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ABSTRACT 

Functional near-infrared spectroscopy (fNIRS) is a neuro-monitoring tool that is non-invasive, 

non-ionising, cost efficient, and portable. Its application for the traumatic brain injury patients is 

a well suggested approach due to its role in being able to continuously monitor key biomarkers 

such as the tissue oxygenation and blood haemoglobin level to understand the flow of blood 

supply to the tissue in the brain to assess injury in patients. In light of the great potential that 

fNIRS has to offer in neuro-monitoring in critical care, it is hindered by the inconsistency seldom 

seen in multiple research works that can be attributed to the assumptions made on tissue 

scattering properties to decouple their dependency along with absorption properties that can 

provide information about the key biomarkers useful in neuro-monitoring. These inconsistencies 

can also be attributed to the application of an inaccurate model to represent photon migration 

in underlying the biological tissue, or it can also be attributed to the unavoidable contamination 

of the measured fNIRS data by the superficial (skin and scalp) tissue, which is intended to probe 

the brain tissue, due to the typical placing of measurement probes on the head. The possibility 

to overcome these challenges in fNIRS methodology is examined in this thesis, and the proposed 

methods to overcome these are derived theoretically and validated on numerical simulation and 

experimental data to demonstrate better performance as compared to existing methods. 

A spectrally constrained approach is designed to efficiently circumvent the coupling of 

absorption and scattering properties to directly yield more accurate estimates of oxygenation 

levels for the cerebral tissue showing an average improvement of 6.6% as compared to a 



conventional and widely used approach of spatially resolved spectroscopy, in estimating the 

tissue oxygenation level. The uncertainty factor in the knowledge of scattering coefficient of the 

tissue, which is a key limitation in the conventional approach, is shown to be removed in the 

proposed spectrally constrained approach, therefore maintaining the methodology of subject 

and tissue-type independence. 

With the demonstration of better performance on spectral constrained approach, the 

role of more spectral information i.e., broadband intensity data, to allow recovery of more 

information is also explored and is demonstrated that when the data is measured on a complex 

tissue such as the human head, an often used simple semi-infinite model based layered recovery 

can lead to uncertain results, whereas, by using an appropriate model accounting for the tissue-

boundary structure and geometry, the tissue oxygenation levels are recovered with an error of 

4.2%, and brain depth with an error of 11.8%. The algorithm is finally used together with human 

subject data, to demonstrate the robustness in application and repeatability in the recovered 

parameters that adhere well to expected published parameters. 

Finally, the signal regression of fNIRS data to reduce superficial signal contamination 

which is well defined for a continuous wave (CW) fNIRS system is expanded to another data-

types, namely phase data as used in frequency-domain (FD) fNIRS systems, by proposing a new 

approach for FD fNIRS that utilizes a short-separation intensity signal directly to regress both 

intensity and phase measurements. This is shown to provide a better regression of superficial 

signal contamination from both intensity and phase data-types. Intensity-based phase regression 

is shown to achieve a better suppression of superficial signal contamination by 68% whereas for 

phase-based phase regression the suppression is only by 13%. Phase-based phase regression is 



also shown to generate false-positives in the image reconstruction of haemodynamic activations 

from the cortex, which is not desirable and therefore this work provides a better methodology 

for minimizing the superficial signal contamination for FD fNIRS. 

All the parameter recovery models and signal processing methods presented in this work, 

in addition to their better performance that is shown, carry an additional and most prominent 

advantage of being able to be applied to all existing NIRS systems without any additional 

instrumentation or measurement for the purpose of providing a more accurate and robust 

neuro-monitoring tool. 
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Chapter 1  

INTRODUCTION 

1.1. Background 

Traumatic Brain Injury (TBI) has been one of the leading causes of deaths in young people and a 

lifelong disability is common in those who survive (1). It has been estimated that more than 10 

million people globally are affected by TBI resulting in either mortality or hospitalization (2), and 

therefore is a critical public health problem worldwide. In severe cases TBI, the mortality rate is 

seen to be very high between 20% - 40%, and another 20% of patients remain critically disabled 

(3). This outcome is mainly due to the secondary cerebral ischemic injury that can occur at any 

time after the initial injury including during resuscitation, transport and in the intensive care unit. 

In fact this is observed in 90%  of deaths due to head injury (4). Therefore an important aspect of 

improving health-care for TBI patients is to predict and prevent the secondary injuries, through 

continuous monitoring of subjects in clinical conditions and taking up the appropriate clinical 

procedure immediately when and as required (5).   

Current available brain health monitoring modalities for prehospital use are pulse 

oximetry and blood pressure monitoring systems. The concern with these modalities is that the 

oxygenation and blood pressure in other tissue is not necessarily an indicative of brain directly 

and therefore could lead to incorrect therapy. Clinical modalities include brain monitoring 

methods such as intracranial pressure monitors and electroencephalography (6) and diagnostic 
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methods such as computed tomography and magnetic resonance imaging (MRI), often just 

structural rather than a functional MRI (7). These modalities are limited by their ionizing, invasive 

or their high cost nature making them unfavourable to be used for the diagnosis of TBI as a 

continuous monitoring tool (5). Near-infrared (NIR) technology has the potential to fill these gaps 

and can be used as a continuous nonionizing, non-invasive and a low-cost alternative to the 

current methods. 
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1.2. Traumatic Brain Injury 

Traumatic Brain Injury (TBI) is defined as an alteration or impairment in brain function, caused by 

an external mechanical force. The term head injury, although used interchangeably with TBI, may 

also refer to trauma to other parts of the head such as the scalp and skull. TBI can be categorized 

by its severity using the Glasgow Coma Scale (GCS) based on patient response. A mild TBI (mTBI) 

could be a concussion caused by a sport injury where the patient is awake and responsive. At the 

other end of the categorization, a severe TBI would be from a more significant impact, such as 

motor vehicle collision, where the patient may be unconscious. 

 The initial impact of a TBI is likely to cause shearing of the white matter tracts and 

rupturing of blood vessels leading to both intra and extracranial hematomas (8). This often results 

in inflammation and swelling, and is referred to as the primary insult to the brain. While these 

are significant injuries, in themselves they are not fatal, and is instead the repercussions of these 

injuries further down the line that are the main source of patient mortality; these repercussions 

are known as secondary insults to the brain (9). The main issues in the secondary insult process 

are hypoxia (lack of oxygen) and intracranial hypotension (abnormally low blood pressure) (5, 

10), which along with the impaired brain’s intrinsic blood regulatory mechanism (cerebral 

autoregulation), compromise the delivery of oxygen and nutrients to cerebral tissue. 

Furthermore, the swelling in the brain from the initial insult increases intracranial pressure (ICP), 

which in turn decreases cerebral perfusion pressure (CPP), meaning that adequate cerebral tissue 

perfusion is further compromised causing further impairment of the brain’s intrinsic 

autoregulation abilities (8). As these secondary injuries can take place at any time post injury, the 
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ability to continuously monitor patients from the moment emergency care arrives is essential for 

securing positive patient outcomes (5). 

 Standard practice for the treatment of most trauma victims (recommended by the 

National institute for health and care excellence and other bodies) is Permissive Hypotensive 

Resuscitation (PHR), which helps to reduce the risk of a secondary haemorrhage, lung injury or 

tissue oedema. PHR is a procedure, which involves gentle fluid infusion in order to increase 

systemic blood pressure to just below normal levels. The notable exception to this, is the case of 

TBI. This is due to concerns that PHR will cause an ischaemic insult to the brain, resulting in further 

damage by reducing blood pressure in a brain that is potentially already hypotensive, a topic 

which is still controversial. Currently the main goal in pre-hospital treatments is to use fluid 

therapy to avoid hypoxia and hypotension until the patient can be fully assessed in a hospital. 

However, the information available to emergency medics at this point in order to guide the 

therapy is limited to blood pressure and systemic blood oxygen saturation measurements. It is 

only on arrival at a hospital that more informative monitoring and assessment modalities can be 

utilised. More accurate information then allows clinicians to manipulate ICP and CPP safely 

through fluid and pharmaceutical intervention with surgical techniques also available, such as a 

decompressive craniectomy (11). 

1.3. Established neuro-monitoring methods 

Currently there are very few monitoring modalities available for pre-hospital use, which as 

mentioned are pulse oximetry and blood pressure monitoring systems. The concern with these 

modalities is that, both of them only give a systemic overview of patient health and the recorded 
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oxygenation and blood pressure is not necessarily an indicative specific to brain and therefore 

could lead to incorrect therapy. Clinical methods of brain monitoring include computed 

tomography (CT), MRI, ICP monitors, transcranial Doppler (TCD) and electroencephalography (6). 

CT and pressure monitors are the most common. There are also catheters similar to the ICP 

probes that can measure brain tissue oxygenation (PbtO2) and provide positive outcomes when 

used with ICP. CT scans are standard practice for TBI patients and when used with contrast agents 

can accurately show the position and size of haematomas in the brain and can guide surgical 

procedures. It is however only usable once the patient arrives in hospital and due to the ionizing 

nature and risk of moving critical patients it is not useful as a continuous monitoring tool. 

Similarly, ICP and PbtO2 monitors can only be installed in the hospital by a surgeon. The pressure 

monitors are invasive and are screwed into the skull in order to give a long-term assessment of 

intracranial pressure and tissue oxygenation. They also have their own associated risks with the 

implantation, specifically a 0.5% risk of causing a haemorrhage and a 2% risk of becoming infected 

(11). TCD can show blood flow velocity in the brain and has been found useful in guiding therapy 

to restore cerebral perfusion (12), however the results can be inconclusive and interpretation 

varies between users. 

 As there is currently no accepted modality/technique for guiding both hospital and pre-

hospital therapies, this leaves a gap which could potentially be filled by functional near-infrared 

spectroscopy (fNIRS) as it has the depth penetration ability to assess the cortex (reaching the 

ideal TBI monitoring depth of 21 ± 4mm (13). The application of fNIRS for assessment of 

haemodynamics is widely used in clinical research due to its versatility and ease of use (14). Also, 

as it is non-ionizing and significantly cheaper to purchase and run than CT/MRI scanners, it can 
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be used to continuously monitor TBI patients, from the moment emergency medics start 

treatment. As cerebral tissue oxygenation index (TOI) and tissue haemoglobin index (THI) are the 

key parameters that clinicians are concerned with (15) when it comes to monitoring TBI patients, 

the ability to use fNIRS which can measure such parameters would be advantageous.  

There is evidence indicating that the changes in TOI and THI as measured by fNIRS can 

also be used as an indicator of ICP (16, 17), yet it is considered unreliable to predict ICP 

consistently (18). However, NIR based methods like diffuse correlation spectroscopy that can 

measure the cerebral blood flow (19), have been demonstrated to estimate the ICP non-

invasively (20-22). In its current state, NIRS can supplement the current TBI assessment methods 

although not replacing them (23-25). However, the ability of NIRS to obtain combined 

information regarding the quantity of blood reaching the cerebral tissue along with the oxygen 

saturation levels of the supplied haemoglobin, gives it a distinctive advantage in the field of non-

invasive monitoring in TBI (15). 

The key challenges in fNIRS that decide the accuracy, with which the cerebral tissue parameters 

can be predicted, depends mainly on these factors: 

a) Excitation and detection mode: The measured data-type can be either attenuation of 

transmitted light intensity (continuous wave NIRS), attenuation of light intensity 

combined with phase shift of the modulated light (frequency-domain NIRS), or the 

intensity distribution of the time of flight of photons (time-domain NIRS). The additional 

data-types measured in frequency and time-domain NIRS systems can therefore yield 

more accurate absolute parameter recovery by accounting for tissue scatter and hence 

photon pathlength, but are heavily limited by the low signal-to-noise ratios of these 
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additional data-types. While the continuous wave (CW) NIRS has limited information as 

compared to frequency and time-domain NIRS systems to estimate the underlying tissue 

properties, the robustness and cost effectiveness of CW-NIRS provides an advantage, 

provided that a more accurate and tissue specific absolute parameter recovery methods 

are employed, which forms the basis for the work presented in Chapter 3 and 4. 

b) Contamination of the measured signal by the superficial tissue (skin and skull) that covers 

the cerebral region. This can be described as a two-fold problem. On one hand, the 

absolute value of NIRS measurements are effected by both cerebral and extra-cerebral 

tissue and therefore any information relating to just the cerebral tissue is inherently 

contaminated. On the other hand, the time-traces of the NIRS signals, which are used to 

observe the underlying haemodynamic changes over time, are also contaminated by the 

extra-cerebral superficial tissue. These are explained further in Chapter 2. 

1.4. Research aims 

In view of the key challenges listed above, given the current state of NIRS in the application of 

monitoring TBI patients by estimating TOI, oxy and deoxy haemoglobin concentrations, the 

primary focus of the research is to the address the following hypotheses: 

1. Measurement of TOI using NIRS requires absorption coefficient at least two wavelengths. 

While the conventional methods of continuous wave NIRS cannot extract (de-couple) 

absorption and scattering properties of the tissue from intensity only measurements at 

each wavelength, the use of multi-spectral information can help in extracting absorption 
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and scattering properties by spectrally constraining the problem and therefore estimating 

more accurate TOI values. 

2. The application of multi-distance broadband intensity measurements can distinguish 

between cerebral and extra-cerebral tissue’s absorption and scattering parameters. 

3. The use of layered head-model based parameter recovery method greatly improves the 

accuracy of cerebral tissue parameters as compared to the conventionally used 

homogenous or even the simplified layered slab models. 

4. While the use of intensity and phase measurements can greatly improve the localization 

and resolution of brain activation maps, the superficial signal contamination still poses an 

issue with its conventional application on phase measurements but alternative regression 

method can be developed for the phase measurements. 

The interaction of near-infrared light with matter, and models to accurately reflect the light 

propagation in biological tissue are presented in Chapter 2. It also explains the background of the 

key challenges faced by existing fNIRS methods which are broadly mentioned in the previous 

section forming the basis for the research aims listed above. Chapter 3, deals with tackling the 

limitations experienced by an intensity-only NIRS measurement systems, by adding a spectral 

constraint to the recovery model. The application of broadband intensity data to retrieve both 

cerebral and extra-cerebral tissue parameters is visualized in Chapter 4, overcoming the non-

uniqueness challenge faced by intensity based parameter recovery models. The importance of 

using an accurate model based recovery approach reflecting the shape and structure of the 

medium being probed is also discussed in elaborate way. The reduction in the contamination of 

the measured NIRS data-types by the superficial tissue, through pre-processing methods such as 
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the signal regression is explained in Chapter 5 specifically for the phase data in FD systems and 

highlights a path towards the application on other data-types. The conclusive remarks and 

directions for the future work extending the research work presented in this thesis are described 

in the final Chapter 6. 
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Chapter 2  

DIFFUSE OPTICAL SPECTROSCOPY AND IMAGING 

2.1. Introduction 

The utilization of high-energy light (x-rays and gamma rays) to image biological tissue is well 

established within the clinical setting, with Computerized Tomography (CT) X-ray and Positron 

Emission Tomography (PET) often being used in hospitals. Incident radiation (electromagnetic 

light) can be assumed to travel in a straight line through a medium with contrast coming from 

any decrease in intensity of the detected light due to absorption. However, the propagation of 

NIR light in biological tissue is a more complex phenomenon. Unlike x-rays, NIR light does not 

travel in a straight line inside biological tissue, as the dominant interaction process is no longer 

absorption; scattering now plays a major role and the light which originates from a point source 

becomes dispersed. 

In order to predict or reconstruct the path of NIR light in tissue, and to better predict its 

optical properties, computational methods and models are required. Modelling of NIR light 

propagation can be done using the Radiative Transfer Equation (RTE) or simplifications of the RTE 

such as the Diffusion Approximation. 
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2.2. Interaction of light with the biological tissue 

The prediction of NIR photon migration in tissue is based on our understanding of how light 

interacts with biological media. The main interaction methods of a photon with tissue are scatter 

and absorption; this section aims to describe how these interactions take place and why they 

cause changes in detected intensity at a given measurement point. Examples of absorption and 

scattering spectra of the main biological tissue constituents (chromophores) are shown in Figure 

2.1 and Figure 2.2, where the area of high scattering and lower absorption in the NIR range can 

be seen. 

 

Figure 2.1. Absorption spectra of main tissue constituents in the range of 600-1000 nm. The curves refer 
to 100% water (▲), and lard (△), and to 100 μM of oxy- (□) and deoxy- (■) haemoglobin. (26) 
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Figure 2.2. Scattering spectra of the abdomen (□), the female breast (■), the forearm (△), and the 
forehead (▲). (26) 

 

A photon is the name given to a 'packet' of energy, with the energy of the photon being directly 

related to its frequency or wavelength (Planck-Einstein relation); as shown in equation (2.1), 

where 𝐸 is the photon energy, 𝑓 its frequency, 𝜆 its wavelength, 𝑐 is the speed of light in the 

medium and ℎ is Planck's constant. 

 

𝐸 = ℎ𝑓 =
ℎ𝑐

𝜆
 (2.1) 
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2.2.1. Absorption 

The process of absorption occurs when a photon transfers its energy to molecules inside the 

medium being traversed. The transfer of energy takes place via excitation of an electron moving 

it from a lower energy level, or ground state, to a higher energy level or excited state. Once the 

excitation has taken place, the electron can return to its original, or intermediate, state by 

releasing some or all of the absorbed energy. This can take place through a variety of 

mechanisms, which can be generalised under luminescence or thermal energy. NIR light is 

described as 'non-ionising' as its photons do not have sufficient energy to excite an electron to a 

level where it can break free of its parent nucleus, a process which can cause tissue damage. 

The energy levels for electrons in different molecules (chromophores) are specific and as the 

energy of a photon is directly related to the wavelength of the light, there is a wavelength 

dependence of the amount of absorption by a specific molecule as seen in Figure 2.1, a principle 

that is essential for NIRS. 

The probability of a photon, of a particular wavelength, being absorbed within a medium 

per unit of distance travelled is dependent on its absorption coefficient (𝜇𝑎). This absorption 

coefficient is a measure of the net absorption from all the constituents absorbing molecules 

(chromophores) such as oxy-haemoglobin (HbO), deoxy-haemoglobin (Hb) and water (H2O) in 

the tissue which can be defined by the Beer-Lambert Law as:  

 

𝜇𝑎(𝜆) = 𝜖(𝜆)𝐻𝑏𝑂𝐶𝐻𝑏𝑂 + 𝜖(𝜆)𝐻𝑏𝐶𝐻𝑏 + 𝜖(𝜆)𝐻2𝑂𝐶𝐻2𝑂  (2.2) 
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The molar extinction coefficient (𝜖) specifies the absorption coefficient per unit molar 

concentration of the respective chromophore and is dependent on the wavelength (𝜆) of light. 

The concentration of the chromophores is given by ‘𝐶’.  

Given an initial intensity of light (𝐼0), the relationship between its reduced intensity (𝐼) 

over a distance (𝑑) travelled through a non-scattering medium with absorption coefficient 𝜇𝑎, is 

exponential and is defined by equation (2.3) which is referred to as the Beer-Lambert Law.  

 

𝐼(𝑑) = 𝐼0𝑒
−𝜇𝑎𝑑 (2.3) 

 

However, for biological tissues scattering is the dominant interaction (which is the reason 

NIR light can probe deeper into biological tissue than visible light, and is often termed as Diffuse 

Imaging) and therefore the relation between output intensity and propagation distance is more 

complex than equation (2.3), and as discussed in the later sections alternative relationships must 

be used. 

