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Scattering solution to the problem of additional boundary conditions
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Maxwell’s boundary conditions (MBCs) were long known to be insufficient to determine the optical responses
of spatially dispersive medium. Supplementing MBCs with additional boundary conditions (ABCs) has become
a normal yet controversial practice. Here, the problem of ABCs is solved by analyzing some subtle aspects
of a physical surface. A generic theory is presented for handling the interaction of light with the surfaces of
an arbitrary medium and applied to study the traditional problem of exciton polaritons. We show that ABCs
can always be adjusted to fit the theory in the examples studied here but they can by no means be construed
as intrinsic surface characteristics, which are instead captured by a surface scattering amplitude. Methods for
experimentally extracting the spatial profile of this quantity are proposed.
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Introduction. A light wave incident upon a dielectric gets
partly reflected and partly transmitted. The textbook approach
[1,2] to determining the reflection and transmission ampli-
tudes, Er and Et , respectively, proceeds by writing down the
waves in the vacuum and those in the dielectric and join-
ing them with Maxwell’s boundary conditions (MBCs) at
the separation. For instance, for a normally incident beam
[Fig. 1(a)] of frequency ω and wave number k0 = ω/c, where
c is the speed of light in vacuum, one may write, omitting
the time dependence e−iωt , for the electric field E (z < 0) =
eik0z + Ere−ik0z and E (z > 0) = Et eikz. Here, k satisfies ε =
(k/k0)2, with ε being the dielectric constant. MBCs dictate the
continuity of E (z) and its derivative E ′(z), which determines
Er and Et .

In 1957, Pekar claimed that MBCs were insufficient to
determine the optical responses of a system of excitons [3],
for which ε is not a constant but a function of k. In the Lorentz
oscillator model (LOM) [4,5], for example, one takes

ε(k) ≈ εb + Q2/(k2 − q2). (1)

Here, εb denotes the background permittivity, Q =
√

2M�/h̄2

and q = √
2M(ω + iγ − ωex)/h̄, with �, ωex, M, and γ being

the exciton longitudinal-transverse splitting, transition energy,
effective mass, and damping rate, respectively, and h̄ is the
reduced Planck constant. Waves propagating through such a
medium fulfill a dispersion relation given by

ε(k) = (k/k0)2, (2)

which admits two solutions, k1 and k2, representing waves
propagating to the right and two other solutions, k3 = −k1

and k4 = −k2, for waves propagating to the left. Pekar hence
wrote E (z > 0) = ∑

j=1,2 Ejeik j z, where Ej is the amplitude
for the jth transmitted wave, ending up with three unknowns,
Er , E1, and E2, but only two MBCs. He imposed an additional
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boundary condition (ABC), that the exciton polarization van-
ishes at the surface, to determine all the amplitudes.

The practice of supplementing MBCs with ABCs has since
been widely—and sometimes unwittingly—adopted for deal-
ing with spatially dispersive media [6–8]. Though popular,
ABCs are unjustified and disputed [9–14]. Indeed, a whole
zoo of ABCs, besides Pekar’s one, have been proposed [15],
while no a priori criteria exist regarding which ABC should be
selected for a given physical system. The parameters accom-
panying the ABCs are irrelevant to the physical parameters of
a system and hence meaningless. They are more of an exper-
imental fitting machinery than a theoretical device. Efforts to
remove ABCs without extra assumptions or approximations
have failed so far [16–23].

We contend that ABCs arise from an incomplete view on
physical boundaries [24,25]. Here, we rectify this view and
resolve the problem. We derive an ABC-free macroscopic the-
ory for the optical responses of bounded media and exemplify
it with the long-standing problem of exciton polaritons within
the LOM—extensions [10,26] are discussed in the Supple-
mental Material [27]—for three setups, S1, S2, and S3 (see
Fig. 1). In both S1 and S2 a semi-infinite medium (SIM) is
considered, but in S1 the light source is placed outside the
medium whereas in S2 it is inside. In S3 a slab of medium
is considered with light incident from outside. The physical
effects of a surface are shown totally contained in a surface
scattering amplitude R(z), which gauges the response of the
surface to incoming polarization waves generated at a distance
z from it [28]. We show that for each setup an ABC can
be contrived to fit the theory, but no single one applies to
all setups even with the same material. S1 is shown to be
insensitive to the full profile of R(z) but only probes some
average, whereas S2 and S3 detect R(z) in full and can be used
for experimentally extracting it.

