, which requires considerable adaptation
of the existing protocols. Another shortcoming of this analytical method is that the results will depend
on the metabolic network selected to fit the labelling data. Flux analysis at a genome-scale level has not
been attempted yet (Saha et al., 2014). This also limits the analysis of biotechnological strains which may
not have suitable metabolic networks available. Although this analytical technique was suitable for the
purposes of this particular study, which was performed at small-scale, under fairly standard conditions and
using a discrete number of strains, for the purposes of making the analysis of cofactor balancing widespread
across the board, including a variety of hosts and pathways, it is probably best to stay away from metabolic
flux analysis.

7.4 Future research opportunities

Indeed, although cofactor engineering research is fast developing, a considerable number of gaps in our
knowledge still remain. A number of avenues for future research have been mentioned throughout this
thesis, but I compile the most exciting opportunities for future development below, based on a number of
areas that could be thoroughly extended directly from this study.

144



7.4.1 Extension of the CBA protocol

I have previously highlighted that during this PhD study I focused primarily on the generation of the
method’s foundations, including hypothesis selection, algorithm development and preliminary testing. Al-
though the butanol case study was very powerful and insightful, assessing CBA’s functionality within the
context of a number of additional pathways and models would be an interesting, and potentially greatly
beneficial addition to this work. To illustrate this, one of the key strengths of the work published by Dugar
and Stephanopoulos (2011) was their ability to apply their calculations to a range of single pathways, as
well as pinpointing the nature of the imbalances in every particular case. Assessing CBA’s robustness
using the case studies presented in Dugar and Stephanopoulos (2011) would be a good starting point for
comparison.
Transitioning into larger, genome-scale models, such as iJO1366, as well as venturing into the study of
alternative hosts, such as yeast or cyanobacteria, would make CBA transferrable across a wide range of
model sizes and organisms, which would further support the impact of CBA’s contribution to the future
of predictive metabolic engineering.
Concerning the python algorithm itself, the protocol could be adapted to also account for additional
cofactors, such as FADH2. I would expect that including FADH2 into the analysis would lead to expansion
of the redox profile of the system under evaluation, especially if this is also pooled together with NADH and
NADPH. Importantly, however, it would likely yield a better approximation of the redox balance in proton
translocation, for example. It would also enable us to track the release of other metabolically relevant
molecules such as succinate and fumarate. What is interesting about this flexibility however, is the fact
that the user could tailor the analysis to their specific needs, beyond simply ATP, NADH or even FADH2.
Furthermore, additional functions could be developed to enable an assessment of additional, and more
complex, optimisation principles. Currently, the CBA function accepts a single flux distribution vector,
which means that it is compatible with FBA, pFBA and MOMA frameworks, although the latter was not
attempted during this study. As mentioned in Section 7.3.1, CBA is not currently compatible with FVA,
given that FVA’s solutions are in the form of a flux range. Nonetheless, adapting CBA to analyse FVA
solutions would be an extremely powerful addition, especially when working with larger, more complex
models that do not often lead to unique solutions.

7.4.2 Expanding the scope and applications of CBA: the MetEOr web server

One of the original motivations for developing CBA was that it was often very difficult to track the
flow of cofactors within COBRApy, especially with the increasing size and complexity of some metabolic
networks. How to best analyse and visualise results was an ongoing challenge. Furthermore, performing
COBRA analyses, and even running CBA, required complex software installations and familiarity with
programming. As a result of these challenges, making CBA, and FBA more generally, available as an
interactive web-based tool, became an ongoing ambition. Building a web-based tool would make metabolic
modelling more easily interpretable, and would make cofactor balancing assessments accessible to the wider
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metabolic engineering community.
During this study, I had the opportunity to collaborate with the Bioinformatics group at the Life Sciences
Department of Imperial College London to develop a web server, known as MetEOr (Metabolic Balance
Calculator), now available on www.meteorfba.com (Davidson et al., 2021). MetEOr is an interactive
web-based tool that allows users to edit SBML models and dynamically and interactively perform FBA.
Furthermore, it enables users to quantify net ATP and NAD(P)H production for any particular host,
calculate cofactor profiles (i.e. the fraction of these cofactors contributing to biomass formation or waste
release, as opposed to cell maintenance and target production) and visualise the models’ flux distributions
(Davidson et al., 2019). Since CBA had already been developed using python programming and the
COBRA package for python, it was possible to adapt the code for it to run within a back-end server,
and deploy results through a web interface. Basic functions such as uploading and modifying models, and
retrieving FBA and CBA results have already been deployed (a demo is shown in Figure 7.1). Next steps
will include expanding the range of functions to also include FVA and building advanced visualisation
options. In addition to these, a comparative tool would enable users to contrast results (e.g. compare
yields from two models including two or more different pathways, or using two or more different hosts)
and including the sensitivity analysis presented in Section 5.3.5 (Chapter 5), in order to rank pathways
according to optimal cofactor balances, would also be very powerful to the MetEOr users. I thank Mira
Davidson, Gregory Leeman, Ferran Cardoso Rodriguez, Melpi Kasapi and Virginia Fiarclough greatly for
their efforts getting this work up to its current stage.

7.4.3 Experimental strategies: development of platform strains

A number of suggestions are proposed below that could elaborate on some of the questions and results
presented in Chapter 6. These suggestions include both specific experiments to cross-check the existing
analyses, as well as exciting areas of future development which I did not have the time to explore within
the scope of this study.
A number of additions to the 13-C metabolic flux analysis protocol could be pursued first to validate the
existing flux results. The protocol used, described in detail by Zamboni et al. (2009), takes advantage of
the fact that different pathways within metabolism cleave and scramble the molecules (and subsequently
incorporate the labelled carbon) in different ways, so this could be harnessed to quantify fluxes by different
means. First, it could be interesting to test out alternative softwares to WUFlux, to see whether the fitting
algorithms carry any weight in resolving absolute and relative fluxes. An additional supplement could be
to calculate flux ratios using softwares like SUMOFLUX (Kogadeeva and Zamboni, 2016) and FiatFlux
(Zamboni et al., 2005). Flux ratio analysis and metabolic flux analysis are complementary methods, and
could be used to cross-validate each other. Detection of isotopic patterns can also be carried out using
NMR. An alternative areas of focus could involve running MFA under anaerobic conditions, which would
be particularly interesting for the ATPs strain and was strongly considered during this study but not
performed due to time constraints.
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Figure 7.1: MetEOr demonstration (taken from Davidson et al. (2019)). (A) Home page, where users can
select one of the provided standard models or upload their own SBML file (format-compliant) to start running
tests. (B) Options form. Users can add, edit or remove selected reactions, modify FBA settings (inc.applying
constraints and changing the objective function) and specify how to categorise some cofactor related reactions.
(C) Results page, including bargraphs to show the CBA profiles, network visualisation and editing functions and
flux display. (D) slider function filters the network by flux.

Shifting away from MFA, strain characterisation will be an essential part of any future developments in
this area. Although the ATPs and PCK strains improved ethanol production, it is evident that these
systems need further investigation and optimization. Firstly, the addition of uninduced controls would
be of particular interest to include in future experiments, particularly in the ATPs strain, which showed
marginal (although statistically significant) improvements in ethanol accumulation in the medium. Such a
control would help determine, for instance, whether there is low expression in the induced control and leaky
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expression in the uninduced control. Transcriptomic and metabolite measurements should be considered,
especially in order to validate the distinct rewiring that appears to be taking place in the PCK strain. To
further test the existence and extent of futile cycling in E.coli, ATP could be supplied into the medium at
various concentrations, while tracking PCK and PPC activity.
In spite of the lack of characterisation and understanding as to how the systems operate, some interesting
insights were made, particularly when the mutant strains were engineered to produce ethanol. Presumably,
the lower biomass and ATP flux in these strains led to the increase in ethanol yield and titer. If this is
in fact the case, I would suggest to evaluate these strains in the presence of alternative ATP-neutral or
even ATP-producing pathways, because the distinct cofactor profiles of these strains could be what is
driving the increased production of chemical targets with complementary cofactor characteristics. In the
future, it would be interesting to perform a wider analysis considering additional pathways, as well as
additional strains suitable for ATP-consuming pathways instead. This would entail the development of a
strain with an ATP-surplus type of phenotype, in order to supply the system with the extra energy that
the ATP-demanding pathway(s) will need. Complemented with a CBA analysis, this pragmatic approach
to the building of “platform” strains with ideal cofactor usage profiles opens up an exciting avenue of
research whereby synthetic pathways with specific cofactor characteristics can be plugged into strains with
complementary cofactor usage profiles, potentially speeding up engineering by reducing the number of
manipulations to be performed and more quickly reaching the desired yields.

7.5 Conclusion: What can be gained from understanding and engineering
cofactor metabolism?

With this study, I aimed to emphasise that consolidated experimental and computational frameworks to
track and optimise the use of cofactors is crucial to understand cell behaviour, and could have a great
impact on the design of optimal catalysts.
CBA evaluates the concept of cofactor balancing using a relatively simple method built using a widely-
used programming language and a modelling package that is well consolidated in the metabolic engineering
field. While this PhD study only evaluated butanol and butanol precursor production as proof-of-concept,
the CBA protocol thrives on COBRApy’s flexibility to evaluate different stoichiometric models, target
products, pathway routes, strains, carbon sources and environmental and genetic conditions, with minimal
manipulations to the python function that performs the analysis. Most importantly, although the results
from the CBA analysis are very simple, it is a powerful way to help metabolic engineers select optimal
strain designs. It is also an effective tool to evaluate host-pathway interactions, given that one particular
organism may be more suitable than another at accommodating the cofactor demands of a pathway of
interest.
Constraint-based modelling remains a powerful tool for predicting system-wide behavioural changes in
response to various conditions and provides a comprehensive prediction of entire flux solutions for optimal
productivity. This modelling framework can help streamline experimental approaches, and support strain
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and experimental design. When used in conjunction with the CBA protocol developed during this PhD
study, it then becomes possible to track and monitor cofactor usage and its system-wide implications. As a
result, metabolic engineering designs can be selected based not only on the highest yield achievable (which
often does not translate to reality experimentally), but based also on the stress that cofactors can impose
on the wider metabolic network. Nevertheless, it is vital that we do not forget that although COBRA-based
modelling approaches have previously exhibited significant success (Simeonidis and Price, 2015, Yim et al.,
2011), we should remain prudent and continue to question any in silico estimates, as COBRA modelling
may not always be the most suitable predictive method (Chen et al., 2011).
This study also shows that metabolic responses to cofactor driven perturbations can lead to distinct pheno-
types resulting in enhanced biochemical yields. The lower but positive yields of ATP present in the strains
developed in this study were sufficient to maintain cellular performance but not to allow for unrestricted
growth, illustrated by the smaller accumulation of biomass and higher ethanol yield in the engineered
strains, compared to the larger biomass accumulation and lower ethanol yield of the WT. These results
suggest that significant yield improvements can be achieved experimentally with very few, but highly
targeted cofactor-driven modifications that reduce the waste of cofactors, showing the potential of these
strains as platforms to improve bioproduction of cofactor-neutral or cofactor-surplus synthetic pathways.
To conclude, the in silico and in vivo strategies developed herein are a powerful means to achieve optimal
strain designs more effectively and systematically, particularly if a large number of pathway variants are
under evaluation. Having knowledge of the extent of cofactor imbalance can more accurately discriminate
catalysts that are more balanced (and thus more productive) and pinpoint potential areas for engineering
in response to particular sources of imbalance. If selected pathways are then combined with strains har-
bouring compatible cofactor profiles, the metabolic engineering sector will be able to benefit from greater
productivities with a minimal number of genetic and metabolic manipulations leading to the design of
more efficient strains.
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Appendices

A Flux Variability Analysis (FVA) estimates

Table 1. Aerobic FVA estimates of the wild type and engineered models under aerobic con-
ditions. Optimized for biomass formation (WT) or target production, accordingly, using the E.coli Core
model. Minimal and maximal range units are in mmol gDW−1 hr−1. Fraction of optimum = 100%. Reac-
tions are shown in no particular order.
Table 2. Aerobic FVA estimates of the butanol and butanol precursor models after manual
curation of high-flux futile cycles. Optimized for butanol or butanol precursor production, accordingly,
using the Escherichia coli Core Model. Minimal and maximal range units are in mmol gDW−1 hr−1.
Fraction of optimum = 100%. Reactions are shown in no particular order.
Table 3. Anaerobic FVA estimates of the butanol and butanol precursor models after manual
curation of high-flux futile cycles. Optimized for butanol or butanol precursor production, accordingly,
using the Escherichia coli Core Model. Minimal and maximal range units are in mmol gDW−1 hr−1.
Fraction of optimum = 100%. Reactions are shown in no particular order.

B pFBA flux distributions

Table 4. pFBA flux distributions of wild type, butanol and butanol precursor models under
aerobic conditions. Used the Escherichia coli Core Model and pFBA for optimization, using either
biomass formation or target production as the objective function, accordingly. Solutions were simulated
under aerobic conditions (EX_o2_e_ = -10 mmol gDW−1 hr−1) and were otherwise unconstrained. Reac-
tions are shown in no particular order.
Table 5. pFBA flux distributions of wild type, butanol and butanol precursor models under
anaerobic conditions. Used the Escherichia coli Core Model and pFBA for optimization, using either
biomass formation or target production as the objective function, accordingly. Solutions were simulated
under aerobic conditions (EX_o2_e_ = 0 mmol gDW−1 hr−1) and were otherwise unconstrained. Reactions
are shown in no particular order.
Table 6. pFBA flux distributions of the butanol and butanol precursor models under aerobic
conditions after manual curation of high-flux futile cycles. Used the Escherichia coli Core Model
and pFBA for optimization, using target production as the objective function, accordingly. Solutions
were simulated under aerobic conditions (EX_o2_e_ = -10 mmol gDW−1 hr−1). Reactions shown in no
particular order.
Table 7. pFBA flux distributions of the butanol and butanol precursor models under anaerobic
conditions after manual curation of high-flux futile cycles. Used the Escherichia coli Core Model
and pFBA for optimization, using target production as the objective function, accordingly. Solutions
were simulated under anaerobic conditions (EX_o2_e_ = 0 mmol gDW−1 hr−1). Reactions shown in no
particular order.
Table 8. pFBA flux distributions of wild type and engineered models constrained using 13C-
MFA data. Used the Escherichia coli Core Model and pFBA for optimization, using either biomass
formation or target production as the objective function, accordingly. Solutions were simulated under
aerobic conditions (EX_o2_e_ = -10 mmol gDW−1 hr−1), constrained using 13C-MFA data from Long and
Antoniewicz (2019). Reactions are shown in no particular order.
Table 9. pFBA flux distributions of butanol and butanol precursor models constrained using
13C-MFA data and additional manual curation of high-flux futile reactions. Used the Escherichia
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coli Core Model and pFBA for optimization, using target production as the objective function. Solutions
were simulated under aerobic conditions (EX_o2_e_ = -10 mmol gDW−1 hr−1), constrained using 13C-
MFA data from Long and Antoniewicz (2019). High-flux futile cycles capped are shown in the first row.
Reaction fluxes (with reaction IDs shown in the first column) are shown in no particular order.

