
A numerical model for the simulation of a 
solitary wave in a coastal region 

F. Lasaponara & F. Camilli 
Department of Civil, Construction and Environmental Engineering, 
Sapienza University of Rome, Italy 

Abstract 

In this paper we propose a numerical model for the simulation of tsunami wave 
propagation in a coastal region. The model can simulate the wave transformation 
due to refraction, shoaling, diffraction and breaking phenomena that take place in 
the surf zone and can simulate the wet front progress on the mainland. The above 
mentioned model is based on the numerical integration of the Fully Non-linear 
Boussinesq Equations in the deep water region and of the Non-linear Shallow 
Water Equations in the surf zone. These equations are expressed in an integral 
contravariant formulation and are integrated on a generalized curvilinear 
boundary conforming grid that can reproduce the complex morphology of the 
coastline. The numerical integration of the model equations is implemented by a 
high order Upwind WENO numerical scheme that involves an exact Riemann 
Solver. For the simulation of the wet front progress on the dry bed, the exact 
solution of the Riemann problem for the wet-dry front is used.  The capacity of 
the proposed model to simulate the wet front progress velocity is tested by 
numerically reproducing the dam-break problem on a dry bed. The capacity of 
the proposed model to correctly simulate the tsunami wave evolution and 
propagation on the coastal region is tested by numerically reproducing a 
benchmark test case about tsunami wave propagation on a conic island.    
Keywords: coastal flooding, fully non-linear Boussinesq equations, non-linear 
shallow water equations, contravariant formulation, upwind WENO scheme, run 
up. 

1 Introduction 

Coastal flooding risk is a potential source of huge social, economical and 
environmental costs. That is due to the fact that the major part of the global 
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population and of the biggest cities are placed in the coastal zone. In order to 
avoid enormous damage, caused by coastal flooding, it is essential to have the 
appropriate instruments to plan the whole coastal city system including coastal 
infrastructures and sea defences.  
     For the simulation of coastal flooding the modeling of the hydrodynamic 
phenomena which occur in coastal regions such as surface wave transformation, 
wave breaking and wave run up are of fundamental importance. Most of these 
phenomena can be represented by two dimensional fully non-linear Boussinesq 
equations (FNBE) that switches into the non-linear shallow water equations 
(NSWE) in the surf zone.  
     In coastal areas, slightly sloping and regular sea beds alternate with steep 
irregular bottoms and the coastlines can be characterized by articulated shapes 
and be interrupted by the presence of anthropic structures and/or river mouths. In 
order to simulate hydrodynamic phenomena over computational domains 
characterized by a complex boundary, two strategies can be followed. The first 
strategy is represented by the possibility of using unstructured grids (Hu and 
Shu [1], Gallerano and Napoli [2], Casonato and Gallerano [3], Cioffi et al. [4]). 
The second strategy is based on the numerical integration of the motion 
equations on a generalized curvilinear boundary conforming grid (Luo and 
Bewley [5], Gallerano and Cannata [6], Rossmanith et al. [7]). Classic forms of 
the Boussinesq equations include the lowest order of both frequency dispersion 
and non-linearities and are able to adequately represent wave phenomena only in 
a range of values of the water depth, h0, to deep water wavelength, L0, ratio up to 
0.2. In order to overcome such restriction different formulations of Boussinesq 
equations have been proposed: Madsen and Sørensen [8], Nwogu [9], Wei et al. 
[10], Chen et al. [11]. Recently in literature integral forms (Gallerano et al. [12]) 
or new differential conservative forms of the Boussinesq equations (FNBE) 
expressed in terms of conserved variables (Erduran et al. [13], Tonelli and Petti 
[14], Roeber and Cheung [15], Shi et al. [16]) have been proposed. The above 
mentioned equations allows the simulation of breaking waves that can be 
represented by the discontinuities of the weak solution of the integral form of the 
NSWE, numerically solved by a shock capturing scheme (Toro [17], Brocchini 
and Dodd [18], Gallerano and Cannata [19], Gallerano et al. [20]). The above 
integral or differential conservative forms of the Boussinesq equations are able to 
simulate wave dynamics from deep water regions up to the coastline, do not need 
any additional term in order to take into account the wave breaking energy 
dissipation and do not require any empirical calibration. In order to apply a 
shock capturing method to Boussinesq equations expressed in differential 
conservative form, Roeber and Cheung [15] adopted the strategy proposed by 
Erduran et al. [13], consisting of using a hybrid finite volume-finite difference 
scheme.  
     In this paper an integral contravariant formulation of the motion equations is 
presented. These equations are solved by a hybrid finite volume–finite difference 
scheme: convective terms and terms related to the free surface elevation gradient 
are discretized by a high order finite volume upwind WENO scheme whereas 
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dispersive terms and the term related to the second order vertical vorticity are 
discretized by a finite-difference scheme.  
     The main goal of the present study is to provide a hydrodynamic model to 
reproduce and simulate all the phenomena that occur in coastal areas. 
     The paper is organized as follows: the integral contravariant formulation of 
the motion equations are presented in Section 2; the numerical scheme used to 
solve the equations is presented in Section 3; in Section 4 are shown benchmark 
tests case about a dam-break problem on a dry bed and the tsunami wave 
propagation on a conical island; conclusions are made in Section 5. 

