
Optimising Scheduling of Hybrid Learning using
Mixed Integer Programming

Matthew Davison1, Ahmed Kheiri2, Konstantinos Zografos2

1 STOR-i Centre for Doctoral Training, Lancaster University, Lancaster, UK
m.davison2@lancaster.ac.uk

2 Department of Management Science, Lancaster University, Lancaster, UK
{a.kheiri,k.zografos}@lancaster.ac.uk

Keywords: University Timetabling · Hybrid Learning · Mixed Integer Pro-
gramming

1 Introduction
The COVID-19 pandemic artificially reduced the already limited capacity of
physical spaces at universities. It forced a greater use of hybrid learning, which is
a mode of teaching that combines online and in-person elements. Previous studies
dealt with limited capacity by controlling the quantity and flow of students on
campus [5] or on the areas surrounding campus [1]. Other studies investigated
what policy changes allow a better use of resources [2].

Online classes are one way to reduce demand for physical space. Universities
in the future will likely continue to offer a mix of online and in-person classes be-
yond the pandemic [3]. Since students and staff typically prefer to attend classes
in-person, this motivates the need to limit the number of classes held online,
whilst still taking advantage of their ability to reduce the demand for physical
space. More specifically, the problem is to investigate how universities can max-
imise the number of courses that they offer, whilst simultaneously limiting the
number of online classes that are used to achieve this. This timetabling problem
differs to the classic timetabling problem in that the input is a list of classes, but
not all classes need to be assigned. Solutions to this problem identify how many
courses could be offered, which is useful information for universities planning
semesters. The preliminary model presented in this paper illustrates one way of
solving this particular problem.

2 Model Formulation
Timeslots are lengths of time that have a start and end. In this problem we
assume these are five minutes long. Timesets are defined as a subset of the set
of all timeslots. These are used to better model complicated arrangements. For
example, a timeset could describe a two hour class meeting every other week.
Table 1 provides the notation for the sets used within the formulation of the
model.

We define the matrix A where the entry Ar1,r2 is equal to the number of
timeslots it takes to travel from room r1 to room r2. In particular, for d a non-
negative integer, Ar1,r2 = d represents a travel time of 5d minutes.



2 M. Davison et al.

Table 1. Key notation. The first six sets are primarily used to describe elements of
the problem, the last seven sets are primarily used in the construction of constraints.

S Set of timeslots
T Set of timesets. Each t ∈ T is a subset of S
R Set of rooms
C Set of classes
K Set of courses
Lk Set of sections for course k. Each l ∈ Lk is a subset of C
Ru

r Set of timeslots when room r ∈ R is unavailable
Rc Set of rooms suitable for class c ∈ C
Tc Set of timesets suitable for class c ∈ C
RG Let G ⊆ C. RG := ∩c∈GRc

CG Let G ⊆ C. CG := {(c1, c2) ∈ G×G : c1 ̸= c2}
Rc

r Let r ∈ R. Rc
r := {c ∈ C : r ∈ Rc}

Os Let s ∈ S. Os := {a ∈ T : s ∈ a}

The set C contains all classes regardless of if they can be held online, in-
person or both. The online space is modelled as a room that is always available
and can host multiple classes at the same time. Let r∗ represent this online
space. A class, c ∈ C, can be held online if and only if r∗ ∈ Rc. For r∗ assume
that Ar∗,r∗ = 0 and Ar∗,r = d∗ for all r ∈ R \ r∗ where d∗ is a fixed number
of timeslots. For this paper, we assume any class can happen online and that
d∗ = 0.

2.1 Definition of variables

One set of variables used in this problem are binary variables indicating if a class
is assigned to a particular room and timeset. They are defined as follows:

xc,r,t =

{
1 Class c ∈ C is held in room r ∈ R in timeset t ∈ T ,
0 Otherwise.

The second set of variables are binary variables that indicate if a class uses
a room, or if a class uses a timeset. They are defined as follows:

yc,r =

{
1 Class c ∈ C is held in room r ∈ R,
0 Otherwise.

yc,t =

{
1 Class c ∈ C is held in timeset t ∈ T ,
0 Otherwise.

