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Abstract: This thesis studies the algebro-geometric aspects of supersymmetric

abelian gauge theories in three dimensions. The supersymmetric vacua are demon-

strated to exhibit a window phenomenon in Chern-Simons levels, which is analog-

ous to the window phenomenon in quantum K-theory with level structures. This

correspondence between three-dimensional gauge theories and quantum K-theory

is investigated from the perspectives of semi-classical vacua, twisted chiral rings,

and twisted indices. In particular, the twisted index admits an algebro-geometric

interpretation as the supersymmetric index of an effective quantum mechanics. Via

supersymmetric localisation, the contributions from both topological and vortex

saddle points are shown to agree with the Jeffrey-Kirwan contour integral formula.

The algebro-geometric construction of Chern-Simons contributions to the twisted

index from determinant line bundles provides a natural connection with quantum

K-theory.
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Chapter 1

Introduction

1.1 Background

In the broadest terms, the study of physics is the ultimate endeavour to make sense

of the world we observe around us. From our observations, we build mathematical

models that describe and predict all kinds of natural phenomena, ranging from

Newton’s apples to human psychology. However, we usually refer to physics

by those more “fundamental” models. What is fundamental is a subjective and

evolving concept. For a theoretical physicist, this most likely means the theories

describing the most fundamental forces and particles, by which we mean they

cannot be further reduced to simpler constituents. The best fundamental theories

we currently have are

• the standard model describing the electroweak and the strong forces,

• and the theory of general relativity describing gravitation.
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These two theories are not fully compatible nor complete1. The research in theoret-

ical physics usually focuses on some specific issues concerning these two theories.

In particular, the strong force described by quantum chromodynamics in the

standard model is not yet fully understood. The main obstacle is that, unlike in

quantum electrodynamics, the perturbative approach widely used for scattering

experiments does not work in this regime where the interactions are strong. One

of the basic assumptions for the Feynman diagrams is that the interaction is weak.

There have been enormous efforts going into understanding the strong force. For

example, string theory was originally invented as a theory of the strong force,

which has evolved into a much more ambitious framework with deep insights in

both physics and mathematics. Lattice gauge theory is another well-established

probe into quantum chromodynamics utilising Monte Carlo simulations.

A different approach to deal with the non-perturbative nature of the standard

model is obviously to understand non-perturbatively the underlying framework,

quantum field theory. It is easier said than done. The standard model is far too messy

to deal with directly. So we adopt our best weapon, idealised toy models. This is

ubiquitous across branches of science, where we tend to first study the simplist

model that admits certain behaviours of interests. Our aim is to understand the

general framework of quantum field theories by studying interesting toy models.

Therefore we are free to impose further symmetries and adjust model parameters,

as long as the phenomena of interest are manifest. We sincerely hope that our

spherical cows would taste the same as the normally shaped ones.

An important technique is to implement supersymmetry, which is a proposed

1It is debatable if there can ever be a complete theory of physics. My view is that there would
always be physics beyond our current understanding.
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symmetry between the force carriers, bosons and the matter constituents, fermions.

There was a time when we were hopeful that supersymmetry is a genuine symmetry

of nature. Unfortunately, the recent results from the Large Hadron Collider have

ruled out the most plausible supersymmetric extensions to the standard model.

However, supersymmetry remains as a powerful tool to probe the structure of

quantum field theories. For instance, many infra-red dualities ubiquitous in

quantum field theories are first discovered in supersymmetric theories. The Seiberg-

Witten thoery [SW94], i.e., supersymmetric quantum chromodynamics retains

the signature phenomenon of confinement from non-supersymmetric quantum

chromodynamics, while offering exactly computable observables. It also provides

insight into topology via connections to Donaldson invariants [Don96]. This is far

from an isolated example contributing to mathematics.

In addition to the motivation of better understanding the non-perturbative aspects

of quantum field theories, the research in supersymmetry has been proven to

deliver striking insights into many areas of pure mathematics, including algebraic

geometry, topology, non-commutative algebras, and representation theory. In

particular, the study two-dimensional supersymmetric theories has revolution-

ary contributions to symplectic and algebraic geometry via the development of

homological mirror symmetry, Gromov-Witten theory, and quantum cohomology.

The research documented in this thesis specifically studies supersymmetric quantum

field theories in three spacetime dimensions, where we are slightly distorted from

the reality by tuning down the number of dimensions from four to three. The

focus is on gauge theories, which are a type of quantum field theory invariant

under local gauge symmetries. They are of significant interests in both physics

and mathematics. A three-dimensional gauge theory permits Chern-Simons terms

which is used to describe the fractional Hall effect in condensed matter physics.
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Equipped with supersymmetry, it can be considered as a lift to three dimensions

of two-dimensional supersymmetric gauge theories, which are closely related to

quantum cohomology and mirror symmetry. Therefore it is expected to produce

analogous mathematical results. In particular, there exists three-dimensional mir-

ror symmetry and quantum K-theory, which can be considered as a lift respectively

from homological mirror symmetry and quantum cohomology. More import-

antly, these three-dimensional analogues admit mathematically distinct properties.

Therefore the study of three-dimensional gauge theories are expected to lead to new

mathematics. Indeed the focus of this thesis is on those mathematical structures

arising from three-dimensional supersymmetric gauge theories.

1.2 Setup

The primary class of theories considered in this thesis consists of N = 2 supersym-

metric Chern-Simons abelian gauge theories with chiral matter contents, on some

three-dimensional base manifolds.

• The gauge symmetry is taken to be U(1). A discussion of higher rank groups

U(1)K is left to Chapter 8.

• The matter contents are N > 0 chiral superfields {Φj | j = 1, . . . ,N} charged

under the gauge group with charges Qj ̸= 0.

• The chiral multipletΦj has R-charge rj.

• The theories contain various Chern-Simons terms mixing the gauge, flavour,

and the R-symmetry.

• There exists a real Fayet-Iliopoulos parameter ζ associated to the topological

symmetry U(1)t.
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1.3 Results

There are two main strands of original research conducted in this thesis, which are

closely intertwined.

• The first strand is on the geometry of the twisted indices of these super-

symmetric gauge theories on S1 × Σ, where the circle S1 is the compactified

temporal dimension and the space is taken to be an arbitrary Riemann surface

Σ as shown below. This collaborative work has been published in [BFKX22].

ΣS1

×

We obtain an algebro-geometric interpretation of the twisted indices via

the technique of supersymmetric localisation [BFKX22], which is one of the

most powerful tool offered by supersymmetry. It allows us to compute the

path integrals exactly by “localising” the contributions to spaces of finite

dimensions. Supersymmetry enables us to introduce exact deformations and

scaling limits that lead to different mathematical models of the same partition

function. The topological twist is performed using the unbroken R-symmetry,

which preserved an N = (0, 2) quantum mechanics on the circle S1.

In general, using different classes of localisation schemes, the twisted index

localises to different types of integrals [Wil17]. In Coulomb branch local-

isation scheme, the path integral localises onto configurations where the

vectormultiplet scalar is non-zero and the gauge group is broken into a max-

imum torus [KWY10, HHL11b, HHL11a]. This formulates the twisted index

as Jeffrey-Kirwan contour integrals [BZ15, BZ17, CK16]. In Higgs branch
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localisation, the path integral localises onto configurations solving vortex

equations. This interprets the twisted index as integrals of characteristic

classes over the moduli spaces of vortices [FHY14, BP14].

We develop a Higgs branch localisation scheme, which leads to novel topolo-

gical saddle points, in addition to the vortex configurations. The topological

vacua are controlled by the Chern-Simons levels. Their existence is essential

to preserve the index during wall-crossing. This is achieved by consider-

ing a different scaling limit in the path integral, with an exact deformation

to the lagrangian depending on a one-dimensional Fayet-Iliopoulos para-

meter [BFK22]. It allows us to unambiguously interpret the twisted index

as the Witten index of the quantum mechanics on S1, in each individual

magnetic sector labelled by m, schematically given by [BFK22, BFK19]

I =
∑
m∈Z

qm

∫
Â(Mm) ch(Vm) ,

where Mm denotes the moduli space parametrising saddle points of the

localised path integral with magnetic flux m ∈ Z, and Vm represents a

complex of vector bundles arising from the massive fluctuations of chiral

multiplets and Chern-Simons terms. For vortex saddles, the moduli space

consists of symmetric products of the curve

Mm =
∑
i

symdiΣ

for each possible non-vanishing chiral multiplet Φi, where symdiΣ are the

loci of vortices. For topological saddles, the moduli space is roughly a Picard

variety parametrising holomorphic line bundles on Σ

Mm ∼ Picm(Σ) ≃ T2g.

With a careful analysis of the index bundle and Chern-Simons terms, the
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characteristic classes are computed using the Grothendiek-Riemann-Roch

theorem. This approach reproduces the results obtained using the Jeffrey-

Kirwan residue prescription under the conventional scheme of Coulomb

branch localisation.

• The second strand of research concerns the connection between these quantum

field theories and quantum K-theory, to be published in [BX22].

Quantum K-theory [Giv00, GL03, Lee04, Giv15] is a K-theoretical extension

to quantum cohomology. It is also referred to as quasi-map K-theory [ZZ20]

in the mathematical literature. Generally speaking, it studies the intersection

theory of complex vector bundles over the spaces of holomorphic curves in

Kähler manifolds. Many directions of quantum K-theory are under active

research. For example, recent works [BMO10, MO12, MO15] have developed

deep connections to geometric representation theory and quantum integrable

systems. Furthermore, a striking correspondence between three-dimensional

gauge theories and quantum K-theory [JM20, JM19, JMNT20, UY20] has also

been under active research.

Quantum K-theory has an additional parameter called the “level” [RZ18,

RWZ20], compared to quantum cohomology. We propose that this level

can be interpreted as the Chern-Simons level in the class of supersymmetric

gauge theories we have been studying. While this correspondence has been

studied before in ad hoc fashions, we aim to give a formal interpretation via

our geometric construction of twisted indices. The Higgs branch localisation

developed in the previous strand of research leads to novel topological saddle

points, in addition to the vortex saddle points. These topological saddle points

exist when the effective Chern-Simons level in the asymptotic regions is non-

zero. This correspondence between these two distinct phenomena in physics
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and mathematics can be demonstrated directly from the semi-classical vacua,

the Bethe ansatz equations, and the twisted indices. Thus this phenomenon

is a new physical interpretation to the window phenomenon in quantum

K-theory [JMNT20], which also opens up the study on how to define quantum

K-theory outside the window by taking into account the topological saddles.