C CBA estimates

Table 10. CBA parameters and outputs of unconstrained models under aerobic conditions.
Reaction IDs, relevant co-factors and their stoichiometric coefficients, flux values, balance values and
assigned balance category are included.
Table 11. CBA parameters and outputs of unconstrained models under anaerobic conditions.
Reaction IDs, relevant co-factors and their stoichiometric coefficients, flux values, balance values and
assigned balance category are included.
Table 12. CBA parameters and outputs of manually curated models under aerobic conditions.
Reaction IDs, relevant co-factors and their stoichiometric coefficients, flux values, balance values and
assigned balance category are included.
Table 13. CBA parameters and outputs of manually curated models under anaerobic condi-
tions. Reaction IDs, relevant co-factors and their stoichiometric coefficients, flux values, balance values
and assigned balance category are included.

D Sequencing Results

Figure 1. Snapgene view of ATPs sequencing results.
Figure 2. ATPs sequencing with Matcher. Local alignment between forward and reverse-complement
sequencing results using the Matcher software, which identifies local similarities between two sequences
using a rigorous algorithm based on the LALIGN application.
Figure 3. ATPs sequencing with Water. Local alignment between forward and reverse-complement
sequencing results using the Water software, which uses the Smith-Waterman algorithm (modified for speed
enhancements) to calculate the local alignment of two sequences.
Figure 4. Snapgene view of PCK sequencing results.
Figure 5.PCK sequencing with Matcher. Local alignment between forward and reverse-complement
sequencing results using the Matcher software.
Figure 6. PCK sequencing with Water. Local alignment between forward and reverse-complement
sequencing results using the Water software.
Figure 7. Snapgene view of ATPs-PCK sequencing results.
Figure 8.ATPs-PCK sequencing with Matcher. Local alignment between forward and reverse-complement
sequencing results using the Matcher software.
Figure 9. ATPs-PCK sequencing with Water. Local alignment between forward and reverse-complement
sequencing results using the Water software.

E Growth Rates and Physiological Parameters

Table 14. Growth rates and generation times of the wild type, PCK and ATPs mutants.
Figure 10. Secretion product standard curves. Glucose, acetate, succinate, lactate formate and
ethanol standard curves to quantify these compounds by HPLC.
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Figure 11. OD600 against time (h) in logarithmic scale. Timepoints selected to calculate growth rates
are: (A) wild type: 4h and 8h; (B) PCK: 0h and 8h; and (C): ATPs: 4h and 10h.
Figure 12. Calibration curves. Linear functions convert optical density (OD600) to cell dry weight (gDW
L−1) for strains WT and ATPs

F 13C Metabolic Flux Analysis

Table 15. Reactions included in the E.coli model available on WUFlux
Table 16. Absolute fluxes (mmol gDW−1 hr−1) for the WT, ATPs and PCK strains
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Table 1: Aerobic FVA estimates of the wild type and engineered models under aerobic conditions.
Optimized for biomass formation (WT) or target production, accordingly, using the E.coli Core model. Minimal
and maximal range units are in mmol gDW−1 hr−1. Fraction of optimum = 100%. Reactions are shown in no
particular order.

WT BuOH-0 BuOH-1 tpcBuOH BuOH-2
Reaction ID Min Max Min Max Min Max Min Max Min Max

NPHT7 10.0 10.0 9.049 9.049
G6PDH2r 4.72 4.72 2.53 2.53 4.288 4.288

PGM -14.85 -14.85 -20.0 -20.0 -20.0 -20.0 -19.16 -19.16 -18.571 -18.571
FBP 0.0 12.40 2.40
FUM 5.34 5.34 0.473 0.473

Biomass 0.86 0.86
PGI 5.11 5.11 10.0 10.0 10.0 10.0 7.47 7.47 5.712 5.712
GND 4.72 4.72 10.0 10.0 2.53 2.53 4.288 4.288

NADH11 39.36 39.36 5.07 5.07 10.941 10.941
PPC 2.47 2.47 12.40 2.40
MDH 5.34 5.34 -11.20 -2.40 0.473 0.473
PPCK 12.40 2.40
PPS 12.40 2.40
ME1 11.2 2.40
ME2 11.2 2.40

AKGDH 5.34 5.34 0.473 0.473
PGK -16.14 -16.14 -20.0 -20.0 -20.0 -20.0 -19.16 -19.16 -18.571 -18.571
ADK1 12.40 2.40 9.58 9.58 9.049 9.049

EX_glc_e -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0
ATPM 7.60 7.60 7.60 20.0 7.60 10.0 7.60 7.60 7.600 7.60
RPI -2.19 -2.19 -0.84 -0.84 -1.429 -1.429
RPE 2.53 2.53 1.69 1.69 2.859 2.859

TALA 1.42 1.42 0.84 0.84 1.429 1.429
SUCD4 5.34 5.34 0.473 0.473
ICDHyr 6.26 6.26 0.473 0.473
GAPD 16.14 16.14 20.0 20.0 20.0 20.0 19.16 19.16 18.571 18.571

CYTBD 44.69 44.69 5.07 5.07 11.415 11.415
SUCOAS -5.34 -5.34 -0.473 -0.473

ENO 14.85 14.85 20.0 20.0 20.0 20.0 19.16 19.16 18.571 18.571
PDH 9.49 9.49 20.0 20.0 20.0 20.0 19.16 19.16 18.571 18.571
CS 6.26 6.26 0.473 0.473

ATPS4r 39.75 39.75 -12.40 -2.40 7.60 7.60 15.702 15.702
TKT2 1.11 1.11 0.84 0.84 1.429 1.429
TKT1 1.42 1.42 0.84 0.84 1.429 1.429
PGL 4.72 4.72 2.53 2.53 4.288 4.288
PFK 7.57 7.57 10.00 22.40 10.0 12.40 9.16 9.16 8.571 8.571
FBA 7.57 7.57 10.0 10.0 10.0 10.0 9.16 9.16 8.571 8.571
PYK 1.93 1.93 22.40 7.60 12.40 9.16 9.16

ACONT 6.26 6.26 10.0 10.0 0.473 0.473
TPI 7.57 7.57 10.0 10.0 9.16 9.16 8.571 8.571

NADTRHD 24.8 4.8
THD2 24.8 4.8 4.51 4.51

HCO3E 10.0 10.0 9.049 9.049
ACCOAC 10.0 10.0 9.049 9.049

BUT1 10.0 10.0 9.58 9.58
BUT2 10.0 10.0 10.0 10.0 9.58 9.58 9.049 9.049
BUT3 10.0 10.0 10.0 10.0 9.58 9.58 9.049 9.049
BUT4 10.0 10.0 10.0 10.0 9.58 9.58 9.049 9.049
BUT5 10.0 10.0 10.0 10.0
BUT6 10.0 10.0 10.0 10.0 9.58 9.58 9.049 9.049
CAR 9.58 9.58 9.049 9.049

BTBTAC 9.58 9.58 9.049 9.049
BTOH_tr 10.0 10.0 10.0 10.0 9.58 9.58 9.049 9.049

BTOH_sink 10.0 10.0 10.0 10.0 9.58 9.58 9.049 9.049



fasBuOH CROT BUTYR BUTAL
Reaction ID Min Max Min Max Min Max Min Max
G6PDH2r 6.265 6.265

PGM -17.912 -17.912 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0
PFL 20.0 20.0 10.0
PGI 3.735 3.735 10.0 10.0 10.0 10.0 10.0 10.0
GND 6.265 6.265
FBP 42.40 32.40 22.40

NADH11 12.530 12.530 10.0 30.0 20.00 10.0
RPI -2.088 -2.088
RPE 4.177 4.177

TALA 2.088 2.088
MDH -26.20 -21.20 -16.20
ME1 26.20 21.20 16.20
ME2 26.20 21.20 16.20
PGK -17.912 -17.912 -20.0 -20.0 -20.0 -20.0 -20.00 -20.0
PPC 42.4 32.40 22.40

PPCK 42.4 32.40 22.40
ADK1 8.956 8.956 42.40 32.40 22.40

EX_glc_e -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0
ATPM 7.600 7.60 7.60 50.0 7.60 40.0 7.60 30.0
GAPD 17.912 17.912 20.0 20.0 20.0 20.0 20.0 20.0

CYTBD 12.530 12.530 10.0 30.0 20.0 10.0
ENO 17.912 17.912 20.0 20.0 20.0 20.0 20.0 20.0
PDH 17.912 17.912 20.0 20.0 10.0 20.0
PPS 42.40 32.40 22.40
PYK 7.912 7.912 52.40 42.40 32.40

ATPS4r 16.556 16.556 -12.40 30.0 -12.40 20.0 -12.40 10.0
TKT2 2.088 2.088
TKT1 2.088 2.088
PGL 6.265 6.265
PFK 7.912 7.912 10.0 52.40 10.0 42.40 10.0 32.40
FBA 7.912 7.912 10.0 10.0 10.0 10.0 10.0 10.0
TPI 7.912 7.912 10.0 10.0 10.0 10.0 10.0 10.0

NADTRHD 84.8 64.8 44.8
THD2 5.382 5.382 84.80 64.8 44.8

HCO3E 8.956 8.956
ACCOAC 8.956 8.956

BUT1 10.0 10.0 10.0 10.0 10.0 10.0
BUT2 10.0 10.0 10.0 10.0 10.0 10.0
BUT3 10.0 10.0 10.0 10.0 10.0 10.0
BUT4 10.0 10.0 10.0 10.0
BUT6 8.956 8.956
CAR 8.956 8.956

BTBTAC 8.956 8.956
BTOH_tr 8.956 8.956

BTOH_sink 8.956 8.956
BUT5 10.0 10.0

BTBTAC 10.0 10.0
B2CTCRO 10.0 10.0
CROAC_tr 10.0 10.0

CROAC_sink 10.0 10.0
BTAC_tr 10.0 10.0

BTAC_sink 10.0 10.0
BTAL_tr 10.0 10.0

BTAL_sink 10.0 10.0
3HAD40 8.956 8.956

MCOATA 8.956 8.956
3OAR40 8.956 8.956
EAR40x 8.956 8.956
KAS15 8.956 8.956

5_BUT1 8.956 8.956



Table 2: Aerobic FVA estimates of the butanol and butanol precursor models after manual curation
of high-flux futile cycles. Optimized for butanol or butanol precursor production, accordingly, using the
Escherichia coli Core Model. Minimal and maximal range units are in mmol gDW−1 hr−1. Fraction of optimum
= 100%. Reactions are shown in no particular order.

Reaction ID BuOH-0 BuOH-1 tpcBuOH BuOH-2 fasBuOH
Min Max Min Max Min Max Min Max Min Max