2 The motion equations 

Let H = h + η be the total local water depth, where h is the local still water depth 
and η is the local surface displacement. The following vector can be defined as: 
Ԧݎ ൌ Ԧݏ ఈሬሬሬሬԦ andݑܪ ൌ  ఈሬሬሬሬԦ is the horizontal velocity at an arbitraryݑ തଶሬሬሬሬԦ, in whichݑܪ
distance from the still water level ݖ ൌ ,ߪ ሻݖଶሬሬሬሬԦሺݑ   consists of the second order 
terms in depth power expansion of the velocity vector and ݑതଶሬሬሬሬԦ   is the depth 
averaged value of ݑଶሬሬሬሬԦሺݖሻ.  
     Considering the transformation ݔ௟ ൌ  ଶሻ from the Cartesian coordinatesߦଵߦ௟ሺݔ
 Ԧ (note that hereinafter the superscript indicatesߦ Ԧ to the curvilinear coordinatesݔ
the generic component and not the powers), Ԧ݃ሺ௟ሻ ൌ ߲ Ԧݔ ߲⁄  ௟ is the covariant baseߦ
vectors and Ԧ݃ሺ௟ሻ ൌ ߲ ௟ߦ ߲⁄  is the contravariant base vectors. The metric tensor	Ԧݔ
and its inverse are given respectively by ௟݃௠ ൌ Ԧ݃ሺ௟ሻ ൉ Ԧ݃ሺ௠ሻ and ݃௟௠ ൌ Ԧ݃ሺ௟ሻ ൉ Ԧ݃ሺ௠ሻ. 

The Jacobian of the transformation isඥ݃ ൌ ඥ݀݁ݐሺ ௟݃௠ሻ .The motion equations 
are integrated over an arbitrary surface element of area ΔA and are resolved in 
the direction ߣ௞ 
 

,ଵߦ௞ሺߣ  ଶሻߦ ൌ Ԧ݃ሺ௟ሻሺߦ଴
ଵ, ଴ߦ

ଶሻ ∙ Ԧ݃ሺ௞ሻሺߦଵ,  ଶሻ                            (1)ߦ
 

We indicate ෤݃Ԧሺ௟ሻ ൌ Ԧ݃ሺ௟ሻሺߦ଴
ଵ, ଴ߦ

ଶሻ  and ෤݃Ԧሺ௞ሻ ൌ Ԧ݃ሺ௞ሻሺߦଵ, ଶሻߦ . Then, according to 
Gallerano et al. [12], the integral expressions of the FNBE in contravariant 
formulation is: 
 

∬
డு

డ௧
஺∆ܣ݀ ൌ െ׬ ௠݊௠௅ݎ ܮ݀ െ∬ ሺݏ௟ሻ,௟	݀ܣ∆஺                      (2) 

 

∬ ෤݃Ԧሺ௟ሻ ∙∆஺ Ԧ݃ሺ௞ሻ
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ு
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మ
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∬ ෤݃Ԧሺ௟ሻ ∙∆஺ Ԧ݃ሺ௞ሻ݃ܪܩ௞௠݄,௠݀ܣ െ∬ ෤݃Ԧሺ௟ሻ ∙∆஺ Ԧ݃ሺ௞ሻܴ௞݀ܣ െ