Macroscopic limit of a physical surface. For clarity, let
us consider a SIM with a surface lying in the x-y plane.
Microscopically, the system (i.e., the medium plus the vac-
uum) divides into three regions: the vacuum z < 0, the surface
region 0 � z < ds, and the bulk region z > ds, where ds de-
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FIG. 1. Schematic of setups: (a) Setup S1, where light nor-
mally incidents from a vacuum upon a semi-infinite medium (SIM).
(b) Setup S2, where light is radiated from a source located at z = zs >

0 inside the SIM. (c) Setup S3, where light incidents from a vacuum
on a slab. The wave numbers kα solve Eq. (2).

notes the thickness of the surface region. Macroscopically,
on a scale � � ds where MBCs make sense [1], the surface
region appears extremely thin and is traditionally treated as
a geometrical separation between the vacuum and the bulk
region. Physically, this region, however thin, is where physical
quantities undergo rapid yet regular variations [2].

The dielectric responses may be analyzed by looking at
the electric polarization ei(k·r−ωt )p(z) induced by an electric
field ei(k·r−ωt )E(z) present in the system, where translational
symmetry along the surface is assumed, r = (x, y), and k is a
planar wave vector. p vanishes in the vacuum. In the bulk re-
gion it can be related to E by a susceptibility function S(z, z′),
i.e., pμ(z > ds) = Pμ(z) = ∑

ν

∫ ∞
0 dz′Sμν (z, z′)Eν (z′), where

μ, ν = x, y, z label the components of the fields and we
have suppressed the possible dependence of Sμν on (ω, k)
to simplify the notation. Since the atomistic environment in
the bulk region is indistinguishable from that in an infinite
medium, S(z, z′) must satisfy the same dynamical equations as
the susceptibility function for the infinite medium without
any boundaries. S(z, z′) inevitably contains some parameters,
which appear in the general solution to the equations (see be-
low). These parameters characterize surface scattering effects
and are not determined by the equations.

To determine the polarization in the surface region, the
obvious but often impractical option is to solve the full dy-
namical equations in this region, which requires microscopic
details of a surface that is unknown in reality. Fortunately,
the macroscopic limit can be determined without such de-
tails. To show this, we can introduce some phenomenological
functions wμ(z) such that pμ(z) = wμ(z)Pμ(z). By definition,
wμ(z) smoothly evolves from zero to unity as z travels across
the surface region from the vacuum into the bulk region.
The exact form of wμ depends on the microscopic details
of a surface. Nevertheless, on a macroscopic scale where
the surface region appears infinitely thin (i.e., ds/� → 0+),

the microscopic variations become irrelevant after standard
coarse graining [1,2] and wμ(z) degenerates into the Heavi-
side step function θ (z). In this way, p(z) is fixed also in the
surface region and hence determined throughout the system.
Generalization of the reasoning to other geometries such as a
slab is straightforward.