ACONT 0.17 0.17 0.18 0.18 0.10 0.10 0.00 0.00 0.13 0.13
ADK1 0.00 0.00 0.00 0.00 8.46 8.46 9.23 9.23 7.67 7.67
ATPM 7.60 7.60 7.60 7.60 7.60 7.60 2.15 4.62 7.60 7.60
ATPS4r 0.00 0.00 0.00 0.00 14.38 14.38 13.85 13.85 23.22 23.22
Biomass 0.16 0.16 0.05 0.05 0.09 0.09 0.00 0.00 0.12 0.12
CS 0.17 0.17 0.18 0.18 0.10 0.10 0.00 0.00 0.13 0.13
CYTBD 0.73 0.73 0.65 0.95 10.39 10.39 9.23 9.23 17.78 17.78
ENO 19.32 19.32 19.81 19.81 17.94 17.94 18.46 18.46 16.62 16.62
FBA 9.82 9.82 9.96 9.96 8.24 8.24 8.46 8.46 6.99 6.99
FUM 0.00 0.00 0.13 0.13 0.00 0.00 0.00 0.00 0.00 0.00
G6PDH2r 0.06 0.06 0.00 0.00 5.02 5.02 4.62 4.62 8.67 8.67
GAPD 19.56 19.56 19.88 19.88 18.08 18.08 18.46 18.46 16.80 16.80
GLCpts 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
GND 0.06 0.06 0.00 0.00 5.02 5.02 4.62 4.62 8.67 8.67
ICDHyr 0.17 0.17 0.05 0.05 0.10 0.10 0.00 0.00 0.13 0.13
ICL 0.00 0.00 0.13 0.13 0.00 0.00 0.00 0.00 0.00 0.00
MALS 0.00 0.00 0.13 0.13 0.00 0.00 0.00 0.00 0.00 0.00
MDH -2.01 -2.01 0.26 0.26 0.00 0.00 0.00 0.00 0.00 0.00
ME1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NADH11 0.73 0.73 0.52 0.82 10.39 10.39 9.23 9.23 17.78 17.78
NADTRHD 0.00 0.00 0.00 0.75 0.00 0.00 0.00 0.00 0.00 0.00
PDH 18.32 18.32 19.36 19.66 17.37 17.37 18.46 18.46 15.90 15.90
PFK 9.82 9.82 9.96 9.96 8.24 8.24 8.46 8.46 6.99 6.99
PFL 0.00 0.00 0.00 0.30 0.00 0.00 0.00 0.00 0.00 0.00
PGI 9.91 9.91 9.99 9.99 4.96 4.96 5.39 5.39 1.31 1.31
PGK -19.56 -19.56 -19.88 -19.88 -18.08 -18.08 -18.46 -18.46 -16.80 -16.80
PGL 0.06 0.06 0.00 0.00 5.02 5.02 4.62 4.62 8.67 8.67
PGM -19.32 -19.32 -19.81 -19.81 -17.94 -17.94 -18.46 -18.46 -16.62 -16.62
PPC 2.47 2.47 0.00 0.00 2.47 2.47 0.00 2.47 2.47 2.47
PPCK 0.00 0.00 0.00 0.00 2.21 2.21 0.00 2.47 2.13 2.13
PYK 6.76 6.76 9.79 9.79 7.63 7.63 8.46 8.46 6.23 6.23
RPE -0.07 -0.07 -0.03 -0.03 3.28 3.28 3.08 3.08 5.70 5.70
RPI -0.14 -0.14 -0.03 -0.03 -1.74 -1.74 -1.54 -1.54 -2.97 -2.97
TALA -0.01 -0.01 -0.01 -0.01 1.66 1.66 1.54 1.54 2.87 2.87
THD2 0.61 0.61 0.78 1.53 0.00 0.00 0.00 0.00 0.00 0.00
TKT1 -0.01 -0.01 -0.01 -0.01 1.66 1.66 1.54 1.54 2.87 2.87
TKT2 -0.07 -0.07 -0.02 -0.02 1.62 1.62 1.54 1.54 2.83 2.83
TPI 9.82 9.82 9.96 9.96 8.24 8.24 8.46 8.46 6.99 6.99
BUT1 8.78 8.78 8.46 8.46
BUT2 8.78 8.78 9.59 9.59 8.46 8.46 9.23 9.23
BUT3 8.78 8.78 9.59 9.59 8.46 8.46 9.23 9.23
BUT4 8.78 8.78 9.59 9.59 8.46 8.46 9.23 9.23
BUT5 8.78 8.78 9.59 9.59
BUT6 8.78 8.78 9.59 9.59 8.46 8.46 9.23 9.23 7.67 7.67
BTOH_tr 8.78 8.78 9.59 9.59 8.46 8.46 9.23 9.23 7.67 7.67
BTOH_sink 8.78 8.78 9.59 9.59 8.46 8.46 9.23 9.23 7.67 7.67
HCO3E 9.59 9.59 9.23 9.23 7.67 7.67
ACCOAC 9.59 9.59 9.23 9.23 7.67 7.67
NPHT7 9.59 9.59 9.23 9.23
BTBTAC 8.46 8.46 9.23 9.23
CAR 8.46 8.46 9.23 9.23 7.67 7.67
ACPS1 0.00 0.00
BPNT 0.00 0.00
MCOATA 7.67 7.67
KAS15 7.67 7.67
3OAR40 7.67 7.67
3HAD40 7.67 7.67
EAR40x 7.67 7.67
5_BUT1 7.67 7.67
BTBTAC 0.17 0.17 0.18 0.18 0.10 0.10 0.00 0.00 0.13 0.13
BTAC_tr 0.00 0.00 0.00 0.00 8.46 8.46 9.23 9.23 7.67 7.67
BTAC_sink 7.60 7.60 7.60 7.60 7.60 7.60 2.15 4.62 7.60 7.60
BTAL_tr 0.00 0.00 0.00 0.00 14.38 14.38 13.85 13.85 23.22 23.22
BTAL_sink 0.16 0.16 0.05 0.05 0.09 0.09 0.00 0.00 0.12 0.12



Reaction ID CROT BUTYR Butal
Min Max Min Max Min Max

ACONT 0.165 0.165 0.165 0.165 0.165 0.165
ADK1 0 0 0 0 0 0
ATPM 7.6 7.6 7.6 7.6 7.6 7.6
ATPS4r 0 0 0 0 0 0
Biomass 0.153 0.153 0.153 0.153 0.153 0.153
CS 0.165 0.165 0.165 0.165 0.165 0.165
CYTBD 11.08 29.056 4.411 20.437 2.688 11.819
ENO 18.927 18.927 18.927 18.927 18.927 18.927
FBA 9.41 9.41 9.41 9.41 9.41 9.41
FUM 0 0 0 0 0 0
G6PDH2r 1.312 1.312 1.312 1.312 1.312 1.312
GAPD 19.156 19.156 19.156 19.156 19.156 19.156
GLCpts 10 10 10 10 10 10
GND 1.312 1.312 1.312 1.312 1.312 1.312
ICDHyr 0.165 0.165 0.165 0.165 0.165 0.165
ICL 0 0 0 0 0 0
MALS 0 0 0 0 0 0
MDH -2.03 0 0 0 -2.03 0
ME1 0 2.03 0 0 0 2.03
NADH11 11.08 29.056 4.411 20.437 2.688 11.819
NADTRHD 0 0 0 0 0 0
PDH 0 17.975 1.949 17.975 8.844 17.975
PFK 9.41 9.41 9.41 9.41 9.41 9.41
PFL 0 17.975 0 16.026 0 9.131
PGI 8.657 8.657 8.657 8.657 8.657 8.657
PGK -19.156 -19.156 -19.156 -19.156 -19.156 -19.156
PGL 1.312 1.312 1.312 1.312 1.312 1.312
PGM -18.927 -18.927 -18.927 -18.927 -18.927 -18.927
PPC 2.468 2.468 2.468 2.468 2.468 2.468
PPCK 0 2.03 2.03 2.03 0 2.03
PYK 6.379 8.409 8.409 8.409 6.379 8.409
RPE 0.765 0.765 0.765 0.765 0.765 0.765
RPI -0.547 -0.547 -0.547 -0.547 -0.547 -0.547
SUCD4 0 0 0 0 0 0
TALA 0.41 0.41 0.41 0.41 0.41 0.41
THD2 0 0 0 0 0 0
TKT1 0.41 0.41 0.41 0.41 0.41 0.41
TKT2 0.355 0.355 0.355 0.355 0.355 0.355
TPI 9.41 9.41 9.41 9.41 9.41 9.41
BUT1 8.618 8.618 8.618 8.618 8.618 8.618
BUT2 8.618 8.618 8.618 8.618 8.618 8.618
BUT3 8.618 8.618 8.618 8.618 8.618 8.618
BUT4 8.618 8.618 8.618 8.618
BUT5 8.618 8.618
B2CTCRO 8.618 8.618
CROAC_tr 8.618 8.618
CROT_sink 8.618 8.618
BTBTAC 8.618 8.618
BTAC_tr 8.618 8.618
BTAC_sink 8.618 8.618
BTAL_tr 8.618 8.618
BTAL_sink 8.618 8.618



Table 3: Anaerobic FVA estimates of the butanol and butanol precursor models after manual curation
of high-flux futile cycles. Optimized for butanol or butanol precursor production, accordingly, using the
Escherichia coli Core Model. Minimal and maximal range units are in mmol gDW−1 hr−1. Fraction of optimum
= 100%. Reactions are shown in no particular order.

Reaction ID BuOH-0 BuOH-1 tpcBuOH BuOH-2 fasBuOH
Min Max Min Max Min Max Min Max Min Max

ACKr 0.00 0.00 0.00 0.00 0.00 0.00 -3.75 -3.75 -4.18 -4.18
ACONT 0.20 0.20 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00
ADHEr 5.53 5.53 1.34 1.34 0.00 0.00 0.00 0.00 0.05 0.05
ADK1 0.00 0.00 0.00 0.00 9.55 9.55 7.50 7.50 7.06 7.06
ATPM 7.60 7.60 7.60 7.60 0.00 0.00 0.00 0.00 0.00 0.00
ATPS4r 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.35 -1.35
Biomass 0.18 0.18 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.00
CS 0.20 0.20 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00
ENO 18.76 18.76 19.70 19.70 19.10 19.10 18.75 18.75 18.34 18.34
FBA 9.33 9.33 9.84 9.84 9.10 9.10 8.75 8.75 8.34 8.34
G6PDH2r 1.47 1.47 0.37 0.37 2.71 2.71 3.75 3.75 4.99 4.99
GAPD 19.03 19.03 19.77 19.77 19.10 19.10 18.75 18.75 18.34 18.34
GLCpts 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
GND 1.47 1.47 0.37 0.37 2.71 2.71 3.75 3.75 4.99 4.99
ICDHyr 0.20 0.20 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00
MDH -0.17 -0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ME2 0.17 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PDH 14.03 14.03 18.55 18.55 13.68 13.68 3.75 3.75 0.00 0.00
PFK 9.33 9.33 9.84 9.84 9.10 9.10 8.75 8.75 8.34 8.34
PFL 3.61 3.61 0.89 0.89 5.42 5.42 15.00 15.00 18.34 18.34
PGI 8.50 8.50 9.63 9.63 7.29 7.29 6.25 6.25 5.01 5.01
PGK -19.03 -19.03 -19.77 -19.77 -19.10 -19.10 -18.75 -18.75 -18.34 -18.34
PGL 1.47 1.47 0.37 0.37 2.71 2.71 3.75 3.75 4.99 4.99
PGM -18.76 -18.76 -19.70 -19.70 -19.10 -19.10 -18.75 -18.75 -18.34 -18.34
PPC 0.69 0.69 0.69 0.69 0.00 0.00 0.00 0.00 0.00 0.00
PPCK 0.00 0.00 0.57 0.57 0.00 0.00 0.00 0.00 0.00 0.00
PYK 7.98 7.98 9.56 9.56 9.10 9.10 8.75 8.75 8.34 8.34
RPE 0.85 0.85 0.21 0.21 1.81 1.81 2.50 2.50 3.33 3.33
RPI -0.62 -0.62 -0.15 -0.15 -0.90 -0.90 -1.25 -1.25 -1.66 -1.66
TALA 0.46 0.46 0.11 0.11 0.90 0.90 1.25 1.25 1.66 1.66
THD2 0.00 0.00 0.00 0.00 4.13 4.13 0.00 0.00 4.13 4.13
TKT1 0.46 0.46 0.11 0.11 0.90 0.90 1.25 1.25 1.66 1.66
TKT2 0.39 0.39 0.10 0.10 0.90 0.90 1.25 1.25 1.66 1.66
TPI 9.33 9.33 9.84 9.84 9.10 9.10 8.75 8.75 8.34 8.34
BUT1 5.62 5.62 9.55 9.55
BUT2 5.62 5.62 8.94 8.94 9.55 9.55 7.50 7.50
BUT3 5.62 5.62 8.94 8.94 9.55 9.55 7.50 7.50
BUT4 5.62 5.62 8.94 8.94 9.55 9.55 7.50 7.50
BUT5 5.62 5.62 8.94 8.94
BUT6 5.62 5.62 8.94 8.94 9.55 9.55 7.50 7.50 7.06 7.06
BTOH_tr 5.62 5.62 8.94 8.94 9.55 9.55 7.50 7.50 7.06 7.06
BTOH_sink 5.62 5.61 8.94 8.94 9.55 9.55 7.50 7.50 7.06 7.06
HCO3E 8.94 8.94 7.50 7.50 7.06 7.06
ACCOAC 8.94 8.94 7.50 7.50 7.06 7.06
NPHT7 8.94 8.94 7.50 7.50 7.06 7.06
BTBTAC 9.55 9.55 7.50 7.50
CAR 9.55 9.55 7.50 7.50
MCOATA 7.06 7.06
KAS15 7.06 7.06
3OAR40 7.06 7.06
3HAD40 7.06 7.06
EAR40x 7.06 7.06
5_BUT1 7.06 7.06
ACKr 0.00 0.00 0.00 0.00 0.00 0.00 -3.75 -3.75 -4.18 -4.18
ACONT 0.20 0.20 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00
ADHEr 5.53 5.53 1.34 1.34 0.00 0.00 0.00 0.00 0.05 0.05
ADK1 0.00 0.00 0.00 0.00 9.55 9.55 7.50 7.50 7.06 7.06
ATPM 7.60 7.60 7.60 7.60 0.00 0.00 0.00 0.00 0.00 0.00



Reaction ID CROT BUTYR BUTAL
Min Max Min Max Min Max

ACONT 0.195 0.195 0.195 0.195 0.195 0.195
ADHEr 12.318 12.318 11.212 11.212 9.369 9.369
ATPM 7.6 7.6 7.6 7.6 7.6 7.6
Biomass 0.18 0.18 0.18 0.18 0.18 0.18
CS 0.195 0.195 0.195 0.195 0.195 0.195
ENO 18.735 18.735 18.735 18.735 18.735 18.735
FBA 9.305 9.305 9.305 9.305 9.305 9.305
G6PDH2r 1.547 1.547 1.547 1.547 1.547 1.547
GAPD 19.005 19.005 19.005 19.005 19.005 19.005
GLCpts 10 10 10 10 10 10
GND 1.547 1.547 1.547 1.547 1.547 1.547
H2Ot 1.348 1.348 1.348 1.348 -2.339 -2.339
ICDHyr 0.195 0.195 0.195 0.195 0.195 0.195
PDH 7.204 7.204 8.31 8.31 10.153 10.153
PFK 9.305 9.305 9.305 9.305 9.305 9.305
PFL 10.409 10.409 9.303 9.303 7.46 7.46
PGI 8.416 8.416 8.416 8.416 8.416 8.416
PGK -19.005 -19.005 -19.005 -19.005 -19.005 -19.005
PGL 1.547 1.547 1.547 1.547 1.547 1.547
PGM -18.735 -18.735 -18.735 -18.735 -18.735 -18.735
PIt -0.664 -0.664 -0.664 -0.664 -0.664 -0.664
PPC 0.69 0.69 0.69 0.69 0.69 0.69
PPCK 0.173 0.173 0.173 0.173 0.173 0.173
PYK 8.124 8.124 8.124 8.124 8.124 8.124
RPE 0.902 0.902 0.902 0.902 0.902 0.902
RPI -0.645 -0.645 -0.645 -0.645 -0.645 -0.645
TALA 0.483 0.483 0.483 0.483 0.483 0.483
TKT1 0.483 0.483 0.483 0.483 0.483 0.483
TKT2 0.418 0.418 0.418 0.418 0.418 0.418
TPI 9.305 9.305 9.305 9.305 9.305 9.305
BUT1 2.212 2.212 2.765 2.765 3.687 3.687
BUT2 2.212 2.212 2.765 2.765 3.687 3.687
BUT3 2.212 2.212 2.765 2.765 3.687 3.687
BUT4 2.765 2.765 3.687 3.687
BUT5 3.687 3.687
B2CTCRO 2.212 2.212
CROAC_tr 2.212 2.212
CROT_sink 2.212 2.212
BTBTAC 2.765 2.765
BTAC_tr 2.765 2.765
BTAC_sink 2.765 2.765
BTAL_tr 3.687 3.687
BTAL_sink 3.687 3.687



Table 4: pFBA flux distributions of the wild type, butanol and butanol precursor models under aerobic
conditions. Used the Escherichia coli Core Model and pFBA for optimization, using either biomass formation
or target production as the objective function, accordingly. Solutions were simulated under aerobic conditions
(EX_o2_e_ = -10 mmol gDW−1 hr−1) and otherwise unconstrained. Reactions shown in no particular order.