1.4 Outline

The bulk of this thesis is organised by the topology of the spacetime base manifold

of the quantum field theories.

• The case of flat manifold R3 is discussed in Chapter 2. We review the

semi-classical vacuum equations and the type of their solutions, roughly

following [AHI+97, IS13]. The non-generic types of vacua, i.e., the Higgs

branch and the topological branch vacua are studied in details. Then the

window phenomenon for Chern-Simons levels is introduces, which is the

observation that the topological vacua can only co-exist with the Higgs vacua

for the Chern-Simons level in a certain critical window. We propose this

as the physical interpretation of the critical window in quantum K-theory

with level structures. This discussion is based on the work to be published

in [BX22].

• We investigate the corresponding theories on S1 × R2 in Chapter 3, where

the circle S1 of radius β is the compactified temporal dimension and the

space is taken to be the plane R2. In this chapter we study the theory by

viewing it as a lift from the A-twist of the two-dimensional N = (2, 2) gauge

theory on R2. The behaviour of the Bethe ansatz equations are studied in
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the different limits of the radius β. The solutions are shown to reproduce

the behaviour of supersymmetric vacua in flat spacetime in the large radius

limit. In the small radius limit, the solutions corresponding to the Higgs

vacua in flat spacetime are shown to be captured by a two-dimensional gauge

theory, while the topological vacua are de-coupled into a collection of disjoint

two-dimensional theories. The Bethe equations define the quantum K-theory

ring, which reduces to the twisted chiral ring in the small radius limit if and

only if the Chern-Simons level lies in a critical window. This chapter is based

on [BX22].

• The more general case of a topological twist on S1×Σ is studied in Chapter 4,

where the space is taken to be a generic Riemann surface Σ of genus g. A

topological twist [Wit98, NS15] is performed to preserve supersymmetry on

curved spaces, resulting in a N = (0, 2) quantum mechanics on S1. Instead of

viewing the theory as a lift from two-dimensional theories in Chapter 3, we

study it from the perspective of this quantum mechanics. We schematically

construct an algebro-geometric interpretation of the twisted index as the

supersymmetric index of a quantum mechanics on S1, which reproduces the

Jeffrey-Kirwan contour integral formula. The full constructions are docu-

mented in Chapter 5 and Chapter 6. It also offers a geometric explanation of

the window phenomenon via the construction in Chapter 7 of Chern-Simons

contributions as determinant line bundles of auxiliary chiral multiplets. This

chapter is based on the research from [BFKX22, BX22].

• The full algebro-geometric construction of the twisted index for vortex saddles

is discussed in Chapter 5. This chapter is based on [BFKX22].

• The full algebro-geometric construction of the twisted index for topological

saddles is discussed in Chapter 6. This chapter is based on [BFKX22].
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• Chapter 7 gives an algebro-geometric construction for the Chern-Simons

contributions in twisted indices. The Chern-Simons contributions are con-

structed from the determinant line bundles of auxiliary chiral multiplets as a

result of integrating out. This is analogous to the level structure in quantum

K-theory. This chapter is based on [BX22].

• A brief exploration of higher rank abelian theories is conducted in Chapter 8.

Instead of trying to give a complete treatment, we only aim to set up the

notations and discuss some expectations. These more general theories admit

three-dimensional mirror symmetry. We investigate with some examples by

computing their twisted indices. This chapter is based on [BX22].

• The computational technique of multi-variate Jeffrey-Kirwan contour integ-

rals is proposed in Appendix A via a transformation formula. The validity

is substantiated by correctly reproducing the twisted indices of a mirror pair

of N = 4 abelian linear quiver gauge theories. This appendix is based on my

unpublished work.

• Some foundational background materials for this thesis are reviewed in

Appendix B and Appendix C, including gauge theories, bundles on Riemann

surfaces, and abelian vortex equations.



Chapter 2

Supersymmetric Vacua

The first half of this chapter reviews some general aspects of N = 2 supersymmetric

gauge theories in flat space R3, closely following [AHI+97, IS13]. In particular we

discuss the classification of supersymmetric vacua of abelian Chern-Simons gauge

theories in the presence of real masses and Fayet–Iliopoulos parameters. There

exist two types of generic vacua: the Higgs branch and the topological branch. The

discussion sets up the notation for this thesis, and provides a basis for discussing

theories on more sophisticated manifolds in later chapters.

In later sections of this chapter, we introduce the window phenomenon for the

Chern-Simons levels, where a specific window of Chern-Simons levels ensures the

absence of topological vacua in a given chamber for the Fayet–Iliopoulos parameters.

This observation suggests that it may be identified with the window phenomenon

in the quantum K-theory of the Higgs branch with level structures [BX22]. This

preliminary identification is also evidenced from the perspective of twisted chiral

rings in Chapter 3, and finally justified with an algebro-geometric interpretation

of twisted indices in Chapter 4 and Chapter 7.
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Two examples are provided in the end to illustrate the vacuum structure and the

window phenomenon .

2.1 Supersymmetric Quantum Field Theory

2.1.1 Supersymmetry Algebra

Assuming a lorentzian signature ηµν = diag(−1,+1,+1) for the metric, the N = 2

supersymmetry in three dimensions contains four supercharges [IS13], satisfying

the following anti-commutation relations

{Qα, Qβ} = 0 ,
{
Qα, Qβ

}
= 0 , (2.1.1a){

Qα, Qβ
}
= 2γµαβPµ + 2iϵαβZ . (2.1.1b)

The complex supercharges Q and Q are labelled by the spinor indices α,β ∈ {1, 2}.

The gamma matrices {γµ | µ = 0, 1, 2} satisfying

(γµ)
ρ
α (γν)

β
ρ = ηµνδ β

α + ϵµνρ(γρ)
β

α (2.1.2)

can be chosen as 
γ1

γ2

γ3

 =


−1

σ1

σ3

 , (2.1.3)

where σ denotes the Pauli matrices. The symmetric term γµPµ contains the mo-

mentum Pµ, while the anti-symmetric term ϵZ is from the real central charge Z.

This algebra can be obtained by dimension reduction from the N = 1 supersym-

metry [WB92] in four dimensions, where the central charge Z comes from the

reduced P3 momentum.
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In the superspace formulation, the supercharges are represented by differential

operators Qα and Qα acting on a superfield O according to

δϵO = i
[
ϵQ− ϵQ,O

]
=
(
ϵQ− ϵQ

)
O . (2.1.4)

The superspace derivatives Dα and Dα are defined to be anti-commuting with the

differential operators Qα and Qα. In the superspace coordinates (x, θ, θ), they can

be explicitly written as

Qα =
∂

∂θα
− iγµαβθ

β
∂µ , (2.1.5a)

Qα = −
∂

∂θ
α + iθβγµβα∂µ , (2.1.5b)

and

Dα =
∂

∂θα
+ iγµαβθ

β
∂µ , (2.1.6a)

Dα = −
∂

∂θ
α − iθβγµβα∂µ . (2.1.6b)

A general superfield F(x, θ, θ) is a function of the superspace, which can be expan-

ded in powers of θ and θ as

F(x, θ, θ) = f(x) + θϕ(x) + θχ(x)

+ θθm(x) + θθn(x) + θγµθ vµ(x)

+ θθθ λ(x) + θθθψ(x)

+ θθθθD(x) . (2.1.7)

Superfields form linear representations of the supersymmetry algebra, which are

in general reducible. We may impose covariant constraints to eliminate some extra

component fields.

The field contents of N = 2 gauge theories involve the following representations of
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the supersymmetry algebra:

• A chiral superfield Φ satisfies

DαΦ = 0 , (2.1.8)

usually serving as matter contents. This constraint can be easily solved in

terms of yµ = xµ + iθγµθ and θ satisfying

Dαyµ = Dαθ = 0 . (2.1.9)

In components, the chiral superfieldΦ = (ϕ,ψ, F) can be written as

Φ(x, θ, θ) = ϕ(y) +
√
2θψ(y) + θθ F(y)

= ϕ(x) + iθγµθ∂µϕ(x) +
1

4
θθθθ∂2ϕ(x)

+
√
2θψ(x) −

i√
2
θθ ∂µψ(x)γ

µ θ+ θθ F(x) . (2.1.10)

• Similarly an anti-chiral superfield Φ satisfies

DαΦ = 0 . (2.1.11)

Its components can be obtained by directly taking the conjugation of a chiral

superfield.

• A vector superfield V obeys

V = V† . (2.1.12)

In the Wess-Zumino gauge [WB92], the vector multiplet V = (σ,Aµ, λ, λ,D)

can be written as

V = −iθθσ− θγµθAµ + iθθ λ− iθθθ λ+
1

2
θθθθD . (2.1.13)
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• A linear superfield Σ obeys

ϵαβDαDβ Σ = ϵαβDαDβΣ = 0 . (2.1.14)

For example, the gauge field strength is in the real linear multiplet

Σ := −
i

2
ϵαβDαDβ V

=σ+ θ λ+ θ λ

+
1

2
θγµθ Fνρϵµνρ + iθθD

+
i

2
θθθγµ ∂µλ−

i

2
θθθγµ∂µλ

+
1

4
θθθθ∂2σ . (2.1.15)

In general, a conserved global current J satisfying D D J = DDJ = 0 can be

viewed as a component of linear multiplets. The gauge field strength (2.1.15)

contains such a component Jµ = ϵµνρFνρ, which generates the global U(1)J

symmetry.

2.1.2 Supersymmetric Lagrangian

The general Wess-Zumino lagrangian involving chiral and anti-chiral superfields

Φ,Φ is ∫
d4 θK(Φ,Φ) +

(∫
d2θW(Φ) + h.c.

)
, (2.1.16)

where K(Φ,Φ) is a general kinetic term, W(Φ) is the superpotential, and h.c.

denotes the hermitian conjugate. Note that the mass dimension of Φ in three

dimensions is 1
2
, hence the classically marginal interaction term is Φ4. The theory

with superpotential W = Φ3 flows to an interacting fixed point in the infra-red.