The main NIR absorption species in biological tissue are haemoglobin (split into 

oxygenated (𝐻𝑏𝑂) and deoxygenated (𝐻𝑏) components), Water (𝐻2𝑂), and others such as 

cytochrome oxidase and melanin. Recovering concentrations of 𝐻𝑏𝑂 and 𝐻𝑏 can also provide 

measures of blood oxygen saturation (𝑆𝑂2 =
𝐻𝑏𝑂

𝐻𝑏𝑂+𝐻𝑏
𝑥100) and total haemoglobin 

concentration (𝐻𝑏𝑇 = 𝐻𝑏𝑂 + 𝐻𝑏). The saturation of the blood is an overall value covering both 
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the venous and arterial components of blood, which are usually approximate to the ratio of 75:25 

as the venous contributions are stronger. 

By measuring the absorption of light at multiple wavelengths in the NIR region, combined 

with the extinction coefficients (for each chromophore at the measured wavelengths) it is 

possible to calculate the concentration of each chromophore within a sample, using equation 

(2.2). 

2.2.2. Scattering 

Scattering is the process by which the direction of a photon is changed. It can be modelled as a 

series of interactions between spherical particles and photons (Mie and Rayleigh Theory) which, 

in the context of NIR light, are elastic meaning no energy is transferred from the photons during 

this interaction process. There are other forms of scattering which are non-elastic and results in 

the reduction in incident photon energy, such as Raman scattering; but are less likely in the NIR 

region due to the associated energy level transitions. Mie scattering dominates when the size of 

the particles is similar to that of the optical wavelength (NIR), which is the case in biological tissue 

where cell membranes, nuclei and mitochondria are key scattering particles. A mismatch in 

refractive indices between constituent particles and the background medium can also cause a 

significant amount of scattering, as governed by Snell's Law. 

Similar to absorption coefficient, the scattering coefficient (𝜇𝑠) defines the probability of 

a scattering event to occur per unit length travelled by the photon. The reciprocal of the 

scattering coefficient gives the average distance a photon will travel in a medium before 

undergoing a scattering event. Another factor to consider with scattering is the angle of direction 
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of the scattered light, known as anisotropy. This is important as the probability of light being 

scattered is not equal in all direction, so there is often a preference for forward or backward 

scatter. Therefore, to account for this, a reduced scattering coefficient can be used that 

incorporates an anisotropy factor, ‘𝑔’ which can range from -1 (for back scatter) through to 1 (for 

forward scatter) as shown in equation (2.4). The anisotropy factor can be estimated 

experimentally and a typical value for biological tissue is 0.9, indicating forward scattering. 

 

𝜇𝑠
′ = (1 − 𝑔)𝜇𝑠 = 𝑎 𝜆−𝑏 (2.4) 

 

The empirical approximation of the Mie scattering theory with equation (2.4) has shown 

a good fit (27, 28)  to the reduced scatter coefficient of a tissue (𝜇𝑠
′ ) with respect to the 

wavelength (𝜆). The scatter amplitude 𝑎 and the scatter power 𝑏 are related to the particle sizes 

and density of scatters in a tissue. Another well-used approximation is a linear fit between 

reduced scattering coefficient and the wavelength which is further detailed later in chapter3. 

2.3. Radiative transport equation and diffusion approximation 

Based on the scattering and absorption parameters outlined in Section 2.2 the path of diffuse 

light can be predicted by looking at the photon interactions within the medium. The prediction 

of light propagation using the radiative transfer equation (RTE) is shown in equation (2.5). The 

original basis for the RTE was developed by Boltzmann in the form of the Boltzmann transport 

equation in 1872. The physical quantities shown in the equation are as follows: 𝑟 is the position; 
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�̂� is the unit direction vector; 𝑡 is time; 𝑐 is the speed of light in the medium; 𝜇𝑡 is the total 

attenuation coefficient (𝜇𝑎 + 𝜇𝑠), a combination of both absorption and scattering coefficient; 

𝑑Ω′SA is the differential solid angle term in the direction �̂�′, 𝐿(𝑟, �̂�, 𝑡) represents radiance (photon 

density) as a function of time at a given position 𝑟 in a given direction �̂�, the photons reach this 

position from different direction originating from the source undergoing multiple scattering 

events, and some photons being absorbed by the medium and lost; Θ(�̂�′, �̂�) is the normalized 

scattering phase function representing the probability of scattering from a direction �̂�′ to a 

direction �̂� and ‘𝑐. 𝑄(𝑟, �̂�, 𝑡)’ is equal to the number photons emitted by the source per volume 

per unit time defined as a function of time at a given position 𝑟 in a given direction �̂�, and the 

term 𝑄 is commonly addressed as the source term (29, 30) as it can be separated from the other 

parts of the RTE as shown below. 

 

1

𝑐

𝜕𝐿(𝑟, �̂�, 𝑡)

𝜕𝑡
+ �̂� ⋅ ∇𝐿(𝑟, �̂�, 𝑡) + 𝜇𝑡𝐿(𝑟, �̂�, 𝑡) = 𝜇𝑠 ∫ 𝐿(𝑟, �̂�′, 𝑡) Θ(�̂�′, �̂�)𝑑ΩSA

′ + 𝑄(𝑟, �̂�, 𝑡)
4𝜋

   (2.5) 

 

Given the complexity of the RTE equation it is most commonly simplified into the Diffusion 

Approximation (DA), which is valid when the scattering is more dominant than absorption and 

the region of interest is far (i.e. diffuse) from any sources or boundaries given the light fluence 

does not change rapidly with time (30, 31). Using these principles, the RTE can be simplified into: 
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𝜕𝛷(𝑟, 𝑡)

𝑐 𝜕𝑡
+ 𝜇𝑎𝛷(𝑟, 𝑡) − ∇ ⋅ [𝜅 ∇𝛷(𝑟, 𝑡)] = 𝑞(𝑟, 𝑡) (2.6) 

 

Here, 𝜅 is the diffusion coefficient given as 𝜅 = 1/3(𝜇𝑎 + 𝜇𝑠
′); 𝛷 is the fluence rate, and 

𝜇𝑠
′  is the reduced scattering coefficient. The above equation represents transient nature of 

diffuse light propagation. The steady-state representation of it (by integrating over time) gives 

the continuous wave diffusion equation (or simply identified as the diffusion approximation) 

which can be written as follows: 

 

−∇ ⋅ [𝜅 ∇Φ(𝑟)] + 𝜇𝑎Φ(𝑟) = q(𝑟) (2.7) 

 

Solving the diffusion equation requires a boundary condition for which the modified Robin 

boundary condition (mRBC) is generally used which is given as (32): 

 

mRBC:                Φ(𝑟) + 2𝜅 𝐴 �̂�  ⋅  ∇Φ(𝑟) = 0, ∀   𝑟 𝜖 𝜕Ω (2.8) 

 

where, 𝐴 =
2/(1−𝑅0)−1+|cos𝜃c|

3

1−|cos𝜃c|2  
 and (2.9) 

 

𝑅0 =
(𝑛m − 1)2

(𝑛m + 1)2
 (2.10) 
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Here, 𝜕Ω defines the boundary of a medium represented by Ω and ‘𝑛m’ is its refractive 

index, and for air ‘𝑛AIR = 1’. 𝜃c = sin−1(1/𝑛m), is the critical angle beyond which total internal 

reflection occurs at the air-tissue interface for the photons moving from tissue to air. 

With fewer variables (only space and time, versus space, time and direction for RTE), the diffusion 

equation is a simpler differential equation to solve than the RTE. The solution is usually recovered 

in one of two ways either analytically through computational modelling. While analytical 

methods (33-36) involve calculating the solutions the simplest form for the diffusion equation 

using Green’s functions for more general and simpler geometries of the medium (37), the 

computational methods (32, 38-41) however employ modelling techniques to solve the diffusion 

equation or the RTE on a given medium and boundary conditions, and this is relatively  more time 

consuming. 

2.3.1 Analytical Methods 

An analytical solution is a direct mathematical approach where an exact answer can be found, 

and in this case the equation being solved is the partial differential equation of Diffusion 

Approximation given by equation (2.7). Depending on the geometry of a situation, solving the 

diffusion equation is not always possible using analytical methods. There are however a set of 

simple or semi-complex geometries such as: homogenous infinite medium, homogenous semi-

infinite medium (37), two or three layered semi-infinite heterogenous medium (33), where 

analytical solutions can be derived that will allow direct calculation of light intensity at a given 

distance from the source. An analytical solution is the fastest way to calculate light fluence in 
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order to reconstruct measurement data and is used in fNIRS systems where real time data 

processing is required and the geometries are simple. 

In a majority of cases a continuous wave fNIRS device would be used to measure 

differential changes in chromophore concentrations from a single source-detector pair. Here, a 

modified Beer-Lambert Law (MBLL) is applied (42), which essentially adds a scatter dependent 

term to the attenuation (log (𝐼0/𝐼)) as defined in equation (2.3), and by assuming scatter changes 

to be time-invariant a change in attenuation of light intensity at a wavelength can be used to 

measure the changes in absorption coefficient at the respective wavelengths, which can then be 

utilised to obtain a global estimate of chromophore changes in the target volume using equation 

(2.2). 

The analytical solution to the diffusion approximation can also be used to find more 

accurate estimates of the absorption and scattering coefficients (depending on the measurement 

type) to improve the accuracy of the recovered chromophore concentrations. Analytical 

solutions to the diffusion approximation for various geometries (such as slabs cylinders and 

spheres) have been derived using Green's functions: these models can be used for forward 

modelling of data. These solutions tend to be based on a homogeneous medium although there 

are analytical solutions to the DA, which are built on more complex models such as layered slabs. 

Even with more complex geometries, analytical solutions can only provide accurate results in 

certain situations (e.g., Muscle oximetry). 

In the situation where there are multiple source-detector pairs at different separations, such 

as a DOT array, the approach for using an analytical solution to the DA is less direct; this is where 

forward modelling of boundary data is used. Boundary data is simply a simulation of the intensity 
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measured at given points on the boundary of a medium, in this case a semi-infinite slab. The data 

fitting routines do vary but a general methodology for fitting measurement data to an analytical 

model in order to obtain optical property estimates, 𝜇𝑎 and 𝜇𝑠
′  (or the chromophore 

concentrations and scattering parameters) is defined as follows:  

 Starting with an initial guess of optical parameters the boundary data is simulated and 

compared with the measurement dataset, the optical parameters are then updated for 

the next iteration so that the sum of squares of difference between simulation and 

measurement dataset is minimized (least-square minimization model).  

 The iterations are repeated until the mismatch between the two datasets reaches a 

predefined acceptance level, or a set number of iterations are reached. 

Due to the simplicity of analytical models this process is still very fast even in the event of 

modelling large arrays of sources and detectors. 

This method would converge easily when the measurement data has high signal-to-noise ratio. 

However, in the situation where the data is noisy or the initial guess at the optical properties is 

far from the solution, the least-squares minimization method can break down and yield incorrect 

results. This can also be an issue when the analytical model being used is not truly representative 

of the measurement geometry or where the changes in optical properties are expected to be 

large (i.e., the changes are not small enough to be linear). For more complex geometry modelling 

of a layered head for example, computational methods are required to obtain more accurate 

results. 
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2.3.2. Computational Methods 

When looking at more complex geometries, analytical solution may be either unavailable or 

inappropriate, instead computational methods (32, 38-41) can be used to model forward data 

for reconstructions. Whereas an analytical solution will most often be fully homogeneous or 

nearly homogeneous in a target region, a numerical solution can use fully heterogeneous models 

to give more accurate results in such scenarios, although the reconstruction time is longer due 

to computational complexity. Numerical solutions are often performed using finite element 

models (FEM), which are utilized in the following chapters to reconstruct data and is explained in 

detail further in this section. 

Monte Carlo (MC) is another commonly used computational method (41) of modelling 

the RTE and is often used as a gold standard for validation of other computer models with 

heterogeneous media. MC uses a statistical approach to modelling and simulates the paths of 

millions of individual photons through a series of random walks until a set level of counting 

statistics obtained. The MC techniques are highly versatile and have been implemented for multi-

layered tissues geometries, such as that of the human head. The computational time required to 

complete the simulations is the reason MC methods are not currently as widely used as FEM-

based approaches, however there have been many advances in both parallel computing and 

utilisation of graphics processing units in order to reduce this computational time. 

The reconstruction of optical parameters or chromophore concentrations of medium can be of 

two types:  
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a) Dynamic parameters recovery: the dynamic changes in light intensity over time is 

used to obtain the dynamic changes in tissue parameters (chromophore 

concentrations). The mapping from intensity to tissue parameters is implemented 

in a single linear inversion step using the sensitivity or Jacobian matrix (change in 

intensity per unit change in tissue parameter, as defined in the subsection 2.3.2.2. 

Inverse problem),  

b) Absolute parameter recovery: the absolute values of the tissue parameters 

(chromophore concentrations) are obtained using an iterative fitting algorithm by 

modelling the light intensity (forward model) with an approximated tissue 

parameters, these are updated in each iteration to minimize the difference 

between measured light intensity and the modelled light intensity data (inverse 

model). The forward and inverse models are explained further in detail below. 

2.3.2.1. Finite element method for forward model:  

The finite element discretization of a given volume of a medium defined by Ω, can be obtained 

by subdividing the domain into 𝑁e number of small elements joined at 𝑁 interconnecting nodes. 

In finite element method, the fluence at a given point, Φ(𝐫), is approximated by the piecewise 

continuous polynomial function, 

 

 Φa(𝐫) = ∑ Φ𝑖𝑢𝑖(𝐫)
𝑁
𝑖=1 ∈ Ω𝑎 (2.11) 
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where, Ω𝑎 is a finite dimensional subspace spanned by the basis functions 𝑢𝑖  chosen to have a 

limited support. The diffusion approximation equation (2.8) can be represented in FEM 

framework (32, 38) as a system of linear algebraic equations: 

 

(𝐊(𝜅) + 𝐂(𝜇𝑎) + 𝐅)𝚽 = 𝒒𝟎 (2.12) 

 

where the matrices 𝐊, 𝐂, 𝐅, 𝐐 have entries given by, 

 

𝐊𝑖𝑗 = ∫ 𝜅(𝐫) ∇𝑢𝑖(𝐫) ⋅ ∇𝑢𝑗(𝐫) 𝑑Ω
Ω

 (2.13) 

 

𝐂𝑖𝑗 = ∫ 𝜇𝑎(𝐫) 𝑢𝑖(𝐫) ⋅ 𝑢𝑗(𝐫) 𝑑Ω
Ω

 (2.14) 

 

𝐅𝑖𝑗 =
1

2𝐴
∮ 𝑢𝑖(𝐫) ⋅ 𝑢𝑗(𝐫)
𝜕Ω

 𝑑(𝜕Ω) (2.15) 

 

𝐐𝑖𝑗 = ∫ 𝑢𝑖(𝐫) ⋅ q0(𝐫) 𝑑Ω
Ω

 (2.16) 
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The estimation of photon fluence now depends on inversion of the sparse matrix (𝐊 + 𝐂 + 𝐅). 

The simulation reflects the experimental data when the source is modelled at one transport 

scattering distance 1/𝜇𝑠′ within the outer boundary 𝜕Ω 

2.3.2.2. Inverse problem 

The objective of the inverse problem is to recover the optical properties 𝛍 = [𝛍a, 𝛍s
′ ] at each 

node (or each region or the bulk properties) in the mesh using discrete light intensity 

measurements on the boundary of the medium. The recovery can be achieved using any 

minimization method with a regularization term to solve ill-conditioned problems based on the 

application. Here least square minimization with Tikhonov regularization is being used. If the 

measured output intensity is represented by 𝐈m and the modelled data as 𝑓(𝛍) (either analytical 

or numerical forward models) for 𝑀 source–detector measurements, then the standard Tikhonov 

minimization function is given by, 

 

χ2 = min
𝜇𝑎, 𝜇𝑠

′
{∑(I𝑖

m − 𝑓(𝛍))2

𝑀

𝑖=1

+ 𝛼 ∑(μ𝑗)
2

𝑁

𝑗=1

} (2.17) 

 

Here, 𝐈m and 𝑓(𝛍) are matrices of 𝑀×1 dimension, 𝛍 i.e. 𝛍a, 𝛍s
′  are matrices of 𝑁×1 

dimension and 𝛼 is the Tikhonov regularization parameter defined as the ratio of variances of the 

measurement data and optical properties. In case of a regional recovery the 𝑁 will be the number 

of regions, and in case of bulk recovery it will be 1. 
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By setting the first derivative of equation (2.17) to zero, i.e. 
𝜕χ2

𝜕𝜇
= 0 and ignoring the higher order 

terms, we obtain the update equation for optical parameter at the ith iteration as, 

 

Δ𝜇 = (𝐉𝑇𝐉 + 𝛼𝐈)−1𝐉𝑇(𝐈i
m − 𝑓(𝛍i)) (2.18) 

 

Here, 𝐉 is the sensitivity matrix (Jacobian) given by 
𝜕𝑓(𝛍)

𝜕𝛍
. For data using multiple 

wavelengths, the chromophore concentrations and the scattering parameters can be directly 

calculated by modifying the Jacobian matrix and measurement matrix accordingly as described 

in (31), from which the tissue oxygenation levels in each region can be recovered. Different 

regularization methods were investigated, such as generalised least square minimization, 

singular value based regularization in an effort to improve the convergence and the accuracy of 

recovery (43). 

It should be noted that the reconstruction is always limited by the noise in real data, which 

is more predominant for larger source–detector separations. Hence, the measurements with 

very large source–detector separations are ignored in the reconstruction procedure. Also, with 

real measurements before beginning the reconstruction procedure, calibration of the data has 

to be done by taking measurements on phantoms of known optical properties and comparing it 

with the corresponding modelled data for the phantom of same optical properties (44-49). 
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2.4. Types of near-infrared systems 

 The relative transparency of human tissue including the skull in the near–infrared range as first 

shown by Jobsis in 1977 (50), has been an initiating step towards the use of near–infrared 

spectroscopy (NIRS) in non-invasive monitoring of oxy and deoxy haemoglobin in the brain. With 

the advancements in the technology of light sources and the detection systems, today’s NIRS can 

be broadly classified into three different modalities based on their detection mode: continuous 

wave (CW), frequency domain (FD), and time resolved (TR) systems. 

 

 

Figure 2.3. Illustration of three different types of NIRS systems (A) continuous wave, (B) frequency-
domain, and (C) time-domain. (15) 

 

Continuous wave systems are the simplest of the three types. They are solely based on 

intensity measurements i.e. near–infrared light that is sent into the tissue and the intensity of 

the re-emerging light is measured. CW systems using multi-wavelength multi-channel (more than 

one measuring distances) measurements were shown to be able to recover absolute values of 

chromophore concentrations of the tissue assuming the knowledge of the scattering parameters 

(51, 52). 
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Frequency domain or phase modulation spectroscopy operates in Fourier domain. This 

means the light sources are intensity modulated typically at radio frequencies (mostly 100 MHz). 

After passing through the tissue the intensity and phase of the emerging wave are measured. The 

phase shift between the source signal and detected signal is related to the time of flight or the 

average pathlength of light travelled through the tissue. Most of the systems use a single 

modulation frequency and multiple distance measurements (53). With more information 

compared to CW systems, this can give a more accurate absolute recovery of the tissue 

absorption and scattering properties. 