Reaction ID WT BUOH-0 BuOH-1 tpcBuOH BuOH-2 fasBuOH CROT BUTYR BUTAL
ADK1 9.58 9.05 8.96

ACONT 6.27 0.47
AKGDH 5.34 0.47
ATPM 7.60 20 10 7.60 7.60 7.60 25 15 17.5
ATPS4r 39.75 7.60 15.70 16.56 5 -5 -2.5
Biomass 0.86

CS 6.27 0.47
CYTBD 44.69 5.07 11.42 12.53 10

ENO 14.85 20 20 19.16 18.57 17.91 20 20 20
FBA 7.57 10 10 9.16 8.57 7.91 10 10 10
FUM 5.34 0.47

G6PDH2r 4.72 2.53 4.29 6.27
GAPD 16.14 20 20 19.16 18.57 17.91 20 20 20
GLCpts 10.00 10 10 10.00 10.00 10.00 10 10 10
GND 4.72 2.53 4.29 6.27

ICDHyr 6.27 0.47
MDH 5.34 0.47

NADH11 39.36 5.07 10.94 12.53 10
PDH 9.49 20 20 19.16 18.57 17.91 10
PFK 7.57 10 10 9.16 8.57 7.91 10 10 10
PFL 20 20 10
PGI 5.11 10 10 7.47 5.71 3.74 10 10 10
PGK -16.14 -20 -20 -19.16 -18.57 -17.91 -20 -20 -20
PGL 4.72 2.53 4.29 6.27
PGM -14.85 -20 -20 -19.16 -18.57 -17.91 -20 -20 -20
PPC 2.47
PYK 1.93 10 10 9.16 8.57 7.91 10 10 10
RPE 2.53 1.69 2.86 4.18
RPI -2.19 -0.84 -1.43 -2.09

TALA 1.42 0.84 1.43 2.09
THD2 4.51 5.38
TKT1 1.42 0.84 1.43 2.09
TKT2 1.11 0.84 1.43 2.09
TPI 7.57 10 10 9.16 8.57 7.91 10 10 10

BUT1 10 9.58 10 10 10
BUT2 10 10 9.58 9.05 10 10 10
BUT3 10 10 9.58 9.05 10 10 10
BUT4 10 10 9.58 9.05 10 10
BUT5 10 10 10
BUT6 10 10 9.58 9.05 8.96

BTOH_tr 10 10 9.58 9.05 8.96
BTOH_sink 10 10 9.58 9.05 8.96

HCO3E 10 9.05 8.96
ACCOAC 10 9.05 8.96
NPHT7 10 9.05

BTBTAC 9.58 9.05 10
CAR 9.58 9.05 8.96

MCOATA 8.96
KAS15 8.96
3OAR40 8.96
3HAD40 8.96
EAR40x 8.96
5_BUT1 8.96

B2CTCRO 10
CROAC_tr 10
CROT_sink 10
BTAC_tr 10

BTAC_sink 10
BTAL_tr 10

BTAL_sink 10



Table 5: pFBA flux distributions of the wild type, butanol and butanol precursor models under anaer-
obic conditions. Used the Escherichia coli Core Model and pFBA for optimization, using either biomass
formation or target production as the objective function, accordingly. Solutions were simulated under anaerobic
conditions (EX_o2_e_ = 0 mmol gDW−1 hr−1) and otherwise unconstrained. Reactions shown in no particular
order.

WT BuOH-0 BuOH-1 tpcBuOH BuOH-2 fasBuOH CROT BUTYR BUTAL
Biomass 0.241

G6PDH2r 3.733 1.440 0.649
ADK1 7.467 5.600 5.271
NPHT7 10.0 5.600
ATPM 7.600 20.0 10.0 7.60 7.60 7.600 16.667 15.0 17.5
RPE -0.173 2.489 0.960 0.433

GAPD 19.360 20.0 20.0 18.756 19.520 19.784 20.0 20.0 20.0
PPC 0.690
TPI 9.760 10.0 10.0 8.756 9.520 9.784 10.0 10.0 10.0

TKT2 -0.130 1.244 0.480 0.216
TKT1 -0.043 1.244 0.480 0.216
PYK 8.184 10.0 10.0 8.756 9.520 9.784 10.0 10.0 10.0

BTBTAC 7.467 5.600 10.0
ENO 19.0 20.0 20.0 18.756 19.520 19.784 20.0 20.0 20.0
FBA 9.760 10.0 10.0 8.756 9.520 9.784 10.0 10.0 10.0

ACONT 0.260
HCO3E 10.0 5.60 5.271
TALA -0.043 1.244 0.480 0.216
THD2 4.129 2.720 9.242
ACKr -8.297 -3.822 -8.320 -9.242

BTOH_sink 10.0 10.0 7.467 5.60 5.271
ICDHyr 0.260
PDH 20.0 20.0 3.644 10.0
CS 0.260

ATPS4r -5.066 -0.044 -3.440 -5.614 -3.333 -5.0 -2.5.0
BUT3 10.0 10.0 7.467 5.60 6.667 10.0 10.0
ADHEr 8.042 6.667
BUT2 10.0 10.0 7.467 5.60 6.667 10.0 10.0
BUT1 10.0 7.467 6.667 10.0

BTOH_tr 10.0 10.0 7.467 5.60 5.271
BUT6 10.0 10.0 7.467 5.600 5.271
BUT5 10.0 10.0 10.0
BUT4 10.0 10.0 7.467 5.60 10. 10.0
CAR 7.467 5.60 5.271

GLCpts 10.0 10.0 10.0 10.0 10.0 10.000 10.0 10.0 10.0
GND 3.733 1.440 0.649
PGL 3.733 1.440 0.649
PGM -19.0 -20.0 -20.0 -18.756 -19.520 -19.784 -20.0 -20.0 -20.0
PGK -19.360 -20.0 -20.0 -18.756 -19.520 -19.784 -20.0 -20.0 -20.0
PGI 9.951 10.0 10.0 6.267 8.560 9.351 10.0 10.0 10.0
RPI -0.173 -1.244 -0.480 -0.216
PFK 9.760 10.0 10.0 8.756 9.520 9.784 10.0 10.0 10.0
PFL 17.502 15.111 19.520 19.784 20.0 20.0 10.0

ACCOAC 10.0 5.60
MCOATA 5.271
3HAD40 5.271
ACCOAC 5.271
KAS15 5.271
EAR40x 5.271
5_BUT1 5.271
3OAR40 5.271

CROAC_tr 6.667
CROAC_sink 6.667
B2CTCRO 6.667
BTAC_sink 10.0
BTAC_tr 10.0

BTAL_sink 10.0
BTAL_tr 10.0



Table 6: pFBA flux distributions of the butanol and butanol precursor models under aerobic conditions
after manual curation of high-flux futile cycles. Used the Escherichia coli Core Model and pFBA for
optimization, using target production as the objective function, accordingly. Solutions were simulated under
aerobic conditions (EX_o2_e_ = -10 mmol gDW−1 hr−1). Reactions shown in no particular order.

BuOH-0 BuOH-1 tpcBuOH BuOH-2 fasBuOH CROT BUTYR BUTAL
EX_co2_b 18.099 19.408 22.229 23.077 24.356 1.039 2.988 9.883
EX_for_b 0.301 17.975 16.026 9.131

EX_glc_D_b -10 -10 -10 -10 -10 -10 -10 -10
EX_h2o_b 9.616 9.9 30.862 32.308 32.235 9.937 3.268 10.163
EX_h_b 1.69 0.78 -15.956 -18.462 -21.757 19.594 17.645 10.75
EX_o2_b -0.363 -0.324 -5.194 -4.615 -8.89 -5.54 -2.206 -1.344
EX_pi_b -0.588 -0.167 -0.338 -0.431 -0.563 -0.563 -0.563
ACONT 0.172 0.179 0.099 0.126 0.165 0.165 0.165
ADK1 8.464 9.231 7.665
ATPM 7.6 7.6 7.6 4.615 7.6 7.6 7.6 7.6
ATPS4r 14.377 13.846 23.219
Biomass 0.16 0.045 0.092 0.117 0.153 0.153 0.153
CO2t -18.099 -19.408 -22.229 -23.077 -24.356 -1.039 -2.988 -9.883
CS 0.172 0.179 0.099 0.126 0.165 0.165 0.165

CYTBD 0.725 0.648 10.388 9.231 17.78 11.08 4.411 2.688
ENO 19.316 19.812 17.944 18.462 16.624 18.927 18.927 18.927
FBA 9.821 9.955 8.235 8.462 6.994 9.41 9.41 9.41
FORt -0.301 -17.975 -16.026 -9.131
FUM 0.13

G6PDH2r 0.062 5.021 4.615 8.669 1.312 1.312 1.312
GAPD 19.555 19.88 18.082 18.462 16.799 19.156 19.156 19.156
GLCpts 10 10 10 10 10 10 10 10
GND 0.062 5.021 4.615 8.669 1.312 1.312 1.312
H2Ot -9.616 -9.9 -30.862 -32.308 -32.235 -9.937 -3.268 -10.163

ICDHyr 0.172 0.049 0.099 0.126 0.165 0.165 0.165
ICL 0.13

MALS 0.13
MDH -2.011 0.259 -2.03 -2.03
ME1 2.03 2.03
ME2 2.011

NADH11 0.725 0.518 10.388 9.231 17.78 11.08 4.411 2.688
O2t 0.363 0.324 5.194 4.615 8.89 5.54 2.206 1.344
PDH 18.323 19.359 17.372 18.462 15.896 1.949 8.844
PFK 9.821 9.955 8.235 8.462 6.994 9.41 9.41 9.41
PFL 0.301 17.975 16.026 9.131
PGI 9.906 9.991 4.96 5.385 1.307 8.657 8.657 8.657
PGK -19.555 -19.88 -18.082 -18.462 -16.799 -19.156 -19.156 -19.156
PGL 0.062 5.021 4.615 8.669 1.312 1.312 1.312
PGM -19.316 -19.812 -17.944 -18.462 -16.624 -18.927 -18.927 -18.927
PIt -0.588 -0.167 -0.338 -0.431 -0.563 -0.563 -0.563
PPC 2.468 2.468 2.468 2.468 2.468 2.468

PPCK 2.205 2.133 2.03
PYK 6.764 9.788 7.633 8.462 6.227 6.379 8.409 6.379
RPE -0.074 -0.033 3.281 3.077 5.695 0.765 0.765 0.765
RPI -0.135 -0.033 -1.74 -1.538 -2.974 -0.547 -0.547 -0.547
22_2 24.727

SUCCt2b 24.727
SUCD1i 0.13
SUCD4 0.13
TALA -0.008 -0.008 1.657 1.538 2.869 0.41 0.41 0.41
THD2 0.605 0.776
TKT1 -0.008 -0.008 1.657 1.538 2.869 0.41 0.41 0.41
TKT2 -0.066 -0.024 1.624 1.538 2.827 0.355 0.355 0.355
TPI 9.821 9.955 8.235 8.462 6.994 9.41 9.41 9.41

HCO3E 9.591 9.231 7.665
ACCOAC 9.591 9.231 7.665
NPHT7 9.591 9.231



BuOH-0 BuOH-1 tpcBuOH BuOH-2 fasBuOH CROT BUTYR BUTAL
MCOATA 7.665
KAS15 7.665
3OAR40 7.665
3HAD40 7.665
EAR40x 7.665
5_BUT1 7.665
BUT1 8.776 8.464 8.618 8.618 8.618
BUT2 8.776 9.591 8.464 9.231 8.618 8.618 8.618
BUT3 8.776 9.591 8.464 9.231 8.618 8.618 8.618

B2CTCRO 8.618
CROAC_tr 8.618
CROT_sink 8.618

BUT4 8.776 9.591 8.464 9.231 8.618 8.618
BTBTAC 8.464 9.231 8.618

CAR 8.464 9.231 7.665
BUT5 8.776 9.591 8.618
BUT6 8.776 9.591 8.464 9.231 7.665

BTOH_tr 8.776 9.591 8.464 9.231 7.665 8.618
BTOH_sink 8.776 9.591 8.464 9.231 7.665 8.618
BTAL_tr 8.618
BTAL_sink 8.618

Table 7: pFBA flux distributions of the butanol and butanol precursor models under anaerobic con-
ditions after manual curation of high-flux futile cycles. Used the Escherichia coli Core Model and pFBA
for optimization, using target production as the objective function, accordingly. Solutions were simulated under
anaerobic conditions (EX_o2_e_ = 0 mmol gDW−1 hr−1). Reactions shown in no particular order.