∬ ෤݃Ԧሺ௟ሻ ∙∆஺ Ԧ݃ሺ௞ሻ
௥ೖ
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ሺݏ௠ሻ,௠݀ܣ ൅∬ ෤݃Ԧሺ௟ሻ ∙∆஺ Ԧ݃ሺ௞ሻ

డு

డ௧
ܸ′௞݀ܣ ൅

∬ ෤݃Ԧሺ௟ሻ ∙∆஺ Ԧ݃ሺ௞ሻܸܪ′′௞݀ܣ െ∬ ෤݃Ԧሺ௟ሻ ∙∆஺ Ԧ݃ሺ௞ሻܶܪ௞݀ܣ െ∬ ෤݃Ԧሺ௟ሻ ∙∆஺ Ԧ݃ሺ௞ሻܹܪ௞݀(3)        ܣ 
 
which reduce to the NSWE by switching off dispersive terms. In the above 
equations, a comma with an index in a subscript stands for covariant 
differentiation, L is the contour line of the surface element of area ΔA and ݊௠is 
the m-th component of the covariant outward normal, G is the constant of 
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gravity,	ܸ௟ ൌ
డ௏ᇲ೗

డ௧
൅ ܸᇱᇱ௟  and ܶ௟  are the dispersive terms obtained by retaining 

terms up to ܱሺߤଶሻ  and ܱሺߤߝଶሻ  in depth power expansions of the horizontal 
velocity according to Wei et al. [10], ܹ௟ is the term related to the approximation 
to the second order of the vertical component of the vorticity according to Chen 
et al.. [11] and ሬܴԦ  is the bottom resistance term. ݎ∗௟  is an auxiliary variable 
defined as: ݎ∗௟ ൌ 	 ௟ݎ ൅   .ᇱ௟ܸܪ

3 The numerical scheme 

The numerical integration of eqns (2) and (3) is carried out by a high order 
upwind WENO scheme. The computational domain discretization is based on a 
grid defined by the coordinate lines ߦଵ and ߦଶ and by the points of coordinates 
ଵߦ ൌ ଶߦ ଵ  andߦ∆݅ ൌ  ଶ,which represent the centres of the calculation cellsߦ∆݆
௜;௝ܫ =( ௜ିଵߦ ଶ⁄

ଵ  , ௜ାଵߦ	 ଶ⁄
ଵ  )×( ௜ିଵߦ	 ଶ⁄

ଶ , ௜ିଵߦ	 ଶ⁄
ଶ ௡ݐ .(  is the time level of the known 

variables, while ݐ௡ାଵ= ݐ௡ + Δt is the time level of the unknown variables. Let us 
indicate with ࡸሺݎଵ, rଶሻ  and with ࡸ஻(ݏଵ,	ݏଶ) respectively the first and the second 
term on the right-hand side of eqn (2). Let us indicate with ࡰሺܪ, rଵ, rଶሻ the sum 
of the convective and free surface elevation terms (which is split according to 
Xing and Shu [21] in order to ensure a well-balanced scheme) on the right-hand 
side of eqn (3) and with ࡮ࡰሺܪ, rଵ, rଶሻ  the bottom friction term, the sum of 
dispersive terms and the term related to the approximation to the second order of 
the vertical vorticity on the right-hand side of this equation. By integrating eqns 
(2) and (3) over [ݐ௡,	ݐ௡ାଵ] we get:  
 

ഥ෩௜;௝ܪ
ሺ௡ାଵሻ ൌ ഥ෩௜;௝ܪ

ሺ௡ሻ െ
ଵ

௱஺
׬ ሾࡸሺݎଵ, rଶሻ ൅ ,ଵݏሺ࡮ࡸ sଶሻሿ݀ݐ
௧೙శభ

௧೙                      (4) 

r̅෨∗௜;௝
௟ሺ௡ାଵሻ

ൌ r̅෨∗௜;௝
௟ሺ௡ሻ

െ
ଵ

௱஺
׬ ሾࡰሺܪ, rଵ, rଶሻ ൅ ,ܪሺ࡮ࡰ ,ଵݎ rଶሻሿ݀ݐ
௧೙శభ

௧೙               (5) 
 

Eqns (4) and (5) represent the advancing from time level ݐ௡ to time level ݐ௡ାଵ, of 

the variables ܪഥ෩௜;௝  and r̅෨∗௜;௝
௟

. The state of the system is known at the centre of the 

calculation cell and it is defined by the cell-averaged values  ܪഥ෩௜;௝  and r̅෨∗௜;௝
௟