Time resolved spectroscopy also known as time-domain spectroscopy, is a technique that 

measures the time of flight in addition to the light intensity. It does so by emitting a short (~100 

pico-seconds) pulse of light (54) into the tissue and measuring the time point spread function of 

the light after it has passed through the tissue. Due to the scattering process, the pulse will 

broaden as seen in Figure 2.3, and due to absorption, the intensity will be reduced. The result of 

such a measurement is a histogram of the number of photons on the y-axis and their arrival times 

on the x-axis, this is called the distribution of time of flight (DTOF) of photons. The DTOF also 

contains information about the depth of the photonic path, because photons that arrive later 

have a higher probability of having travelled deeper. The absorption and reduced scattering 

coefficients are calculated (55-57) from the DTOF, and these absorption coefficients at multiple 

wavelengths are utilised to calculate the absolute values of oxygenated and deoxygenated 

haemoglobin (58). Both frequency domain and time domain methods require sophisticated and 

expensive instrumentation. 
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Continuous wave systems have a low cost, simpler instrumentation, high data acquisition 

rates, and easy portability. Unlike the time-resolved and frequency domain systems a stable 

optical contact is critical in continuous wave systems (59). Recent developments in software 

modelling (31) for light absorption and scattering through biological tissue enabled a far more 

accurate prediction of how light travels through the tissues of skin, skull and brain.  Recent 

studies also show that using modelling methods such as those in NIRFAST (an open-source finite-

element model based tool for simulation of light propagation in biological tissue), assuming the 

knowledge of scattering properties it is possible to accurately determine the physiological 

parameters in each layer of the head (60) using CW measurements. This presents a wide scope 

of improvement in the existing algorithms of continuous wave near–infrared spectroscopy and 

imaging methods. 

2.5. Challenges in Diffuse optical spectroscopy and imaging of brain 

2.5.1. Non-uniqueness in CW NIRS 

The non-uniqueness in diffuse optical tomography (61), states that simultaneous recovery of 

absorption and scattering coefficients cannot be achieved using single wavelength continuous 

wave measurements and any attempted reconstructions would thereby lead to cross-talk 

between the absorption and scattering coefficients. Later the recovery of both chromophore 

concentrations and scattering parameters using multi-wavelength data has been explored in the 

context of breast imaging (62, 63). These results established a similar condition for non-

uniqueness in terms of the multi-spectral parameters i.e. chromophore concentrations 𝐶𝑖, 
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scattering amplitude ‘𝑎’, and scattering power ‘𝑏’. However, the choice of wavelengths was 

optimized (62-64) such as to increase the unlikeliness of two different parameter-sets capable of 

producing the same data, so that it minimizes the cross-talk between the recovered images of 

chromophore concentrations and scattering parameters. This is based on approximations that 

are more specific for a breast tissue which is nearly homogenous. For a more complex layered 

tissue such approximations are not valid and the absolute parameter recovery would be rather 

challenging. Recent studies (60) have demonstrated the potential of continuous wave diffuse 

optical tomography (CW-DOT) in recovering regional values of oxygen saturation using subject 

specific and atlas models of the head, but with the assumption of the knowledge of scattering 

parameters. This presents a wide scope of improvement in the existing algorithms of continuous 

wave near–infrared spectroscopy and imaging methods. The non-uniqueness problem in CW 

NIRS is addressed in Chapter 4 where the effect of regional constraints to the parameter recovery 

is demonstrated and is used to overcome the possibility of multiple solutions and limiting the 

recovery to unique solutions. 

2.5.2. Superficial signal contamination  

The topic of superficial contamination is a prominent issue within NIR imaging and spectroscopy 

of brain, this section is designed to explore some of the existing methods that have been devised 

to reduce its the effects. Any NIRS signal with a source detector distance sufficient enough to 

probe the cerebral tissue, will sample not only deep tissue signals but also superficial tissue 

signals. Therefore, to reduce the superficial contamination from deep tissue information the use 

of multi-distant source-detector combinations is adopted. 



31 
 

2.5.2.1. Spatially resolved spectroscopy 

Spatially resolved spectroscopy (SRS) was a technique developed (52) to measure the tissue 

oxygenation index (TOI) in deep tissues with reduced contamination from superficial layers by 

analysing the gradient of light-attenuation 𝐴 = ln(𝐼0/𝐼) at large source-detector separation (𝜌) 

given as,  

 

Δ𝐴

Δ𝜌
=

Δ ln(𝐼0/𝐼)

Δ𝜌
= −

Δ ln(𝐼)

Δ𝜌
≈ √3𝜇𝑎𝜇𝑠

′ +
2

𝜌
 (2.19) 

 

The attenuation gradient ΔA/Δρ is typically measured by two detectors that are closely spaced 

as compared to their distance from source (for example: detectors separated by 6 mm compared 

to source-detector distances of ~40 mm for a commercially available NIRO-200NX system). NIR 

light is attenuated by the superficial layers as well as the cerebral tissue before reaching the 

detectors. For large source-detector separations, the sensitivity of light attenuation due to the 

superficial layer is similar at these two detectors as demonstrated in Figure 2.4 and therefore the 

sensitivity of gradient measurement at these superficial layers becomes much lower. 
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Figure 2.4. A qualitative schematic showing the sensitivity of light-attenuation in a three-layered 
medium. The two detectors are modelled at 37 mm and 43 mm from the source. 

 

This reduction of light sensitivity to superficial tissue for the gradient of attenuation 

measurement is better illustrated in Figure 2.5. Here, the total sensitivity of intensity due to 

absorption is plotted as a function of depth for both detectors at distances of 37 and 43 mm from 

the source as well as the gradient of attenuation between them, as simulated using NIRFAST.(31) 

This is calculated for a source detector separations of 37  and 43 mm using a three-

layered rectangular mesh (200×100×100 mm3) with mean element size of 0.7 mm3, layer-1 

thickness of 5 mm (depicting skin), and layer-2 thickness of 8 mm (depicting skull), using an 

average estimate of optical properties of biological tissue (65). As seen, the gradient of 

attenuation is less sensitive to the superficial layer as compared to individual attenuation 

measurements, which implies that the measured gradient of attenuation is comparatively less 

affected by the haemodynamics of superficial layers, while providing higher sensitivity at deeper 

regions. 
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Figure 2.5. Sensitivity of attenuation with respect to depth for individual detectors as well as the 
gradient between them. 

 

The absorption coefficients are estimated at multiple wavelengths by assuming the scattering 

properties based on empirical data (66) in order to further estimate TOI. This assumption is due 

to the inseparability of absorption and scattering coefficient from their relation with intensity 

gradient measurement. The scattering properties however vary across different subjects and 

tissue types and can lead to unreliable estimates of TOI, and therefore this assumption is a major 

setback of this method. This topic is discussed in detail in the Chapter 3 where a new spectrally 

constrained approach is demonstrated to take account for the underlying scatter properties and 

therefore estimated more accurate TOI.  

2.5.2.2. Signal regression 

In CW-NIRS, a short distance source-detector (SD) pair at around 15 mm is used that will sample 

mainly superficial regions together with a long SD pair at around 30 mm which samples both deep 
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and superficial regions. The short SD intensity measurement can be used as a regressor to remove 

the superficial contributions from the long SD intensity measurement (67-69). This is a feature 

that is inherent in CW-DOT where 3D reconstructions of optical properties automatically 

separate contributions by layer, also having multiple overlapping measurements obtained over a 

smaller sample area will improve the ill-posed nature of the inverse problem that can improve 

the accuracy of image reconstruction. However, the parameter recovery still suffers from the 

hyper sensitivity in superficial regions, and therefore the superficial signal regression is still 

performed on the measured NIRS signals prior to reconstruction step to significantly improve the 

cerebral haemodynamic recovery and the contrast of the recovered 3D haemodynamic 

activations (70). 

While, the recent advancements in FD-DOT (71) show significant improvement in the localization 

and effective resolution of the reconstructed focal activations in the cerebral tissue, the effect of 

superficial signal contamination is still a major problem and is addressed in detail in Chapter 5.  

2.6. Conclusions 

The propagation of near-infrared light inside a scattering medium such as a biological tissue has 

been explained, along with the different types of near-infrared systems utilized based on their 

detection mode. The inverse problem of the recovery of tissue parameters based on the 

measured data-type following a propagation model is elaborated through analytical methods and 

computational methods of recovery.  
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The non-uniqueness observed in the CW-NIRS parameter recovery methods i.e., the inability to 

separate the absorption and scattering dependency with the current methodology is explained 

as this can especially affect the estimated values of tissue oxygenation. Due to the presence of 

tissue under study (the brain) inside a highly scattering box (skin + skull) any information coming 

from cerebral tissue is inherently contaminated with superficial signal. The spatially resolved 

approach of SRS method is explained, which utilizes the spatial derivative of attenuation to 

achieve a measurement quantity that is more sensitivity to deeper tissue and therefore reducing 

the superficial contamination. Signal regression methods are introduced that are vastly used in 

many dynamic imaging or spectroscopy studies, to measure the changes in haemodynamic 

activity to improve the image reconstruction. Based on this premise, the following chapter will 

elaborately explain the method to tackle these key challenges that are listed in the previous 

section, with the aim of addressing the hypotheses listed in section 1.4. 
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Chapter 3  

SPECTRALLY CONSTRAINED SPATIALLY RESOLVED 

SPECTROSCOPY 

3.1. Introduction 

Spatially resolved spectroscopy (SRS) is a widely-used technique in CW-NIRS to obtain TOI from 

deep tissues. While the design setup of the SRS method provides an advantage of minimal 

superficial layer contamination, the assumption of the scattering properties of the tissue leads 

to uncertainty in the estimated TOI values. While the assumed value of scattering property is 

based on average empirical data corresponding to the specific tissue-type, the variation of 

scattering properties for different tissue types across different subjects is quite significant, with 

about 29% variation in forearm, 7% in head and 14% in calf (66). The more the underlying 

scattering properties differ from the assumed values, the greater the error between ground-truth 

and estimated TOI values. 

The aim of this chapter, is to address superficial layer contamination in the estimation of 

TOI by further developing the multi-distance SRS technique, but at the same time to also account 

for the unknown scattering properties of the underlying tissue to remove any uncertainty due to 

inter-subject variability in scattering properties. 
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3.2. Methodology 

The solution to the CW diffusion equation for a homogeneous semi-infinite medium is given by, 

(51)  

 

𝐼 =
𝐼0

2𝜋𝜇𝑠
′𝜌2

[√3𝜇𝑎𝜇𝑠
′ +

1

𝜌
] exp(−𝜌√3𝜇𝑎𝜇𝑠

′) (3.1) 

 

This equation describes the intensity of (back-scattered) light (𝐼) for a source intensity 𝐼0, 

measured at a distance 𝜌 ≫ 1/𝜇𝑠
′  from source, in terms of optical properties of the medium. 

Here, 𝜇𝑎 and 𝜇𝑠
′  are the bulk absorption and reduced scattering coefficients of the medium. For 

the case of a homogeneous medium, this equation is widely used to derive the absorption of the 

medium from multi-distance intensity (or attenuation) measurements.(72, 73) However, in the 

case of a complex multi-layered medium such as the human head, this relation becomes 

inappropriate, as the recovery of cerebral tissue parameters will always be contaminated by the 

superficial layers of head, such as skin, scalp, bone and CSF (Cerebrospinal fluid). Therefore, a 

different formulation is derived from the same equation, that defines the gradient of light-

attenuation as mentioned in equation (2.19). 

The main drawback of using the intensity gradient based method is that the absorption 

coefficient and reduced scattering coefficient are always coupled and cannot be separated. To 

separate 𝜇𝑎 and 𝜇𝑠
′  from the gradient measurement, Farrell et al.(72) used the additional 

information of reflectance measured at smaller source-detector separation to obtain 𝜇𝑠
′ , whereas 
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Liu et al.(74) exploited the intercept of log(𝜌2𝐼) vs 𝜌 to find 𝜇𝑠
′  and Matcher et al.(66) used time-

resolved methods to find the scattering coefficient initially and assumed that the scattering 

properties are similar across same tissues types for all subject. These methods use an additional 

measure to decouple 𝜇𝑎 and 𝜇𝑠
′  which would be applicable only for a homogeneous medium. But 

for a layered medium such as the human head, all these additional measures contain information 

either from the superficial layer alone or superficial and cerebral tissue combined, and would 

therefore limit the inherent advantage of probing the deeper layers and being less sensitive to 

superficial layers, as exhibited by the gradient measurement alone. 

A new approach that uses intensity gradient measurements at multiple wavelengths to 

decouple the absorption and scattering parameters to obtain TOI is presented. Rewriting 

equation (3.1) in terms of scattering parameters and chromophore concentrations (𝐶1, 𝐶2, 𝐶3 … 

corresponding to the molar concentrations of the chromophores oxy-haemoglobin, deoxy-

haemoglobin, water volume fraction and other major light-absorbing tissue constituents), 

 

1

3
[
Δ𝐴(𝜆)

Δ𝜌
−

2

𝜌
]

2

= 𝜇𝑎(𝜆)𝜇𝑠
′(𝜆) = [∑𝜀𝑗,𝜆𝐶𝑗

𝑁

𝑗=1

]  𝑎 𝑅(𝑏, 𝜆) (3.2) 

 

The absorption coefficient at a given wavelength is related to the chromophore 

concentrations (𝐶𝑗) as: 𝜇𝑎(𝜆) = ∑ 𝜀𝑗,𝜆 𝐶𝑗
𝑁
𝑗=1 ; where ‘𝜀𝑗,𝜆’ is the molar extinction coefficient of 

chromophore-j at 𝜆 (µm) wavelength and ‘𝑁’ is the number of chromophores contributing to 

absorption of light at the measured wavelengths.  
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The dependency of the reduced scattering coefficient on wavelength can also be 

represented as, 𝜇𝑠
′(𝜆) = 𝑎. 𝑅(𝑏, 𝜆) Considering all the scattering particles to be spherical, elastic 

and of similar size,(27) the Mie theory approximation fits well for the exponential relation as 

given by,(28) 

 

 𝑅(𝑏, 𝜆) = (𝜆)−𝑏 (3.3) 

 

Due to the practical inhomogeneity in the size, density and type of scattering particles in 

a tissue, the exponential relation may not be able to accurately represent the scattering spectrum 

of a tissue. Alternatively, a linear approximation of the variation of μs
'  with respect to wavelength 

can be used to yield an alternative representation of scattering spectrum,(52, 66)  which can be 

expressed as:  

 

𝑅(𝑏, 𝜆) = 1 − 𝑏𝜆 (3.4) 

 

Similar to equation (3.1) the chromophore concentrations (𝐶𝑗) and the scattering 

parameter ‘𝑎’ are coupled and would lead to infinitely many solutions. Therefore, with the 

normalized chromophore concentrations defined as 𝐶𝑗
′ = 𝑎 𝐶𝑗, equation (3.2) can be re-written 

as: 
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1

3
[
Δ𝐴(𝜆)

Δ𝜌
−

2

𝜌
]

2

= [∑𝜀𝑗,𝜆𝐶′𝑗

𝑁

𝑗=1

]  𝑅(𝑏, 𝜆) (3.5) 

 

Considering the left-hand-side term of equation (3.5) to be 𝛾(𝜆), the known 

measurements are 𝛾(𝜆1), 𝛾(𝜆2) … 𝛾(𝜆𝑁) at multiple wavelengths and the unknown parameter 

set (𝐩) to be recovered is: {𝑏, 𝐶1
′, 𝐶2

′ ,… 𝐶𝑁
′ }. Ideally at least 𝑁 + 1 wavelengths are required to 

solve for these 𝑁 + 1 unknowns (𝑁 normalized chromophore concentrations and 1 scattering 

parameter). The inverse problem of solving this non-linear equation is implemented by an 

iterative regularized least-square minimization with the following update equation for each 

iteration,(43) 

 

Δ𝐩 = (𝐉𝑇𝐉 + 𝛼𝐈)−1𝐉TΔ𝛄 (3.6) 

 

Here, Δ𝐩 represents the update for the parameter set {𝑏, 𝐶1
′, 𝐶2

′ ,… 𝐶𝑁
′ }, Δ𝛄 is the measured 

and modelled data (calculated using equation (3.5)) misfit at the end of each iteration and 𝐉 is 

the Jacobian (or sensitivity) matrix with its structure is given by, 

 

𝐉 =

[
 
 
 
 
 
𝜕𝛾(𝜆1)

𝜕𝐶1
′

𝜕𝛾(𝜆1)

𝜕𝐶2
′ …

𝜕𝛾(𝜆1)

𝜕𝑏
𝜕𝛾(𝜆2)

𝜕𝐶1
′

𝜕𝛾(𝜆2)

𝜕𝐶2
′ …

𝜕𝛾(𝜆2)

𝜕𝑏
⋮        ⋮ ⋮      ⋮ ]

 
 
 
 
 

 (3.7) 
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The stability of the inverse problem relies on the condition number of the matrix J which 

varies with the values of the parameters given by 𝐩. The condition number directly relates to the 

amount of information available for parameter recovery: The higher the condition number 

corresponds to larger instability and therefore a lower condition number is desired. To further 

aid the ill-conditioned problem, the inverse problem is guided with a regularization parameter 

given by 𝛼. The Jacobian matrix can be computed using the perturbation method on equation 

(3.5) and as this is an analytical expression, the whole process of the inverse problem can be 

accomplished in real-time. 

Once the parameter set 𝐩 is recovered, the tissue oxygenation index (TOI) can then be 

calculated from the normalized oxy haemoglobin concentration (𝐶1
′) and normalized deoxy 

haemoglobin concentration (𝐶2
′) as, TOI (%) = 100×𝐶1

′/(𝐶1
′ + 𝐶2

′). This algorithm is defined as 

Spectrally Constrained Spatially Resolved Spectroscopy (SCSRS). 

3.3. Optimization of wavelengths 

The stability of the inverse problem relies on the condition number of the sensitivity matrix (J). 

Lower condition number implies a good recoverability of parameters, with low cross-talk. 

Remembering that 𝜇𝑎(𝜆) = ∑ 𝜀𝑗,𝜆 𝐶𝑗
𝑁
𝑗=1 , the distinguishability of oxy-haemoglobin and deoxy-

haemoglobin should also be taken into account and it depends on the extinction coefficient 

matrix (𝐄) given by,(64) 
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𝐄 = [

𝜀1,𝜆1
𝜀2,𝜆1

𝜀1,𝜆2
𝜀2,𝜆2

⋮ ⋮
] (3.8) 

 

Here, 𝜀1 and 𝜀2 represent the extinction coefficients of oxy-haemoglobin and deoxy 

haemoglobin respectively. In this work, the recovery of just two chromophores oxy and deoxy-

haemoglobin is considered i.e., 𝑁 = 2 and therefore the three optimal wavelengths to 

implement this algorithm are sought. To this end, different combinations of a set of 3 

wavelengths are considered from the spectra 650 to 850 nm with 4 nm separation. The 

wavelength range is limited from 650 to 850 nm to avoid the peak absorption wavelengths for 

water and lipids, so that oxy and deoxy haemoglobin remain as the major chromophores 

contributing to light absorption in this wavelength region. The condition numbers of 𝐄 and 𝐉 are 

calculated for different combinations of wavelengths as shown in Figure 3.1 and Figure 3.2. The 

highlighted region shows the combinations with low condition number of 𝐄 (<5.3) and low 

condition number of 𝐉 (<250). 
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Figure 3.1. Scatter plot of condition numbers calculated for E and J with exponential scattering model. 