BuOH-0 BuOH-1 tpcBuOH BuOH-2 fasBuOH CROT BUTYR BUTAL
EX_ac_b 3.75 4.177
EX_co2_b 15.166 18.834 16.387 7.5 4.991 8.428 9.534 11.377
EX_etoh_b 5.525 1.342 0.047 12.318 11.212 9.369
EX_for_b 3.611 0.891 5.419 15 18.336 10.409 9.303 7.46

EX_glc_D_b -10 -10 -10 -10 -10 -10 -10 -10
EX_h2o_b 4.354 8.626 25.936 15 12 -1.348 -1.348 2.339
EX_h_b 5.525 1.342 -13.678 3.75 1.345 12.318 11.212 9.369
EX_pi_b -0.665 -0.157 -0.664 -0.664 -0.664

ACKr -3.75 -4.177
ACt2r -3.75 -4.177
ADK1 9.548 7.5 7.056

ACONT 0.195 0.046 0.195 0.195 0.195
ADHEr 5.525 1.342 0.047 12.318 11.212 9.369
ATPM 7.6 7.6 7.6 7.6 7.6
ATPS4r -1.345
Biomass 0.181 0.043 0.18 0.18 0.18
CO2t -15.166 -18.834 -16.387 -7.5 -4.991 -8.428 -9.534 -11.377
CS 0.195 0.046 0.195 0.195 0.195

ENO 18.76 19.701 19.097 18.75 18.336 18.735 18.735 18.735
ETOHt2r -5.525 -1.342 -0.047 -12.318 -11.212 -9.369



BuOH-0 BuOH-1 tpcBuOH BuOH-2 fasBuOH CROT BUTYR BUTAL
FBA 9.332 9.836 9.097 8.75 8.336 9.305 9.305 9.305
FORt -3.611 -0.891 -5.419 -15 -18.336 -10.409 -9.303 -7.46

G6PDH2r 1.465 0.365 2.71 3.75 4.991 1.547 1.547 1.547
GAPD 19.031 19.765 19.097 18.75 18.336 19.005 19.005 19.005
GLCpts 10 10 10 10 10 10 10 10
GND 1.465 0.365 2.71 3.75 4.991 1.547 1.547 1.547
H2Ot -4.354 -8.626 -25.936 -15 -12 1.348 1.348 -2.339

ICDHyr 0.195 0.046 0.195 0.195 0.195
MDH -0.172
ME2 0.172
PDH 14.025 18.545 13.678 3.75 7.204 8.31 10.153
PFK 9.332 9.836 9.097 8.75 8.336 9.305 9.305 9.305
PFL 3.611 0.891 5.419 15 18.336 10.409 9.303 7.46
PGI 8.498 9.626 7.29 6.25 5.009 8.416 8.416 8.416
PGK -19.031 -19.765 -19.097 -18.75 -18.336 -19.005 -19.005 -19.005
PGL 1.465 0.365 2.71 3.75 4.991 1.547 1.547 1.547
PGM -18.76 -19.701 -19.097 -18.75 -18.336 -18.735 -18.735 -18.735
PIt -0.665 -0.157 -0.664 -0.664 -0.664
PPC 0.69 0.69 0.69 0.69 0.69
PPCK 0.568 0.173 0.173 0.173
PTAr 3.75 4.177
PYK 7.976 9.557 9.097 8.75 8.336 8.124 8.124 8.124
RPE 0.847 0.213 1.806 2.5 3.328 0.902 0.902 0.902
RPI -0.618 -0.152 -0.903 -1.25 -1.664 -0.645 -0.645 -0.645
22_2 5.419

SUCCt2b 5.419
TALA 0.456 0.114 0.903 1.25 1.664 0.483 0.483 0.483
THD2 4.129 4.129
TKT1 0.456 0.114 0.903 1.25 1.664 0.483 0.483 0.483
TKT2 0.391 0.099 0.903 1.25 1.664 0.418 0.418 0.418
TPI 9.332 9.836 9.097 8.75 8.336 9.305 9.305 9.305

HCO3E 8.944 7.5 7.056
ACCOAC 8.944 7.5 7.056
MCOATA 7.056
KAS15 7.056
3OAR40 7.056
3HAD40 7.056
EAR40x 7.056
5_BUT1 7.056
NPHT7 8.944 7.5
BUT1 5.619 9.548 2.212 2.765 3.687
BUT2 5.619 8.944 9.548 7.5 2.212 2.765 3.687
BUT3 5.619 8.944 9.548 7.5 2.212 2.765 3.687
BUT4 5.619 8.944 9.548 7.5 2.765 3.687

BTBTAC 9.548 7.5 2.765
CAR 9.548 7.5 7.056
BUT5 5.619 8.944 3.687
BUT6 5.619 8.944 9.548 7.5 7.056

BTOH_tr 5.619 8.944 9.548 7.5 7.056
BTOH_sink 5.619 8.944 9.548 7.5 7.056
B2CTCRO 2.212
CROAC_tr 2.212
CROT_sink 2.212
BUTYR_tr 2.765
BUTYR_sink 2.765
BTAL_tr 3.687

BTAL_sink 3.687



Table 8: pFBA flux distributions of the wild type, butanol and butanol precursor models constrained
using 13C-MFA data. Used the Escherichia coli Core Model and pFBA for optimization, using either biomass
formation or target production as the objective function, accordingly. Solutions were simulated under aero-
bic conditions (EX_o2_e_ = -10 mmol gDW−1 hr−1) and constrained using 13C-MFA data from Long and
Antoniewicz (2019). Reactions shown in no particular order.

WT BuOH-0 BuOH-1 tpcBuOH BuOH-2 fasBuOH CROT BUTYR BUTAL
ACONT 4.623 0.382 0.381 0.382 0.63 0.707 0.381 0.382 0.382
ADK1 3.595 3.595 3.595

AKGDH 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061
AKGt2r -2.132 -0.248 -0.326
ATPM 7.6 15.024 11.429 7.834 7.6 7.6 18.143 15.024 15.024
ATPS4r 25.821 7.417 7.417 7.417 10.529 10.452 10.536 7.417 7.417
Biomass 0.524

CS 4.623 0.382 0.381 0.382 0.63 0.707 0.381 0.382 0.382
CYTBD 29.476 7.192 7.192 5.754 8.493 8.803 12.238 8.643 7.911

ENO 14.113 7.571 7.571 7.571 8.068 8.223 7.571 7.571 7.571
FBA 7.19 3.352 3.351 3.352 3.6 3.677 3.352 3.352 3.352
FUM 1.926 0.382 0.381 0.382 0.381 0.382 0.381 0.382 0.382

G6PDH2r 2.605 2.605 2.605 2.605 2.605 2.605 2.605 2.605 2.605
GAPD 14.898 7.571 7.571 7.571 8.068 8.223 7.571 7.571 7.571
GLCpts 8.58 4.22 4.22 4.22 4.468 4.546 4.22 4.22 4.22
GND 2.605 2.605 2.605 2.605 2.605 2.605 2.605 2.605 2.605

ICDHyr 2.758 0.061 0.061 0.061 0.309 0.387 0.061 0.061 0.061
ICL 1.865 0.32 0.321 0.32 0.321 0.321 0.321 0.32 0.32

MALS 1.865 0.32 0.321 0.32 0.321 0.321 0.321 0.32 0.32
MDH 3.445 0.356 0.356 0.356 0.356 0.356 0.356 0.356 0.356
ME1 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.302
ME2 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044

NADH11 27.55 6.811 6.811 5.373 8.111 8.421 11.856 8.262 7.53
NADTRHD 4.331 4.331 0.736 0.985 5.315 4.363 4.331

PDH 8.53 7.585 7.585 6.147 8.14 8.218 1.846 1.846 4.709
PFK 7.19 3.352 3.351 3.352 3.6 3.677 3.352 3.352 3.352
PFL 0.307 0.307 1.745 6.046 6.046 3.183
PGI 5.867 1.615 1.615 1.615 1.863 1.941 1.615 1.615 1.615
PGK -14.898 -7.571 -7.571 -7.571 -8.068 -8.223 -7.571 -7.571 -7.571
PGL 2.605 2.605 2.605 2.605 2.605 2.605 2.605 2.605 2.605
PGM -14.113 -7.571 -7.571 -7.571 -8.068 -8.223 -7.571 -7.571 -7.571
PPC 2.115 0.026 0.025 0.026 0.274 0.351 0.025 0.026 0.026
PYK 3.146 3.326 3.326 3.326 3.326 3.326 3.326 3.326 3.326
RPE 1.36 1.737 1.737 1.737 1.737 1.737 1.737 1.737 1.737
RPI -1.245 -0.868 -0.868 -0.868 -0.868 -0.868 -0.868 -0.868 -0.868

TALA 0.775 0.868 0.868 0.868 0.868 0.868 0.868 0.868 0.868
THD2 1.545 -0.984 -0.984 -0.984 -0.984 1.549 -0.952 -0.984
TKT1 0.775 0.868 0.868 0.868 0.868 0.868 0.868 0.868 0.868
TKT2 0.585 0.868 0.868 0.868 0.868 0.868 0.868 0.868 0.868
TPI 7.19 3.352 3.351 3.352 3.6 3.677 3.351 3.352 3.352

HCO3E 3.595 3.595 3.595
ACCOAC 3.595 3.595 3.595
NPHT7 3.595 3.595
BUT1 3.595 3.595 3.595 3.595 3.595
BUT2 3.595 3.595 3.595 3.595 3.595 3.595 3.595
BUT3 3.595 3.595 3.595 3.595 3.595 3.595 3.595
BUT4 3.595 3.595 3.595 3.595 3.595 3.595

BTBTAC 3.595 3.595 3.595
CAR 3.595 3.595 3.595
BUT5 3.595 3.595 3.595
BUT6 3.595 3.595 3.595 3.595 3.595

BTOH_tr 3.595 3.595 3.595 3.595 3.595
BTOH_sink 3.595 3.595 3.595 3.595 3.595
MCOATA 3.595

KAS15 3.595
3OAR40 3.595
3HAD40 3.595
EAR40x 3.595
5_BUT1 3.595

B2CTCRO 3.595
CROAC_tr 3.595
CROT_sink 3.595
BTAC_tr 3.595

BTAC_sink 3.595
BTAL_tr 3.595

BTAL_sink 3.595



Table 9: pFBA flux distributions of butanol and butanol precursor models constrained using 13C-MFA
data and additional manual curation of high-flux futile reactions. Used the Escherichia coli Core Model
and pFBA for optimization, using target production as the objective function. Solutions were simulated under
aerobic conditions (EX_o2_e_ = -10 mmol gDW−1 hr−1), constrained using 13C-MFA data from Long and
Antoniewicz (2019). High-flux futile cycles capped are shown in the first row. Reaction fluxes (with reaction
IDs shown in the first column) are shown in no particular order.

BuOH-0 BuOH-1 tpcBuOH CROT BUTYR BUTAL
Reactions capped ATPM, FBP ATPM, FBP ATPM, PPCK, FBP ATPM, FBP ATPM, FBP ATPM, FBP

ACONT 0.519 0.442 0.387 0.519 0.519 0.519
ADK1 3.595

AKGDH 0.061 0.061 0.061 0.061 0.061 0.061
ATPM 7.6 7.6 7.6 7.6 7.6 7.6
ATPS4r 7.417 7.417 7.417 7.417 7.417 7.417
Biomass 0.128 0.056 0.005 0.128 0.128 0.128

CS 0.519 0.442 0.387 0.519 0.519 0.519
CYTBD 7.559 7.352 5.768 12.095 8.994 8.276

ENO 8.967 8.18 7.623 8.967 8.967 8.967
FBA 4.188 3.716 3.382 4.188 4.188 4.188
FUM 0.382 0.382 0.382 0.381 0.382 0.382

G6PDH2r 2.605 2.605 2.605 2.605 2.605 2.605
GAPD 9.158 8.263 7.63 9.158 9.158 9.158
GLCpts 5.183 4.64 4.255 5.183 5.183 5.183
GND 2.605 2.605 2.605 2.605 2.605 2.605

ICDHyr 0.199 0.121 0.066 0.199 0.199 0.199
ICL 0.32 0.32 0.32 0.321 0.32 0.32

MALS 0.32 0.32 0.32 0.321 0.32 0.32
MDH 0.356 0.356 0.356 0.356 0.356 0.356
ME1 0.302 0.302 0.302 0.302 0.302 0.302
ME2 0.044 0.044 0.044 0.044 0.044 0.044

NADH11 7.177 6.971 5.387 11.713 8.612 7.895
NADTRHD 2.14 3.376 0.656 8.1 2.14 2.14

PDH 8.072 7.797 6.165 1.846 2.332 5.202
PFK 4.188 3.716 3.382 4.188 4.188 4.188
PFL 0.421 0.357 1.749 6.647 6.161 3.291
PGI 2.552 2.023 1.649 2.552 2.552 2.552
PGK -9.158 -8.263 -7.63 -9.158 -9.158 -9.158
PGL 2.605 2.605 2.605 2.605 2.605 2.605
PGM -8.967 -8.18 -7.623 -8.967 -8.967 -8.967
PPC 1.45 1.243 0.039 1.45 1.45 1.45

PPCK 1.058 1.058 1.058 1.058 1.058
PYK 3.326 3.326 3.326 3.326 3.326 3.326
RPE 1.645 1.697 1.733 1.645 1.645 1.645
RPI -0.96 -0.908 -0.872 -0.96 -0.96 -0.96

TALA 0.845 0.858 0.867 0.845 0.845 0.845
THD2 -0.984 -0.984 -0.984 4.975 -0.984 -0.984
TKT1 0.845 0.858 0.867 0.845 0.845 0.845
TKT2 0.799 0.838 0.866 0.799 0.799 0.799
TPI 4.188 3.716 3.382 4.188 4.188 4.188

HCO3E 3.592
ACCOAC 3.592
NPHT7 3.592
BUT1 3.587 3.595 3.587 3.587 3.587
BUT2 3.587 3.592 3.595 3.587 3.587 3.587
BUT3 3.587 3.592 3.595 3.587 3.587 3.587
BUT4 3.587 3.592 3.595 3.587 3.587

BTBTAC 3.595 3.587 3.587
CAR 3.595
BUT5 3.587 3.592
BUT6 3.587 3.592 3.595

BTOH_tr 3.587 3.592 3.595
BTOH_sink 3.587 3.592 3.595
B2CTCRO 3.587
CROAC_tr 3.587
CROT_sink 3.587
BTAC_tr 3.587

BTAC_sink 3.587
BTAL_tr 3.587

BTAL_sink 3.587



Table 10: CBA parameters and outputs of unconstrained butanol and butanol precursor models under
aerobic conditions. Reaction IDs, relevant co-factors and their stoichiometric coefficients, flux values, balance
values and assigned balance category are included.