. In 
this paper, time integration of eqns (4) and (5) is carried out by means of a third 
order accurate Strong Stability Preserving Runge–Kutta method (SSPRK) 
reported in Spiteri and Ruuth [22]. The SSPRK method can be written in 
compact form as follows: 
 

ഥ෩௜;௝ܪ
ሺ଴ሻ ൌ ഥ෩௜;௝ܪ

ሺ௡ሻ		; 				 r̅෨∗௜;௝
௟ሺ଴ሻ

ൌ r̅෨∗௜;௝
௟ሺ௡ሻ

                                   (6) 
 

ഥ෩௜;௝ܪ
ሺ௣ሻ ൌ෍ ቄߗ௣௤ܪ௜,௝

ሺ௤ሻ ൅ ,൫rଵሺ௤ሻࡸ௣௤ൣ߮ݐ߂ rଶሺ௤ሻ൯ ൅ ,ଵሺ௤ሻݏሺ࡮ࡸ sଶሺ௤ሻሻ൧ቅ
௣ିଵ

௤ୀ଴
        (7) 

 

r̅෨∗௜;௝
௟ሺ௣ሻ

ൌ෍ ቄߗ௣௤r̅෨∗௜;௝
௟ሺ௣ሻ

൅ ܪ൫ࡰ௣௤ൣ߮ݐ߂
ሺ௤ሻ, rଵሺ௤ሻ, rଶሺ௤ሻ൯ ൅

௣ିଵ

௤ୀ଴

ܪ൫࡮ࡰ			
ሺ௣ሻ, rଵሺ௣ሻ, rଶሺ௣ሻ, sଵሺ௣ሻ, sଶሺ௣ሻ൯൧ቅ                                        (8) 
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ഥ෩௜;௝ܪ
ሺ௡ାଵሻ ൌ ഥ෩௜;௝ܪ

ሺଷሻ		; 				 r̅෨∗௜;௝
௟ሺ௡ାଵሻ

ൌ r̅෨∗௜;௝
௟ሺଷሻ

                                    (9) 
 

where p=1;2;3. See Spiteri and Ruuth [22] for ௣௤ߗ  and ߮௣௤ values. The 
computation of ࡸሺݎଵ, rଶሻ ,ܪሺࡰ , rଵ, rଶሻ ஻ࡸ , ଵݏ) , ଶݏ	 ,ܪሺ࡮ࡰ ,( ,ଵݎ rଶ, ,ଵݏ sଶሻ  terms 
needs the numerical approximation of the spatial integrals. According to the 
method proposed by Erduran et al. [13] and used among the others by Tonelli 
and Petti [14] and Shi et al. [16], this numerical approximation is carried out by 
means of a hybrid finite volume–finite difference scheme. By applying this 

method, once the values of the auxiliary variable 	r̅෨∗
௟
	 are known, the values of 

the original variable ̅ݎሚ௟ at each stage of the Runge–Kutta method are computed 
by solving the following equation: 
 

r̅෨∗
௟
ൌ ሚ௟ݎ̅ ൅  ഥ෩Vഥ෩ᇱ௟                                                (10)ܪ

 

in which Vഥ෩ᇱ௟ includes first and second derivative of  r̅෨∗
௟
⁄ഥ෩ܪ  with respect to ߦଵ 

and ߦଶ and cross derivatives. The numerical approximation of the derivatives in 

the Vഥ෩ᇱ௟ term is carried out by a second order central difference scheme. 
     Once the values of er are known, the ࡸ஻ ଵݏ) , ଶݏ	 ) and ࡮ࡰሺܪ, ,ଵݎ rଶ, ,ଵݏ sଶሻ  
terms on the right-hand side of eqns (7) and (8) are discretized using a second 
order central difference scheme at the cell centroids, as in Wei and Kirby [10] 
and Shi et al. [16]. Since the ࡸ஻  and ࡮ࡰ  terms need to be updated using 
,ܪ ,ଵݎ rଶ, ,ଵݏ sଶ at the corresponding time step, an iteration is needed to achieve 
convergence, as suggested by Shi et al. [16]. Convective terms and terms related 
to the free surface elevation that define the ࡸሺݎଵ, rଶሻ and ࡰሺܪ, rଵ, rଶሻ terms on 
the right-hand side of eqns (7) and (8) are computed by a high-order finite 
volume WENO scheme. According to the procedure proposed by Gallerano et al. 
[20] this numerical scheme is based on the following sequence: 
1. Starting from cell averaged values, the point values of the unknown 

variables at the centre of the contour segments which define the calculation 
cells are computed by means of WENO reconstructions. Two WENO 
reconstructions defined on two adjacent cells are used to get two point 
values of the unknown variables at the centre of the contour segment which 
is common with the two adjacent cells. 