 

Figure 3.2 Scatter plot of condition numbers calculated for E and J with linear scattering model. 
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The histograms of optimized wavelength sets that satisfy this low condition number 

criterion are shown in Figure 3.3 and Figure 3.4. The optimal three wavelengths for the 

exponential scattering model are 744 ± 23, 805 ± 7 and 848 ± 2 nm. Similarly, the optimal 

wavelengths for the linear scattering model are found to be 734 ± 25, 805 ± 6 and 848 ± 2 nm, 

demonstrating that the optimal wavelengths for both models seem to be similar. Given that we 

are only recovering oxy and deoxy haemoglobin, and given the large difference in their extinction 

coefficients at lower wavelengths, this gives rise to the wide distribution at lower wavelengths. 

The condition number for any set of three wavelengths within this distribution has minimal 

variation. 

 

 

Figure 3.3. Normalized histogram of optimal wavelengths that satisfy the low condition number criterion 
for exponential scattering model. 
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Figure 3.4. Normalized histogram of optimal wavelengths that satisfy the low condition number criterion 
for linear scattering model. 

 

3.4. Numerical validation on head model 

MRIs of 10 different subjects are used to build different head models. One source and two 

detectors (37 and 43 mm from the source) are placed on the forehead as shown in Figure 3.5, 

operating at wavelengths 735, 810, 850 nm; this probe model is similar to the commercially 

available NIRO-200NX and these wavelengths combination fall within the optimal wavelength set 

derived in the previous section. Using the baseline properties given in Table 3.1, the transmitted 

light intensity data is simulated on NIRFAST. The scatter amplitude and scatter power for three 

regions shown in Table 3.1 are randomly distributed around the baseline value by +/-30% to 
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account for inter-subject variability. Two cases are examined here for data simulation: A) the 

medium is assumed to be homogeneous with optical properties of brain to account for zero 

superficial layer contamination, B) the medium is considered as a heterogeneous three layered 

model as shown in Figure 3.5 to study a more realistic case. The 10 head models have an average 

skin thickness of 5 mm and skull thickness of 8 mm. 

 

 

Figure 3.5. Probe locations shown on a 3-layered model of human head. 
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Table 3.1. Baseline tissue optical parameters.(65, 75)  

Parameter↓ Region→ Skin Bone Brain 

Total haemoglobin (mM) 0.07 0.049 0.076 

Tissue oxygenation index (%) 80 80 50 to 80 

Scatter Power 1.42 0.72 1.61 

Scatter Amplitude (mm-1) 1.72 1.40 0.80 

 

The regularization parameter 𝛼 for the inverse problem as shown in equation (3.6) is considered 

as 0.01 times the maximum diagonal value of 𝐉𝐓𝐉. The recovered TOI values are shown in Figure 

3.6 and Figure 3.7 for the proposed SCSRS (for both exponential and linear scatter model) method 

as well as those with the regular spatially resolved spectroscopy (SRS), as defined elsewhere (52) 

with the error in the estimation of cerebral TOI values shown in Figure 3.8. For the conventional 

SRS method, equation (3.5) is used in combination with the linear scatter model described in 

equation (3.4), along with 𝑏 = 0.63 μm−1 as is typically chosen to represent brain tissue (52). 

With the assumption of 𝑏 parameter, equation (3.5) becomes a simple linear equation in {𝐶1
′, 𝐶2

′} 

and can be solved to recover TOI.  
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Figure 3.6. Recovered TOI values of the brain with standard-deviation of recovery across 10 head models 
with homogenous optical properties, using both exponential (exp.) and linear (lin.) scattering models. 

 

Figure 3.6, Figure 3.7 and Figure 3.8 show that for both homogeneous and layered head 

scenarios, SCSRS method has higher accuracy in recovering the cerebral TOI with a maximum 

third quartile (75th percentile) error of ±5.7% for the linear scatter model (±6.7% for exponential 

scatter model), compared to that of ±12.3% for SRS method, showing an improvement of 6.6% 

in the estimation error. The lower errors of SCSRS with exponential scatter model for 

homogeneous head scenario are due to the inverse crime of using the exponential scatter model 

to simulate the data and recover the parameters as well. However, for the 3-layered head 

scenario this advantage is absent due to the inhomogeneity in the scattering properties of the 

medium, and the homogeneous approximation (since SCSRS in based on a homogeneous model) 
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of a linear scatter model performed better than the exponential scatter model. The recovered 

values of b parameter in SCSRS method corresponding to the linear scatter model is shown in 

Figure 3.9 and Figure 3.10 corresponding to homogeneous and 3-layered head scenarios 

respectively, for all varying modelled TOI values, in comparison to the ground-truth values and 

also the constant approximated 𝑏 value of 0.63 µm-1 in SRS method. It should be noted that the 

ground-truth scatter model used in simulations is the exponential model, and the values shown 

in Figure 3.9 and Figure 3.10 correspond to a linear approximation to the exponential model. This 

clearly demonstrates the variation in the best-fit ‘𝑏’ parameter across different subject models 

of different scattering properties. 

 

Figure 3.7. Recovered TOI values of the brain with standard-deviation of recovery across 10 head models 
of three-layered optical properties, using both exponential (exp.) and linear (lin.) scattering models. 
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Figure 3.8. Box-plot of absolute error in the estimation of TOI, showing the distribution of errors across 
different ground-truth TOI and scattering parameters for, homogeneous and three-layered head model. 

 

Figure 3.9. Recovered b-value (corresponding to linear scattering model) with SCSRS for homogeneous 
head models, of 10 different subjects with different scattering parameters. The boxplot shows the 

distribution of recovered ‘b’ for different cerebral TOIs (50 to 80%). The solid line represents the ground-
truth values of the homogenous medium. The dotted line marks the value assumed in SRS method. 
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Figure 3.10. Recovered b-value (corresponding to linear scattering model) with SCSRS for 3-layered head 
models, of 10 different subjects with different scattering parameters. The boxplot shows the distribution 
of recovered ‘b’ for different cerebral TOIs (50 to 80%). The solid line represents the ground-truth values 

of the cerebral region. The dotted line marks the value assumed in SRS method. 

 

3.5. Effect of superficial layer thickness 

Although the recovered brain TOI values using this proposed gradient based method are shown 

to be less sensitive to variations in scattering, their accuracy in the recovery of cerebral tissue 

parameters is limited due to the heterogeneous layered nature of the head. Here the effect of 

superficial layer thickness in determining cerebral TOI is demonstrated using the proposed SCSRS 

method and compared to the conventional SRS. 

To simulate the effect of different tissue thicknesses, a rectangular-slab FEM model 

(200×100×100 mm3) of mean element size of 0.7 mm3, is considered with three layers 
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corresponding to the three layers of human head: skin, skull and brain. The sum of skin and skull 

thickness is varied from 0 to 14 mm in steps of 2 mm to simulate possible tissue thicknesses from 

an infant head to an adult head while the ratio of skin to skull thickness is maintained 5:8 in 

accordance with the average thickness of real head models considered in section 3.4.(76) Using 

the medium properties as defined in Table 3.1, the transmitted light intensity data is simulated 

on NIRFAST. The modelled measurement system is similar to the one considered in previous 

section with one source and two detectors (37 and 43 mm from the source) at 735, 810 and 850 

nm wavelengths.  To account for the inter-subject variability the data is simulated for 30 different 

cases with scattering properties randomly varied around the baseline values given in Table 3.1, 

by a standard deviation of 30% and TOI values of brain region is changed from 50% to 80%. The 

recovery of tissue oxygenation is shown in Figure 3.11 for different possible superficial layer 

thicknesses along with the error plots shown in Figure 3.12. The conventional SRS method is 

implemented using a linear scatter model with 𝑏 = 0.63 μm−1 corresponding to an adult head. 
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(a) (b) 

  

(c) (d) 

  

Figure 3.11. Recovered TOI values with standard-deviation of recovery across 30 different cases of 
randomly varying scattering properties, for a skin + skull thickness of (A) 0 mm, (B) 4 mm, (C) 8 mm 

and (D) 14 mm. 
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Figure 3.12. Boxplot of absolute error in the estimation of TOI for different skin + skull thicknesses, 
showing its distribution across different ground-truth TOI and scattering parameters. 

 

For a homogeneous medium (i.e. skin + skull thickness = 0 mm), the SCSRS method with 

both scattering models exhibit a mean error of less than 2% out-performing the SRS method 

which results in errors up to 6%. The lower errors for the SCSRS with exponential scattering model 

as compared to the linear scattering model is to be attributed to the fact that the data was 

simulated using exponential scattering model and this advantage seems to be prevalent only up 

to a superficial layer thickness of 8 mm where the inhomogeneity starts to dominate. The 

decrease in overall mean errors in TOI estimation for superficial thickness 4 and 6 mm is due to 

the higher TOI values of superficial layer. It can be seen from Figure 3.11 that as the superficial 

layer thickness increases from 0 to 14 mm, the estimated cerebral mean TOI at lower ground 

truth values demonstrate a minor underestimation at 0 mm superficial layer thickness i.e., 

homogenous scenario (similar to the head-model results observed in Figure 3.6) which can be 

attributed to the cross-talk with recovered scattering parameter and tend to move towards the 
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TOI of the superficial layers (80%, shown in Table 3.1) at higher superficial layer thicknesses, 

which is an overestimation (similar to head-model results observed in Figure 3.7) for cerebral TOI 

of low ground-truth values. This shift from negative (underestimation) to positive 

(overestimation) errors at low ground-truth TOI as we move from 0 to 14 mm, causes the 

absolute errors to reach lower values, which is seen to be happening at superficial layer 

thicknesses of 4 and 6 mm in Figure 3.11. At higher thicknesses of superficial layers the mean TOI 

recovery tends to be inaccurate and the recovery errors for SCSRS increase up to 7.7% with an 

exponential scattering model and 5.8% with a linear scattering model, which are still lower than 

a recovery error of 9.3% using conventional SRS. All the quantitative errors quoted above are the 

75th percentile errors from Figure 3.12. These results demonstrate that the proposed method of 

SCSRS, with both exponential scatter model and linear scatter model, performs better than the 

conventional SRS. 

3.6. Arm-cuff validation 

The proposed SCSRS method is tested on experimental data from forearm occlusion experiment 

(institutional ethical approval: ERN16-1490) using a commercial CW-system, the NIRO-200NX. 

The probes were attached to both forearms of a human subject and a blood pressure cuff was 

applied on the upper arm with the cuff inflated to 140 mmHg for 60s to observe arterial occlusion. 

The conventional SRS is also implemented (linear 𝜇𝑠
′  model: 𝑏 = 0.47 μm−1 corresponding an 

adult forearm(77)) to compare the results with SCSRS, Figure 3.13. Both methods show a similar 

trend in the changes of recovered TOI, but the absolute values differ by more than 10%. 
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Figure 3.13. TOI measurement on human forearm: Rest arm recovered b-value from SCRS is 0.79±0.007 
µm-1, and Occlusion arm recovered b-value from SCSRS is 0.82±0.003 µm-1. 

 

The recovered values of ‘𝑏’ with SCSRS were 0.79±0.007 µm-1 and 0.82±0.003 µm-1 for 

each arm respectively. Although these are similar for each arm, they are different as compared 

to the average literature value of 0.47 µm-1 (as used for SRS algorithm) (77). Since the variation 

in the ‘𝑏’ parameter across different subjects and tissues can be large (66, 77), the proposed 

SCSRS method overcomes this by fitting for this ‘𝑏’ parameter and simultaneously recovering the 

TOI using the optimal wavelengths. Finally, although the proposed algorithm provides a TOI 

which is higher than the SRS method, this is likely to be more accurate based on results in Figure 

3.11, where the SRS always under-estimates the TOI. 

 

3.7. Discussion 

It is shown that the SCSRS method which is based on gradient of light of attenuation 

measurement is less sensitive to superficial region and more sensitive to deeper tissues. Although 

the superficial layer contamination is shown to be minimized using the gradient measurement, 
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the error due to the heterogeneity of a layered medium still exists and is shown to cause an 

underestimation of the recovered TOI values of the brain.  

The parameter recovery involves inversion of a Jacobian matrix, for which an optimal set 

of wavelengths (734 ± 25, 805 ± 6 and 848 ± 2 nm) have been found to maximize the information 

present while minimizing the crosstalk between parameters. This is similar to previous 

wavelength optimization work done by Eames et al. (64) where they recovered optimal 

wavelengths which were also based on normalization of the absorption by the scattering 

properties (i.e. an assumed pathlength). It should however be noted that central wavelengths of 

interest are always a function of the absorption parameters being recovered and although the 

methodology can be generalized this should be repeated for each specific application under 

investigation. 

The inter-subject variability in the scattering properties is known to be significant, which 

has been identified through findings in other works (66, 77). Therefore, any assumption of the 

scattering properties for the estimation of absorbing properties such as the tissue oxygenation 

would result in an uncertain estimation, which is the case with SRS. The feasibility of the proposed 

SCSRS approach is shown to measure the deep layer tissue oxygenation with higher accuracy 

(average recovery errors of <5%) by simultaneously fitting the scattering parameters for adult 

head geometries. The repeatability (low variation) of recovered scattering parameters for 

different cerebral TOIs (50 to 80%) on the same subject, as shown in Figure 3.9 and Figure 3.10, 

demonstrates that the cross-talk between the recovered parameters is low which can be 

attributed to the wavelength optimization. A variation of TOI from 50% to 80% in the brain is 

considered as safe (78) and beyond which it is regarded as cerebral hypoxia (79), in which case 
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clinical intervention is opted, therefore these range of practical extreme values are considered 

for this work and the subsequent work in the next chapter.  

3.8. Conclusions 

A methodology of SCSRS is demonstrated to yield more accurate results of TOI estimates than a 

conventional SRS without any prior assumptions on the value of tissue scattering coefficient, 

therefore being independent of the subject and tissue-type. The key advantage of this method is 

that it is compatible with the commercially available devices such as NIRO-200NX without any 

additional instrumentational changes. The use of analytical equation for modelling data for the 

inverse problem makes the method computationally less expensive.  

However, the major limitation of the method being that it is based on a homogenous 

model. For tissue types where a local homogeneity can be expected (to some degree in the 

measurement-sensitive region) this is not a major issue, but for tissue-type such as head, where 

a layered heterogeneity is inherent, the accuracy of the method decreases as the difference 

between tissue properties of the layers increases which is also clearly demonstrated in this 

simulation study. While the proposed method still outperforms the conventional SRS in a 

heterogenous scenario, there is still a necessity for a NIRS parameter recovery method that 

considers the heterogenous nature of the medium in its recovery model. This forms the basis 

idea for the work presented in the next chapter.  
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Chapter 4  

RECOVERY OF CEREBRAL AND EXTRA-CEREBRAL TISSUE 

PARAMETERS USING BROADBAND INTENSITY DATA 

4.1. Introduction 

The aim of this chapter is to address the non-uniqueness in CW NIRS systems to retrieve both 

absorption and scattering properties of the cerebral tissue while also accounting for the 

heterogenous nature of the problem. The parameters of interest are mainly haemoglobin 

concentration and tissue oxygenation index. While most of the parameter recovery algorithms 

of CW systems assume a homogenous tissue for the investigated region (42), the inherent 

heterogenous or layered nature of the tissue can lead to quantification errors. Multi-distance 

algorithms have been proposed using gradient of intensity attenuation measurements (51, 52, 

66) based on a flat semi-infinite homogenous model. Since the gradient is more sensitive to 

deeper regions than raw intensity as shown in earlier chapters, this makes the recovered 

parameters less sensitive to changes in extra-cerebral tissue. However, the accuracy of the 

recovered cerebral tissue parameters still remains low due to the homogenous approximation of 

the head and due to the curvature and complex internal structure of the head. The assumption 

of scattering properties of the tissue is another source of error in these gradient-based 

algorithms. The uncertainty due to scatter approximation has been investigated and an 

alternative method was proposed in Chapter 3 to recover scattering parameters and scaled 
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haemoglobin concentrations for a more accurate estimate of tissue oxygenation. Other works 

that are aimed at the removal of signal contamination due to extra-cerebral layer include: signal 

regression-based methods (68, 69) for recovering changes rather than absolute values. 

Frequency domain-based methods (35, 45) have been proposed that can recover both absorption 

and scattering properties of extra-cerebral and cerebral tissues along with the thickness of the 

top layer. In CW-based methods however, phantom studies on a two layered model have been 

studied with a known superficial layer thickness (80). The work reported to date has relied on 

spectral and spatial derivative measurements, where a theoretical non-uniqueness is 

unavoidable (as detailed in later sections). The unknown superficial layer thickness, and the 

performance of a two-layered model in a realistic scenario with oxy and deoxy-haemoglobin as 

the primary absorption constituents remains unexplored. This is a crucial point to address since 

the spectral characteristics play a major role in distinguishing the tissue parameters in any 

recovery algorithm. 

With no constraint on the spatial distribution of the optical properties, it has been shown 

(61) that there can be more than one solutions to the CW diffusion equation and with optimal 

choice of wavelengths this non-uniqueness can be avoided by spectrally constraining the 

parameter recovery process (63). In this work, the uniqueness/non-uniqueness problem of a CW 

system in the context of a layered medium is addressed, by assuming regional homogeneity; it is 

shown that the solution set is unique if the measured boundary data is intensity-based only. 

Based on this a two-layered parameter recovery approach is defined for a multi-distance 

continuous wave broadband system, to recover the tissue parameters of two layers 

corresponding to cerebral and extra-cerebral regions as well as the superficial tissue thickness. 
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The study is divided into three parts, the first part deals with data simulated and parameter 

recovery using the two-layered semi-infinite model, second part deals with data simulated on 

two-layered head model but the parameter recovery is implemented using two-layered semi-

infinite model, third part deals with data simulated on two-layered head model and parameter 

recovery is also based on a head model. The proposed method is then implemented and used to 

recover the cerebral and extra-cerebral tissue parameters of a human subject by measuring NIRS 

data on the forehead to demonstrate the practical viability of the approach. 
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4.2. Continuous wave data and uniqueness in parameter recovery 

Uniqueness/non-uniqueness problem in the parameter recovery methods of CW based systems 

has been a long-discussed topic (61, 63) and has been shown that for a single wavelength multi-

distance boundary intensity measurements there can be more than one solutions of absorption 

and reduced scattering coefficient distributions which will lead to the same boundary data. This 

non-uniqueness can be addressed by using multi-wavelength data and constraining the problem 

spectrally (63). The reported findings to date discuss a very general scenario of image 

reconstruction where the recovered parameters are the three-dimensional distribution of 

absorption and reduced scattering coefficients. However, in the context of finding the absolute 

parameters of different regions in a layered medium such as the human head, this presented 

work brings an additional spatial constraint to the distribution of parameters. Here, by extending 

the arguments made in previous works (61, 63) it is shown that given such a regional constraint 

on parameters, each solution set is unique to a measured boundary intensity data, and also 

investigates the scenario when the measured data is either a spatial or 1st spectral derivative of 

intensity (in log scale). 