Reaction ID Co-factor Stoich. coefficient Flux Distribution Balance Value Balance Category
Wild Type (WT)
ATPM ATP  -1 7.6 -7.6 Waste
Biomass ATP -55.703 0.87 -47.983 Biomass
SUCOAS ATP -1 -5.336 5.336 Production
PYK ATP 1 1.935 1.935 Production
ATPS4r ATP 1 39.747 39.747 Production
PGK ATP -1 -16.138 16.138 Production
PFK ATP -1 7.571 -7.571 Maintenance
G6PDH2r NADPH 1 4.717 4.717 Waste
ICDHyr NADPH 1 6.265 6.265 Waste
AKGDH NADH 1 5.336 5.336 Waste
GND NADPH 1 4.717 4.717 Waste
PDH NADH 1 9.493 9.493 Waste
GAPD NADH 1 16.138 16.138 Production
Biomass NADH/NADPH 3.547/-18.225 0.87 -15.699 Biomass

BuOH-0
PFK ATP -1 10 -10 Maintenance
PGK ATP -1 -20 20 Production
PYK ATP 1 10 10 Production
ATPM ATP -1 20 -20 Waste
GAPD NADH 1 20 20 Production
BUT2 NADH -1 10 -10 Target
BUT4 NADH -1 10 -10 Target
BUT5 NADH -1 10 -10 Target
BUT6 NADH -1 10 -10 Target
PDH NADH 1 20 20 Waste

BuOH-1
PFK ATP -1 10 -10 Maintenance
PGK ATP -1 -20 20 Production
PYK ATP 1 10 10 Production
ATPM ATP -1 10 -10 Waste
ACCOAC ATP -1 10 -10 Target
GAPD NADH 1 20 20 Production
BUT2 NADH -1 10 -10 Target
BUT4 NADH -1 10 -10 Target
BUT5 NADH -1 10 -10 Target
BUT6 NADH -1 10 -10 Target
PDH NADH 1 20 20 Waste

tpcBuOH
PYK ATP 1 9.156 9.156 Production
ATPS4r ATP 1 7.6 7.6 Production
PGK ATP -1 -19.156 19.156 Production
CAR ATP -1 9.578 -9.578 Target
PFK ATP -1 9.156 -9.156 Maintenance
ATPM ATP -1 9.578 -9.578 Waste
ADK1 ATP -1 9.578 -9.578 Waste
GAPD NADH 1 19.156 19.156 Production
THD2 NADPH 1 4.511 4.511 Production
G6PDH2r NADPH 1 2.533 2.533 Production
CAR NADPH -1 9.578 -9.578 Target
BUT2 NADH -1 9.578 -9.578 Target
BUT4 NADH -1 9.578 -9.578 Target
BUT6 NADH -1 9.578 -9.578 Target
GND NADPH 1 2.533 2.533 Waste
PDH NADH 1 19.156 19.156 Waste
NADH11 NADH -1 5.067 -5.067 Maintenance
THD2 NADH -1 4.511 -4.511 Maintenance

BuOH-2
SUCOAS ATP 1 0.473 0.473 Production
PYK ATP 1 8.571 8.571 Production
ATPS4r ATP 1 15.702 15.702 Production
PGK ATP -1 -18.571 18.571 Production



Reaction ID Co-factor Stoich. coefficient Flux Distribution Balance Value Balance Category
BuOH-2
CAR ATP -1 9.049 -9.049 Target
ACCOAC ATP -1 9.049 -9.049 Target
PFK ATP -1 8.571 -8.571 Maintenance
ATPM ATP -1 7.6 -7.6 Waste
ADK1 ATP -1 9.049 -9.049 Waste
MDH NADH 1 0.473 0.473 Production
GAPD NADH 1 18.570 18.570 Production
G6PDH2r NADPH 1 4.288 4.288 Production
CAR NADPH -1 9.049 -9.049 Target
BUT2 NADH -1 9.049 -9.049 Target
BUT4 NADH -1 9.049 -9.049 Target
BUT6 NADH -1 9.049 -9.049 Target
NADH11 NADH -1 10.941 -10.941 Maintenance
ICDHyr NADH 1 0.473 0.473 Waste
AKGDH NADH 1 0.473 0.473 Waste
GND NADPH 1 4.288 4.288 Waste
PDH NADH 1 18.571 18.571 Waste

fasBuOH
PYK ATP 1 7.912 7.912 Production
ATPS4r ATP 1 16.556 16.556 Production
PGK ATP -1 -17.912 17.912 Production
CAR ATP -1 8.956 -8.956 Target
ACCOAC ATP -1 8.956 -8.956 Target
PFK ATP -1 7.912 -7.912 Maintenance
ADK1 ATP -1 8.956 -8.956 Waste
ATPM ATP -1 7.6 -7.6 Waste
G6PDH2r NADPH 1 6.265 6.265 Production
GAPD NADH 1 17.912 17.912 Production
THD2 NADPH 1 5.381 5.381 Production
CAR NADPH -1 8.956 -8.956 Target
BUT6 NADH -1 8.956 -8.956 Target
30AR40 NADPH -1 8.956 -8.956 Maintenance
EAR40x NADH -1 8.956 -8.956 Maintenance
NADH11 NADH -1 12.530 -12.530 Maintenance
THD2 NADH -1 5.381 -5.381 Maintenance
GND NADPH 1 6.265 6.265 Waste
PDH NADH 1 17.912 17.912 Waste

CROT
PYK ATP 1 10 10 Production
ATPS4r ATP 1 5 5 Production
PGK ATP -1 -20 20 Production
PFK ATP -1 10 -10 Maintenance
ATPM ATP -1 25 -25 Waste
GAPD NADH 1 20 20 Production
BUT2 NADH -1 10 -10 Target
NADH11 NADH -1 10 -10 Maintenance

BUTYR
PYK ATP 1 10 10 Production
PGK ATP -1 -20 20 Production
ATPS4r ATP 1 -5 -5 Maintenance
PFK ATP -1 10 -10 Maintenance
ATPM ATP -1 15 -15 Waste
GAPD NADH 1 20 20 Production
BUT2 NADH -1 10 -10 Target
BUT4 NADH -1 10 -10 Target

BUTAL
PYK ATP 1 10 10 Production
PGK ATP -1 -20 20 Production
ATPS4r ATP 1 -2.5 -2.5 Maintenance
PFK ATP -1 10 -10 Maintenance
ATPM ATP -1 17.5 -17.5 Waste
GAPD NADH 1 20 20 Production
PDH NADH 1 20 20 Waste
BUT2 NADH -1 10 -10 Target
BUT4 NADH -1 10 -10 Target
BUT5 NADH -1 10 -10 Target



Table 11: CBA parameters and outputs of unconstrained butanol and butanol precursor models under
anaerobic conditions. Reaction IDs, relevant co-factors and their stoichiometric coefficients, flux values,
balance values and assigned balance category are included.

Reaction ID Co-factor Stoich. coefficient Flux Distribution Balance Value Balance Category
Wild Type (WT)
ATPM ATP 1 7.6 -7.6 Waste
ACKr ATP -1 -8.297 8.297 Waste
Biomass ATP -55.703 0.241 -13.415 Biomass
PYK ATP 1 8.184 8.184 Production
ATPS4r ATP 1 -5.067 -5.067 Maintenance
PGK ATP -1 -19.360 19.360 Production
PFK ATP -1 9.761 -9.761 Maintenance
THD2 NADPH 1 4.129 4.129 Production
ICDHyr NADPH 1 0.260 0.260 Waste
THD2 NADH -1 4.129 -4.129 Maintenance
ADHEr NADH -2 8.042 -16.085 Waste
GAPD NADH 1 19.340 19.360 Production
Biomass NADH/NADPH 3.547/-18.225 0.241 -3.535 Biomass

BuOH-0
PFK ATP -1 10 -10 Maintenance
PGK ATP -1 -20 20 Production
PYK ATP 1 10 10 Production
ATPM ATP -1 20 -20 Waste
GAPD NADH 1 20 20 Production
BUT2 NADH -1 10 -10 Target
BUT4 NADH -1 10 -10 Target
BUT5 NADH -1 10 -10 Target
BUT6 NADH -1 10 -10 Target
PDH NADH 1 20 20 Waste

BuOH-1
PFK ATP -1 10 -10 Maintenance
PGK ATP -1 -20 20 Production
PYK ATP 1 10 10 Production
ATPM ATP -1 10 -10 Waste
ACCOAC ATP -1 10 -10 Target
GAPD NADH 1 20 20 Production
BUT2 NADH -1 10 -10 Target
BUT4 NADH -1 10 -10 Target
BUT5 NADH -1 10 -10 Target
BUT6 NADH -1 10 -10 Target
PDH NADH 1 20 20 Waste

tpcBuOH
PYK ATP 1 8.756 8.756 Production
ATPS4r ATP 1 7.6 7.6 Production
PGK ATP -1 -18.756 18.756 Production
CAR ATP -1 7.467 -7.467 Target
ATPS4r ATP 1 -0.045 -0.045 Maintenance
PFK ATP -1 8.756 -8.756 Maintenance
ATPM ATP -1 7.6 -7.6 Waste
ADK1 ATP -1 7.467 -7.467 Waste
ACKr ATP -1 -3.822 3.822 Waste
G6PDH2r NADPH 1 3.733 3.733 Production
GAPD NADH 1 18.756 18.756 Production
CAR NADPH -1 7.467 -7.467 Target
BUT2 NADH -1 7.467 -7.467 Target
BUT4 NADH -1 7.467 -7.467 Target
BUT6 NADH -1 7.467 -7.467 Target
GND NADPH 1 3.733 3.733 Waste
PDH NADH 1 3.644 3.644 Waste

BuOH-2
PYK ATP 1 9.520 9.520 Production
ATPS4r ATP 1 -3.440 -3.440 Maintenance
PGK ATP -1 -19.520 19.520 Production
CAR ATP -1 5.6 -5.6 Target
ACCOAC ATP -1 5.6 -5.6 Target



Reaction ID Co-factor Stoich. coefficient Flux Distribution Balance Value Balance Category
BuOH-2
PFK ATP -1 9.52 -9.52 Maintenance
ATPM ATP -1 7.6 -7.6 Waste
ADK1 ATP -1 5.6 -5.6 Waste
ACKr ATP -1 -8.32 8.32 Waste
GAPD NADH 1 19.520 19.520 Production
G6PDH2r NADPH 1 1.440 1.440 Production
THD2 NADPH 1 2.720 2.720 Production
CAR NADPH -1 5.6 -5.6 Target
BUT2 NADH -1 5.6 -5.6 Target
BUT4 NADH -1 5.6 -5.6 Target
BUT6 NADH -1 5.6 -5.6 Target
THD2 NADH -1 2.720 -2.720 Maintenance
GND NADPH 1 1.439 1.439 Waste

fasBuOH
PYK ATP 1 9.784 9.784 Production
ATPS4r ATP 1 -5.614 -5.614 Maintenance
PGK ATP -1 -19.784 19.784 Production
CAR ATP -1 5.271 -5.271 Target
ACCOAC ATP -1 5.271 -5.271 Target
PFK ATP -1 9.784 -9.784 Maintenance
ADK1 ATP -1 5.271 -5.271 Waste
ATPM ATP -1 7.6 -7.6 Waste
ACKr ATP -1 -9.242 9.242 Waste
G6PDH2r NADPH 1 0.649 0.649 Production
GAPD NADH 1 19.784 19.784 Production
THD2 NADPH 1 9.242 9.242 Production
CAR NADPH -1 5.271 -5.271 Target
BUT6 NADH -1 5.271 -5.271 Target
30AR40 NADPH -1 5.271 -5.271 Maintenance
EAR40x NADH -1 5.271 -5.271 Maintenance
THD2 NADH -1 9.242 -9.242 Maintenance
GND NADPH 1 0.649 0.649 Waste

CROT
PYK ATP 1 10 10 Production
ATPS4r ATP 1 -3.333 -3.333 Maintenance
PGK ATP -1 -20 20 Production
PFK ATP -1 10 -10 Maintenance
ATPM ATP -1 16.667 -16.667 Waste
GAPD NADH 1 20 20 Production
BUT2 NADH -1 6.667 -6.667 Target
ADHEr NADH -1 13.333 -13.333 Waste

BUTYR
PYK ATP 1 10 10 Production
PGK ATP -1 -20 20 Production
ATPS4r ATP 1 -5 -5 Maintenance
PFK ATP -1 10 -10 Maintenance
ATPM ATP -1 15 -15 Waste
GAPD NADH 1 20 20 Production
BUT2 NADH -1 10 -10 Target
BUT4 NADH -1 10 -10 Target

BUTAL
PYK ATP 1 10 10 Production
PGK ATP -1 -20 20 Production
ATPS4r ATP 1 -2.5 -2.5 Maintenance
PFK ATP -1 10 -10 Maintenance
ATPM ATP -1 17.5 -17.5 Waste
GAPD NADH 1 20 20 Production
PDH NADH 1 10 10 Waste
BUT2 NADH -1 10 -10 Target
BUT4 NADH -1 10 -10 Target
BUT5 NADH -1 10 -10 Target



Table 12: CBA parameters and outputs of manually curated butanol and butanol precursor models
under aerobic conditions. Reaction IDs, relevant co-factors and their stoichiometric coefficients, flux values,
balance values and assigned balance category are included.