Interaction with light. The polarization charge density is
obtained as ρ(z) = −∇ · p(z), where ∇ = (ik, ∂z ), and the
current density as j(z) = −iωp(z). For isotropic materials,
for which Sμν (z, z′) = δμνS(z, z′) with δμν being the Kro-
necker symbol, P(z) aligns with E(z). Under normal incidence
(k = 0), we may take E(z) = [E (z), 0, 0] and p(z > 0) =
[P(z), 0, 0]. Then the difference between p and P is im-
material since Pz = 0. Substituting ρ and j in Maxwell’s
equations gives [27]

E (z) = Ein(z) − 4πk2
0

∫
dz′ G(z − z′)P(z′), (3)

P(z) =
∫

dz′ S(z, z′)E (z′), (4)

where the integrals are carried out over the medium only,
the Green’s function G(z) = 1

2ik0
eik0|z−z′ | generates “outgoing”

waves, and Ein(z) = eik0z for a radiation source located outside
the medium (e.g., in S1 and S3) but differs otherwise (e.g.,
in S2) (see below). In Eq. (4), z is confined to the medium.
For nondispersive SIM, for which S(z, z′) = Sδ(z − z′) with
δ(z) being the Dirac function, Eq. (3) reproduces the textbook
result Er = (

√
ε − 1)/(

√
ε + 1) with ε = 1 + 4πS being the

dielectric constant [27].
Excitons by the Lorentz oscillator model. For LOM

we write S(z, z′) = Sbδ(z − z′) + S̃(z, z′), where Sb = (εb −
1)/4π represents the background response and S̃ accounts
for the excitonic response. As aforementioned, the dynamical
equation governing S̃(z, z′) is the same as that for an infinite
medium, which can be established from the second term of
Eq. (1) as

(
∂2

z + q2
)
S̃(z, z′) = − Q2

4π
δ(z − z′). (5)

Its solution for SIM, vanishing at infinity, has the form

S̃(z, z′) = S∞(eiq|z−z′ | + R(z′)eiq(z+z′ ) ), (6)

where S∞ = iQ2

8πq and R(z) is the surface characteristic
quantity—the surface scattering amplitude (SSA). The first
term in Eq. (6) describes outgoing waves generated by an
electric field localized at z′ and is the inverse Fourier transform
of the second term in Eq. (1). In the widely used dielectric
approximation [29,30], only this term is included. The second
term in Eq. (6) describes polarization waves reflected from
the surface. R(z) encodes surface scattering effects and serves
as a fingerprint for distinguishing one surface from another.
It cannot be determined in a macroscopic theory, but can be
extracted from a microscopic surface model [27] or, as shown
below, from a measured optical response.

Connection with ABCs in SIM. The excitonic polarization
reads P̃(z) = ∫ ∞

0 dz′S̃(z, z′)E (z′). Using Eq. (6), one gets(
iqP̃(0)
P̃′(0)

)
= iqS∞

(
R + 1
R − 1

) ∫ ∞

0
dzeiqzE (z), (7)
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where R is an average of R(z), defined by∫ ∞

0
dzeiqzE (z)R(z) = R

∫ ∞

0
dzeiqzE (z). (8)

R depends on both R(z) and E (z), the latter being specific to
the way the system is excited. Equation (7) implies that

P̃′(0) = κP̃(0), κ = iq
R − 1

R + 1
, (9)

which has the same form as a general ABC [10,25,31]. A big
caveat here is that R (and κ) cannot be interpreted as a surface
characteristic (material parameter). Indeed, R does not just
vary from one surface to another but, depending on the details
of the way the system is excited, could take on different values
even for the same surface. In what follows, we show this for
both the SIM and slab geometry. It shall be seen that Eq. (9)
(and S̃) needs to be modified for a slab merely due to the
existence of two surfaces allowing waves to travel back and
forth. This again underlines that R is not a surface property.

Results for S1 and S2. We begin with S1, where light
incidents from outside [Fig. 1(a)]. Equations (3) and (4) are
solved by the ansatz that in the medium P(z) = ∑

j Pjeik j z and
E (z) = ∑

j E jeik j z, where Im(k j ) � 0. One obtains

Ej = 4πk2
0

k2
j − k2

0

Pj, Pj = S jE j, S j = ε(k j ) − 1

4π
, (10)

where ε(k) is given by Eq. (1), and∑
j=1,2

Ej

(
1

k j − q
+ R j (q)

k j + q

)
= 0, (11)

∑
j=1,2

Ej (k j + k0) = 2k0, (12)

with R j (q) = −i(q + k j )
∫ ∞

0 dz′ R(z′)ei(q+k j )z′
. Equation (10)

does not explicitly involve R j and has the same form as
for an infinite medium, in consistency with the Ewald-Oseen
extinction theorem [23,32]. Hence, k j are the roots of Eq. (2)
as proposed by Pekar. Equations (11) and (12) uniquely fix
the amplitudes Ej . The former alone takes care of boundary
effects while the latter can be shown equivalent to the MBCs.