Consider the following schematic of a two-layered medium as shown in Figure 4.1. 
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Figure 4.1. Schematic showing a two-layered medium 

 

Here, 𝜇𝑎 is the absorption coefficient, 𝜇𝑠
′  is the reduced scattering coefficient, and the diffusion 

coefficient (𝜅) is defined as, 𝜅 = 1/3(𝜇𝑎 + 𝜇𝑠
′) ≈ 1/3𝜇𝑠

′ . Re-writing the CW diffusion 

approximation given in equation (2.7) by change of variables to get the Helmholtz-type equation 

given as (61), 

 

−∇2Ψ + 𝜂Ψ =
𝑞0

𝛾
 (4.1) 

 

where 𝛾2 = 𝜅, 𝑞0 is the source distribution, Ψ = 𝛾Φ, where Φ is the photon density, and the 

variable 𝜂 is given by, 
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𝜂 =
∇2𝛾

𝛾
+

𝜇𝑎

𝛾2
 (4.2) 

 

Considering the light-source to be a point source at a location 𝐫0 on the external medium 

boundary, and defining Ψ0 such that: 

 

−∇2Ψ0 + 𝜂Ψ0 = q0 (4.3) 

 

This implies that Ψ = Ψ0/𝛾(𝐫0) = Ψ0/𝛾1, as 𝛾(𝐫0) = 𝛾𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 𝛾1 in the given scenario and 

therefore Φboundary = Ψ0𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
/𝛾1

2. 

For any measured boundary intensity data Φboundary, two non-unique solution sets 

{𝜇𝑎, 𝜇𝑠
′ , 𝐿} and {𝜇𝑎, 𝜇𝑠

′ , �̃�} (with their equivalent canonical parameters 𝜂 and �̃�), can exist if they 

satisfy the following two conditions: 

 Condition-1: 𝜂 = �̃� everywhere inside the medium, this ensures Ψ0 to be the same for 

both solutions. 

 Condition-2: 𝛾𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = �̃�𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦, together with condition 1 this ensures Φboundary to 

be the same for both solutions. 

Applying condition 1, to this scenario, 𝜂 = �̃� for region-1, region-2 and at the boundary 

between them. This requires the superficial layer thickness to be equal i.e., 𝐿 = �̃�, as without this 

the two solutions would have a different location of the interface between region-1 and region-
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2, and 𝜂 can never be equal to �̃� at the regional interface. Solving condition-1 inside region-1 and 

region-2 (i.e., 𝜂1 = �̃�1 and 𝜂2 = �̃�2 with ∇2𝛾 = 0), we have: 

 

𝜇𝑎1
⋅ 𝜇𝑠1

′ = 𝜇𝑎1
⋅ 𝜇𝑠1

′  (4.4) 

𝜇𝑎2
⋅ 𝜇𝑠2

′ = 𝜇𝑎2
⋅ 𝜇𝑠2

′  (4.5) 

 

At the boundary between region-1 and 2, knowing that ∇2𝛾 ∝ (𝛾2 − 𝛾1), and from equations 

(4.4) and (4.5): 

 

𝛾1

𝛾2
=

�̃�1

�̃�2
⇒

𝜇𝑠1
′

𝜇𝑠2
′

=
𝜇𝑠1

′

𝜇𝑠2
′

 (4.6) 

 

Similar analysis can be extended for more than two regions if needed and therefore the 

solution set {�̃�𝑎, 𝜇𝑠
′ } should be of the form {𝛼𝜇𝑎, 𝛼−1 𝜇𝑠

′} everywhere in the medium, for an 

arbitrary constant α. An equivalent representation of this non-uniqueness expression in terms of 

spectral parameters chromophore concentrations (𝐶i), scattering amplitude (𝑆𝑎) and scattering 

power (𝑆𝑝) can be shown as {�̃�i, 𝑆�̃�, 𝑆�̃�} = {𝛼𝐶i, α
−1𝑆𝑎, Sp}, where these spectral parameters 

are related to the optical properties as follows: 
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𝜇𝑎(𝜆) = ∑𝜀i(𝜆) ⋅ 𝐶i

𝑁

i=1

 (4.7) 

 

𝜇𝑠
′(𝜆) = 𝑆𝑎 ⋅ 𝜆−𝑆𝑝 (4.8) 

 

Here, 𝐶i denotes the concentration of the major chromophores contributing to light 

absorption, 𝜀i denotes the extinction coefficient of the corresponding chromophore. 

Applying condition 2, �̃�𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 𝛾𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  ⇒  �̃�1 = 𝛾1  ⇒  𝜇𝑠1
′ = 𝜇𝑠1

′ , this gives the value of 

the arbitrary constant to be 𝛼 = 1. This shows that for measured boundary intensity, the solution 

set is unique with the assumed regional homogeneity. 

However, if the measured data is either a spatial or spectral derivative of the form 

log (Φboundary(𝐫1, 𝜆1)/Φboundary(𝐫2, 𝜆2)) = log(Ψ0(𝐫1, 𝜆1) ⋅ 𝛾1(𝜆2)/Ψ0(𝐫2, 𝜆2) ⋅ 𝛾1(𝜆1)), any 

arbitrary value of the constant 𝛼 leads to the same measured data, thus allowing for a non-unique 

solution set. In such a scenario, this non-uniqueness leads to uncertain parameter recovery, and 

this is seen in terms of the cross-talk between chromophore concentrations and scattering 

amplitude. However, biomarkers such as TOI which are based on the ratio of chromophore 

concentrations will still be accurate, as all the chromophore concentrations in any of the non-

unique solution sets differ only by a common constant factor from true values. 

To demonstrate the non-uniqueness in terms of the widely used spectral derivative of 

intensity data, let us consider an example of a two-layered medium with two major light-

absorbing chromophores i.e., oxy-haemoglobin (its concentration denoted by HbO) and deoxy-
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haemoglobin (its concentration denoted by Hb) with their layer specific values given as HbO1 =

0.047mM, HbO2 = 0.054mM, Hb1 = 0.011mM, Hb2 = 0.022mM, Sa1 = 0.64mm−1, Sa2 =

0.98mm−1, Sp1 = 1.06, Sp2 = 0.611, corresponding to layer-1 and layer-2 respectively, and 

L=10mm. For the source-detector distances of 𝜌 = 10, 20, 30, 40, 50 mm, and wavelengths 𝜆 =

650 to 850 nm, in steps of 10 nm, the boundary intensity is simulated using NIRFAST (31), Figure 

4.2 shows the spectral derivative of intensity data for two distinct parameter-sets corresponding 

to 𝛼 = 1 and 0.5, which are clearly coinciding with each other and their corresponding intensity 

data is shown in Figure 4.3. 

As evident in Figure 4.2 and Figure 4.3, while the intensity data remains distinct for two 

different ground-truth parameters, the derivative data shows very little variation and therefore 

demonstrates the non-uniqueness of derivative of intensity data. Hence, in this work only the 

intensity data is considered as the measurement for the recovery of absolute tissue parameters. 

Although, uniqueness in terms of intensity data is established from above, one should remember 

that in a practical scenario, finite independent measurements, noise in the measured data, any 

mismatch in the assumed model, or the stopping criterion of an iterative fitting method 

algorithm, can lead to potential recovery errors.  
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Figure 4.2. 1st Spectral derivative of intensity data at 𝜶 = 1 and 0.5 

 

 

Figure 4.3. Intensity data at 𝜶 = 1 and 0.5 
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4.3. Methodology  

Initially, the complex structure of the head is simplified into two layers to better understand and 

distinguish the haemodynamics of cerebral and extra-cerebral (skin and skull) tissues. For a two-

layered semi-infinite medium (as shown in Figure 4.1), the measured boundary intensity at a 

detector at a distance 𝜌 from a point-source can be written as (36, 80):  

 

𝐼(𝜌) =
1

2𝜋
∫ 𝜙(𝑠) 𝑠 𝐽0(𝑠𝜌)𝑑𝑠

∞

0
, (4.9) 

 

where, 𝑠 is the radial spatial frequency coordinate corresponding to the radial distance 𝜌, 𝐽0 is 

the zeroth order Bessel function of first kind, and 𝜙 is given by: 

 

𝜙(𝑠) =
sinh(𝛼1(𝑧𝑏 + 𝑧0))

𝜅1𝛼1
×

𝜅1𝛼1 cosh(𝛼1𝐿) + 𝜅2𝛼2 sinh(𝛼1𝐿)

𝜅1𝛼1 cosh(𝛼1(𝐿 + 𝑧𝑏)) + 𝜅2𝛼2 sinh(𝛼1(𝐿 + 𝑧𝑏))

−
sinh(𝛼1𝑧0)

𝜅1𝛼1
 

(4.10) 

 

Here, L is the thickness of layer-1, the subscripts 1 and 2 indicate the properties for layer-1 and 

layer-2, 𝛼𝑖 = √𝑠2 +
𝜇𝑎𝑖

𝜅𝑖
, diffusion coefficient 𝜅𝑖 =

1

3(𝜇𝑎𝑖
+𝜇′

𝑠𝑖
)
, 𝑧0 =

1

𝜇𝑎1+𝜇′
𝑠1

, 𝑧𝑏 =
1+𝑅eff

1−𝑅eff
2𝜅1 and 

𝑅eff is the fraction of photons internally and diffusively reflected at the boundary. 
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As shown in section 4.2, for the measured CW intensity data on the boundary of a two-

layered medium a unique solution exists for a parameter set {𝜇𝑎1
, 𝜇s1

′ , 𝜇𝑎2
, 𝜇s2

′ , L}. To increase 

the number of independent measurements and therefore improve the recovery accuracy the 

problem is spectrally constrained by measuring the intensity data over a broad range of 

wavelengths. For biological tissues, since haemoglobin is the major absorbing chromophore in 

the near-infrared range, the wavelength range 650 to 850 nm at either side of the isosbestic 

region are considered (which is typically conventional in most systems, well away from 950 nm 

beyond which other molecules, such as Methaemoglobin and water are the dominant absorbing 

chromophores). Although other chromophores have significant extinction coefficients in this 

wavelength range, their concentration in the tissue is relatively low, therefore oxy and deoxy 

haemoglobin can be considered as the main absorbers. The parameter set now becomes 𝐩 ≡

{𝐻𝑏𝑂1, 𝐻𝑏𝑂2, 𝐻𝑏1, 𝐻𝑏2, 𝑆𝑎1, 𝑆𝑎2, 𝑆𝑝1, 𝑆𝑝2, 𝐿}, and measurement data is the light intensity at 

source-detector distances 𝜌 = 10, 20, 30, 40, 50 mm, and wavelengths 𝜆 = 650 to 850 nm, in 

steps of 10 nm. Instead of a conventional approach of recovering all parameters together using 

a least-square minimization method which generally exhibits a very high condition number, the 

recovery of parameters is achieved in two steps: (1) recovering layer-1 parameters from spectral 

intensity data at 𝜌 = 10 mm i.e., a short source-detector distance, assuming a homogenous 

model as implemented by considering same parameters of layer-1 and layer-2 properties in 

equation (4.10), the dependency on L is assumed to be minimal in such a case, and (2) utilizing 

the recovered layer-1 parameters in step-1, the layer-2 parameters and tissue thickness L, are 

recovered using spectral intensity data from 𝜌 = 10 to 50 mm. This splitting of the parameter 
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recovery is observed to greatly improve the inverse problem with decreasing the condition 

number by at least an order of magnitude (i.e., by a factor of 10).  

Consider the column vectors 𝐩𝟏 ≡ {𝐻𝑏𝑂1, 𝐻𝑏1, 𝑆𝑎1, 𝑆𝑝1}, and 𝐩𝟐 ≡ {𝐻𝑏𝑂2, 𝐻𝑏2, 𝑆𝑎2, 𝑆𝑝2, 𝐿}, 

denoting the parameter sets for the two step parameter recovery with the corresponding 

measurement data given by the column vectors 𝐲𝟏 ≡ 𝐼(𝜌, 𝜆) at 𝜌 = 10 mm and 𝜆 = 650 to 850 

nm in steps of 10 nm, and 𝐲𝟐 ≡ 𝐼(𝜌, 𝜆) at 𝜌 = 10 to 50 mm in steps of 10 mm, and 𝜆 =

650 to 850 nm in steps of 10 nm. Let v𝑚 be the m-th entry in the column vector 𝐯, then the 

element j1𝑚𝑛
 (of m-th row and n-th column) of the Jacobian (or sensitivity) matrix 𝐉𝟏 

corresponding to recovery step-1 is given by, 

j1𝑚𝑛
=

𝜕y1𝑚
𝜕p1𝑛

⁄  (4.11) 

 

Similarly, the element j2𝑚𝑛
 of the Jacobian matrix 𝐉𝟐 corresponding to step-2 is given by, 

j2𝑚𝑛
=

𝜕y2𝑚
𝜕p2𝑛

⁄  (4.12) 

 

The inverse problem at each step is then implemented by an iterative regularized least-square 

minimization, where the data is modelled corresponding to the estimated parameter set at each 

iteration (beginning with an assumed initial values). Based on the mismatch between modelled 

and measured data the following parameter update equation is calculated at the end of each 

iteration, (43) 
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Δ𝐩𝐢 = (𝐉𝐢
T𝐉𝐢 + 𝛽𝐈)

−1
 𝐉𝐢

T Δ𝐲𝐢 (4.13) 

 

Here, ‘i’ denotes the recovery step-1 or 2, Δ𝐩𝐢 represents the update for the parameter set 𝐩𝐢, Δ𝐲𝐢 

is the data-model misfit at the end of iteration, and 𝐉𝐢 is the corresponding Jacobian matrix. To 

further aid the stability, the inverse problem is guided with a regularization parameter given by 

𝛽, which is considered as 0.01 times the maximum value of the Hessian 𝐉𝐢
T𝐉𝐢. A relative change 

of less than 2% in the error corresponding to data-model misfit over two successive iterations is 

considered as the stopping criteria for the inverse problem. 

 The simulation study is split into three parts. Part-(1) deals with data generated on a two-

layered semi-infinite model and recovered using a two-layered semi-infinite model as well. To 

consider a more practical scenario, in part-(2) the data is generated on a two-layered head model 

but parameter recovery is implemented using two-layered semi-infinite model. Part-(3) deals 

with data generated on head model and recovered using a head model as well. Part-(2) and (3) 

are compared to see if the semi-infinite model based recovery is close enough to head-model 

based recovery. 
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4.4. Results 

4.4.1. Two-layered semi-infinite model 

The two-layered semi-infinite model as described in equations (4.9) and (4.10), is employed to 

simulate the measurement data. The modelled measurement system consists of source-detector 

distances of 10 to 50 mm in steps of 10 mm, Figure 4.4, and wavelengths from 650 to 850 nm in 

steps of 10 nm, and a Gaussian random noise of 1% is added to the data. From previous studies, 

a noise level from 0.12 to 1.42% is generally added for source-detector separations varying from 

13 to 48mm (75), to represent a physical model. In this work, apart from multi-distance 

measurements varying from 10 to 50 mm, we have broadband wavelength data ranging from 

650 to 850 nm, and therefore the distribution of noise levels is more complex than that. 

Therefore, an average of 1% random noise is applied for all source-detector separations and 

wavelengths. The tissue properties of the two layers are as shown in Table 4.1 

 (75), and 10 different cases of randomly varying scattering properties (i.e., both Sa and Sp) of 

both layers are considered with a standard deviation of 10% around the reference values, to 

include the inter-subject variability in scattering properties. To understand the response of the 

recovery method to different cerebral oxygenation levels, the TOI of layer-2 was also varied from 

50% to 80% which are considered the practical extreme values (78, 79). The sensitivity matrices 

corresponding to step-1 and step-2 of the recovery process as given in equations (4.11) and 

(4.12), are calculated using perturbation method on the analytic expression of equations (4.9) 

and (4.10). The whole simulation study is repeated for different layer-1 thickness values of L=8, 
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10, 12 mm which are in the range of practical values for the extra-cerebral thickness of human 

head. 

 

Figure 4.4. Schematic showing semi-infinite model with source-detector locations on the boundary 

 

Table 4.1. Tissue parameters 

 HbT (mM) TOI (%) Sa (mm-1) Sp 

Layer-1 0.059 80 0.64 ± 10% 1.0685 ± 10% 

Layer-2 0.076 50-80 0.98 ± 10% 0.611 ± 10% 

 

The recovered TOI values of the two-layers for different thicknesses of layer-1 (8, 10, 12 

mm) are as shown in Figure 4.5 in comparison to the homogenous parameter recovery. The 

homogenous parameter recovery is similar to step-1 in the proposed two-layered recovery 

process, but all the measured source-detector distances are considered. The retrieved values of 

layer-1 thickness is as shown in Figure 4.6. 
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(a) 

 

(b) 

 

(c) 

Figure 4.5. Estimated TOI values from the homogenous and two-layered parameter recovery methods 
corresponding to a two-layered semi-infinite medium of Layer-1 thickness as (a) 8 mm, (b) 10 mm, and 
(c) 12 mm, using multi-distance broadband CW data. The ground-truth values of layer-1 and layer-2 is 

shown by dashed lines. The shaded region shows the standard deviation of recovery for different 
scattering parameters. 

 

Figure 4.6. Estimated Layer-1 thickness from the two-layered parameter recovery method using multi-
distance broadband CW data. The shaded region shows the standard deviation of recovery for different 

scattering parameters of both layers and different TOI values of layer-2. 
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Table 4.2. Average percentage error (%) in homogenous and two-layered parameter recovery for 
different ground-truth scattering parameters and different TOI values of layer-2 

Layer-1 thickness → 8 mm 10 mm 12 mm 

%Δ HbO 

Homogenous -31.5 ± 17.3 -23.8 ± 18.4 -17.8 ± 19.1 

Layer-1  10.0 ± 4.5 8.2 ± 2.6 7.1 ± 1.4 

Layer-2  -16.6 ± 7.2 -15.0 ± 6.1 -15.9 ± 4.9 

%Δ Hb 

Homogenous 6.1 ± 23.2 16.3 ± 23.3 23.6 ± 22.7 

Layer-1  -15.9 ± 2.6 -13.8 ± 1.9 -13.0 ± 1.2 

Layer-2  -0.3 ± 9.7 0.8 ± 5.2 2.4 ± 3.4 

Δ TOI 

Homogenous 8.3 ± 8.3 9.5 ± 9.3 10.4 ± 9.9 

Layer-1  -4.4 ± 0.5 -3.6 ± 0.2 -3.3 ± 0.1 

Layer-2  3.2 ± 1.4 3.1 ± 0.9 3.4 ± 0.5 

%Δ Sa 

Homogenous 39.4 ± 0.6 38.8 ± 0.3 37.8 ± 0.2 

Layer-1  -8.2 ± 2.9 -8.2 ± 1.8 -8.1 ± 0.9 

Layer-2 7.9 ± 4.8 7.6 ± 1.6 6.4 ± 1.1 

%Δ Sp 

Homogenous -13.7 ± 0.3 -15.7 ± 0.4 -17.5 ± 0.5 

Layer-1  25.8 ± 0.4 26.1 ± 0.2 26.3 ± 0.1 

Layer-2  -44.9 ± 9.8 -48.8 ± 9.9 -52.4 ± 8.7 

%Δ L Layer-1  3.4 ± 4.4 3.4 ± 4.1 4.0 ± 3.1 
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The above results in Table 4.2 show that the proposed two-layered broadband parameter 

recovery method retrieves the tissue oxygenation index and tissue thickness within 4.4% and 4% 

error respectively. Recovery of other tissue parameters (haemoglobin concentrations and 

scattering amplitude of two layers) can be obtained within 16.6% error with this two-layered 

approach, as compared to 31.5% error with the homogenous parameter recovery. However, the 

scattering power parameter exhibits relatively higher recovery errors due its low sensitivity to 

light-intensity. 