Reaction ID Co-factor Stoich. coefficient Flux Distribution Balance Value Balance Category
BuOH-0
PFK ATP -1 9.821 -9.821 Maintenance
PGK ATP -1 -19.555 19.555 Production
PYK ATP 1 6.764 6.764 Production
ATPM ATP -1 7.60 -7.60 Waste
Biomass ATP -55.703 0.160 -8.899 Biomass
GAPD NADH 1 19.555 19.555 Production
G6PDH2r NADPH 1 0.062 0.062 Production
THD2 NADPH 1 0.605 0.605 Production
BUT2 NADH -1 8.776 -8.776 Target
BUT4 NADH -1 8.776 -8.776 Target
BUT5 NADH -1 8.776 -8.776 Target
BUT6 NADH -1 8.776 -8.776 Target
MDH NADH 1 -2.011 -2.011 Maintenance
NADH11 NADH -1 0.725 -0.725 Maintenance
THD2 NADH -1 0.605 -0.605 Maintenance
PDH NADH 1 18.323 18.323 Waste
ICDHyr NADH 1 0.172 0.172 Waste
ME2 NADH 1 2.011 2.011 Waste
GND NADH 1 0.062 0.062 Waste
Biomass NADH/NADPH 3.547/-18.225 0.160 -2.345 Biomass

BuOH-1
PFK ATP -1 9.924 -9.924 Maintenance
PGK ATP -1 -19.855 19.855 Production
PYK ATP 1 9.652 9.652 Production
ATPM ATP -1 7.60 -7.60 Waste
ACCOAC ATP -1 9.667 -9.667 Target
Biomass ATP -55.703 0.045 -2.316 Biomass
GAPD NADH 1 19.855 19.855 Production
G6PDH2r NADPH 1 0.103 0.103 Production
THD2 NADPH 1 0.506 0.506 Production
BUT2 NADH -1 9.667 -9.667 Target
BUT4 NADH -1 9.667 -9.667 Target
BUT5 NADH -1 9.667 -9.667 Target
BUT6 NADH -1 9.667 -9.667 Target
NADH11 NADH -1 0.363 -0.363 Maintenance
THD2 NADH -1 0.506 -0.506 Maintenance
ICDHyr NADH 1 0.049 0.049 Waste
GND NADPH 1 0.103 0.103 Waste
PDH NADH 1 19.534 19.534 Waste
Biomass NADH/NADPH 3.457/ -18.225 0.045 -0.610 Biomass

tpcBuOH
PYK ATP 1 7.633 7.633 Production
ATPS4r ATP 1 14.377 14.377 Production
PGK ATP -1 -18.082 18.082 Production
CAR ATP -1 8.464 -8.464 Target
PFK ATP -1 8.235 -8.235 Maintenance
ATPM ATP -1 7.60 -7.60 Waste
ADK1 ATP -1 8.464 -8.464 Waste
PPCK ATP -1 2.205 -2.205 Waste
Biomass ATP -55.703 0.092 -5.123 Biomass
GAPD NADH 1 18.082 18.082 Production
G6PDH2r NADPH 1 5.021 5.021 Production



Reaction ID Co-factor Stoich. coefficient Flux Distribution Balance Value Balance Category
tpcBuOH
CAR NADPH -1 8.464 -8.464 Target
BUT2 NADH -1 8.464 -8.464 Target
BUT4 NADH -1 8.464 -8.464 Target
BUT6 NADH -1 8.464 -8.464 Target
GND NADPH 1 5.021 5.021 Waste
PDH NADH 1 17.373 17.373 Waste
ICDHyr NADH 1 0.099 0.099 Waste
NADH11 NADH -1 10.388 -10.388 Maintenance
Biomass NADH/NADPH 3.457/ -18.225 0.092 -1.350 Biomass

BuOH-2
PYK ATP 1 8.462 8.462 Production
ATPS4r ATP 1 13.846 13.846 Production
PGK ATP -1 -18.462 18.462 Production
CAR ATP -1 9.231 -9.231 Target
ACCOAC ATP -1 9.231 -9.231 Target
PFK ATP -1 8.462 -8.462 Maintenance
ATPM ATP -1 4.615 -4.615 Waste
ADK1 ATP -1 9.231 -9.231 Waste
GAPD NADH 1 18.462 18.462 Production
G6PDH2r NADPH 1 4.615 4.615 Production
CAR NADPH -1 9.231 -9.049 Target
BUT2 NADH -1 9.231 -9.231 Target
BUT4 NADH -1 9.231 -9.231 Target
BUT6 NADH -1 9.231 -9.231 Target
NADH11 NADH -1 9.231 -9.231 Maintenance
GND NADPH 1 4.615 4.615 Waste
PDH NADH 1 18.462 18.462 Waste

fasBuOH
PYK ATP 1 6.228 6.228 Production
ATPS4r ATP 1 23.219 23.219 Production
PGK ATP -1 -16.799 16.799 Production
CAR ATP -1 7.665 -7.665 Target
ACCOAC ATP -1 7.665 -7.665 Target
PFK ATP -1 6.994 -6.994 Maintenance
ADK1 ATP -1 7.665 -7.665 Waste
ATPM ATP -1 7.60 -7.60 Waste
PPCK ATP -1 2.133 -2.133 Waste
Biomass ATP -55.703 0.117 -6.523 Biomass
G6PDH2r NADPH 1 8.669 8.669 Production
GAPD NADH 1 16.799 16.799 Production
CAR NADPH -1 7.665 -7.665 Target
BUT6 NADH -1 7.665 -7.665 Target
30AR40 NADPH -1 7.665 -7.665 Maintenance
EAR40x NADH -1 7.665 -7.665 Maintenance
NADH11 NADH -1 17.779 -17.779 Maintenance
GND NADPH 1 8.669 8.669 Waste
PDH NADH 1 15.896 15.896 Waste
ICDHyr NADH 1 0.126 0.126 Waste
Biomass NADH/NADPH 3.457/ -18.225 0.117 -1.719 Biomass

CROT
PYK ATP 1 8.410 8.410 Production
PGK ATP -1 19.156 19.156 Production
PFK ATP -1 9.410 -9.410 Maintenance
ATPM ATP -1 7.60 -7.60 Waste
PPCK ATP -1 2.030 -2.030 Waste
Biomass ATP -55.703 0.153 -8.525 Biomass
GAPD NADH 1 19.156 19.156 Production
G6PDH2r NADPH 1 1.312 1.312 Production



Reaction ID Co-factor Stoich. coefficient Flux Distribution Balance Value Balance Category
CROT
BUT2 NADH -1 8.618 -8.618 Target
NADH11 NADH -1 11.080 -11.080 Maintenance
ICDHyr NADH 1 0.165 0.165 Waste
GND NADPH 1 1.312 1.312 Waste
Biomass NADH/NADPH 3.457/ -18.225 0.153 -2.246 Biomass

BUTYR
PYK ATP 1 8.409 8.409 Production
PGK ATP -1 -19.156 19.156 Production
PFK ATP -1 9.410 -9.410 Maintenance
ATPM ATP -1 7.60 -7.60 Waste
PPCK ATP -1 2.030 -2.030 Waste
Biomass ATP -55.703 0.153 -8.525 Biomass
GAPD NADH 1 19.156 19.156 Production
G6PDH2r NADPH 1 1.312 1.312 Production
BUT2 NADH -1 8.618 -8.618 Target
BUT4 NADH -1 8.618 -8.618 Target
NADH11 NADH -1 4.411 -4.411 Maintenance
ICDHyr NADH 1 0.165 0.165 Waste
GND NADPH 1 1.312 1.312 Waste
PDH NADH 1 1.949 1.949 Waste
Biomass NADH/NADPH 3.457/ -18.225 0.153 -2.246 Biomass

BUTAL
PYK ATP 1 8.409 8.409 Production
PGK ATP -1 -19.156 19.156 Production
ATPS4r ATP 1 -2.5 -2.5 Maintenance
PFK ATP -1 9.410 -9.410 Maintenance
ATPM ATP -1 7.60 -7.60 Waste
PPCK ATP -1 2.030 -2.030 Waste
Biomass ATP -55.703 0.153 -8.525 Biomass
GAPD NADH 1 19.156 19.156 Production
G6PDH2r NADPH 1 1.312 1.312 Production
NADH11 NADH -1 2.688 -2.688 Maintenance
PDH NADH 1 8.844 8.844 Waste
ICDHyr NADH 1 0.165 0.165 Waste
GND NADPH 1 1.312 1.312 Waste
BUT2 NADH -1 8.618 -8.618 Target
BUT4 NADH -1 8.618 -8.618 Target
BUT5 NADH -1 8.618 -8.618 Target
Biomass NADH/NADPH 3.457/ -18.225 0.153 -2.246 Biomass



Table 13: CBA parameters and outputs of manually curated butanol and butanol precursor models
under anaerobic conditions. Reaction IDs, relevant co-factors and their stoichiometric coefficients, flux values,
balance values and assigned balance category are included.

Reaction ID Co-factor Stoich. coefficient Flux Distribution Balance Value Balance Category
BuOH-0
PFK ATP -1 9.821 -9.821 Maintenance
PGK ATP -1 -19.555 19.555 Production
PYK ATP 1 6.764 6.764 Production
ATPM ATP -1 7.60 -7.60 Waste
Biomass ATP -55.703 0.160 -8.899 Biomass
GAPD NADH 1 19.555 19.555 Production
G6PDH2r NADPH 1 0.062 0.062 Production
THD2 NADPH 1 0.605 0.605 Production
BUT2 NADH -1 8.776 -8.776 Target
BUT4 NADH -1 8.776 -8.776 Target
BUT5 NADH -1 8.776 -8.776 Target
BUT6 NADH -1 8.776 -8.776 Target
MDH NADH 1 -2.011 -2.011 Maintenance
NADH11 NADH -1 0.725 -0.725 Maintenance
THD2 NADH -1 0.605 -0.605 Maintenance
PDH NADH 1 18.323 18.323 Waste
ICDHyr NADH 1 0.172 0.172 Waste
ME2 NADH 1 2.011 2.011 Waste
GND NADH 1 0.062 0.062 Waste
Biomass NADH/NADPH 3.547/-18.225 0.160 -2.345 Biomass

BuOH-1
PFK ATP -1 9.924 -9.924 Maintenance
PGK ATP -1 -19.855 19.855 Production
PYK ATP 1 9.652 9.652 Production
ATPM ATP -1 7.60 -7.60 Waste
ACCOAC ATP -1 9.667 -9.667 Target
Biomass ATP -55.703 0.045 -2.316 Biomass
GAPD NADH 1 19.855 19.855 Production
G6PDH2r NADPH 1 0.103 0.103 Production
THD2 NADPH 1 0.506 0.506 Production
BUT2 NADH -1 9.667 -9.667 Target
BUT4 NADH -1 9.667 -9.667 Target
BUT5 NADH -1 9.667 -9.667 Target
BUT6 NADH -1 9.667 -9.667 Target
NADH11 NADH -1 0.363 -0.363 Maintenance
THD2 NADH -1 0.506 -0.506 Maintenance
ICDHyr NADH 1 0.049 0.049 Waste
GND NADPH 1 0.103 0.103 Waste
PDH NADH 1 19.534 19.534 Waste
Biomass NADH/NADPH 3.457/ -18.225 0.045 -0.610 Biomass

tpcBuOH
PYK ATP 1 7.633 7.633 Production
ATPS4r ATP 1 14.377 14.377 Production
PGK ATP -1 -18.082 18.082 Production
CAR ATP -1 8.464 -8.464 Target
PFK ATP -1 8.235 -8.235 Maintenance
ATPM ATP -1 7.60 -7.60 Waste
ADK1 ATP -1 8.464 -8.464 Waste



Reaction ID Co-factor Stoich. coefficient Flux Distribution Balance Value Balance Category
tpcBuOH
PPCK ATP -1 2.205 -2.205 Waste
Biomass ATP -55.703 0.092 -5.123 Biomass
GAPD NADH 1 18.082 18.082 Production
G6PDH2r NADPH 1 5.021 5.021 Production
CAR NADPH -1 8.464 -8.464 Target
BUT2 NADH -1 8.464 -8.464 Target
BUT4 NADH -1 8.464 -8.464 Target
BUT6 NADH -1 8.464 -8.464 Target
GND NADPH 1 5.021 5.021 Waste
PDH NADH 1 17.373 17.373 Waste
ICDHyr NADH 1 0.099 0.099 Waste
NADH11 NADH -1 10.388 -10.388 Maintenance
Biomass NADH/NADPH 3.457/ -18.225 0.092 -1.350 Biomass

BuOH-2
PYK ATP 1 8.462 8.462 Production
ATPS4r ATP 1 13.846 13.846 Production
PGK ATP -1 -18.462 18.462 Production
CAR ATP -1 9.231 -9.231 Target
ACCOAC ATP -1 9.231 -9.231 Target
PFK ATP -1 8.462 -8.462 Maintenance
ATPM ATP -1 4.615 -4.615 Waste
ADK1 ATP -1 9.231 -9.231 Waste
GAPD NADH 1 18.462 18.462 Production
G6PDH2r NADPH 1 4.615 4.615 Production
CAR NADPH -1 9.231 -9.049 Target
BUT2 NADH -1 9.231 -9.231 Target
BUT4 NADH -1 9.231 -9.231 Target
BUT6 NADH -1 9.231 -9.231 Target
NADH11 NADH -1 9.231 -9.231 Maintenance
GND NADPH 1 4.615 4.615 Waste
PDH NADH 1 18.462 18.462 Waste

fasBuOH
PYK ATP 1 6.228 6.228 Production
ATPS4r ATP 1 23.219 23.219 Production
PGK ATP -1 -16.799 16.799 Production
CAR ATP -1 7.665 -7.665 Target
ACCOAC ATP -1 7.665 -7.665 Target
PFK ATP -1 6.994 -6.994 Maintenance
ADK1 ATP -1 7.665 -7.665 Waste
ATPM ATP -1 7.60 -7.60 Waste
PPCK ATP -1 2.133 -2.133 Waste
Biomass ATP -55.703 0.117 -6.523 Biomass
G6PDH2r NADPH 1 8.669 8.669 Production
GAPD NADH 1 16.799 16.799 Production
CAR NADPH -1 7.665 -7.665 Target
BUT6 NADH -1 7.665 -7.665 Target
30AR40 NADPH -1 7.665 -7.665 Maintenance
EAR40x NADH -1 7.665 -7.665 Maintenance
NADH11 NADH -1 17.779 -17.779 Maintenance
GND NADPH 1 8.669 8.669 Waste
PDH NADH 1 15.896 15.896 Waste
ICDHyr NADH 1 0.126 0.126 Waste
Biomass NADH/NADPH 3.457/ -18.225 0.117 -1.719 Biomass