These variables are related to each other by linking constraints:

yc,r =
∑
t∈T

xc,r,t, ∀r ∈ R, c ∈ C,



Optimising Scheduling of Hybrid Learning 3

yc,t =
∑
r∈R

xc,r,t, ∀t ∈ T, c ∈ C.

We also define binary variables to indicate if courses are offered:

gk =

{
1 Course k ∈ K is offered,
0 Otherwise.

Parameter arrays Defined in Table 2, parameter arrays are fully determined
by a given problem instance. They are used to indicate if a group of resources
satisfy a particular condition, thus indicating what constraints to include in the
model corresponding to that instance.

Table 2. Definition of each parameter array. t, t1 and t2 are in the set T . r, r1 and r2
are in the set R

Array Description

D0 A matrix where D0[r, t] is equal to one if room r is unavailable at some
point during timeset t, zero otherwise

D1 An array where D1[r1, r2, t1, t2] is equal to one if there is not enough time
between t1 and t2 to travel between r1 and r2, zero otherwise

D2 A matrix where D2[t1, t2] is equal to zero if the first meeting in t1 concludes
before the start of the first meeting in t2, one otherwise

D3 A matrix where D3[t1, t2] is zero if the meetings in t1 and t2 do not occur on
overlapping weeks and days, if any meeting in t1 and t2 occurs on the same
day and week then D3[t1, t2] is equal to the number of timeslots between
the start of the earliest meeting and end of the latest

D4 A matrix where D4[t1, t2] is equal to zero if t1 and t2 start at the same time
of day, one otherwise

D5 A matrix where D5[t1, t2] is equal to zero if t1 completely overlaps t2 in the
times of day they meet or vice versa, one otherwise

D6 A matrix where D6[t1, t2] is equal to zero if t1 meets on a subset of days
that t2 does or vice versa, one otherwise

D7 A matrix where D7[t1, t2] is equal to zero if t1 and t2 do not meet on any
of the same days, one otherwise

D8 A matrix where D8[t1, t2] is equal to one if t1 overlaps t2, zero otherwise.

2.2 Constraints

There are various constraints that need to be included within any university
timetabling model. Some are more specialised so that the timetable adheres
to university policy or allows students and staff to travel comfortably between
classes. In this section, some constraints included within our model are described.



4 M. Davison et al.

Most of these constraints have been proposed in the existing timetabling litera-
ture [4] and what is presented in this paper is our approach to modelling these
constraints.
Classes can only be assigned at most a single room and a single timeset∑

t∈T

∑
r∈R

xc,r,t ≤ 1, ∀c ∈ C.

Classes can only be assigned compatible rooms and times To ensure
only compatible rooms and times are used, for each c ∈ C add the following
constraints: ∑

r∈R

xc,r,t = 0, ∀t ∈ T \ Tc.∑
t∈T

xc,r,t = 0, ∀r ∈ R \Rc.

Classes should not happen in a room when that room is not available∑
t∈T

∑
r∈R

D0[r, t]xc,r,t = 0, ∀c ∈ C.

In-person classes should not use the same room at the same time∑
c∈Rc

r

∑
t∈Os

xc,r,t ≤ 1, ∀r ∈ R \ r∗, s ∈ S.

Group of classes should occur in the same room Let G be a set of
classes that must occur in the same room. For each r ∈ RG define a binary
variable sGr that takes the value one if every class in G uses room r and zero
otherwise. Add the following constraints:∑

c∈G

yc,r = |G|sGr , ∀r ∈ RG,∑
r∈RG

sGr ≤ 1,

yc,r = 0, ∀r /∈ RG, c ∈ G.

Attending a group of classes Staff and students have collections of classes
they must attend. Denote a collection of classes as G. For each (c1, c2) ∈ CG add
the following constraints:

D1[r1, r2, t1, t2](xc1,r1,t1 + xc2,r2,t2) ≤ 1, ∀t1 ∈ Tc1 , t2 ∈ Tc2 , r1 ∈ Rc1 , r2 ∈ Rc2 .