In comparison, the Wess-Zumino theories in four dimensions always flow to

non-interacting gaussian fixed points.
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For an abelian gauge theory in three dimensions, the gauge vector superfield V

in (2.1.13) contains an additional real scalar σ valued in the adjoint representation

of the gauge group, coming from the vector potential of the four-dimensional

theory in the reduced direction. The kinetic term of the gauge vector field V can

be written as

−
1

g2

∫
d2θW2

α + h.c. , (2.1.17)

whereWα is the chiral field strength constructed via

Wα = −
1

4
(DD)Dα V . (2.1.18)

The lowest component of the chiral fieldWα is a gaugino. Alternatively, the gauge

kinetic term can be written as

−
1

e2

∫
d4θΣ2 (2.1.19)

in terms of a linear superfield Σ = − i
2
ϵαβDαDβ V in (2.1.15), whose lowest com-

ponent is the vector multiplet scalar σ. The linear superfield Σ is invariant under

the gauge transformation

V 7→ V + i(Λ−Λ†) . (2.1.20)

In three dimensions, the vector can be dualised into a scalar, turning the linear

multiplet into a chiral multiplet.

Each U(1) factor in the gauge group has a Fayet-Iliopoulos term in the form of

−
ζ

2π

∫
d4θV , (2.1.21)

where ζ is the Fayet-Iliopoulos parameter.

There can be a supersymmetric Chern-Simons term of the general form

−
κ

4π

∫
d4θΣV (2.1.22)
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at Chern-Simons level κ. Gauge invariance restricts [AHI+97] the Chern-Simons

level to be integers, κ ∈ Z. However, this term breaks parity at the classical level,

which is often referred to as the parity anomaly. The parity anomaly gives an

analogue of the ’t Hooft anomaly matching conditions. In four dimensions, the ’t

Hooft anomalies associated with gauging global symmetries must match between

the ultra-violet and infra-red theories. In three dimensions, the parity anomaly

matching gives a weaker Z2 condition where whether the gauged global symmetry

has a parity anomaly must match between the microscopic and low energy theories.

The matter contents are chiral superfieldsΦj in (2.1.10) giving a lagrangian

∑
j

∫
d4θΦ†

je
VΦj . (2.1.23)

It contains a potential for the squarks of the form

∑
j

|σϕj|
2 , (2.1.24)

which contributes to the real mass for the matter fields.

The total lagarangian of the U(1)κ gauge theory with N chiral superfields Φj of

gauge charges Qj and real massesmj is

L =

∫
d4θ

(
Φ†
je
QjV+imjθθΦj −

1

e2
Σ2 −

κ

4π
ΣV −

ζ

2π
V

)
. (2.1.25)

2.1.3 Supersymmetric Index

In supersymmetric quantum mechanics, there is a natural “invariant”

Tr(−1)F := TrH(−1)Fe−βH (2.1.26)
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called the supersymmetric index [Wit82] or Witten index. The base space is taken

to be a circle of radius β, and H = {Q,Q} is the hamiltonian operator. Crucially,

the supersymmetric index is invariant under supersymmetric deformations to the

lagrangian. The Hilbert space H is graded by the Fermion number operator F. If

the spectrum is gapped, it only receives contributions from the supersymmetric

vacua. In fact, it counts the difference of the numbers of bosonic and fermionic

ground states. Geometrically the supersymmetric index is [HKK+03] the Euler

characteristic of the Q-complex.

• For a sigma model of a quantum mechanics with a riemannian target manifold

M, it is identified with the Euler characteristic ofM,

Tr(−1)F =
∑
f

(−1)f dimHf(Q) = χ(M) (2.1.27)

via de Rham cohomology.

• For a sigma model to a Khäler target manifold M endowed with a holo-

morphic vector bundle E, it is identified [BFK22] with the holomorphic Euler

characteristic

Tr(−1)F = χ(M,K1/2 ⊗ E) =
∫
M

Â(TM) ch(E) (2.1.28)

via Dolbeault cohomology.

It plays a central role in studying the geometry of supersymmetric quantum

field theories. For a three-dimensional theory, the supersymmetric index can be

computed by splitting the base manifold into the product S1 × T2 of a temporal

circle and a spatial torus, and reducing to a quantum mechanics on S1. This

torus index gives us the number of supersymmetric vacua [IS13] weighted by their

multiplicities. In addition to being invariant underQ-exact deformations, the index

is also invariant under deformations to the mass and Fayet-Iliopoulos paraters.
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2.2 Abelian Gauge Theory

Consider an N = 2 supersymmetric U(1)κ Chern-Simons gauge theory at level κ 1

with N > 0 chiral multiplets {Φj}Nj=1 of gauge charges Qj ̸= 0 and integer R-charge

rj ∈ Z. The complex superpotential is set to vanish W = 0 so that we can maximise

the global symmetry.

There is a real Fayet-Iliopoulos parameter ζ associated to the global topological

symmetry Tt = U(1), which could be enhanced to a non-abelian symmetry in the

infra-red.

There is a global flavour symmetry with maximal torus

Tf ∼=
[ N⊗
j=1

U(1)j

]
/U(1) , (2.2.1)

where U(1)j rotates Φj with charge +1 and the quotient is by the gauge group.

Correspondingly, we introduce real mass parameters {mj}Nj=1 associated to a flavour

symmetry Tf for each of the chiral multiplets. A linear combination of these mass

parameters can be absorbed by shifting the real vector multiplet scalar σ,

σ 7→ σ+ δσ ,

ζ 7→ ζ− κδσ ,

mj 7→ mj −Qjδσ .

(2.2.2)

This transformation leaves invariant the combination ζ+ κσ and the total effective

mass

Mj(σ) := Qjσ+mj (2.2.3)

1We focus on supersymmetric Chern-Simons theories of rank 1, leaving a discussion of higher
rank theories to Appendix 8.
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of each chiral multiplet. There are therefore only (N − 1) independent real mass

parameters associated to the flavour symmetry Tf ∼= U(1)N−1. This may form a

maximal torus of a non-abelian flavour symmetry, e.g., PSU(N) if Qj = 1.

It is convenient to fix the independent mass parameters {ma ′}Na ′=2 by writing

mj =

N∑
a ′=2

qa
′
jma ′ (2.2.4)

in terms of the integer flavour charge matrix qa ′
j. The flavour charge matrix is

defined up to shifts qa ′
j → qa

′
j + f

α ′
Qj, which may be absorbed by δσ = fα

′
mα ′ .

We can also combine the gauge and flavour charges into a single extended charge

matrix Qi j, where the top rows i = a = 1, . . . , K encode the gauge charges and

the other rows i = a ′ = K+ 1, . . . ,N are the flavour charges. The extended charge

matrix is particularly useful when generalising to theories of higher rank gauge

groups in Chapter 8. In the case of U(1) theories where K = 1, the matrix elements

are

Q1j := Qj ,

Qa
′

j := q
a ′

j for a ′ = 2, . . . ,N . (2.2.5)

We also introduce various mixed supersymmetric Chern-Simons terms between the

gauge symmetry, the flavour symmetry, and the R-symmetry. We focus here on the

dynamical Chern-Simons terms involving the gauge symmetry. In addition to the

pure gauge Chern-Simons term at level κ, there are also the mixed gauge-flavour

terms at levels {κa ′}Na ′=2 and the mixed gauge-R term at level κR. In the presence

of real masses, both the parameters κ and κa ′ play a role in the determination of

supersymmetric vacua below and in Chapter 3. The parameter κR also becomes

important in Chapter 4, due to the presence of an R-symmetry background.
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2.2.1 Semi-Classical Vacua

We now consider the supersymmetric vacua on R3 as a function of the real masses

mj and the Fayet–Iliopoulos parameter ζ.

Integrating out chiral multiplets in the presence of generic real masses generates

additional contributions to the Chern-Simons term [Red84a, Red84b, AGW84] from

one-loop diagrams. The geometric interpretation of this mechanism is discussed

in Section 7. The resulting mixed effective Chern-Simons levels κeff are given by

κeff(σ) = κ+
1

2

N∑
j=1

Q2j sign(Mj(σ)) , (2.2.6a)

κeff
a ′(σ) = κa ′ +

1

2

N∑
j=1

QjQa ′j sign(Mj(σ)) , (2.2.6b)

κeff
R (σ) = κR +

1

2

N∑
j=1

Qj(rj − 1)sign(Mj(σ)) . (2.2.6c)

These are piecewise constant functions of the vector multiplet scalar σ that jumps

discontinuously at points σ = −mj/Qj where the effective massMj(σ) = 0. They

are required to be integer-valued to cancel potential parity anomalies, i.e.,

κ+
1

2

N∑
j=1

Q2j ∈ Z , (2.2.7a)

κa ′ +
1

2

N∑
j=1

QjQa ′j ∈ Z , (2.2.7b)

κR +
1

2

N∑
j=1

Qj(rj − 1) ∈ Z . (2.2.7c)
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We define the asymptotic Chern-Simons levels by

κ± := κeff(σ→ ±∞) = κ± 1

2

N∑
j=1

|Qj|Qj , (2.2.8a)

κ±a ′ := κ
eff
a ′(σ→ ±∞) = κa ′ ± 1

2

N∑
j=1

|Qj|qa ′j , (2.2.8b)

κ±R := κeff
R (σ→ ±∞) = κR ±

1

2

N∑
j=1

|Qj|(rj − 1) , (2.2.8c)

which control the gauge charge, the flavour charge and the R-charge of Bogo-

mol’nyi–Prasad–Sommerfield monopole operators of topological charges ±1 re-

spectively.

Hence after integrating out auxiliary fields from the lagrangian (2.1.25), the semi-

classical scalar potential is obtained as [DT00, IS13]

U = e2

(
N∑
j=1

Qj|ϕj|
2 − F(σ)

)2
+

N∑
j=1

Mj(σ)
2|ϕj|

2 , (2.2.9)

where ϕj is the chiral multiplet scalar. The effective parameter F(σ) can be written

as

F(σ) = ζeff(σ) + κeff(σ)σ

= ζ+ κσ+

N∑
a ′=2

κa ′ma ′ +
1

2

N∑
j=1

Qj|Mj| , (2.2.10)

where the effective Fayet-Iliopoulos parameter is

ζeff(σ) = ζ+

N∑
a ′=2

κeff
a ′(σ)ma ′ . (2.2.11)

It captures the combined effects of the effective Chern-Simons terms generated

by integrating out chiral multiplets. The effective parameter F(σ) is a continuous

piecewise linear-function of σ whose slope jumps discontinuously at the points

σ = −mj/Qj. Both ζeff andκeff are piece-wise constant functions, which respectively
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determine the intercept and slope of F(σ). This qualitative difference enables us

to tune ζ by hand as a background parameter, while κ is regarded as a dynamical

parameter.