With the above ansatz Eq. (8) gives
∑

j
E jR j (q)

k j+q =
R

∑
j

E j

k j+q , by which Eq. (11) can be rewritten as

∑
j=1,2

Ej

(
1

k j − q
+ R

kj + q

)
= 0. (13)

This equation is equivalent to Eq. (9). The equivalence be-
tween Eqs. (11) and (13) fixes R, yielding

R = (k2 + q)(k1 − q)R1 − (k2 − q)(k1 + q)R2

(R2 − R1)(k2 − q)(k1 − q) + 2q(k1 − k2)
. (14)

The optical responses are obtained by solving Eqs. (10)–
(12). An example is shown in the inset of Fig. 2, where the
reflection |Er |2 is plotted for R(z) = −e−sz with Re(s) > 0
mimicking real materials. Clearly, Eqs. (11) and (13) yield
identical results as long as R is calculated by Eq. (14).

We see that S1 is not sensitive to the whole profile of
R(z) but only probes the average R. To experimentally extract

FIG. 2. Transmission |Et |2 = |E (0)|2 of light into vacuum for
S2 with R(z) = −e−sz, where sQ−1 = 0.05 + 0.32i and zsQ = 4.75
are chosen merely for the sake of illustration, by SSA theory [i.e.,
Eqs. (15)–(18)] and ABC [i.e., Eqs. (15)–(17), (9), and (14)]. In-
set: Reflection |Er |2 for S1, with Er = E (0) − 1, by SSA theory
[Eqs. (11) and (12)] and ABC [Eqs. (9) and (14)]. The same R(z)
is used. Other parameters are the same as in Ref. [10] and listed in
the Supplemental Material [27].

R(z), we must analyze setups which detect the full R(z). S2

and S3 suffice for this purpose. In S2 light is incident from a
source located at z = zs > 0 inside the medium [Fig. 1(b)],
for which we have [27] Ein = eik0|z−zs|. Now Eqs. (3) and
(4) are solved by the ansatz that P(0 < z < zs) = ∑

α Pαeikαz,
P(z > zs) = ∑

j Pjeik j z, and E (0 < z < zs) = ∑
α Eαeikαz as

well as E (z > zs) = ∑
j E jeik j z. There are no restrictions on

kα but Im(k j ) � 0. One finds that Eα/ j = 4πk2
0

k2
α/ j−k2

0
Pα/ j , Pα/ j =

Sα/ jEα/ j with Sα/ j = ε(kα/ j )−1
4π

, which has the same form as
Eq. (10), consistent with the extinction theorem. Both kα and
k j obey Eq. (2), yielding four α modes with amplitudes Eα

and two j modes with amplitudes Ej , which are determined
by

∑
α

Eα (kα + k0) = 0, (15)

∑
j

eik j zs E j (k j ± k0) −
∑

α

eikαzs Eα (kα ± k0) = 2k0, (16)

∑
j

eik j zs
E j

k j ± q
−

∑
α

eikαzs
Eα

kα ± q
= 0, (17)

∑
α

Eα

(
1

kα − q
+ Rα (zs, q)

kα + q

)
+

∑
j

E j
R j (zs, q)

k j + q
= 0,

(18)

where Rα (zs, q) = −i(kα + q)
∫ zs

0 dz′ R(z′)ei(kα+q)z′
and

R j (zs, q) = −i(k j + q)
∫ ∞

zs
dz′ R(z′)ei(k j+q)z′

. These equations
can be rewritten as M(zs)E = ψ , where M(zs) is a square
matrix with elements provided in the Supplemental Material
[27], E is a column vector with elements Eα and Ej , while
ψ is a column vector with all elements vanishing except two,
both of which are 2k0.
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Inserting the ansatz for S2 into Eq. (8) and using Eq. (17)
reveal that