Group of classes should occur in a certain order Let G be a sequence of
classes that should occur in order, meaning that the first meeting of a class should
completely finish before the start of the next class. Suppose G = (c1, c2, . . . , ck),
then for each pair (ci, ci+1) where i ∈ {1, . . . , k−1} add the following constraints:

D2[t1, t2](yci,t1 + yci+1,t2) ≤ 1, ∀t1 ∈ Tci , t2 ∈ Tci+1 .



Optimising Scheduling of Hybrid Learning 5

Group of classes should be grouped within a period of time Let G
be a set of classes that should all happen within H timeslots if they happen on
the same day and week. For each (c1, c2) ∈ CG add the following constraints:

I(D3[t1, t2] > H)(yc1,t1 + yc2,t2) ≤ 1, ∀t1 ∈ Tc1 , t2 ∈ Tc2 ,

where I is an indicator function that takes the value one if D3[t1, t2] > H holds
and zero otherwise.
Timing constraints All timing specific constraints have the same form.
Suppose G is the set of classes the constraint applies to. For each (c1, c2) ∈ CG

add the following constraints:

D[t1, t2](yc1,t1 + yc2,t2) ≤ 1, ∀t1 ∈ Tc1 , t2 ∈ Tc2 ,

where D is the appropriate parameter array for that constraint. Table 3 describes
a constraint on a group of classes and the associated parameter array.

Table 3. Constraints and associated parameter array

Constraint Associated D

Classes should start at the same time D4

Classes should occur during the same time of day D5

Classes should occur on the same days of the week D6

Classes should occur on the different days of the week D7

Classes should not overlap in time D8

Course structure constraints Courses can be split into sections that teach
identical content. Sections are a collection of classes and it is possible for two
sections of the same course to share classes. We define binary variables to indicate
if a course section is offered:

hk,l =

{
1 Section l ∈ Lk of course k ∈ K is offered,
0 Otherwise.

For a given course, k ∈ K, a section l ∈ Lk can be offered only if all of the
classes in that section are offered. This is modelled by the following constraints:

hk,l ≤
1

|l|
∑
c∈l

∑
t∈T

∑
r∈R

xc,r,t, ∀l ∈ Lk, k ∈ K,

where |l| is the number of classes in a section. A course is only offered if there is
at least one section being offered. This is modelled by the following constraints:

gk ≤
∑
l∈Lk

hk,l, ∀k ∈ K.



6 M. Davison et al.

2.3 Objectives

There are many objectives in the timetabling literature. In this section some of
the objectives that could be used within this model are presented.

Maximise number of courses offered

max z1 =
∑
k∈K

gk,

Maximise number of classes held

max z2 =
∑
c∈C

∑
t∈Tc

∑
r∈Rc

xc,r,t.

Whilst courses are important, offering as many classes as possible provides
flexibility within these courses.

Minimise number of classes held online

min z3 =
∑
c∈C

∑
t∈Tc

xc,r∗,t.

Ideally, there would be no need for online classes but it cannot be ignored
that they can help increase z1 because they are not subject to physical space
limitations, a common limit to teaching capacity.

Minimise cost of assignment

min z4 =
∑
c∈C

(∑
r∈Rc

Pc,ryc,r +
∑
t∈Tc

Pc,tyc,t

)
,

where Pc,r and Pc,t are non-negative penalties for assigning class c ∈ C to room
r ∈ Rc and timeset t ∈ Tc respectively. The exact value of these penalties are
subjective in practice. They could represent:

– Actual monetary cost of using the resource.
– Approximation of preference (low penalty indicating higher preference).
– Arbitrarily large penalties to deter solution from using a resource.

Weighted objective approach

max z = w1z1 + w2z2 + w3z3 + w4z4,

where w1 and w2 are non-negative weights, and w3 and w4 are non-positive
weights. By properly tuning these weights the model is able to determine an
optimal mix of in-person and online teaching.



Optimising Scheduling of Hybrid Learning 7

3 Results
To verify that this model produces feasible timetables, three instances from
the 2019 International Timetabling Competition (ITC-2019) were used [4]. De-
scribed in Table 4 is the number of classes, timesets and rooms for each instance.