It is sometimes more convenient to introduce mixed Chern-Simons levels

{κj, κRj | j = 1, . . . ,N}

for each chiral multiplet satisfying κj + 1
2
Qj ∈ Z, from which we can recover

κ =

N∑
j=1

Qjκj , (2.2.12a)

κa ′ =

N∑
j=1

Qa ′jκj , (2.2.12b)

κRa ′ =

N∑
j=1

Qa ′jκRj . (2.2.12c)

It allows us to write the effective Chern-Simons levels κeff and κeff
a ′ in (2.2.6) simply

as

κeff
j (σ) = κj +

1

2
Qj sign(Mj(σ)) (2.2.13)

with an anomaly cancellation condition

κj +
1

2
Qj ∈ Z . (2.2.14)

In this notation, the effective parameter F(σ) becomes

F(σ) = ζeff(σ) + κeff(σ)σ

= ζ+ κσ+

N∑
j=1

κjmj +
1

2

N∑
j=1

Qj|Mj| , (2.2.15)

where the effective Fayet-Iliopoulos parameter is

ζeff(σ) = ζ+

N∑
j=1

κeff
j (σ)ma ′ . (2.2.16)
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The semi-classical supersymmetric vacua are constant solutions to the following

set of vortex equations

N∑
j=1

Qj|ϕj|
2 = F(σ) , (2.2.17a)

Mj(σ)ϕj = 0 , (2.2.17b)

where (2.2.17a) is the D-term equation.

2.2.2 Classification of Vacua

The solutions to these equations display an intricate dependence on the Fayet–Iliopoulos

parameters ζ and mass parametersmj. The type of solutions fall into the following

trichotomy.

Higgs Branch

Higgs branch vacua are solutions where at least one chiral multiplet from {ϕj}
N
j=1

is non-zero and the gauge symmetry is broken to a discrete subgroup. The vector

multiplet scalar σ is completely fixed by the D-term equations Mj(σ) = 0 for all

non-vanishing chiral multiplets ϕj.

A Higgs branch solution where n chiral multiplets are non-vanishing may only

appear on a real co-dimension (n− 1) hyperplane in the space RN−1 of real mass

parameters. Suppose the non-vanishing chiral multiplets are {ϕiα | α = 1, . . . , n},

then the locus of the hyperplane is

mi1/Qi1 = · · · = min/Qin . (2.2.18)
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The non-zero expectation values must further satisfy

n∑
α=1

Qiα |ϕiα |
2 = F(σ) , (2.2.19)

forming an (n− 1)-dimensional complex toric variety of Higgs branch solutions.

If the charges of the chiral multiplets receiving expectation values obey

gcd(Qi1 , . . . , Qin) > 1 ,

there is an unbroken discrete gauge symmetry. Then this branch of the moduli

space should be regarded as a toric stack.

When all the mass parameters vanish,mj = 0, for a given choice of the Fayet–Iliopoulos

parameter ζ ̸= 0, there is a maximal complexN-dimensional Higgs branch at σ = 0.

We typically denote this N-dimensional toric stack by X. It can be understood

explicitly as a weighted projective stack

X ∼=


CP(Q1, . . . , QN) if ζ > 0

CP(−Q1, . . . ,−QN) if ζ < 0

. (2.2.20)

When ζ > 0 it is empty if Qj < 0 for all j = 1, . . . ,N. Similarly when ζ < 0 it is

empty if Qj > 0 for all j = 1, . . . ,N. This is the space whose quantum K-theory

with level structure we wish to study using supersymmetric gauge theory.

When turning on a non-vanishing mass parametermi, the remaining Higgs branch

moduli space can be regarded as the fixed points of the action of the one-parameter

subgroup of Tf generated by the mass parametersmi on X. In the extreme case of

generic mass parameters, there areN isolated Higgs branch vacua {hi | i = 1, . . . ,N}

where ϕi ̸= 0, which are the fixed points of the Tf action on X. Each isolated Higgs

vacuum hi is fixed at σi = −mi/Qi by the D-term equation, and the remaining
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vortex equation

Qi|ϕi|
2 = F(σi) (2.2.21)

demands

signQi = sign F(σi) . (2.2.22)

If |Qi| > 1, there is an unbroken Z|Qi| ⊂ U(1) gauge symmetry in the vacuum hi.

If the mass parameters remain small compared to ζ, the N isolated vacua can be

identified with the fixed loci as the classifying space hi := BZ|Qi| ⊂ X of the Tf

action on X.

The contribution to the torus supersymmetric index from this isolated vacuum is

Tr(−1)F = Q2i , (2.2.23)

which can be understood physically as coming from the |Qi| Wilson lines screened

by the chiral multiplet Φi wrapping around each of the two non-trivial cycles of

the torus T2.

Topological Branch

Topological branch are solutions where the U(1) gauge symmetry is unbroken,

ϕj = 0 for all j = 1, . . . ,N. The vector multiplet scalar

σ = −
ζeff

κeff (2.2.24)

is a fixed solution to F(σ) = 0. For generic mass parameters, this can only occur if

κeff ̸= 0 and

sign ζeff = ± sign κeff (2.2.25)

for ±σ < 0.
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It is a low-energy effective U(1)κeff theory without matter. The contribution to the

torus index is

Tr(−1)F = |κeff| , (2.2.26)

where the Wilson lines are screened by the Bogomol’nyi–Prasad–Sommerfield

monopoles [Man82] of gauge charge κeff. However, those Wilson lines wrapping

on the two different non-trivial cycles of T2 become correlated by quantum effects,

thus no longer contribute independently to the index.

In the absence of mass parameters, the effective Chern-Simons level reduces to the

asymptotic levels

κeff(σ) =


κ+ if σ > 0

κ− if σ < 0

. (2.2.27)

The potential solutions become

σ = −
ζ

κ±
(2.2.28)

in the regions±σ > 0. The existence of a topological vacuum with±σ > 0 therefore

requires both κ± ̸= 0 and ∓ζ/κ± > 0. If the topological vacuum exists, then the

infra-red theory is U(1)κ± , contributing |κ±| to the supersymmetric index.

Turning on mass parameters, the analysis of potential topological vacua is more

intricate, which depends on the chamber in the parameter space for the vector

multiplet scalar σ separated by the walls σ = −mj/Qj. These walls collapse to the

origin when the masses are turned off.
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Coulomb Branch

Coulomb branch vacua refers to the non-isolated solutions of the vector multiplet

scalars σa where F(σ) = κeff(σ) = 0 when all chiral multiplet scalars ϕi vanish. It

is a continuous parameter space of solutions where the gauge symmetry U(1) is

unbroken. This requires special tuning on the Fayet-Iliopoulos parameter ζ.

In the absence of mass parameters, there is non-compact Coulomb branch para-

metrised by ±σ ⩾ 0 whenever κ± = 0 at the Fayet-Iliopoulos parameter ζ = 0.

Generally in the presence of mass parameters, there exists a Coulomb branch

whenever there is a chamber for the vector multiplet scalar σwhere κeff(σ) = 0 and

F(σ) has zero slope. Tuning the Fayet-Iliopoulos parameter such that ζeff = 0 then

ensures that F(σ) = 0 for all values of the vector multiplet scalar in this chamber.

In this case, the Coulomb branch may be compact or non-compact depending on

the chamber.

The focus in this thesis is on the vacua occurring with generic parameters where

the Coulomb branch does not appear.

2.3 Window Phenomenon

Now consider the collection of supersymmetric gauge theories {Tκ} with fixed

charges {Qj}Nj=1 and varying supersymmetric Chern-Simons level κ. Let us first set

the mass parameters to zero, and fix the sign of Fayet–Iliopoulos parameter ζ such

that the associated N-dimensional Higgs branch X exists.
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We are interested in the set of supersymmetric Chern-Simons levels where there

are no additional topological vacua. We define this set as the critical window for

the supersymmetric Chern-Simons levels.

Definition 2.3.1. The critical window in κ consists of those theories Tκ that do not

admit topological vacua in addition to the Higgs branch X.

This window depends on the choice of chamber for the Fayet-Iliopoulos parameter

ζ since it affects the existence of Higgs vacua. In the U(1) case, the chambers are

simply the two rays determined by sign ζ.

Loosely speaking, inside the critical window the gauge theory flows to a sigma

model on X, and supersymmetric observables capture the geometry of X. In

particular, if X is a toric Deligne-Mumford stack, this will involve an unbroken

discrete gauge symmetry.

Now we define the critical Chern-Simons level κcrit(σ) to be the bare Chern-Simons

levels such that the effective Chern-Simons level in (2.2.6) vanish, i.e.,

0 = κcrit(σ) +
1

2

N∑
j=1

QjQj signMj(σ) . (2.3.1)

The critical level κcrit(σ) depends on the sign of the effective masses Mj(σ), thus

has a piece-wise dependence on σ.

When the real masses are set to vanish, the critical Chern-Simons level reduces to

κcrit(σ) =


−1
2

∑N
j=1 |Qj|Qj , if σ > 0

+1
2

∑N
j=1 |Qj|Qj , if σ < 0

. (2.3.2)

Given the geometric regime ζ > 0 for the Higgs branch to exist, the condition (2.2.25)
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for the existence of topological vacua becomes
κ < −1

2

∑N
j=1 |Qj|Qj , if σ > 0

κ > +1
2

∑N
j=1 |Qj|Qj , if σ < 0

. (2.3.3)

It is convenient to define an asymptotic critical level

κ̃crit := κcrit(σ→ −∞) =
1

2

N∑
j=1

|Qj|Qj . (2.3.4)

• If κ̃crit > 0, then the critical window where Higgs branch exists without

topological branch is simply the finite interval

[
−κ̃crit, κ̃crit]

in the space of Chern-Simons parameters.