∑
α Eα

Rα (zs,q)
kα+q + ∑

j E j
R j (zs,q)

k j+q = ∑
α Eα

R
kα+q , by

which Eq. (18) can be transformed into Eq. (13) but with j
replaced by α. Thus, the ABC Eq. (9) remains valid. Nev-
ertheless, there is a crucial difference resting with the fact
that here R generally is not equal to the average given in
Eq. (14). Instead, it takes on a completely different value
[27] and varies with zs. Exemplifying this discrepancy, we
have calculated the transmission (of light into vacuum) as
|Et |2 = |E (0)|2 for R(z) = −e−sz first by the proper theory
[i.e., Eqs. (15)–(18)] and then by the ABC [Eqs. (15)–(17) and
(13) with j → α] with R given by Eq. (14). The results are
displayed in Fig. 2 and they are clearly different. This shows
that experimentalists cannot use the value of R (equivalent to
κ in the ABC), which they have painstakingly measured with
S1, to make predictions regarding the outcome for S2 even
though the same system is experimented with. The situation is
made worse by the dependence of R on zs, which nullifies their
effort to predict what would happen if the radiation source is
displaced. Only for R(z) being a constant is the value of R the
same for both S1 and S2 (and equal to this constant).

Slab systems: S3. The slab has two surfaces located at z = 0
and z = L > 0, respectively [Fig. 1(c)]. The function S̃(z, z′)
now contains an extra contribution due to polarization waves
reflected from the surface at z = L,

S̃(z, z′) = S∞(eiq|z−z′ | + R(z′)eiq(z+z′ ) + R(z̄′)eiq(z̄+z̄′ ) ), (19)

where z̄ = L − z and z̄′ = L − z′, and the slab is assumed
symmetric under reflections about its midplane z = L/2. Ac-
counting for multiple reflections of polarization waves by the
two surfaces, one may show that [27]

R(z) = R(z) + e2iq(L−z)R(L)R(L − z)

1 − R2(L)e2iqL
, (20)

which can never be a constant unless R(z) ≡ 0. R(z) tends to
R(z) for L → ∞. While R(z) characterizes a single surface,
R(z) represents a cumulative effect of both surfaces.

Equations (3) and (4) are solved by the same ansatz as
for S1 but with no restrictions on wave numbers kα here.
In agreement with the extinction theorem [23,32], Eq. (10)
remains valid (with j → α) so kα are all four roots of Eq. (2).
Equations (11) and (12) are now augmented as follows,∑

α

Eα (kα + k0) = 2k0,
∑

α

eikαLEα (kα − k0) = 0, (21)

∑
α

Eα

(
1

kα − q
+ R

+
α (q, L)

kα + q

)
= 0, (22)

∑
α

eikαLEα

(
R−

α (q, L)

kα − q
+ 1

kα + q

)
= 0. (23)

Here, R±
α (q, L) = −i(q ± kα )

∫ L
0 dz′ R(z′)ei(q±kα )z′

depends
on both q and L. It can be shown [27] that, in the semi-infinite
limit L → ∞, Eα vanishes for modes with Im(kα ) < 0 and the
results for S1 are restored.