The problem defined in the ITC-2019 involves creating a complete timetable
and allocating students to classes based on their course requests. Our model
does not consider student allocation nor requires a complete timetable to be
constructed. Therefore, in this experiment, we maximise z2 only. Using this so-
lution, it is possible to evaluate z3 and z4.

For our experiments we used an internal computing node running CentOS
Linux with an Intel Xeon E5-2699 v3 CPU running at 2.30GHz and 528GB of
RAM. The model was implemented in Python 3.5 and solutions were found using
the commercial solver Gurobi 9.0, which successfully produced valid timetables.
Table 4 provides information about each solution.

Table 4. The problem instances and quantities of key features. In the “Type” col-
umn, “T” indicates “test” instances and “C” indicates “competition” instances. The z3
recorded is the number of classes that does not require a room, which we treat as
“online-only” classes. The z4 recorded here is the same value reported by the ITC-2019
validation tool [4]

Instance Type |K| |C| |T | |R| z2 z3 z4 Time (s)

lums-sum17 T 19 20 93 62 20 0 73 0.003
bet-sum18 T 48 127 50 46 127 6 3502 0.011
tg-fal17 C 36 711 1645 23 711 15 9610 58757.559

As can be seen from Table 4 in all three instances |C| = z2 meaning that our
solutions are optimal for this objective. Since we are offering all possible classes,
it is clear that it is possible to offer every course.

Acknowledgements We gratefully acknowledge the support of the EPSRC
funded EP/S022252/1 STOR-i Centre for Doctoral Training.

References
1. Al-Yakoob, S.M., Sherali, H.D.: A mixed-integer programming approach to a class

timetabling problem: A case study with gender policies and traffic considerations.
European Journal of Operational Research 180(3), 1028–1044 (2007). https://doi.
org/https://doi.org/10.1016/j.ejor.2006.04.035

2. Barnhart, C., Bertsimas, D., Delarue, A., Yan, J.: Course Scheduling Under Sudden
Scarcity: Applications to Pandemic Planning. Manufacturing & Service Operations
Management 24(2), 727–745 (2022). https://doi.org/10.1287/msom.2021.0996,
https://doi.org/10.1287/msom.2021.0996

3. Lederman, D.: What’s the future of the physical college campus? In-
side Higher Ed (2021), https://www.insidehighered.com/news/2021/07/16/
whats-future-physical-college-campus

https://doi.org/https://doi.org/10.1016/j.ejor.2006.04.035
https://doi.org/https://doi.org/10.1016/j.ejor.2006.04.035
https://doi.org/https://doi.org/10.1016/j.ejor.2006.04.035
https://doi.org/https://doi.org/10.1016/j.ejor.2006.04.035
https://doi.org/10.1287/msom.2021.0996
https://doi.org/10.1287/msom.2021.0996
https://doi.org/10.1287/msom.2021.0996
https://www.insidehighered.com/news/2021/07/16/whats-future-physical-college-campus
https://www.insidehighered.com/news/2021/07/16/whats-future-physical-college-campus


8 M. Davison et al.

4. Müller, T., Rudová, H., Müllerová, Z.: University course timetabling and Interna-
tional Timetabling Competition 2019. Proceedings of the 12th International Con-
ference on the Practice and Theory of Automated Timetabling (PATAT 2018) pp.
5–31 (2018)

5. Vermuyten, H., Lemmens, S., Marques, I., Beliën, J.: Developing compact course
timetables with optimized student flows. European Journal of Operational Re-
search 251(2), 651–661 (2016). https://doi.org/https://doi.org/10.1016/j.
ejor.2015.11.028

https://doi.org/https://doi.org/10.1016/j.ejor.2015.11.028
https://doi.org/https://doi.org/10.1016/j.ejor.2015.11.028
https://doi.org/https://doi.org/10.1016/j.ejor.2015.11.028
https://doi.org/https://doi.org/10.1016/j.ejor.2015.11.028

	Optimising Scheduling of Hybrid Learning using Mixed Integer Programming