• If κ̃crit < 0, then the critical window is infinite containing two rays

[
−∞, κ̃crit] ∪ [−κ̃crit,∞] .

Inside the critical window the theory flows to a sigma model toX = CP(Q1, . . . , QN).

A similar analysis applies forζ < 0giving a sigma model toX = CP(−Q1, . . . ,−QN)

within a critical window complementary to the ζ > 0 case.

Quantum K-theory of toric varieties with level structures [RZ18, RWZ20] also

exhibits a window phenomenon where it is well-defined only if the level is within

a critical window. We conjecture that this is the same as the critical window

of Chern-Simons level in three-dimensional supersymmetric gauge theory. This

identification is investigated throughout this thesis from the perspectives of semi-

classical vacua, twisted chiral rings, and twisted indices. Via this identification,
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the interpretation is that quantum K-theory is well behaved inside the window of

levels where the supersymmetric vacua consist of only Higgs branch described

by toric varieties. The addition of topological vacua outside the window is not

taken into account in the current literature in quantum K-theory, making the theory

ill-defined.

In addition to the massless case, we are also interested in the case where real masses

are turned on. It enables us to determine if topological vacua can co-exist with an

individual disjoint component in the Higgs vacua. In this case, the space of σ is

divided into chambers by the hyperplanes at Mj(σ) = 0. Each chamber admits a

different critical level. Away from these critical levels, there may exist topological

vacua in addition to Higgs vacua. Although each individual chamber requires

separate analysis to determine what values of κ allow for the co-existence of Higgs

and topological vacua. We are primarily interested in turning on generic mass

parameters that are small compared to ζ so the isolated Higgs vacua {h1, . . . , hN}

can still be identified with the fixed loci on X. We have observed that for U(1)

theories these chamber-specific critical levels still fall into the same critical window

of Chern-Simons levels as in the massless case. This is illustrated in Section 2.4.2

with an explicit example.

The window phenomenon is already manifest by carefully studying the vacuum

equations (2.2.17). Let us look at some examples in details to illustrate it.

2.4 Examples

For a set of generic parameters {ζ,mj}, we would like to understand what values

of Chern-Simons levels κ allow for the existence of topological vacua, given the
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existence of Higgs vacua.

2.4.1 U(1)κ with One Chiral Field

Consider one chiral multiplet Φ of charge Q > 0. We can set the mass parameter

m = 0 by shifting the vector multiplet scalar δσ = m/Q, so there is no flavour

symmetry. There is however a potential one-form symmetry of the form Zgcd(k,Q).

The effective Chern-Simons level is given by

κeff(σ) = κ+
Q2

2
signσ =


κ+ Q2

2
, if σ > 0

κ− Q2

2
, if σ < 0

, (2.4.1)

and the effective parameter is

F(σ) = ζ+ κσ+
Q2

2
|σ| . (2.4.2)

There are therefore two chambers for the vector multiplet scalar with critical levels

κcrit =


−Q

2

2
, if σ > 0

+Q
2

2
, if σ < 0

. (2.4.3)

The semi-classical vacua are solutions to

Q|ϕ|2 = F(σ) , σϕ = 0 . (2.4.4)

We consider here the geometric regime ζ > 0 where a Higgs vacuum exists.

First, there is the isolated Higgs branch solution with |ϕ|2 = ζ/Qwith an unbroken

gauge symmetry ZQ. The associated ZQ orbifold leads to a Higgs vacua multipli-

city [IS13] ofQ2. Therefore the Higgs branch contributesQ2 to the supersymmetric

index. Formally this solution should be regarded as the stack X = [pt/ZQ].
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In comparison, the topological branch contributes according to the effective Chern-

Simons level. The existence of a topological vacuum depends on the Chern-Simons

level in the following way:

• If κ < −Q
2

2
, there is a topological vacuum with

σ = −
ζ

κ+ Q2

2

> 0 . (2.4.5)

This corresponds to a low-energy U(1)
κ+Q2

2

gauge theory without matter.

It contributes the topological multiplicity |k+ Q2/2| to the supersymmetric

index.

• If κ > Q2

2
, there is a topological vacuum with

σ = −
ζ

κ− Q2

2

< 0 . (2.4.6)

Similarly this corresponds to a U(1)
κ−Q2

2

gauge theory with no matter, and

contributes |k− Q2/2| to the supersymmetric index.

• If −Q2
2

⩽ κ ⩽ Q2

2
there are no topological vacua.

The critical window is therefore −Q
2

2
⩽ κ ⩽ Q2

2
. Combining contributions from

both the Higgs and the topological vacua, the supersymmetric index is Q2 inside

the critical window and |k|+ Q2

2
outside,

Tr(−1)F =


Q2 , if |κ| ⩽ Q2

2

|κ|+ Q2

2
, if |κ| > Q2

2

. (2.4.7)

This can also be seen directly by plotting the limit of F(σ), i.e.,

F(σ) > κσ+
1

2
|σ| =


(
κ+ 1

2

)
σ , if σ ⩾ 0(

κ− 1
2

)
σ , if σ < 0

, (2.4.8)
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Figure 2.1. Lower Limit of F(σ) for U(1) Gauge Theory with One Chiral Multiplet

σ

F(σ)

κcrit = 1
2

κcrit = −1
2

κ = 3
2

κ = 1
2

κ = −1
2

κ = −3
2

where ζ > 0 is assumed to ensure the existence of the Higgs branch. The plots for

different κ are shown in Figure 2.1 assumingQ = 1. The effective parameter F(σ) is

obtained by a constant shift upwards from the corresponding lower limit. A Higgs

vacuum exists at σ = 0 when F(σ = 0) > 0. A topological vacuum appears at each

isolated zeros of F(σ). It is obvious that shifting the limits of κ = −1
2
, 1
2

does not

produce any isolated zeros, while the shifts of κ = −3
2
, 3
2

do. When |κ| = 1
2

there

are no topological vacua, but instead a non-compact Coulomb branch opens up in

the limit ζ→ 0+.

2.4.2 U(1)κ with Two Chiral Fields

We focus here on the case of two chiral multiplets with Q1 = Q2 = 1. Let us set

the flavour charges to q1 = 0 and q2 = 1. The full extended charge matrix is then

Qi j =

1 1
0 1

 . (2.4.9)

Without loss of generality, one of the real masses is set to m1 = 0 by shifting

the vector multiplet scalar by δσ = m1, and the other real mass is assumed to be



2.4. Examples 35

m2 = −m < 0. The other case can be analysed analogously, which has no structural

difference. For convenience, we set the bare gauge-flavour Chern-Simons level to

κ2 = −1
2
, which contributes 1

2
m in the scalar potential.

In the three chambers of σ, the effective Chern-Simons level is then

κeff = κ+
1

2
signσ+

1

2
sign(σ−m)

=


κ+ 1 , if σ > m

κ , if 0 < σ < m

κ− 1 , if σ < 0

, (2.4.10)

giving critical levels

κcrit =


−1 , if σ > m

0 , if 0 < σ < m

+1 , if σ < 0

. (2.4.11)

The vacuum equations (2.2.17) read as

|ϕ1|
2 + |ϕ2|

2 = F(σ) = ζ+
1

2
m+ κσ+

1

2
|σ|+

1

2
|σ−m| , (2.4.12a)

σϕ1 = 0 , (2.4.12b)

(σ−m)ϕ2 = 0 . (2.4.12c)

Higgs Branch

A Higgs branch can exist for ϕ1 ̸= 0 at σ = 0, or ϕ2 ̸= 0 at σ = m according to the

D-term equation (2.2.17a). The vacuum can then be found as the solutions to the
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vortex equation

|ϕ1|
2 = ζ+m or |ϕ2|

2 = ζ+ (κ+ 1)m, (2.4.13)

which forms a solution space S1 provided the conditions

h1 : ζ > −m, (2.4.14a)

h2 : ζ > −(κ+ 1)m. (2.4.14b)

Each of the Higgs vacua {h1, h2} contribute 1 to the supersymmetric index. The

two disjoint Higgs vacua merge into a moduli space CP1 when the mass parameter

m→ 0.

Topological Branch

A topological branch can be found by solving for isolated solutions to

F(σ) = ζ+
1

2
m+ κσ+

1

2
|σ|+

1

2
|σ−m| = 0 . (2.4.15)

The solution depends on signσ and sign(σ−m):

• In the chamber σ > m, we have

σ = −
ζ

κ+ 1
. (2.4.16)

Requiring σ > m gives
ζ < −(κ+ 1)m, if κ > −1

ζ > −(κ+ 1)m, if κ < −1

. (2.4.17)

• In the chamber 0 < σ < m, we have

σ = −
ζ+m

κ
. (2.4.18)
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Requiring 0 < σ < m gives
−(κ+ 1)m < ζ < −m, if κ > 0

−m < ζ < −(κ+ 1)m, if κ < 0
. (2.4.19)

• In the chamber σ < 0, we have

σ = −
ζ+m

κ− 1
. (2.4.20)

Requiring σ < 0 gives 
ζ > −m, if κ > 1

ζ < −m, if κ < 1
. (2.4.21)

Supersymmetric Index

The total contributions to the supersymmetric index can be obtained by carefully

examining the conditions where a topological vacuum can co-exist with either of

the Higgs vacua {h1, h2}.

• In the chamber σ > m, combining the condition (2.4.17) for a topological

vacuum to exist with the Higgs existence condition (2.4.14) leads to constraints

on the parameters. For a topological vacuum to co-exist with the Higgs

vacuum h1, the constraints are

h1 :


−m < ζ < −(κ+ 1)m, if κ > −1

−(κ+ 1)m < ζ , if κ < −1

. (2.4.22a)

For a topological vacuum to co-exist with the Higgs vacuum h2, the con-
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straints read

h2 :


−(κ+ 1)m < ζ < −(κ+ 1)m, if κ > −1

−(κ+ 1)m < ζ , if κ < −1

. (2.4.22b)

When κ > −1, the combined h1 constraint −1 < κ < 0 gives no valid value of

κ satisfying the anomaly cancellation condition (2.2.7a), and the combined h2

constraint is clearly always false. So there is no topological vacuum in addition

to either of the Higgs vacua h1 and h2 for κ > −1. But a topological vacuum

can always co-exist with both of the Higgs vacua for κ < −1. Therefore the

total contribution to supersymmetric index is respectively 2 for κ > −1, and

|κ+ 1|+ 2 = −κ+ 1 for κ ⩽ −1.