Mistaking that ABCs represent surface characteristics, one
might apply Eq. (9) to the slab by imposing that [10]

P̃′(0) = κP̃(0), P̃′(L) = −κP̃(L). (24)

FIG. 3. Slab reflection |Er |2 for the same R(z) as in Fig. 2. SSA:
Eqs. (21)–(23). ABC: Eqs. (21) and (24), κ by Eq. (9), and R by
Eq. (14). Oscillations are due to multiple reflections [cf. Eq. (20)].

which, however, contradict Eqs. (22) and (23). As an illustra-
tion, in Fig. 3 we display the reflection |Er |2 calculated for
the same R(z) as in Fig. 2. The SSA theory [i.e., Eqs. (21)–
(23)] produces obviously different results from the ABC [i.e.,
Eqs. (21) and (24)] for not so thick slabs. The ABC produces
unphysical results for certain thicknesses [27]. For thick slabs
the SSA and the ABC produce close results owing to the effec-
tive decoupling of the surfaces. The oscillations seen in Fig. 3
stem from the multiple-reflection effect described in Eq. (20).
They can also be understood as due to the quantization of the
center-of-mass motions of excitons [9,10,31].

Notwithstanding, a generalization of Eq. (24) can be shown
to be compatible with the SSA theory. To see this, we use
Eq. (19) to obtain the exciton polarization and find⎛

⎜⎜⎜⎝
iqP̃(0)
iqP̃(L)
P̃′(0)

P̃′(L)

⎞
⎟⎟⎟⎠ = iqS∞

⎛
⎜⎜⎜⎝

1 + R0, eiqLRL

−R0eiqL, (1 + RL )
R0 − 1, −RLeiqL

R0eiqL, (1 − RL )

⎞
⎟⎟⎟⎠

×
( ∫ L

0 dzeiqzE (z)∫ L
0 dzeiq(L−z)E (z)

)
, (25)

which is the analog of Eq. (7). Here, R0/L are counterparts of
R, defined by∫ L

0
dzeiqzR(z)E (z) = R0

∫ L

0
dzeiqzE (z), (26a)

∫ L

0
dzeiq(L−z)R(L − z)E (z) = RL

∫ L

0
dzeiq(L−z)E (z). (26b)

Eliminating the integrals from Eq. (26) yields

P̃′(0) = κ0P̃(0) + γ P̃(L), P̃′(L) = −κLP̃(L) − γ P̃(0),
(27)

which, equivalent to Eqs. (22) and (23), replaces (24). Here,⎛
⎝κ0

κL

γ

⎞
⎠ = iq

D

⎛
⎝(1 − R0)(1 + RL ) − R0RLe2iqL

(1 − RL )(1 + R0) − R0RLe2iqL

2R0RLeiqL

⎞
⎠, (28)
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with D = R0RLe2iqL − (1 + R0)(1 + RL ). In general, κ0 	= κL

except for L → ∞. This asymmetry lies in the setup, not
the slab, reminding that κ0 and κL are not surface charac-
teristics. As R(zs) for S2 varies with zs, R0 and RL vary
with L.

Experimental relevance ofR(z). Either S2 or S3 can be used
to experimentally extract R(z). Let us take S2 for instance. We
expand R(z) against a set of N basis functions. The problem
boils down to determining the expansion coefficients. To this
end, we experimentally measure the transmission amplitude
of light into the vacuum [see Fig. 1(b)] for each of N values
of zs and theoretically express the amplitudes in terms of the
coefficients, which produce N equations that can be solved to
obtain the coefficients. This scheme requires precise implan-
tation and control of the interior radiation source. Using S3

avoids this but a multitude of samples need to be fabricated
[27]. More practical methods using oblique incidence, ellip-
sometry, and interference may be developed.

Conclusions. A macroscopic theory is presented for the
optical responses of a bounded dispersive medium without
invoking ABCs. ABCs are shown bearing no direct relation
to the physically meaningful parameters of the system but

can be deduced, if needed, from the SSA R(z). The SSA is
an intrinsic property of a surface, which, unlike any ABCs,
reflects the generally long-range contribution of the surface
to the optical response. Our results call for a reappraisal of
innumerable experiments that have been fitted with ABCs
(see, for instance, Refs. [5–8]). An interesting direction may
be to apply the present theory to ordinary and topological
metamaterials, which have recently attracted much attention
due to their strongly dispersive and anisotropic electrody-
namic responses [33–37].
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