4.4.2. Two-layered head model 

In a realistic scenario, the structure of the head is more complex than a two-layered semi-infinite 

geometry. Therefore, data was simulated using the same tissue properties as shown in Table 4.1 

on two-layered (cerebral and extra-cerebral tissues) head models using NIRFAST corresponding 

10 different subject head models, Figure 4.7, with their scattering parameters (both Sa and Sp) 

randomly varying with 10% standard deviation from the reference values shown in Table 4.1 and 

the cerebral TOI varying from 50% to 80%, and subsequently the two-step parameter recovery 

algorithm was utilized, initially, using a two-layered semi-infinite model for the recovery. This 

was to consider the case where data is from a human subject, but the model utilized for 

parameter recovery is based on a simple two-layered model. The parameter recovery results are 

shown in Figure 4.8 (a), Figure 4.9, and Table 4.3 . As some measurement data does not converge 

to a stable solution, from these results it can be observed that the parameter recovery is 

accompanied by high standard deviation which can be attributed to the mismatch between the 

assumed semi-infinite model and the true head-model.  
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Figure 4.7. Schematic showing an example of the head model with source-detectors placed on the 
forehead. 

 

To overcome this instability for parameter recovery using a semi-infinite or slab-model 

approximation, a second head-model that is different to that as used for the data simulation is 

introduced and incorporated in the inverse problem to improve the accuracy and consistency of 

the parameter recovery. The geometrical information for the external boundary of this head 

model (obtained from the original subject specific head model) is used for the inverse problem, 

therefore instead of the semi-infinite model, a medium with similar boundary as the true head 

model is considered and by building a model corresponding to this geometry, NIRFAST was used 

to generate the model-data for the inverse problem, and also for calculating the sensitivities of 

layer-1 and 2. A dense mesh is built for the recovery model (with an average element size around 

0.1 mm3 which 10 times smaller than the average element size of 1.7 mm3 considered for head 

models that are used to simulate data) to compute the sensitivity values corresponding to tissue 
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thickness as shown in equation (4.12). Individual layers are assigned to this model structure 

based on the distance from the boundary surface, therefore unlike the original head model which 

has a heterogeneous and spatially varying thickness of layer-1, the recovery model consists of 

uniform layer-1 thickness. So, although this model is better than the semi-infinite model by 

considering the external boundary structure, its internal structure is not exactly the same as the 

true head model. The corresponding parameter recovery is shown in Figure 4.8 (b), Figure 4.10, 

and Table 4.3. 

 

 

(a) 

 

(b) 

Figure 4.8. Homogenous and two-layered recovery of TOI for two-layered head model based on: (a) 
semi-infinite recovery model, (b) head based recovery model. The shaded region shows the standard 

deviation over different head models with different scattering parameters. 
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Figure 4.9. Estimated values of layer-1 thickness with semi-infinite recovery model corresponding to 
extra-cerebral tissue for 10 subject head models, along with the ground-truth probability density 

function of extra-cerebral tissue thickness in the region of interest. Subjects 2, 8 are not shown as the 
algorithm did not converge to a stable solution. 

 

 

Figure 4.10. Estimated values of extra-cerebral tissue thickness with head-based recovery model for 10 
subject head models, along with the ground-truth probability density function of extra-cerebral tissue 

thickness in the region of interest. 
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Table 4.3. Average percentage error (%) in the homogenous and two-layered recovery of parameters 
corresponding to a semi-infinite recovery model and a head based recovery model 

Recovery model → 
Semi-infinite 

recovery model 

Head-based 

recovery model 

%Δ HbO 

Homogenous 22.0 ± 13..3 -27.2 ± 18.4 

Layer-1  21.9 ± 2.9 5.2 ± 4.4 

Layer-2  19.0 ± 7.5 -23.3 ± 7.6 

%Δ Hb 

Homogenous 48.3 ± 9.3 15.3 ± 22.5 

Layer-1  -5.5 ± 1.2 -20.0 ± 3.7 

Layer-2  45.4 ± 6.1 -1.36 ± 7.6 

Δ TOI 

Homogenous 9.3 ± 8.0 9.8 ± 9.0 

Layer-1  -5.1 ± 0.6 -4.1 ± 0.3 

Layer-2  8.4 ± 2.6 4.2 ± 1.9 

%Δ Sa 

Homogenous 12.3 ± 2.2 37.8 ± 0.4 

Layer-1 -34.0 ± 2.2 -6.2 ± 2.7 

Layer-2 4.4 ± 14.4 16.2 ± 2.7 

%Δ Sp 

Homogenous -41.2 ± 4.0 -22.1 ± 0.4 

Layer-1  17.8 ± 0.8 26.8 ± 1.1 

Layer-2  -87.8 ± 58.3 -44.2 ± 7.6 
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These results demonstrate that for the data corresponding to a head model, the proposed 

algorithm with a semi-infinite recovery-model estimates the TOI with an average recovery error 

of 8.4% with the two-layered recovery approach as compared to the error of 9.3% with the 

homogenous approach. Recovery of other tissue parameters (except for scattering power) can 

be achieved within 45.4% error with the two-layered approach as compared to the error of 48.3% 

with the homogenous recovery approach. However, using an appropriate recovery model (head 

based model) the parameter recovery can be greatly improved by reducing the average recovery 

error of TOI to 4.2% with the two-layered approach as compared to the error of 9.8% with the 

homogenous approach, and the recovery of other tissue parameters (except for scattering 

power) can be achieved within 23.3% error with the two-layered approach as compared to the 

error of 37.8% with the homogenous recovery approach. However, the scattering power 

parameter exhibits relatively higher recovery errors due its low sensitivity to light-intensity. In 

regard of the extra-cerebral tissue thickness, as the ground-truth is not a single value but rather 

varies spatially, we can quantify this variation in terms of a probability density functions as shown 

in Figure 4.9 and Figure 4.10, and by considering the tissue thickness at the peak probability as 

the ground-truth, the semi-infinite recovery model estimates the tissue thickness with an 

average error of 30.1%, whereas using an appropriate head based recovery model the error in 

estimating the tissue thickness is reduced to 11.8%.  
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4.4.3. NIRS on forehead: experimental results 

A broadband white-light tungsten-halogen light source is used along with a spectrometer to 

demonstrate the applicability of the described method using real NIRS data measured on a 

healthy subject at rest. A single subject was recruited from the University of Birmingham 

community, and written informed consent was obtained. A Tungsten-Halogen light source 

(Ocean optics HL-2000-FHSA, with approximately 5 minutes of stabilization time) is connected to 

an optical fiber and used as the source placed on forehead of the subject. Another fiber as 

connected to a spectrometer (Ocean optics Flame-S) is used as the detector placed on forehead 

of the subject at a distance 10, 20, 30, 40 mm away from the source. The 50 mm measurement 

was not used due to its low SNR. The two fibers (Ocean Optics: QP1000-2-VIS-BX) utilized in this 

experiment have a 1000 μm core diameter, with the efficient wavelength range from 300-1100 

nm. The spectrometer consists of an entrance slit of 200 μm, and a grating with groove density 

of 600 grooves per mm. The signal is collected over different acquisition times of 30 ms, 1.5 s, 15 

s, and 30 s, for the source-detector distances of 10, 20, 30 and 40 mm respectively, to obtain a 

good SNR with the average noise across the wavelengths 650 to 850 nm being less than 5% for 

these acquisition times. While a 30 s acquisition time for a 40mm measurement is just sufficient 

to get the signal under noise threshold, the shorter distance measurements are well under 5% 

noise. The collected signal is time averaged by normalizing each measurement by its 

corresponding acquisition time. The spectrometer measures the intensities from 340 nm to 1015 

nm at a spectral resolution of 0.3 nm, which is later down-sampled to a resolution of 10 nm by 

averaging every 33 (10/0.3) spectral data points, and is then cropped to the wavelength range 

650 nm to 850 nm to match with measurement model considered in simulations. The intensity 
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measurements at different source-detector distances were measured sequentially (starting from 

10 mm to 40 mm) due to instrumental limitations. The subject is at rest during the measurements 

for all experiments. Each experiment was performed once a day with no stimuli and the subject 

position and data acquisition protocol was kept constant for all measurements, and therefore it 

was assumed that the haemodynamic changes over the entire duration of measurements 

(approx. 3 to 5 mins) were insignificant as often seen during the base-line measurements (81) 

while the subject is at rest. The proposed head based recovery method as described in section 

4.4.2 was implemented using the boundary information of the forehead obtained from the MRI 

of the subject, and later the layer-1 thickness and tissue parameters of two layers were obtained. 

It should be noted that, while the MRI of the subject was obtained in supine position, and the 

subject was measured while sitting on a chair at rest during the experiment and the position was 

kept constant for all measurements. As the anatomical boundary information of the subject 

comes from the thin skin/scalp tissue situated on the rigid structure of skull which is unaffected 

by the subject posture, the boundary information remains the same between the measurements 

and the acquired MRI. The NIRS experiment is repeated on three different days and the recovery 

of the parameters are as shown in Table 4.4. Although the physiological parameters of the tissue 

may have changed over different days, consistent values of tissue thickness over three days were 

recovered to ascertain the repeatability of the proposed method. 
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Table 4.4. Homogenous and two-layered parameters recovered using the head-based recovery method 
described in section 4.4.2 

  Day-1 Day-2 Day-3 

  
Head-based 

recovery model 

Head-based 

recovery model 

Head-based 

recovery model 

HbO (mM) 

Homogenous 0.0697 0.0520 0.0694 

Layer-1 0.0358 0.0439 0.0563 

Layer-2 0.1116 0.1333 0.1567 

Hb (mM) 

Homogenous 0.0201 0.0145 0.0199 

Layer-1 0.0075 0.0098 0.0138 

Layer-2 0.0699 0.1017 0.1130 

TOI (%) 

Homogenous 77.6 78.2 77.7 

Layer-1 82.6 81.7 80.3 

Layer-2 61.4 56.7 58.1 

Sa (mm-1) 

Homogenous 0.44 0.56 0.44 

Layer-1 0.58 0.51 0.43 

Layer-2 0.34 0.24 0.12 

Sp 

Homogenous 0.64 0.69 0.65 

Layer-1 0.69 0.68 0.65 

Layer-2 1.07 1.26 3.0 

L (mm) Layer-1 9.9 10.7 10.8 
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4.5. Discussion 

A broadband continuous wave NIRS parameter recovery method is presented to distinguish 

extra-cerebral and cerebral tissue haemodynamics, by separating the tissue absorption and 

scattering parameters and also by simultaneously fitting for the superficial layer thickness. Major 

challenges of continuous wave NIRS system have been the recovery of scatter (i.e., separating 

absorption and scattering information from the measured NIRS signal), and removing/separating 

the extra-cerebral tissue contamination from the NIRS signal to estimate the cerebral 

haemodynamics. It is shown theoretically in section 4.2 that, while for a given spectral derivative 

of intensity measurements (any derivative measurements) have non-unique solution sets of 

layered tissue parameters, the absolute intensity measurements have a unique solution set of 

layered tissue parameters. A two-step approach is presented to recover the two-layered 

properties along with tissue thickness. In the case of data generated on a two-layered semi-

infinite model, the proposed two step approach using a semi-infinite model in the inverse 

problem is shown to recover the tissue parameters within 16.6% errors. The recovery error of 

layer-1 properties are reduced with increasing thickness, this is because of the assumption in 

step-1 that the short distance measurement is only influenced by layer-1. This increase in 

accuracy of the estimation of layer-1 properties in step-1 which increase with thickness, should 

improve the recovery of layer-2 properties in step-2 but with increased thickness there is a drop 

in the sensitivity of layer-2 and therefore a similar trend of improvement in accuracy is not seen 

for layer-2. The opposite sign of mean-relative errors for absorption (i.e., HbO and Hb) and 

scattering parameters (scattering amplitude) shows that the cross-talk between these 
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parameters is negatively related, any over-estimation of absorption is accompanied by an under-

estimation of scattering amplitude and vice versa.  

In the case of data generated on head models, a semi-infinite recovery model is shown to 

recover results with mixed accuracy. This is due to the complex structure i.e., the spatially varying 

curvature of external medium boundary and internal regional boundary. This is evident from the 

recovery accuracy of tissue thickness in Figure 4.9 for some head models where a correct two-

layered semi-infinite model approximation wasn’t found. Therefore, to tackle this problem, using 

an appropriate boundary structure with the similar two-step parameter recovery approach, it 

has been demonstrated that the accuracy is greatly improved and similar to the initial case where 

the data is generated and recovered on semi-infinite model. 

The practical implementation of this method has been shown in section 4.4.3. The results 

presented in Table 4.4 show that the variation in tissue oxygenation levels recovered over three 

different days is less than 5%, and the variation in the recovery of extra-cerebral tissue thickness 

was not more than ~1mm, which clearly demonstrates the repeatability of the recovery 

algorithm. The increase in hemoglobin concentrations across days observed in Table 4.4 

accompanied by a decrease in the scattering amplitude can be accounted for the cross-talk 

between these two parameters, which is also in line with the simulation results observed in Table 

4.3 with recovery errors of hemoglobin concentration and scattering amplitude with opposite 

signs. 

It is important to highlight that the human head consists of multiple layers, such as skin, 

skull, CSF and brain tissue. Therefore, although the proposed methodology only assumes a two-

layer model, to account for superficial signal contamination, the results indicate that this is much 
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more suitable and robust as compared to the conventional homogenous assumptions. Future 

work should be directed towards extending this methodology to account for multiple layers, 

which may require the utilization of more boundary measurements and data-types to better 

extract information about pathlength (45). 

4.6. Conclusions 

A two-layered parameter recovery method using multi-distance broadband CW intensity 

measurements is proposed and demonstrated to recover the absolute hemoglobin 

concentrations, scattering parameters along with the superficial tissue thickness of a human 

head through simulations across different head models corresponding to different subjects. A 

practical implementation of this approach with real human subject data measured on forehead 

is presented and has shown good repeatability in the recovered tissue parameters over three 

days. However, validation of these results is challenging as the absolute tissue parameters are 

unknown, it is the subject of future studies and needs further investigation. Finally, this work 

suggests the ability of multi-distance CW broadband data to retrieve or separate the extra-

cerebral tissue parameters and the cerebral tissue parameters and that such an approach is more 

accurate than recovering bulk tissue parameters. 

While the heterogeneity or the superficial tissue contamination brought by the extra-

cerebral tissue is dealt with in terms of absolute parameter recovery in this chapter by separating 

the recovery of the cerebral and extra-cerebral tissues, this aspect of superficial contamination 

in dynamic parameter recovery (as outlined in section 2.3.2) is well known as briefly outlined in 

section 2.5.2.2. a similar procedure to reduce the contamination from superficial tissue is yet to 
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be defined for other data-types (such as phase data in frequency-domain). This leads to the work 

presented in the next chapter. 
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Chapter 5  

SIGNAL REGRESSION IN FREQUENCY DOMAIN DIFFUSE 

OPTICAL TOMOGRAPHY TO REDUCE SUPERFICIAL 

SIGNAL CONTAMINATION 

5.1. Introduction 

The aim of this chapter is to address the superficial layer contamination in the context of fNIRS 

based optical imaging systems for data-types other than intensity measurements, such as phase 

in frequency domain systems. Functional near-infrared spectroscopy (fNIRS) based optical 

imaging is a neuroimaging technique used to non-invasively monitor functional activity in the 

brain by tomographic reconstruction of the haemodynamic activity and is often termed as diffuse 

optical tomography (DOT). These reconstructions can be used in clinical applications such as 

patient monitoring (82), psychology studies (83, 84) and functional brain mapping (85). It is a 

relatively inexpensive technology and nonionizing in nature as compared to the alternative 

neuroimaging tools such as magnetic resonance imaging, computed tomography or positron 

emission tomography. FD-DOT relies on the measurements of the light intensity and phase, using 

multi-distance overlapping source-detectors placed on the scalp. The spectrally varying optical 

properties of the medium that contribute to variation in the measured data-types, are then 

reconstructed using a diffusion theory based inverse model as described in Chapter 2. While,  the 

contamination of NIR signal with haemodynamic changes in superficial region (82, 86) is a major 
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challenge as discussed in earlier chapters, a high density overlapping measurements of the multi-

source-detector setup, together with the varying depth sensitivity based on source-detector 

distances directly allow the reconstruction of haemodynamic changes by spatially separating the 

contributions from deep and shallow regions (75). However, it is still a common practice to apply 

superficial signal regression on the DOT measurement signals prior to the reconstruction step to 

significantly improve the 3D recovery including the improvement of recovered contrast of focal 

activations (70). 

At a relatively higher instrumentation cost as compared to CW systems, with the use of a 

modulated NIR light typically at 100-200 MHz, Frequency domain (FD) systems enable the 

measurement of the phase shift of the detected NIR light after traversing through the tissue, and 

these phase measurements correspond to the average pathlength of the photon travelled. 

Recent works in FD-DOT (71) have demonstrated the more uniform sensitivity of the phase 

measurements towards deeper tissue, and therefore resulting in a more accurate recovery of 

focal activations in the brain with a reduction of 59% in localisation error and 21% effective 

resolution as compared to CW-DOT. To further demonstrate the benefit of utilising phase 

measurements from a FD system, the sensitivities (Jacobian) of intensity (log intensity) and phase 

measurements at a single wavelength are shown in Figure 5.1, for a five-layered slab model 

representing the skin, skull, CSF, grey matter and white matter regions of the head. The thickness 

of skin, skull, CSF, grey matter is considered to be 2.5mm, 6.5mm, 3mm, and 25mm respectively 

with the tissue properties as shown in Table 5.1 and the sensitivity maps are shown for source-

detector distances of 10, 20, 30 and 40mm. The increasing depth sensitivity of intensity and 

phase with increasing source-detector distance is clearly observed, and for the same source-
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detector distance the phase measurement demonstrates a higher depth sensitivity, while more 

uniform as compared to intensity. 

While this is a very promising aspect of the FD-DOT technique, a straight-forward 

superficial signal regression procedure on both intensity and phase signals, as will be shown, can 

result in misleading haemodynamic recovery. It is demonstrated in this work that as the phase 

signals have relatively higher sensitivity towards deeper tissue than intensity signals, even the 

short distance phase measurements (which may unknowingly be used to regress superficial signal 

contamination) may be used to measure the functional activity from the deeper tissue.  

The primary requirement of the regressor signal (the short distance measurement that is 

regressed from the measurements) is that it should be uncorrelated (i.e., orthogonal) to the 

signals originating at the deeper tissue. The orthogonality will ensure that the correct amount of 

the regressor signal is removed from the measurements without any residual amount of 

regressor signal present in the measurements as indicated in the next section in equation (5.4). 

But in the case of phase signals, even the short distance measurement contains some deeper 

tissue information, making it correlated to the functional signal originating in deeper tissue. 

Therefore, an un-checked regression of the phase signals using the short-distance phase 

measurement would not only include the superficial signal contamination in the recovery, but 

can also result in a reduced component of the functional signal from the brain and may also lead 

to false positives of functional activations in the cerebral region. In this work, this phenomenon 

is demonstrated and an alternative regression methodology is provided for reducing superficial 

signal contamination in the phase signal in the context of FD DOT system. 
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Figure 5.1. Jacobian of log intensity and phase measurements for absorption coefficient at 830 nm, at 
source-detector distances of 10, 20, 30 and 40 mm, on a five-layered slab. The layers (dashed lines) from 
top to bottom represent skin/scalp, skull, CSF, grey matter, white matter, with tissue properties shown 

in Table 5.1. 