2. The point values of the unknown variables at the centre of the contour 
segments are advanced in time by means of the so-called exact solution of a 
local Riemann problem, with initial data given by the pair of point-values 
computed by two WENO reconstructions defined on the two adjacent cells. 
In accordance with the procedure proposed by Rossmanith et al. [7], all 
necessary Riemann problems (Shock Waves for breaking and Rarefaction-
Waves for wet-dry front) are solved in a locally valid orthonormal basis. 
This orthonormalization allows one to solve Cartesian Riemann problems 
that are devoid of geometric terms. 

3. The spatial integrals that define the ࡸሺݎଵ, rଶሻ  and ࡰሺܪ, rଵ, rଶሻ  terms are 
numerically approximated by means of a high order quadrature rule, starting 
from point values of the dependent variables computed at the previous step. 
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4 Results 

4.1 The dam-break problem on a dry bed 

In the typical dam-break problem a septum divides two regions: at the left of the 
septum still water of initial depth h଴ is present, while at the right of the septum 
the region is dry (Stoker [24]). The evolution of this initial condition upon 
removal of the septum, and so the suddenly release of the mound of water, is 
represented. 
     In this section the dam-break test is used to validate the adherence to the 
analytical solution of the solution obtained with the use of the model for 
the simulation of the wet and dry problem. 
     In the case in which a septum divides the wet and dry conditions and is 
suddenly removed at time t ൌ 0, we have the typical Ritter solution (Stoker [24]) 
here shown in dimensionless form: 
 

d∗ ൌ
ଵ

ଽ
ቀ2 െ

୶∗

୲∗
ቁ
ଶ
        (12) 

 

u∗ ൌ
ଶ

ଷ
ቀ
୶∗

୲∗
൅ 1ቁ                                 (13) 

 

The analytical solution for h଴
∗ ൌ 1  is represented by solid line in fig. 1 at 

different dimensionless time t∗ ൌ 0.006, 0.07, 0.12, 0.2. In the same fig. 1, the 
numerical results, obtained by using the proposed wet and dry model, are in very 
good agreement with the analytical solution.  
 

 

Figure 1: The dam break problem on a dry bed. A) Water depth. B) Velocity.  
Points: numerical results. Solid line: analytical solution. 

4.2 Solitary wave run-up on a conical island 

In this section we simulate the run-up of a solitary wave onto a conical Island. 
To this aim we numerically reproduce a laboratory test of Liu et al. [25]. A 
definition sketch for the computational domain used for the simulation is shown 
in fig. 2.  
 

102  Coastal Cities and their Sustainable Future

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 148, © 2015 WIT Press



 

Figure 2: Run-up of a solitary wave on a conical island. Schematic plot of the 
computational domain. A) Plane view. Outer circle: base of 
the island. Middle dashed circle: initial still water shoreline. Inner 
circle: island top. The dots represent measurement locations at 
6:(9.4,15), 9:(10.4,15), 16:(13,12.42), 22:(15.6, 15). B) Cross 
section of the computational domain along the centreline (y=15 m). 
Dotted line: initial still water level.  

     The outer circle shows the base of the island, which is centred at (x,y)=(13, 
15) m and has a radius R=3.6 m; the middle dashed circle represents the initial 
still water shoreline (radius R=2.32); the inner circle represents the island top 
(radius R=1.1 m); the island height is 0.625 m.    
     As initial condition a rightward propagating solitary wave is imposed to the 
left boundary of the domain, on an otherwise calm free surface. The following 
expressions (eqns (14) and (15)) are used for the free surface elevation ߟ and the 
depth averaged velocity component u in the x direction:  
 
 

ሻݐሺߟ ൌ ଶ݄ܿ݁ݏܣ ቈට
ଷ஺

ସ௛
ݐሺܥ	 െ ܶሻ቉                                       (14) 