• In the chamber 0 < σ < m, combining (2.4.19) with the Higgs existence

condition (2.4.14) leads to the following constraints. For a topological vacuum

to co-exist with the Higgs vacuum h1, the constraints are

h1 :


−m < ζ < −m, if κ > 0

−m < ζ < −(κ+ 1)m, if κ < 0
. (2.4.23a)

For a topological vacuum to co-exist with the Higgs vacuum h2, the con-

straints read

h2 :


−(κ+ 1)m < ζ < −m, if κ > 0

−(κ+ 1)m < ζ < −(κ+ 1)m, if κ < 0
. (2.4.23b)

There is a topological vacuum accompanying a single Higgs vacuum h1 if

κ < 0, and a topological vacuum accompanying h2 if κ > 0. So there can

always exist a topological vacuum in addition to either one of the Higgs vacua

in this chamber. The contribution to the supersymmetric index is then |κ|+ 1

as the effective level (2.4.10) is just κ in this chamber.
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• In the chamber σ < 0, combining (2.4.21) with the Higgs existence condition

(2.4.14) leads to the following constraints. For a topological vacuum to co-exist

with the Higgs vacuum h1, the constraints are

h1 :


−m < ζ , if κ > 1

−m < ζ < −m, if κ < 1
. (2.4.24a)

For a topological vacuum to co-exist with the Higgs vacuum h2, the con-

straints read

h2 :


−m < ζ , if κ > 1

−(κ+ 1)m < ζ < −m, if κ < 1
. (2.4.24b)

So there is no topological vacuum for κ < 1 but exists a topological vacuum for

κ > 1, in addition to either of the Higgs vacua. Hence the total contribution

to supersymmetric index is respectively 2 for κ < 1, and |κ − 1| + 2 = κ + 1

for κ ⩾ 1.

In summary the supersymmetric index is

Tr(−1)F =


2 , if |κ| ⩽ 1

|κ|+ 1 , if |κ| > 1

. (2.4.25)

When all three chambers are considered for the whole theory, there is a topological

vacuum in addition to both of the Higgs vacua, if and only if the Chern-Simons

levels are not in the critical window, i.e.,

k ̸∈ {−1, 0, 1} . (2.4.26)

This can be understood more intuitively by inspecting the plots of F(σ) as shown in
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Figure 2.2. Plot of F(σ) at ζ = 0 for U(1) Gauge Theory with Two Chiral Multiplet

σ

F(σ)

κcrit = 1
κcrit = 0

κcrit = −1

κ = 2

κ = 1

κ = 0

κ = −1

κ = −2

0 m

Figure 2.2. Consider the case κ = −1 for example, the vacuum solutions depends

the value of ζ as follows:

• When ζ > 0, the plot is shifted upwards such that it has no intersection with

the σ-axis. Both Higgs vacua at σ = 0 and σ = m exist since F(σ) > 0 at these

points. But there is no topological vacuum.

• When −m < ζ < 0, the plot is shifted downwards which has a single

intersection with the σ-axis. There exist a single Higgs vacuum at σ = 0, and

a single topological vacuum at the intersection point σ = ζ+m.

• When ζ ⩽ −m, the plot is shifted downwards such that it intersects the σ-axis

at σ < 0. There exist only a single topological vacuum at the intersection

point σ = ζ
2
+ m

2
, with a multiplicity of two. The multiplicity becomes clear

in Section 3.3.2.



2.4. Examples 41

At the non-generic value ζ = 0, the horizontal part overlaps with the σ-axis. A

Coulomb branch at σ ⩾ m opens up, in addition to a signle Higgs vacuum at σ = 0.

2.4.3 U(1)κ with N Chiral Fields

Now consider U(1)κ with N chiral multiplets of charge Qj = 1. There is a flavour

symmetry PSU(N) with maximal torus Tf = U(1)N−1. One linear combination of

the associated mass parameters {mj}
N
j=1 can be removed by the shift (2.2.2). The

semi-classical vacua are solutions to

∑
j

|ϕj|
2 = F(σ) , (σ+mj)ϕj = 0 , (2.4.27a)

where

F(σ) = ζ+ κσ+
1

2

N∑
j=1

|σ+mj| . (2.4.27b)

Here we have omitted the mixed gauge-flavour Chern-Simons levelsκa ′ from (2.2.10).

They do not play a role in the analysis below, assuming they are chosen appropri-

ately so no parity anomalies appear. The existence of a Higgs vacuum with ϕi ̸= 0

requires F(−mi) > 0while topological vacua are solutions to F(σ) = 0.

Here we set the mass parameters to zero. Therefore the effective parameter reduces

to

F(σ) = ζ+ κσ+
N

2
|σ| , (2.4.28)

which is a piece-wise linear function whose slop jumps discontinuously from κ− N
2

to κ+ N
2

at σ = 0. There are therefore two chambers σ < 0 and σ > 0 for the vector

multiplet scalar.

Let us first consider the geometric regime ζ > 0. There is a Higgs branchX ∼= CPN−1

at σ = 0 with Kähler parameter ζ > 0, which contributes χ(CPN−1) = N to the
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supersymmetric index. The existence of topological and Coulomb vacua depends

on the Chern-Simons level:

• If κ < −N
2

, there is a topological vacuum with

σ = −
ζ

κ+ N
2

> 0 . (2.4.29)

Integrating out the massive chiral multiplet leaves a U(1)κ+N
2

gauge theory

and contributes |κ+ N
2
| to the supersymmetric index.

• If −N
2
⩽ κ ⩽ N

2
there are no topological vacua. At the critical levels κ = ±N

2
,

a non-compact Coulomb branch ∓σ > 0 opens up as ζ→ 0+.

• If κ > N
2

, there is a topological vacuum with

σ = −
ζ

κ− N
2

< 0 . (2.4.30)

Integrating out the massive chiral multiplet leaves a U(1)κ−N
2

gauge theory

and contributes |κ− N
2
| to the supersymmetric index.

The critical window in this regime is therefore −N
2
⩽ κ ⩽ N

2
. The supersymmetric

index is N inside the critical window, and |κ|+ N
2

outside.

In the opposite regime ζ < 0, the Higgs branch is empty and topological vacua

exist for any level κ. The existence of topological vacua depends on the level as

follows:

• If κ ⩽ −N
2

, there is a single topological vacuum with σ = − ζ

κ−N
2

< 0,

contributing |κ| + N
2

to the supersymmetric index. At κ = −N
2

, a Coulomb

branch σ > 0 opens up as ζ→ 0−.

• If −N
2
< κ < N

2
, there are topological vacua both at σ = − ζ

κ−N
2

< 0 and

σ = − ζ

κ+N
2

> 0, contributing N to the supersymmetric index.
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• If κ > N
2

, there is a single topological vacuum with σ = − ζ

κ+N
2

> 0, contribut-

ing |κ| = N
2

to the supersymmetric index. At κ = N
2

, a Coulomb branch σ < 0

opens up as ζ→ 0−.

Although there is no critical window in this regime, the contributions to the

supersymmetric index agree with the computation at ζ > 0.



Chapter 3

Twisted Chiral Ring

In this chapter we consider the supersymmetric ground states on S1 × R2, with

finite radius β of the circle S1 in the presence of generic mass parameters.

When the chiral multiplets are all integrated out, the remaining vector multiplet

scalar σ becomes the lowest component of a two-dimensional twisted chiral mul-

tiplet in the A-twist of the N = (2, 2) theory on R2. The two-dimensional twisted

superpotential can be determined exactly since it is one-loop exact. The super-

symmetric vacua of the effective theory are solutions to the ring relations of the

so-called twisted chiral ring, which are identified with states of quantum integrable

systems via the Bethe gauge correspondence [NS09, NS15].

We explore the window phenomenon from this perspective, and the examine the

large radius limit β→ ∞, and the small radius limit β→ 0.

• In the large radius limit we reproduce to the results from the flat space

R3 discussed in Chapter 2 as expected. The solutions to the Bethe ansatz
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equation are in one-to-one correspondence with the supersymmetric vacua

in flat space, where the Higgs and topological solutions admit qualitatively

distinct behaviours.

• In the small radius limit the theory is reduced to two-dimensional theor-

ies. Since we are interested in the three-dimensional generalisation of the

two-dimensional correspondence between sigma models and quantum co-

homology, we expect this dimension reduction to produce new insights on

the window phenomenon. In particular, the Higgs vacua are fully captured

by a two-dimensional gauge theory, while the topological vacua become

fully de-coupled theories in two dimensions. In analogy, the quantum K-

theory of a toric variety in three dimensions can only be interpreted as the

lift from quantum cohomology in two dimensions, if the level is within the

critical window. This is consistent with the window phenomenon in gauge

theories where the three-dimensional theory is only fully captured by the

two-dimensional theory, if the Chern-Simons level is within the critical win-

dow. The obstruction to the lifting is from the de-coupled two-dimensional

theories corresponding to the topological vacua, which is not accounted for

in the quantum K-theory of the Higgs vacua.

3.1 Bethe Ansatz Equation

Consider a general three-dimensional N = 2 supersymmetric U(1)κ theory with

chiral multiplets {Φi} of charges {Qi} introduced in Chapter 2, and put it on the base

manifold S1 × R2. The Fayet-Iliopoulos parameter and the real mass parameters

are naturally complexified by Wilson lines associated with the global symmetries
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around the S1 component. The corresponding fugacities can then be written as

q = e−2πβ(ζ+iAt) , (3.1.1a)

yj = e
−2πβ(mj+iAf) , (3.1.1b)

where At and Af are the constant background connections for the topological and

flavour symmetry respectively. Similarly the gauge fugacity is

x = e−2πβ(σ+iA) (3.1.2)

for the gauge connection along S1. The independent flavour fugacities {ya ′}Na ′=2

can be defined such that

yi ≡
N∏
b ′=2

y
qb

′
i

b ′ (3.1.3)

according to the definition (2.2.4) of the independent mass parameters.