 

5.2. Methodology 

Consider a NIRS setup with 𝑀 measurement channels of different source-detector combinations 

represented by the index 𝑖 at time t, to measure change in intensity in log-scale Δ𝑦𝑖(𝑡), i.e., the 

change in attenuation of intensity at a given wavelength. It can be expressed as a sum of changes 

in attenuation due to absorption changes in superficial tissue and in the brain tissue (assuming 

there are no scattering related changes), which can be written as: 

 

Δ𝑦𝑖(𝑡) = 𝑠𝑦𝑠(𝑖) Δ𝜇𝑎𝑠
(𝑡) + 𝑠𝑦𝑏(𝑖) Δ𝜇𝑎𝑏

(𝑡) (5.1) 

 



94 
 

Here, 𝑠𝑦𝑠(𝑖) and 𝑠𝑦𝑏(𝑖) are the sensitivities of intensity with respect to absorption changes in 

superficial and brain tissues respectively, corresponding to a source-detector channel-𝑖. Similarly, 

the differential phase signal Δ𝑝𝑖(𝑡), has a contribution from absorption changes in superficial 

tissue as well as the brain tissue as: 

 

Δ𝑝𝑖(𝑡) = 𝑠𝑝𝑠(𝑖) Δ𝜇𝑎𝑠
(𝑡) + 𝑠𝑝𝑏(𝑖) Δ𝜇𝑎𝑏

(𝑡) (5.2) 

 

where, 𝑠𝑝𝑠(𝑖) and 𝑠𝑝𝑏(𝑖) are the sensitivities of phase with respect to absorption changes in 

superficial and brain tissues respectively, corresponding to channel-𝑖. As seen in the above two 

equations, the NIRS signal is inherently contaminated with changes corresponding to the 

superficial tissue. In this regard, signal regression techniques are generally used to remove the 

haemodynamic changes in the superficial tissue, which can otherwise lead to artefacts or over-

shadow the functional activation in recovery due to very high sensitivity of superficial tissue 

relative to the brain. The primary requirement to completely remove superficial signals using a 

regression method is that the changes in superficial tissue and the brain tissue must be 

orthogonal to each other (87). By definition, two signals 𝑥1(𝑡) and 𝑥2(𝑡) are said to be orthogonal 

if they are uncorrelated i.e., their inner product 〈𝑥1, 𝑥2〉 = 0. The inner-product is defined as: 

 

〈𝑥1, 𝑥2〉 = ∫ 𝑥1(𝑡) 𝑥2(𝑡) 𝑑𝑡
∞

−∞

 (5.3) 
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Considering Δ𝑦𝑛𝑛(𝑡) to be the nearest-neighbor (short distance) intensity signal and by 

assuming it is strongly sensitive to the absorption changes in superficial tissue i.e., Δ𝑦𝑛𝑛(𝑡) =

𝑘Δ𝜇𝑎𝑠
(𝑡) (where 𝑘 is the corresponding sensitivity factor), along with the condition that the 

absorption changes in superficial tissue are orthogonal to absorption changes in brain tissue, i.e., 

〈Δ𝜇𝑎𝑠
, Δ𝜇𝑎𝑏

〉 = 0, the contribution from the superficial tissue can be regressed from the intensity 

signals using: 

 

Δ𝑦𝑟𝑖
(𝑡) = 𝑠𝑦𝑏(𝑖) Δ𝜇𝑎𝑏

(𝑡) = Δ𝑦𝑖(𝑡) −
〈Δ𝑦𝑖, Δ𝑦𝑛𝑛〉

〈Δ𝑦𝑛𝑛, Δ𝑦𝑛𝑛〉
Δ𝑦𝑛𝑛 (5.4) 

 

For frequency-domain NIRS systems, a similar regression method (phase based phase regression) 

can be applied by extending it to the phase signal as follows: 

 

Δ𝑝𝑟𝑖
(𝑡) = 𝑠𝑝𝑏(𝑖) Δ𝜇𝑎𝑏

(𝑡) = Δ𝑝𝑖(𝑡) −
〈Δ𝑝𝑖, Δ𝑝𝑛𝑛〉

〈Δ𝑝𝑛𝑛, Δ𝑝𝑛𝑛〉
Δ𝑝𝑛𝑛 (5.5) 

 

However, in the context of phase signals, this may not be directly applicable, as even the 

short distance phase signals will have some contribution coming from the deeper tissues as 

shown in Figure 5.1. This is due to the fact that the sensitivity of phase signals is higher for deeper 

tissues as compared to intensity signals. Therefore, implementing the regression as shown above 

in equation (5.5), would lead to a decrease in the signal contrast from the brain and also 

contaminate the brain signal with superficial tissue related changes. To avoid this, the use of 
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short-distance intensity for the phase regression procedure (intensity based phase regression), 

is proposed as below: 

 

Δ𝑝𝑟𝑖
(𝑡) = 𝑠𝑝𝑏(𝑖) Δ𝜇𝑎𝑏

(𝑡) = Δ𝑝𝑖(𝑡) −
〈Δ𝑝𝑖, Δ𝑦𝑛𝑛〉

〈Δ𝑦𝑛𝑛, Δ𝑦𝑛𝑛〉
Δ𝑦𝑛𝑛 (5.6) 

 

The effect of these two different signal regression methods will be demonstrated in the 

following section through the simulation of visual cortical activation as observed using a 

frequency domain HD-DOT measurement system. It will be clearly shown that a phase based 

phase regression would retain the superficial signal contamination even after regression which 

will also result in unwanted and potentially misinterpreted false positives of focal activations. The 

use of intensity based phase regression is shown to be a much more accurate approach to fully 

remove the superficial signal contamination from the DOT reconstruction of focal activations 

using FD data. 

 

5.3. Simulation 

A realistic simulation of a functional activation in the visual cortex region is demonstrated in this 

section to show the effects of the above-mentioned regression methods in the recovery of 

functional haemodynamic activity from the cerebral region. Consider a five-layer (skin, skull, CSF, 

grey matter and white matter) head model mesh with 265K nodes and 1.5mm3 average volume 

of the tetrahedral elements, and the tissue properties of oxy-haemoglobin (HbO) and deoxy-
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haemoglobin (Hb) concentration, scattering amplitude (Sa) and scattering power (Sp) as shown 

in Table 5.1 (85). The modelled measurement system consists of 24 sources and 28 detectors in 

an array as shown in Figure 5.2, which is placed on the back of the head to map visual-cortex 

activations. In such a grid pattern setup, source-detector distances can be categorized into 

different neighbourhoods i.e., 13mm (nearest neighbour 1 or NN1), 29mm (NN2), 39mm (NN3), 

47mm (NN4), 54mm (NN5) and so on. The first four nearest neighbourhoods are considered in 

this case as limited by the dynamic range of the detectors and the signal-to-noise ratio at higher 

measurement distances as seen in a realistic scenario (71). 
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Table 5.1. Background tissue properties 

Region HbO (mM) Hb (mM) Sa (mm-1) Sp 

Skin 0.0575 0.0313 0.53 1.15 

Skull 0.0443 0.0195 0.72 0.89 

CSF 0.0110 0.0083 0.30 0 

Grey matter 0.0559 0.0350 0.50 1.73 

White matter 0.0680 0.0265 0.81 1.31 

 

 

Figure 5.2. Array of 24 sources (red) and 28 detectors (blue) placed on the back of the head to probe 
visual cortex region. 

 

Physiological signals (𝑃𝑗(𝑡)) at 1.2 Hz, 0.25 Hz, and 0.1 Hz to model cardiac (88), 

respiratory (89) and Meyer waves (90), are added as sinusoidal changes (91) in haemoglobin 

concentrations in skin, skull, grey matter and white matter , along with a functional signal 𝐹(𝑡) 

peaking at t=10 seconds originating within grey matter at a depth of 10 mm with an activation 
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blob of radius 2.5 mm, Figure 5.3. A superficial signal 𝑆(𝑡) originating in skin region, peaking at 

t=30 seconds is also included to observe the effects of superficial layer signal contamination. 

These functional and superficial signals 𝐹(𝑡) and 𝑆(𝑡) are modelled using a Gaussian distribution 

(92) with their temporal full width half maximum (FWHM) values such that the two Gaussian 

distributions are mutually separated in time to approximately represent two simple orthogonal 

signals for an ideal regression:  

 

𝐹(𝑡) = 𝐹0 exp (− (
𝑡 − 10

2
)
2

)  (5.7) 

  

𝑆(𝑡) = 𝑆0 exp(− (
𝑡 − 30

2
)
2

)  (5.8) 

  

𝑃𝑗(𝑡) = 𝑃𝐶𝑗
𝑄(𝜔𝐶 , BW𝐶 , 𝑡) + 𝑃𝑅𝑗

𝑄(𝜔𝑅 , BW𝑅 , 𝑡) + 𝑃𝑀𝑗
𝑄(𝜔𝑀, BW𝑀, 𝑡) (5.9) 

  

𝑄(𝜔𝑥, 𝐵𝑊, 𝑡) = ∑𝐴(𝜔) sin(𝜔𝑡 + 𝜉)

𝜔

  (5.10) 

 

Here, 𝑃𝑗(𝑡) represents the combined physiological signals, while the subscript 𝑗=1 

represents skin and skull regions and 𝑗=2 represents grey and white matter regions. The 

individual physiological signal 𝑄(𝜔𝑥, 𝐵𝑊, 𝑡) is a sinusoidal signal with a non-zero bandwidth ‘BW’ 

equal to 0.1×𝜔𝑥, which can be represented by a sum of sinusoidal signals given by equation 

(5.10), with their amplitude profile being Gaussian centred at 𝜔𝑥, and a full width half-maxima 

of the given BW, along with a random phase offset 𝜉, such that the function 𝑄 lies between -1 



100 
 

and 1, so that 𝑃𝐶𝑗
, 𝑃𝑅𝑗

, 𝑃𝑀𝑗
 indicate the respective amplitudes of cardiac, respiratory and Meyer 

waves from equation (5.9). The physiological signal 𝑃(𝑡) is shown in Figure 5.4, along with its 

frequency spectrum showing a 10% bandwidth associated with these signals. 

 

  

(a) (b) 

Figure 5.3. (a) Axial view and (b) lateral view of the focal activation in the grey matter at a depth of 
10mm and blob radius of 2.5 mm, at time t=10 seconds. 
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(a) (b) 

Figure 5.4. (a) Time trace, and (b) frequency spectrum of physiological signal: a combination of cardiac, 
respiratory and Meyer waves with 10% bandwidth. 

 

All these signals from equations (5.7) to (5.9) represent percentage changes to the background 

oxy-haemoglobin concentration as given in Table 5.1 with the corresponding deoxy-haemoglobin 

change considered to be of the same magnitude and opposite sign. For the focal activation 

however, it is known that the oxy- haemoglobin and the total haemoglobin concentrations 

increase while the deoxy-haemoglobin decreases (93). In line with this, the deoxy-haemoglobin 

change for focal activation is considered as ‘-0.47’ times the change observed in oxy-haemoglobin 

(71). The amplitude 𝐹0  is chosen such that the corresponding maximum observable change in 

intensity is 0.05 in log scale to accurately represent experimental measurements (69). While the 

functional signal is only confined to the activation blob of 2.5 mm, the superficial signal occurs in 

the entire skin region and therefore has quantitatively higher effect on the measured signals. In 

this regard, 𝑆0 is chosen to be 100 times lower than 𝐹0 so that both functional and superficial 



102 
 

signals can be clearly observed in the both intensity and phase signals. Effectively, the values of 

these signal strengths considered in this simulation are 𝑃𝐶1
= 0.0018, 𝑃𝐶2

= 0.006, 𝑃𝑅1
=

9×10−4, 𝑃𝑅2
= 0.0015, 𝑃𝑀1

= 7×10−4, 𝑃𝑀2
=0.0012, 𝐹0 = 3, 𝑆0 = 0.03. 

The data is simulated at 40Hz sampling rate, at wavelengths 830 nm and 690 nm at an 

intensity modulation frequency of 140MHz using NIRFAST (31), with the resulting intensity and 

phase measurements as shown in Figure 5.5, along with their frequency spectrum. The low-

frequency Gaussian profile with ripples at 0.05 Hz (=1/20) interval simply indicates the two 

Gaussian peaks in the signal at an interval of 20 seconds which correspond to functional and 

superficial signals in this study. The peaks at 0.1 Hz, 0.25 Hz, and 1.2 Hz correspond to the 

physiological signals. In accordance with equations (5.7) and (5.8), the negative peak at t=10s in 

the data as shown in Figure 5.5(a) and Figure 5.5(b) correspond to the increase in oxy-

haemoglobin and decrease in deoxy-haemoglobin concentrations at t=10s. This is the functional 

signal from the modelled focal activation and it becomes stronger (particularly for Intensity data) 

with increasing source-detector distance owing to the higher depth sensitivity at higher source-

detector distance. The data even at higher source-detector separations is also seen to be 

contaminated with superficial signal identified by the peak at t=30s. The varying amplitudes of 

functional and superficial signals at different source-detector distances in Figure 5.5(a) and Figure 

5.5(b) is due to the varying sensitivity of intensity and phase measurements at different source-

detector distances. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 5.5. (a) and (b) Time traces of intensity and phase measurements without noise at four nearest 
neighbourhoods modelled at 830 nm; (c) and (d) respective frequency spectra of intensity and phase 

measurements. 

 

Gaussian random noise is added to the simulated measurements as a function of source-detector 

distances to model realistic data based on empirically derived noise model. The empirical noise 



104 
 

model was built on data measured using ISS ImagentTM (a frequency domain system console), 

with six detectors at distances of 18 to 58 mm from source, placed on the visual cortex of the 

subject. The source modulation frequency was set at 140MHz and data recorded at a sampling 

rate of 39.74Hz while the subject was at rest and quietly fixated at a blank screen. The noise is 

then estimated as standard deviation of log mean intensity measurement as intensity noise and 

of phase difference (in degrees) as the phase noise. It was then fitted to a two-term exponential 

as a function of source-detector distance details of which can be found elsewhere (71). The 

calculated noise levels are plotted in Figure 5.6 for the source-detector distances in the 

measurement setup as shown in Figure 5.2.  

 

  

(a) (b) 

Figure 5.6. Noise levels of intensity and phase measurements as a function of source-detector (sd) 
distances. 
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The raw intensity and phase signals with the added noise at the wavelength 830 nm simulated at 

multiple source-detector distances (grouped as neighbourhoods) are shown in Figure 5.7. To 

reduce the noise similar to a realistic experimental procedure, the following pre-processing steps 

are applied before the superficial signal regression procedure: 

a) The measurements are high-pass filtered at 0.01 Hz cut-off frequency to remove any drifts 

present in the signal caused due to the measurement systems (this is not applicable in 

this simulation experiment) (71). 

b) Measurements are then low-pass filtered at 0.1 Hz cut-off frequency to remove the 

physiological noise i.e., pulse, respiratory and Meyer waves (71). 

c) Data is then down-sampled from 40Hz to 1Hz with averaging every 40 samples and 

thereby greatly reducing random noise present in the signals. 

d) To improve the contrast and to further reduce noise, the measurements from multiple 

repetitions of similar excitations are block-averaged (94). In this case, 10 repetitions are 

averaged together to increase the signal-to-noise ratio of the data. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 5.7. (a) and (b) Time traces of intensity and phase measurements with noise added at four 
nearest neighbourhoods modelled at 830 nm; (c) and (d) respective frequency spectra of intensity and 

phase measurements. 

 

While the regression of intensity data is well understood (69), the regression of phase signals is 

the primary objective of this work. It is observed from Figure 5.5 and Figure 5.7 that functional 
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signal is also seen in the first nearest neighbourhood (NN1) measurements of phase, while the 

NN1 measurements of intensity signals contain predominantly the superficial signal. Therefore, 

the following two regression methods are implemented on the phase data:  

a) regression of phase signals with the short-distance phase signal (phase based phase 

regression), and  

b) regression of phase signals with the short distance intensity signal (intensity based phase 

regression).  

The regressor signal (short-distance measurement), is regarded as the average of all NN1 

measurements of either intensity or phase corresponding to the regression method. The result 

of regression methods on this pre-processed and noise-reduced intensity and phase data is 

shown in Figure 5.8. 
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(a) 

 

(b) 

 

(c) 

 

Figure 5.8. (a) Regressed intensity measurements with short-distance intensity measurement, (b) 
regressed phase measurements with short-distance phase measurement, and (c) regressed phase 

measurements with short-distance intensity measurement post filtering and all noise-reduction steps. 

 

It can be seen from Figure 5.8(a), that the contamination due to superficial signal at t=30s, is 

clearly removed from intensity data after regression with short-distance intensity data. The 

phase signals however retained the superficial signal contamination (t=30s) with a flipped sign 

after the regression with the short-distance phase measurement as seen in Figure 5.8(b). The 

regression procedure finds the overlap (cross-correlation coefficient) between the phase 

measurements and the average of nearest neighbor phase measurement (Δ𝑝𝑛𝑛) and subtracts 

Δ𝑝𝑛𝑛 of the amplitude proportional to this overlap as defined in equation (5.5). As Δ𝑝𝑛𝑛 has both 

superficial signal and a functional component, any phase measurement with a higher relative 

strength of functional to superficial signal as compared to Δ𝑝𝑛𝑛 would result in an overlap value 
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greater than the individual strength of superficial signal present in that phase measurement. 

Therefore, subtracting a higher amplitude of superficial signal than what is present, we observe 

a change in sign for superficial signals after regression with Δ𝑝𝑛𝑛. However, with the regression 

of phase signals using short-distance intensity measurement, the superficial signal contamination 

is clearly seen to be removed in Figure 5.8(c).  

To quantitatively represent the reduction of superficial signal contamination, before and 

after regression, a correlation coefficient between the measurement Δ𝑔𝑖(𝑡) and the superficial 

signal 𝑆(𝑡) are calculated as follows:  

 

𝑅(𝑔𝑖, 𝑆) = |
〈Δ𝑔𝑖, 𝑆〉

√〈Δ𝑔𝑖, Δ𝑔𝑖〉√〈𝑆, 𝑆〉
|. (5.11) 

 

Where, 𝑔 can represent either intensity Δ𝑦𝑖(𝑡), or phase Δ𝑝𝑖(𝑡), and the index 𝑖 represents a 

measurement channel corresponding to a source-detector combination. The value of 𝑅(𝑔𝑖, 𝑆) 

can vary from 0 to 1 (equivalent to 0 to 100%) which directly represents the amount of superficial 

signal 𝑆(𝑡) present in each of the measurement Δ𝑔𝑖(𝑡).  

To further observe the amount of superficial signal contamination present exclusively in 

a subset of the channels that substantially detect the functional activity, a threshold of 90% is 

considered over the maximum value of 𝑅(𝑔𝑖, 𝐹), i.e., 𝑅(𝑔𝑖, 𝐹) > 0.9×max{𝑅(𝑔𝑖, 𝐹)}, where 

𝐹(𝑡) is the functional signal, and the value 𝑅(𝑔𝑖, 𝐹) defines the amount of functional signal 

present in the measurement similar to equation (5.11). The correlation coefficients 𝑅(𝑔𝑖, 𝑆) for 
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all the measurements before and after regression are shown in Figure 5.9(a), and the correlation 

coefficients for the channels that detect functional activity are shown in Figure 5.9(b). 

 

  

(a) (b) 

Figure 5.9. Correlation coefficient of all Intensity and Phase measurements with respect to superficial 
signal, before superficial signal regression vs after superficial signal regression, for (a) all measurement 

channels (b) for the channels detecting 90% and above of the maximum functional activity. 