 

ሻݐሺݑ ൌ
஼ఎሺ௧ሻ

௛ାఎሺ௧ሻ
                                 (15) 

 
 

in which h is the still water depth, A is the amplitude of the incident wave, T is 
the time at which the wave crest enters the domain and ܥ ൌ ඥ݃ሺ݄ ൅  ሻ is theܣ
wave celerity. In this work the test case C of Liu et al. [25] is reproduced: ݄ ൌ
0.64	݉, ܣ ൌ 0.032	݉  and ܶ ൌ ݏ	2.45 . The spatial discretization step is ݀ݔ ൌ
ݕ݀ ൌ 0.1	݉, the time discretization step is ݀ݐ ൌ   .ݏ	0.01
     In fig. 3 the comparison between the maximum computed run-up around the 
island and that measured by Liu et al. [25] is shown. The computed values of the 
maximum run-up around the island are in good agreement with the experimental 
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Figure 3: Run-up of a solitary wave on a conical island. Maximum run-up 
around the conical island. Circles: measured data. Line: computed 
values. 

data. It can be noted that the run-up on the back side of the island, caused by the 
collision of edge waves circling the island from both sides, is well simulated by 
the present model.  
     In fig. 4 the computed and measured time series from the measurement 
locations depicted in fig. 2 are shown. These four measurement locations have 
been chosen in order to represent the free surface elevation to the front, side, and 
rear of the island. From the comparison between the computed and measured 
values it can be seen that the proposed model is able to simulate the run-up at 
each measurement location around the island. Some secondary oscillation of the 
free surface elevation that has been observed during the laboratory experiments 
are slightly underestimated in the numerical simulation. The good agreement 
between the computed and observed values of the free surface elevation shows 
 

 

Figure 4: Run-up of a solitary wave on a conical island. Time series from the 
measurement locations depicted in fig. 8: A) 6, B) 9, C) 16, D) 22. 
Full line: computed values. Dashed line: experimental data. 
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the ability of the proposed model to adequately simulate the large run-up heights 
produced by a tsunami wave on the lee side of small islands. 
     In fig. 5 a sequence of images that represents the evolution of a solitary wave 
on a conical island is shown. Fig. 5A) shows the simulation of the wave run-up 
on the forepart of the island. In the further frames (fig. 5B)–5C)) is possible to 
observe the perfect reproduction of the diffraction phenomena and, as a 
consequence, the wave run-up on the lateral beaches. The last frame (fig. 5D)) 
shows that in the back side of the island the surface elevation caused by the 
collision of the two waves front is maximum.  
 

 

Figure 5: Run-up of a solitary wave on a conical island.  Surface elevation 
contour levels at time A) t = 7.2 s, B) t = 9.7 s, C) t = 11.0 s,  
D) t = 12.2 s. 

     In fig. 6A) sequences of images that represent the evolution of a solitary wave 
with a height of 0.064 m on a planar slope of 1:30 with a rip channel excavated 
along the center line is shown.  From fig. 6 it is possible to observe how the 
solitary wave breaks before on the plane part of the beach (fig. 6B)) and then in 
the rip channel (fig. 6C)) where the wave maintain higher values of the height 
and of celerity caused by a deeper bed. As a consequence the wet-dry front arise 
the maximum height of run up in the rip channel before (fig. 6D)) and then in 
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the plane beach (fig. 6E)). The same happens for the run down (fig. 6E)–6F)). 
From fig. 6 is possible to highlight the capacity of this model to simulate the 
hydrodynamic swash zone phenomena on morphologically complex beach.  

Figure 6: Run-up of a solitary wave on a beach with a rip channel. 
Instantaneous surface elevation at different times. 

5 Conclusion 

In this paper a model based on a contravariant integral form of fully non-linear 
Boussinesq Equations (FNBE) has been tested. It had been also demonstrated 
that this model allows the simulation of wave propagation from deep water 
regions up to the coast line including the surf zone and wave transformation 
phenomena (refraction, diffraction, reflection, shoaling and breaking) in 
computational domains representing the complex morphology of real coastal 
regions. 
     Therefore this model could be a strong planning instrument to test tsunami 
wet front progress even in the presence of a complex coastal line, irregular 
seabed and the presence of marine infrastructures.  
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