After integrating out the chiral multiplets, the supersymmetric vacua of the two-

dimensional effective theory are determined by the Bethe ansatz equation [NS09,

NW10]

exp
(
i
∂W

∂σ

)
= 1 , (3.1.4)

computed from the effective twisted superpotentialW(σ), which is one-loop exact.

It can be interpreted as the ring relation for the twisted chiral ring. From the

perspective of the three-dimensional theory, the twisted chiral operators arise from

Bogomol’nyi–Prasad–Sommerfield line operators wrapping the S1 component of

the base manifold. In particular, a supersymmetric Wilson loop of charge q is

represented by the monomial xq. The Bethe ansatz equation then describes the

ring structure inherited from the operator product expansion of the parallel line

operators. The limit β → 0 therefore reproduces the twisted chiral ring of the

two-dimensional theory obtained by compactification on S1. These line operators
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are local operators from the perspective of the two-dimensional theory on R2,

which can be interpreted as elements of the twisted chiral ring. Hence the ring

relation may be interpreted as Ward identities for the line operators.

Then for the effective two-dimensional N = (2, 2) theory, the Bethe ansatz equation

can be explicitly expressed in the following two equivalent forms

∏
{i|Qi>0}

(
1− xQi

∏
a ′

y
qa

′
i

a ′

)Qi

=(−1)N−qxκ
+

(∏
a ′

y
κ+
a ′
a ′

) ∏
{i|Qi<0}

(
1− x−Qi

∏
a ′

y
−qa

′
i

a ′

)−Qi

, (3.1.5a)

∏
{i|Qi>0}

(
1− x−Qi

∏
a ′

y
−qa

′
i

a ′

)Qi

=(−1)N+qxκ
−

(∏
a ′

y
κ−
a ′
a ′

) ∏
{i|Qi<0}

(
1− xQi

∏
a ′

y
qa

′
i

a ′

)−Qi

, (3.1.5b)

whereN± :=
∑

{i|Qi≷0}
Qi are the number of positively or negatively charged chiral

multiplets if |Qi| = 1, and κ±, κ±a ′ are the asymptotic Chern-Simons levels (2.2.8)

acting as the gauge and flavour charges of the Bogomol’nyi-Prasad-Sommerfield

monopole operators of topological charge ±1. The two expressions correspond

to arranging the formula such that left hand side is a polynomial in x and x−1

respectively, when the the monopole operators at σ→ ±∞ are positively charged,

i.e., κ± > 0. The anomaly cancellation conditions (2.2.7) are crucial for these to be

polynomial equations.

3.2 Window Phenomenon

The number of solutions to the Bethe ansatz equation depends on κ± as it alters

the degree of the equations. Consider the first equation (3.1.5a). The degree of x
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on the left hand side is
∑

{i|Qi>0}
Q2i , while the degree on the right hand side is

κ+ +
∑

{i|Qi<0}
Q2i . The sign of the difference

κ+ +
∑

{i|Qi<0}

Q2i −
∑

{i|Qi>0}

Q2i = κ
−

determines which side of the equation dominates. Consider the case κ+ ⩾ 0, i.e.,

κ ⩾ −1
2

∑N
i=1 |Qi|Qi. We expect the number of solutions to be

# =


∑

{i|Qi>0}
Q2i if κ− < 0 and κ+ ⩾ 0

κ+ +
∑

{i|Qi<0}
Q2i if κ− ⩾ 0 and κ+ ⩾ 0

=


∑

{i|Qi>0}
Q2i if − 1

2

∑N
i=1 |Qi|Qi ⩽ κ <

1
2

∑N
i=1 |Qi|Qi

κ+ 1
2

∑N
i=1Q

2
i if κ ⩾ 1

2

∣∣∣∑N
i=1 |Qi|Qi

∣∣∣ .

To count the number of solutions in the case κ+ < 0, we need to rearrange the

equation by moving the factor xκ+ to the left hand side. The same reasoning

produces a complementary expression

# =


−k+ 1

2

∑N
i=1Q

2
i if κ < −1

2

∣∣∣∑N
i=1 |Qi|Qi

∣∣∣∑
{i|Qi<0}

Q2i if 1
2

∑N
i=1 |Qi|Qi ⩽ κ < −1

2

∑N
i=1 |Qi|Qi

.

Combining both gives the final formua for the number of solutions to the Bethe

ansatz equation (3.1.4) as

# =




∑

{i|Qi>0}
Q2i if |κ| ⩽ κ̃crit

∑
{i|Qi<0}

Q2i if |κ| ⩽ −κ̃crit

|κ|+ 1
2

∑N
i=1Q

2
i if |κ| > |κ̃crit|

, (3.2.1)

where the asymptotic critical level

κ̃crit := κcrit(σ→ −∞) =
1

2

N∑
i=1

|Qi|Qi (3.2.2)
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is defined as the critical Chern-Simons level (2.3.1) at σ → −∞, which roughly

measures the difference between the number of positively charged chiral multiplets

and the the number of negatively charged chiral multiplets. Note that only one

of the first two lines can apply at a time, depending on the sign of κ̃crit. The same

expression emerges by considering the other equation (3.1.5b).

The window phenomenon can be seen here since the number of solutions has a

qualitative change when the Chern-Simons level κ goes from inside the interval

[
−
∣∣κ̃crit∣∣, ∣∣κ̃crit∣∣] ,

suggesting the existence of different types of vacua.

3.3 Large Radius Limit

In the limit β→ ∞, we expect the solutions to the Bethe ansatz equation reproduce

the semi-classical vacua discussed in Chapter 2. In a given chamber for the Fayet-

Iliopoulos parameter, as β → ∞ the solutions of the Bethe ansatz equation may

tend towards Higgs branch vacua at fixed σ = −mj/Qj, or topological vacua at

σ = −ζeff/κeff. We refer to these as Higgs and topological solutions. We expect

these two types solutions to behave like σ ∼ m and σ ∼ ζ respectively.

3.3.1 U(1)κ with One Chiral Field

Let us again considerU(1)κ with one chiral multiplet of chargeQ > 0. The twisted

chiral ring relations are equivalently

(1− xQ)Q = qxκ+
Q2

2 . (3.3.1)
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The number of solutions depends on the relative degree of the polynomials on the

left and right and therefore on the Chern-Simons level κ. The asymptotic critical

level is κ̃crit = 1
2
Q2 > 0. Therefore the first and third lines in (3.2.1) apply. The

result is then

# =


Q2 if |κ| ⩽ Q2

2

|κ|+ Q2

2
if |κ| > Q2

2

(3.3.2)

in agreement with the supersymmetric index computed in Section 2.4.1.

In order to compare with the supersymmetric ground states on R3, we set q = e−βζ

and x = e−βσ. We then expand solutions for σ in the limit β → ∞ with ζ > 0, in

order to directly compare to the analysis in Section 2.4.1. Now let us assumeQ = 1

for simplicity and compare with the plots in Figure 2.1.

Consider the classic case κ = −1
2
. The solution to the Bethe ansatz equation

1− x = q is simply

x = 1− q ,

giving σ = 0 at the limit β→ ∞, which matches to the single Higgs solution in the

ζ > 0 chamber.

In the case κ = −3
2
, the equation 1− x = qx−1 has two solutions

x± =
1±

√
1− 4q

2
.

In the limit β→ ∞, the two solutions correspond to

σ+ = 0 , σ− = ζ ,

which are the Higgs solution and the topological solution respectively.
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3.3.2 U(1)κ with Two Chiral Fields

Consider the same example of two chiral multiplets discussed in Section 2.4.2 with

the extended charge matrix

Qi j =

1 1
0 1

 . (3.3.3)

Denote the mixed gauge-flavour Chern-Simons level as κ12.

The Bethe ansatz equation is then

(1− x)(1− xy2) = qx
κ+1y

κ12+1/2
2 . (3.3.4)

The asymptotic critical level is κ̃crit = 1 > 0. Therefore the number of solutions is

# =


2 if |κ| ⩽ 1

|κ|+ 1 if |κ| > 1

. (3.3.5)

To match the solutions with the choice of real masses in Section 2.4.2, we set

κ12 = −1
2
. For simplicity, we also drop the subscript on y2 without causing

ambiguities, giving the Bethe ansatz equation

(1− x)(1− xy) = qxκ+1 . (3.3.6)

It is instructive to explore its solutions.

Consider the simple case with κ = −1. The two solutions are

x =
1

2y

(
1+ y±

√
1+ 4qy− 2y+ y2

)
. (3.3.7)
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By re-writing the fugacities in terms of the parameters again via

x = e−βσ , (3.3.8a)

y = e−βm2 = eβm , (3.3.8b)

q = e−βζ , (3.3.8c)

we can explore the flat space limits by sending the radius β→ ∞. The correspond-

ing two solutions in terms of σ in this limit are

σ =


0 and m, if ζ > 0

0 and ζ+m, if −m < ζ < 0

ζ
2
+ m

2
and ζ

2
+ m

2
, if ζ ⩽ −m

. (3.3.9)

This is in perfect agreement with the results from studying the vacuum equations

in Section 2.4.2. This case corresponds to the κ = −1 plot of F(σ) at ζ = 0 in

Figure 2.2.

• When ζ > 0, the plot is shifted upwards such that it has no intersection with

the σ-axis. Both Higgs vacua at σ = 0 and σ = m exist since F(σ) > 0 at these

points. But there is no topological vacuum.

• When −m < ζ < 0, the plot has a single intersection with the σ-axis. There

exist a single Higgs vacuum at σ = 0, and a single topological vacuum at the

intersection point σ = ζ+m.

• When ζ ⩽ −m, the plot is shifted downwards such that it intersects the σ-axis

at σ < 0. There exist only a single topological vacuum at the intersection

point σ = ζ
2
+ m

2
, with a multiplicity of two.

There also exists a non-compact Coulomb branch solution at the non-generic value

ζ = 0 of the Fayet-Iliopoulos parameter, which exhibits more subtle behaviour
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from this perspective and requires further analysis.

The Higgs and topological solutions are qualitatively different. The locations of

the Higgs solutions only depend the masses, while the topological solutions have

dependence on the Fayet-Iliopoulos parameter ζ. This distinction allows us to

distinguish the two types of solutions without referencing to the original three-

dimensional theories. In particular, all the topological solutions are separated if

we turn ζ→ ∞.