 

As the value of the correlation coefficient for all the measurement channels varies from 

0 to 1, a root mean square value of 𝑅(𝑔𝑖, 𝑆) over all the measurement channels 𝑖 (or a subset of 

channels that detect functional activity) is considered to represent an effective strength of the 

superficial signal in the measurements of either intensity or phase and is shown in Table 5.2 

before and after the regression procedure. 
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Table 5.2. Root mean square (R.M.S) values of correlation coefficients indicating the amount of 
superficial signal contamination in the intensity and phase measurements before and after regression at 

830 nm (the values within brackets correspond to 690 nm). 

 
Measurement 

type 

Before 

regression 

𝑅(𝑔𝑖, 𝑆) 

After 

regression 

𝑅 (𝑔reg𝑖
, 𝑆) 

Suppression 

factor 

R.M.S calculated on all 

measurement channels 

Intensity 
0.7774 

(0.8174) 
0.0361 (0.0479) 21.5 (17.1) 

Phase 
0.5881 

(0.5572) 

0.2072 (0.0567) 

(phase based 

regression) 

2.8 (9.8) 

0.0402 (0.0420) 

(intensity based 

regression) 

14.6 (13.2) 

R.M.S calculated on 

measurement channels 

with  

𝑅(𝑔𝑖, 𝐹)

> 0.9×max{𝑅(𝑔𝑖, 𝐹)} 

Intensity 
0.1944 

(0.4882) 
0.0102 (0.0375) 18.9 (13.0) 

Phase 
0.0797 

(0.1168) 

0.2807 (0.0544) 

(phase based 

regression) 

0.3 (2.1) 

0.0107 (0.0360) 

(intensity based 

regression) 

7.4 (3.2) 

 

The suppression factors in Table 5.2 correspond to the ratio of correlation coefficient 𝑅(𝑔𝑖, 𝑆) 

before and after regression, and a value greater than 1 implies the regression procedure has 
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reduced the superficial signal contamination. The suppression factor for intensity based phase 

regression is not only greater than 1 but also higher than the phase based phase regression 

procedure, therefore indicating a better reduction in the superficial signal contamination. A value 

less than 1 of the suppression factor for phase based phase regression for the channels that 

detect functional activity highlight that the regression procedure increased the amount of 

superficial signal contamination in those channels that detect functional activity, the effect of 

which can be seen in the tomographic reconstruction of the haemoglobin concentrations to 

identify any recovered functional activations. 

Next, the tomographic reconstruction of haemoglobin concentration changes based on the 

regressed intensity and phase data as shown in Figure 5.8 is performed. The Jacobian 𝑱 (the 

sensitivity of intensity and phase with respect to the absorption coefficient at every node in the 

head model mesh) is constructed (95) for the head-model with background optical properties as 

given in Table 5.1 on a measurement setup as shown in Figure 5.2 at two wavelengths of 690 nm 

and 830 nm individually to retrieve the respective absorption changes at these wavelengths. The 

retrieved absorption changes at each wavelength is then related to the oxygenated haemoglobin 

(HbO) and deoxygenated haemoglobin (Hb) concentration changes (96): 

 

[
Δμ𝑎690

Δ𝜇𝑎830

] = [
εHbO,690 εHbO,830

εHb,690 εHb,830
] [

ΔHbO
ΔHb

] (5.12) 

 

The absorption changes (Δ𝝁𝒂) at every node of the head model, is related to the measurement 

changes (Δ𝒚 and Δ𝒑), and the sensitivity matrix as follows: 



113 
 

 

[
Δ𝒚
Δ𝒑

] = 𝑱. Δ𝝁𝒂 = [
𝑱𝒚

𝑱𝒑
] Δ𝝁𝒂  (5.13) 

 

The Jacobian 𝑱 consists of both the sensitivity of intensity (𝑱𝒚) and phase sensitivities (𝑱𝒑) which 

are different in their magnitude (71). To retrieve the absorption changes, a single step inversion 

of the Jacobian is performed together with Tikhonov regularization, to compensate for the ill-

posedness and ill-conditioning of the problem (31). 

 

Δ𝝁𝒂 = 𝑱~𝟏 [
Δ𝒚
Δ𝒑

]= 𝑱𝐓(𝑱𝑱𝐓 + 𝛼𝐈)−𝟏 [
Δ𝒚
Δ𝒑

] (5.14) 

 

Here, 𝛼 is the regularization factor which is considered as 𝛼 = Λmax[diag(𝑱𝑱T)], with the weight 

factor Λ = 0.01 to smooth the parameter recovery (94). The regularization is implemented 

separately for the intensity Jacobian and phase Jacobian kernels (71). The recovered absorption 

changes at two wavelengths are then used to retrieve the corresponding changes in haemoglobin 

concentrations using equation (5.12). 

The recovered focal activation using the intensity data regressed with short-separation intensity 

measurement (intensity based intensity regression) and phase data regressed with short-

separation phase measurement (phase based phase regression), at t=10s is shown in Figure 5.10. 

This is achieved by spatially thresholding the recovered haemoglobin concentration to 50% of 

maximum change. Therefore, the size of the observed activation in Figure 5.10 indicates the 
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FWHM of the recovery which is found to be 10.1mm given the 5mm (2.5 mm radius) of ground-

truth focal activation. Similar recovered focal activation is observed using the intensity data and 

phase data both regressed with short-separation intensity measurement (intensity based 

intensity regression and intensity based phase regression), at t=10s, also with an FWHM of 

10.1mm. 

  

(a) (b) 

Figure 5.10. Axial view at z=11.8mm (a) and lateral view at x=12.5mm (b) of the recovered oxy-
haemoglobin at t=10s showing a positive change, reconstructed using the intensity data regressed with 

short-separation intensity measurement and phase data regressed with short-separation phase 
measurement. The center of ground-truth focal activation at (11.5, -85, 10.7) is shown by the blue ‘x’ 

mark. 

 

However, at t=30s the recovered haemoglobin changes show a ‘false’ focal activation for phase 

based phase regression method as shown in Figure 5.11. Indicating a false positive. The maximum 

absolute change observed for the recovered oxy-haemoglobin concentration is seen as a 

negative change as shown in the data in Figure 5.8. The focal activation recovered and shown in 
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Figure 5.11 indicates a negative change of oxy-haemoglobin concentration thresholded at 50% 

of maximum absolute change, with an FWHM of 9mm. The oxy-haemoglobin recovery for 

intensity based phase regression at t=30s however does not show any specific focal activation 

recovery which is also in-line with the data observed in Figure 5.8. 

 

  

(a) (b) 

Figure 5.11. Axial view at z=9.8mm (a) and lateral view at x=13.5mm (b) of the false-positive recovery of 
oxy-haemoglobin at t=30s showing a negative change, reconstructed using the intensity data regressed 

with short-separation intensity measurement and phase data regressed with short-separation phase 
measurement. The center of ground-truth focal activation (11.5, -85, 10.7), occurring at t=10s is shown 

by the blue ‘x’ mark. 

To further substantiate the presence of superficial signal contamination in phase based phase 

regression in comparison to the intensity based phase regression, the recovered oxy-

haemoglobin in the region of ground-truth activation, i.e., within 2.5 mm radius from (11.5, -85, 

10.7) is shown in Figure 5.12 and Figure 5.13. The negative side lobes on either side of the peak 

at t=10s is simply an effect of using the band-pass filter on a Gaussian signal. The negative peak 

of oxy-haemoglobin in Figure 5.12, at t=30s, clearly indicates the direct effect of superficial signal 
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contamination introduced due to the phase based regression method appearing in not just the 

cerebral region but in the locality of ground-truth activation and therefore leading to false 

positives.  

 

 

Figure 5.12. Temporal plot of normalized oxy-haemoglobin recovery in the region of ground-truth focal 
activation for phase based phase regression method. 

 

Figure 5.13. Temporal plot of normalized oxy-haemoglobin recovery in the region of ground-truth focal 
activation for intensity based phase regression method 
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5.4. Discussion 

Recent developments in FD-DOT imaging studies have shown that the use of phase data along 

with intensity data significantly improves the image quality. The higher depth sensitivity of phase 

signal relative to intensity signal enables a significantly better localization of focal activations 

especially in depth using an FD-DOT system, out-performing a CW-DOT system. However, 

performing similar pre-processing techniques of signal regression that are implemented in a CW-

DOT system without careful observation will lead to unintended and misleading haemodynamic 

activity, and therefore misinterpreting the results. 

While the superficial signal regression for intensity data is well understood, and utilized often to 

improve the image quality, the signal regression for phase data however is not as straight-

forward or well understood. The very advantageous aspect of higher sensitivity of phase signal 

to deeper tissue can lead to even the short-distance phase measurement detecting functional 

activity from deeper tissue. Therefore, any regression of phase signal using this short-distance 

phase measurement (phase based phase regression) would not completely remove the 

superficial signal contamination and also may additionally cause reduction in the strength of the 

recovered functional signal. To this end, superficial signal regression of phase data using short-

distance intensity measurement (intensity based phase regression) is shown to more accurately 

remove the superficial signal contamination. 

Utilizing realistic head model data, Figure 5.5(b) highlights the presence of functional signal, 

originated in the cerebral region at a depth of 10mm from surface, even in the short-distance 

phase signals, while the short-distance intensity signals mostly contain the superficial signal. 
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Therefore, given the superficial signal being uncorrelated to the functional signal, the regressor 

signal in phase based phase regression method (i.e., short-distance phase measurement) is still 

correlated with the functional signal. This is unlike the regressor signal in intensity based phase 

regression method (i.e., short-distance intensity measurement) which is uncorrelated to the 

functional signal which will affect the regression procedure as highlighted in section 5.2. This is 

seen in the results of Figure 5.8(b), where an unbalanced regression using short-distance phase 

measurement causes a negative effect of signal contamination (inverted peak at t=30s) in the 

phase data. It is also seen to reduce the functional component in the signals (decreased 

magnitude at t=10s, as compared to raw data in Figure 5.5(b)) that can cause reduction in the 

contrast of recovered functional activation; the stronger the functional component in the 

regressor signal (short distance phase measurement) the greater is the reduction in the 

functional component in all the measurements post regression. But using short distance intensity 

measurement to regress phase in Figure 5.8(c) has proven to be efficient in its performance both 

by retaining a higher functional component and by suppressing the superficial signal component 

at t=30s.  

The strength of superficial signal present in intensity and phase measurements as defined by the 

correlation coefficient shown in Figure 5.9 indicate that the phase based phase regression retains 

a higher strength of the superficial signal in the regressed data as compared to intensity 

regression and intensity based phase regression procedures. The RMS value of the correlation 

coefficient (calculated on all measurement channels) shown in Table 5.2, before and after the 

regression indicates the reduction in superficial signal contamination at 830 nm by factor 2.8 for 

phase based phase regression (13% of what is observed in intensity regression), and 14.6 for 
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intensity based phase regression (68% of what is observed in intensity regression), demonstrating 

the improvement in the regression of phase measurements using short-separation intensity 

measurement. The corresponding suppression factors at 690 nm are 9.8 for phase based phase 

regression (57% of what is observed in intensity regression) and 13.2 for intensity based phase 

regression (77% of what is observed in intensity regression). The relatively higher suppression 

factors for phase based phase regression at 690 nm compared to those at 830 nm is because the 

functional signal present in the short-separation phase measurement at 690 nm is relatively 

lower than that at 830 nm, and therefore making the phase regressor signal more uncorrelated 

to the functional signal. The lower functional activity at 690 nm corresponds to the lower deoxy-

haemoglobin change i.e., 0.47 times that of oxy-haemoglobin change, as the signal at 690 nm is 

more sensitive to deoxy-haemoglobin and at 830 nm it is more sensitive to oxy-haemoglobin.  

The DOT parameter recovery based on this regressed data is seen in Figure 5.10. The focal 

activations at t=10s for both phase based phase regression and intensity based phase regression 

methods (together with regressed intensity data in both cases) are found to have maxima-

location of (12.5, -83.3, 11.8), at a distance of 2.2mm from the center of ground-truth activation, 

and an FWHM of 10.1 mm corresponding to a ground-truth width of 5mm of the focal activation 

blob. At t=30s however, the DOT parameter recovery of haemodynamic activity for phase based 

phase regression method, as seen in Figure 5.11, estimated a false positive focal activation at a 

maxima-location of (13.5, -85.3, 9.8), also at a distance of 2.2 mm from the center of ground-

truth focal activation (that occurred only at t=10s) and an FWHM of 9mm. 

The cause of such false positive can be explained by considering a set ‘S’ of measurement 

channels that prominently detect the functional signals that originate in the region R. Conversely, 
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any change in these ‘S’ set of measurement channels corresponds to a prospective recovery in 

the region R. The regressor signal of phase which contains both functional and superficial signal 

content, would cause a new peak corresponding to superficial signal, if it is absent initially in the 

given ‘S’ set of measurements, which would therefore result in a recovery in the original 

activation region ‘R’. Thus, instead of removing superficial signal contamination, the phase based 

regression approach would cause the superficial signal to directly contaminate the 

haemodynamic recovery in the cerebral region. This is further substantiated by Figure 5.12 and 

Figure 5.13 showing the recovered oxy-haemoglobin concentration over the entire period of time 

in the original focal-activation region ‘R’, where it is seen that a negative peak at t=30s for phase 

based phase regression method showing the superficial signal contamination, while the oxy-

haemoglobin recovery for intensity based phase regression method did not show any such peaks 

at t=30s. 

 

5.5. Conclusions 

This work has demonstrated the adverse effects of implementing a phase-based phase regression 

in FD-DOT and shows the existence of superficial contamination in such cases even after 

regression, due to the possibility of the presence of the functional signal in phase data even at 

shorter SD separations, while also reducing the functional component in all of the measurements, 

which can lead to a reduction in the contrast of recovered focal activations. An alternative to the 

intensity-based phase regression method is proposed and demonstrated to correctly remove 

superficial signal contamination.  
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This type of regression plays a significant role in any FD-based methods in which signal regression 

is implemented, such as FD-DOT. The same theory can also be extended for time resolved 

systems (TRS) in which the moments-based analysis is implemented to observe haemodynamic 

activity, as the first-order moment of the distribution of time of flight of photons is similar to the 

phase measurement in FD NIRS systems and can also become significant to other data types 

(higher order moments in TRS) that have a higher sensitivity toward deeper tissue and therefore 

require an intensity-based (total photon count in TRS) regression approach instead of using the 

same data type for superficial signal regression. This needs further investigation and is the subject 

of further studies. 
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Chapter 6  

CONCLUSIONS AND FUTURE WORK 

6.1. Conclusions  

The current state of NIRS in the application of monitoring TBI patients is presented together with 

the short-comings in the existing parameter recovery methods. New computational methods 

have been proposed and demonstrated to overcome the existing challenges with NIRS in the 

context of TBI addressing the following hypotheses: 

1. Measurement of TOI using NIRS requires absorption coefficient at least two wavelengths. 

While the conventional methods of continuous wave NIRS cannot extract (de-couple) 

absorption and scattering properties of the tissue from intensity only measurements at 

each wavelength, the use of multi-spectral information can help in extracting absorption 

and scattering properties by spectrally constraining the problem and therefore estimating 

more accurate TOI values. 

2. The application of multi-distance broadband intensity measurements can distinguish 

between cerebral and extra-cerebral tissue’s absorption and scattering parameters. 

3. The use of layered head-model based parameter recovery methods greatly improves the 

accuracy of cerebral tissue parameters compared to the conventionally used layered slab 

models.  
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4. While the use of intensity and phase measurements can greatly improve the localization 

and resolution of brain activation maps, the superficial signal contamination still poses an 

issue with its conventional application on phase measurements but alternative regression 

method can be developed for the phase measurements. 

The application of spectrally constrained parameter recovery has been shown to separate the 

absorption and scattering properties from intensity only measurements to get more accurate 

estimates of TOI. This was otherwise not possible and the estimation of TOI relied on the 

assumption of scattering properties causing uncertainty in the results. It also addresses another 

major challenge for a CW system i.e., superficial signal contamination.  

In reference to hypotheses 2 and 3, the non-uniqueness in CW-NIRS is primarily addressed 

showing that a regional constraint on the parameter recovery leads to unique parameter set for 

the given measurement set of intensities. A two-layered parameter recovery method using multi-

distance broadband CW intensity measurements is proposed and demonstrated to recover the 

absolute haemoglobin concentrations, scattering parameters, and the superficial tissue thickness 

of a human head through simulations across different head models corresponding to different 

subjects. A practical implementation of this approach with real human subject data measured on 

the forehead is presented and has shown good repeatability in the recovered tissue parameters 

over three days. Finally, this work demonstrates the ability of multi-distance CW broadband 

intensity data to retrieve or separate the extra-cerebral tissue parameters and the cerebral tissue 

parameters using model based parameter recovery and that such an approach is more accurate 

than recovering bulk tissue parameters. 
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With regards to the fourth hypothesis, the adverse effects of implementing superficial 

signal regression on phase data using phase measurement corresponding to short source-

detector distance are demonstrated, which clearly shows the existence of superficial 

contamination in such cases even after regression, due to the possibility of the presence of 

functional signal in phase data even at shorter source-detector separations, while also reducing 

the functional component in all the measurements which can lead to a reduction in the contrast 

of recovered focal activations. An alternative of intensity based phase regression method is also 

proposed and demonstrated to properly remove superficial signal contamination. This type of 

regression plays a significant role in any FD based methods, where signal regression is 

implemented such as FD-DOT.  

 

6.2. Future work 

This research provides the computational methodologies to overcome the major challenges in 

near-infrared spectroscopy aimed towards cerebral monitoring for TBI patients, yet there is 

scope for further research.  

The work in Chapter 3 presents the optimal wavelength set for the spectrally constrained 

SRS approach for the chromophores oxy and deoxy-haemoglobin and the wavelength 

optimization considers the wavelength range where these chromophores are the major 

contributors towards light absorption. To include other chromophores such as water, 
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cytochrome c oxidase and others the optimization process needs to be reimplemented including 

the full wavelength range where these chromophores are dominant absorbing constituents.  

While the accuracy of model-based broadband spectral recovery of tissue parameters is 

demonstrated in Chapter 4 using computational simulations on two layered models, further 

study is required to investigate its applicability to extend the approach for five-layered geometry 

of head. Furthermore, although the broadband intensity data provides more information, the 

inverse problem of parameter recovery process is computationally expensive due to the 

modelling of data at large number of wavelengths. Therefore, further analysis is also required to 

understand if an optimal wavelength set can provide a better model-based recovery of cerebral 

and extra-cerebral tissues. 

The superficial signal regression implemented on phase measurements in Chapter 5 can 

also be extended for NIRS systems like TRS where the moments based analysis is implemented 

to observe haemodynamic activity (97), as the first-order moment of the distribution of time of 

flight of photons is similar to the phase measurement in FD NIRS systems. This approach can also 

be significant to other data types (ex: higher order moments in TRS) that have a higher sensitivity 

towards deeper tissue and therefore require an intensity based (equivalent to the total photon 

count in TRS) regression approach instead of using the same data type for superficial signal 

regression. This is the subject of future studies and needs further investigation. 

Finally, while the proposed computational methods improve the existing NIRS techniques 

to overcome their major challenges without any requirement on changes to the existing 

instrumentation, to validate the applicability of these NIRS techniques in clinical environment for 

monitoring TBI patients, rigorous clinical validation studies are eventually required, and this 
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research work provides the proof-of-concept and serves as the beginning step towards its clinical 

application. 
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