Reaction ID Co-factor Stoich. coefficient Flux Distribution Balance Value Balance Category
CROT
PYK ATP 1 8.410 8.410 Production
PGK ATP -1 19.156 19.156 Production
PFK ATP -1 9.410 -9.410 Maintenance
ATPM ATP -1 7.60 -7.60 Waste
PPCK ATP -1 2.030 -2.030 Waste
Biomass ATP -55.703 0.153 -8.525 Biomass
GAPD NADH 1 19.156 19.156 Production
G6PDH2r NADPH 1 1.312 1.312 Production
BUT2 NADH -1 8.618 -8.618 Target
NADH11 NADH -1 11.080 -11.080 Maintenance
ICDHyr NADH 1 0.165 0.165 Waste
GND NADPH 1 1.312 1.312 Waste
Biomass NADH/NADPH 3.457/ -18.225 0.153 -2.246 Biomass

BUTYR
PYK ATP 1 8.409 8.409 Production
PGK ATP -1 -19.156 19.156 Production
PFK ATP -1 9.410 -9.410 Maintenance
ATPM ATP -1 7.60 -7.60 Waste
PPCK ATP -1 2.030 -2.030 Waste
Biomass ATP -55.703 0.153 -8.525 Biomass
GAPD NADH 1 19.156 19.156 Production
G6PDH2r NADPH 1 1.312 1.312 Production
BUT2 NADH -1 8.618 -8.618 Target
BUT4 NADH -1 8.618 -8.618 Target
NADH11 NADH -1 4.411 -4.411 Maintenance
ICDHyr NADH 1 0.165 0.165 Waste
GND NADPH 1 1.312 1.312 Waste
PDH NADH 1 1.949 1.949 Waste
Biomass NADH/NADPH 3.457/ -18.225 0.153 -2.246 Biomass

BUTAL
PYK ATP 1 8.409 8.409 Production
PGK ATP -1 -19.156 19.156 Production
ATPS4r ATP 1 -2.5 -2.5 Maintenance
PFK ATP -1 9.410 -9.410 Maintenance
ATPM ATP -1 7.60 -7.60 Waste
PPCK ATP -1 2.030 -2.030 Waste
Biomass ATP -55.703 0.153 -8.525 Biomass
GAPD NADH 1 19.156 19.156 Production
G6PDH2r NADPH 1 1.312 1.312 Production
NADH11 NADH -1 2.688 -2.688 Maintenance
PDH NADH 1 8.844 8.844 Waste
ICDHyr NADH 1 0.165 0.165 Waste
GND NADPH 1 1.312 1.312 Waste
BUT2 NADH -1 8.618 -8.618 Target
BUT4 NADH -1 8.618 -8.618 Target
BUT5 NADH -1 8.618 -8.618 Target
Biomass NADH/NADPH 3.457/ -18.225 0.153 -2.246 Biomass

Table 14: Growth rates and generation times of the wild type, PCK and ATPs mutants.

WT PCK ATPs
growth rate, μ (as per Equation 3.6) 0.377 0.376 0.333
generation time, g (as per Equation 3.7) 1.839 1.841 2.079
growth rate, μ (as per Equation 3.8) 0.377 0.376 0.333



Figure 1: Snapgene view of ATPs sequencing results. Orange: ATPs complementary region; pink: 20-bp
pKD13 priming region; Green: flipase specific FRT regions



Figure 2: ATPs sequencing: Local alignment between forward and reverse-complement sequencing results using
the Matcher software, which identifies local similarities between two sequences using a rigorous algorithm based
on the LALIGN application.



Figure 3: ATPs sequencing: Local alignment between forward and reverse-complement sequencing results using
the Water software, which uses the Smith-Waterman algorithm (modified for speed enhancements) to calculate
the local alignment of two sequences.



Figure 4: Snapgene view of PCK sequencing results. Orange: PCK complementary region; pink: 20-bp pKD13
priming region; Green: flipase specific FRT regions



Figure 5: PCK sequencing: Local alignment between forward and reverse-complement sequencing results using
the Matcher software.



Figure 6: PCK sequencing: Local alignment between forward and reverse-complement sequencing results using
the Water software.



Figure 7: Snapgene view of ATPs-PCK double mutant sequencing results. Orange: PCK complementary
region; pink: 20-bp pKD13 priming region; Green: flipase specific FRT regions.



Figure 8: ATPs-PCK double mutant sequencing: Local alignment between forward and reverse-complement
sequencing results using the Matcher software.



Figure 9: ATPs-PCK double mutant sequencing: Local alignment between forward and reverse-complement
sequencing results using the Water software.



Figure 10: Glucose, acetate, succinate, lactate formate and ethanol standard curves used to quantify these
compounds by HPLC



Figure 11: OD600 against time (h) in logarithmic scale. Timepoints selected to calculate growth rates are: (A)
wild type: 4h and 8h; (B) PCK: 0h and 8h; and (C): ATPs: 4h and 10h.

Figure 12: Calibration curves to convert optical density (OD600) to cell dry weight (gDW L−1) for strains WT
and ATPs.



Table 15: Reactions included in the E.coli model available on WUFlux.

Glycolysis
Glucose(substrate) + ATP == G6P
G6P == F6P
F6P + ATP == FBP
FBP == F6P
FBP == DHAP + GAP
DHAP == GAP
GAP == G3P + ATP + NADH
G3P == PEP
PEP == PYR + ATP
PYR + 2*ATP == PEP

Citric Acid Cycle
PYR == AceCoA + CO2 + NADH
AceCoA + OAA == CIT
CIT == ICIT
ICIT == AKG + CO2 + NADPH
AKG == SucCoA + CO2 + NADH
SucCoA == SUC + ATP
SUC == FUM + FADH2
FUM == MAL
MAL == OAA + NADH

Glyoxylate Shunt
ICIT == GLX + SUC
GLX + AceCoA == MAL

Amphibolic reactions
MAL == PYR + CO2 + NADH
MAL == PYR + CO2 + NADPH
PEP + CO2 == OAA
OAA + ATP == PEP + CO2
PYR + ATP + CO2 == OAA

Pentose Phosphate Pathway
G6P == PG6 + NADPH
PG6 == CO2 + Ru5P + NADPH
Ru5P == X5P
Ru5P == R5P
X5P + R5P == GAP + S7P
GAP + S7P == E4P + F6P
X5P + E4P == GAP + F6P
PG6 == PYR + GAP

Waste release
AceCoA == Ac + ATP

Amino Acid Biosynthesis
AKG + NADPH == GLU
GLU + ATP == GLN
GLU + ATP + 2*NADPH == PRO
GLU + GLN + CO2 + ASP + AceCoA + 5*ATP + NADPH == ARG + AKG + FUM + Ac
OAA + GLU == ASP + AKG
ASP + 2*ATP == ASN
PYR + GLU == ALA + AKG
G3P + GLU == SER + AKG + NADH
SER == GLY + Methylene_THF
GLY == Methylene_THF + CO2 + NADH
Methylene_THF + NADH == Methyl_THF
Methylene_THF == Formyl_THF + NADPH
ASP + 2*ATP + 2*NADPH == THR
THR == GLY + AceCoA + NADH
SER + AceCoA + 3*ATP + 4*NADPH == CYS + Ac
ASP + PYR + GLU + SucCoA + ATP + 2*NADPH == LYS + CO2 + AKG + SUC



Amino Acid Biosynthesis
ASP + Methyl_THF + CYS + SucCoA + ATP + 2*NADPH == MET + PYR + SUC
GLU + NADPH + 2*PYR == VAL + AKG + CO2
AceCoA + 2*PYR + GLU + NADPH == LEU + AKG + NADH + 2*CO2
THR + PYR + GLU + NADPH == ILE + AKG + CO2
E4P + 2*PEP + GLU + ATP + NADPH == PHE + AKG + CO2
E4P + 2*PEP + GLU + ATP + NADPH == TYR + AKG + NADH + CO2
SER + R5P + 2*PEP + E4P + GLN + 3*ATP + NADPH == TRP + GAP + PYR + GLU + CO2
R5P + Formyl_THF + GLN + ASP + 5*ATP == HIS + AKG + FUM + 2*NADH

Transhydrogenation
NADH == NADPH

Oxidative Phosphorylation
NADH == 3*ATP
FADH2 == 2*ATP

ATP Hydrolysis
ATP == ATP_maintenance

Transport
Ac == Acetate_ex
CO2 == CO2_ex
CO2_air + CO2 == CO2 + CO2_ex

Fatty Acid Synthesis
AceCoA + 1.75*NADPH + 0.875*ATP == fatty_acid_C2

Biomass Synthesis
0.488*ALA + (...) == 39.68*Biomass + (...)

Additional reactions
AceCoA + 2*NADH == etoh_ex
PYR + NADH == lactate_ex



Table 16: Absolute fluxes (mmol gDW−1 hr−1) for the WT, ATPs and PCK strains.

WT PCK ATPs
reactions best fit stdev best fit stdev best fit stdev
Glucose(substrate) + ATP == G6P 6.777 0.377 10.204 0.000 19.568 0.001
G6P == F6P 4.928 0.435 7.329 0.380 17.077 0.018
F6P + ATP == FBP 13.915 10.252 8.898 0.127 18.522 0.045
FBP == F6P 8.118 10.269
FBP == DHAP + GAP 5.797 0.393 8.898 0.127 18.305 0.041
DHAP == GAP 5.797 0.393 8.898 0.127 22.819 0.091
GAP == G3P + ATP + NADH 11.941 0.769 18.498 0.127 38.404 0.135
G3P == PEP 11.257 0.780 17.869 0.134 32.754 0.125
PEP == PYR + ATP 10.000 2.247 14.500 0.861 32.681 3.315
PYR + 2*ATP == PEP 0.000 2.022 0.000 0.005 11.264 2.086
PYR == AceCoA + CO2 + NADH 9.836 1.043 15.825 0.281 29.528 0.924
AceCoA + OAA == CIT 1.572 0.633 1.148 0.217 4.145 0.020
CIT == ICIT 1.572 0.633 1.148 0.217 -0.864 0.078
ICIT == AKG + CO2 + NADPH 0.427 0.724 0.404 0.000 -2.537 0.543
AKG == SucCoA + CO2 + NADH 0.003 0.714 0.000 0.000 1.956 0.488
SucCoA == SUC + ATP -0.183 0.714 -0.177 0.000 -5.805 0.524
SUC == FUM + FADH2 1.148 0.636 0.693 0.217 -3.945 0.042
FUM == MAL 1.294 0.636 0.832 0.217 1.645 0.002
MAL == OAA + NADH 1.467 0.589 -1.075 0.615 1.015 1.889
MAL == PYR + CO2 + NADH 0.573 0.325 0.353 0.645 1.152 1.195
MAL == PYR + CO2 + NADPH 0.400 0.337 2.298 0.687 5.681 1.308
PEP + CO2 == OAA 0.953 0.598 3.079 0.786 12.564 1.902
OAA + ATP == PEP + CO2 0.000 0.383 0.000 0.000 1.969 2.171
ICIT == GLX + SUC 1.146 0.426 0.744 0.217 4.306 0.522
GLX + AceCoA == MAL 1.146 0.426 0.744 0.217 3.714 0.523
G6P == PG6 + NADPH 1.769 0.291 2.798 0.380 1.459 0.006
PG6 == CO2 + Ru5P + NADPH 1.769 0.291 2.798 0.380 0.000 0.000
Ru5P == X5P 0.897 0.196 1.596 0.254 -1.969 0.019
Ru5P == R5P 0.872 0.097 1.202 0.127 1.223 0.038
X5P + R5P == GAP + S7P 0.519 0.098 0.866 0.127 1.921 0.030
GAP + S7P == E4P + F6P 0.519 0.098 0.866 0.127 -3.624 0.035
X5P + E4P == GAP + F6P 0.378 0.099 0.730 0.127 -3.611 0.009
AceCoA == Ac + ATP 2.732 0.592 1.562 0.434 10.099 0.021
DHAP + NADPH == PYR + 2*NADH 0.000 0.000 0.000 0.000 0.000 0.000
DHAP + NADH == PYR + 2*NADH 0.000 0.000 0.000 0.000
NADH == NADPH 6.829 2.651 18.0572 1.8088 87.321 1.350
NADH == 3*ATP 17.306 3.690 16.713 1.678 0.000 0.000
FADH2 == 2*ATP 1.148 0.636 0.6932 0.2166 0.000 0.000
ATP == ATP_maintenance 40.359 17.782 42.0882 5.923 7.375 2.292
Ac == Acetate_ex 2.934 0.592 1.755 0.4344 10.969 0.000
AceCoA + 1.75*NADPH + 0.875*ATP == fatty_acid_C2 2.606 1.230 11.3758 0.5314 23.371 0.839
CO2 == CO2_ex 12.836 1.871 19.3681 0.5751 56.058 0.980
CO2_air + CO2 == CO2 + CO2_ex 0.000 0.000 0 0 0.000 0.000
0.488*ALA + (...) ==39.68*Biomass+ (...) 0.393 0.009 0.375 0 0.348 0.000
PYR == Fornate_ex + AceCoA 0.253 0.1111
SUC == Succinate_ex 0.0509 0.0099
AceCoA + 2*NADH == etoh_ex 0.424 0.104 1.164 0.001
PYR + NADH == lactate_ex 0.102 0.085 0.0851 0.0829
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