3.4 Small Radius Limit

We also consider the small radius limit β→ 0, as investigated in [ARW17], where

it reduces to two-dimensional theories. In comparison with the large radius limit

analysed in Section 3.3, our general expectation is the following:

• The Higgs solutions at β → ∞ lie in the regime βσ ≪ 1 in the limit β → 0,

since the Higgs vacua appear at finite values σ.

• On the other hand, topological solutions at β → ∞ lay outside the region

βσ≪ 1 in the limit β→ 0, because σ can be shifted to arbitarily large values

in the topological vacua.

Within the geometric regime for the Fayet-Iliopoulos parameter ζ where Higgs

vacua always exist, the Chern-Simons level determines the existence of topological

vacua.

• Consequently, if the Chern-Simons level κ lies within the critical window, the

small radius limit can be fully captured by a corresponding two-dimensional
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N = (2, 2) gauge theory in the regime βσ≪ 1. This property is independent

of the specific values of the Chern-Simons level provided it remains in the

critical window.

• However, if κ lies outside the window, there exist additional solutions outside

the regimeβσ≪ 1. In this case the small radius limit cannot be fully captured

by a two-dimensional N = (2, 2) gauge theory. The additional solutions are

de-coupled two-dimensional theories which we do not fully understand.

For a U(1) gauge theory withN chiral multiplets of chargesQi > 0 and massesmi

in three dimensions. The twisted superpotentialW is

W(σ;mi, Qi) =
N∑
i=1

W3d
χ (Qiσ+mi)+2πβζσ+πβκσ

(
σ+

i

β

)
+2πβκ̃GFσ , (3.4.1)

whereW3d
χ is the contribution of a single three-dimensional chiral multiplet

W3d
χ (σ) =

1

2πβ
Li2(e−2πβσ) +

π

2
βσ2 , (3.4.2)

and

κ̃GF =

N∑
a ′=2

(
κa ′ +

1

2

N∑
j=1

Qa ′j

)
ma ′ (3.4.3)

is the contribution from the mixed gauge-flavour Chern-Simons terms. The Bethe

ansatz equation is given by

N∏
i=1

(1− xQiyi)
Qi = qxκ+

1
2N

N∏
a ′=2

y
κa ′+ 1

2

∑N
j=1Qa ′j

a ′ (3.4.4)

up to an overall sign. Its number of solutions is

# =


∑N
i=1Q

2
i if |κ| ⩽ 1

2

∑N
i=1Q

2
i

|κ|+ 1
2

∑N
i=1Q

2
i if |κ| > 1

2

∑N
i=1Q

2
i

. (3.4.5)
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Consider taking the limit β→ 0, while fixing the combination

t = 2πβζ+ πi

(
k+

N

2

)
+ 2πβκ̃GF , (3.4.6)

which acts as the effective Fayet-Iliopoulos parameter for the two-dimensional

theory. As discussed in Section 3.3, it controls the spacing between the Higgs

solutions and the topological solutions. The t → ∞ helps us to distinguish the

topological solutions from the Higgs solutions.

• In the regime βσ≪ 1, after renormalisation the effective twisted superpoten-

tial tends to

W →
N∑
i=1

W2d
χ (Qiσ+mi) + tσ , (3.4.7)

whereW2d
χ is the contribution of a single two-dimensional chiral multiplet

W2d
χ (σ) = σ(logσ− 1) . (3.4.8)

This results in aU(1) gauge theory withN chiral multiplets in two dimensions.

The Bethe ansatz equation for the two-dimensional theory is

N∏
i=1

(Qiσ+mi)
Qi = e−t . (3.4.9)

which has
∑N
i=1Qi solutions for generic parameters since it is a polynomial

of degree
∑N
i=1Qi.

However this only captures the real solutions but σ is a complexified by the

Wilson lines. For each chiral multipletΦi, the periodicity isQiσ ∼ Qiσ+ 2πi.

Hence each real solution of σ in two dimensional corresponds toQi solutions

of x = eσ in three dimensions. Physically, the Q2 dependence in the number

of vacua in three dimensions comes from the |Q| topological Wilson lines

wrapping on the two non-trivial cycles of the spatial torus T2. When it is
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reduced to two dimensions, one of the cycles is contracted. The theory is

decomposed [RSV20] into |Q| distinct topological sectors.

When the decomposition is taken into account, the effective two-dimensional

theory really captures
∑N
i=1Q

2
i solutions, which corresponds to all of the

Higgs vacua. But this regime βσ≪ 1 does not fully capture all the solutions

from the three-dimensional theory when κ > 1
2

∑N
i=1Q

2
i , where topological

solutions appear.

• Outside the region βσ≪ 1, we would like to find finite solutions in terms of

Σ := 2πβσ. The effective twisted superpotential becomes

W → 1

2πβ

(
N∑
i=1

Li2(e−QiΣ) +
1

2

(
κ+

N

2

)
Σ2 + tΣ

)
+ O(1) , (3.4.10)

which looks like a U(1) theory of N massless chiral multiplets. The Bethe

ansatz equation becomes

N∏
i=1

(1− XQi)Qi = e−tXκ+
N/2 , (3.4.11)

where X := e−Σ. The distinct solutions decouple [ARW17] into separate

theories as the values of the twisted superpotential in different vacua differ

by a diverging factor 1
β

.

Naively, the number of solutions to this two-dimensional Bethe ansatz equa-

tion is either
∑N
i=1Q

2
i or

(
|κ|+ 1

2

∑N
i=1Q

2
i

)
just as in the original three-

dimensional equation (3.4.4).

However, some of the solutions reside in the other regime Σ ∼ βσ ≪ 1,

which need to be discarded to avoid double counting. The new solutions

can be separated by considering t→ ∞. In particular, these are the
∑N
i=1Q

2
i

solutions “close” to X = 1, which resides in the other regime βσ ≪ 1 and

needs to be discarded. Hence there are only |κ|− 1
2

∑N
i=1Q

2
i solutions residing
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outside of the regime βσ ≪ 1, which correspond to the topological vacua.

This can be demonstrated explicitly with examples.

3.4.1 U(1)κ with One Chiral Field

Consider again one chiral multiplet with Q = 1. The twisted superpotentialW is

W(σ) =W3d
χ (σ) + 2πβζσ+ πβκσ

(
σ+

i

β

)
. (3.4.12)

The Bethe ansatz equation reads

1− x = qxκ+
1/2 , (3.4.13)

with the number of solutions given by

# =


1 if |κ| ⩽ 1

2

|κ|+ 1
2

if |κ| > 1
2

. (3.4.14)

Consider taking the limit β→ 0, while fixing the combination

t = 2πβζ+ πi

(
k+

1

2

)
.

• In the regime βσ≪ 1, the effective twisted superpotential tends to

W →W2d
χ (σ) + tσ , (3.4.15)

giving an effective Bethe equation

1 = etσ (3.4.16)

with one solution at σ = e−t. This captures the single Higgs vacuum of the

three-dimensional theory.
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This can be explicitly seen by comparing to the large radius limit in Sec-

tion 3.3.1, where σ = e−t corresponds to the Higgs solution.

• Outside of the regime βσ≪ 1, we define Σ := 2πβσ being finite. The twisted

superpotential becomes

W → 1

2πβ

(
Li2(e−Σ) +

1

2

(
κ+

1

2

)
Σ2 + tΣ

)
+ O(1) , (3.4.17)

giving the Bethe ansatz equation

1− X = e−tXκ+
1/2 , (3.4.18)

where X = e−Σ.

At κ = −1
2
, there is a single solution X = 1 − e−t matching with the large

radius solution x = 1 − q from the Higgs vacuum. When taking the limit

t → ∞, it tends to X = 1, corresponding to Σ = 0. Therefore it is not a new

solution.

At κ = −3
2
, there are two solutionsX± = 1

2

(
1±

√
1− 4e−t

)
matching with the

large radius solutions x± = 1
2

(
1±

√
1− 4q

)
from the Higgs and topological

vacuum respectively. In the t → ∞ limit, the solutions tend to X+ = 1 and

X− = 0, corresponding to Σ+ = 0 and Σ− = ∞. Therefore the only new

solution in this regime is

X− =
1

2

(
1−

√
1− 4e−t

)
corresponding to the topological vacuum.



Chapter 4

Twisted Index

Consider the same class of theories on the product manifoldS1×Σ, where the flatR2

in Chapter 3 is replaced with a closed Riemann surface of genus g. These theories

fall into the general class introduced in [CKW17]. To preserve supersymmetry on a

curved space, a topological twist is performed by mixing theU(1) Lorentz rotation

on the plane with the unbroken R-symmetry. This is lift from the topological

A-twist [Wit98] in two dimensions. The metric tensor on the plane becomes exact,

and therefore closed observables are independent of the metric. This enables us to

put a sub-sector of the theory onto arbitary curved space Σ. We are interested in

the twisted indices discussed in [NS15, BZ15, CK16, BZ17].

The topological twist preserves an N = (0, 2) quantum mechanics on S1 with a

pair of of superchargesQ andQ. We would like to give an algebro-geometric inter-

pretation of the twisted index via quantum mechanics. This approach is different

from the perspective of the topological A-model. We are reducing the theory to a

quantum mechanics on the temporal circle, rather than a two-dimensional theory

on the spatial component.
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This chapter is based on my research conducted in [BFKX22, BX22], with the

following outline.

• Section 4.2 sets up the notation, and constructs two different forms of the

twisted index from the perspectives of quantum mechanics and the two-

dimensional A-model respectively.

• We review the contour integral formula [BFK22] in Section 4.3 which we wish

to reproduce from the geometric construction.

• A schematic construction for the algebro-geometric interpretation is given in

Section 4.4. The detailed computations for the vortex and topological saddles

are respectively left to Chapter 5 and Chapter 6. The full construction of

Chern-Simons contributions are discussed in Chapter 7.

• The window phenomenon and the connection to quantum K-theory are then

discussed in Section 4.5 in the context of twisted indices.

• Finally two simple examples are provided in Section 4.6.

4.1 Topological Twist

In the absence of central charges, the three-dimensional N = 2 supersymmetry

introduced in Section 2.1.1 reduces to

{
Qα, Qβ

}
= 2γµαβPµ = Pαβ . (4.1.1)

We implement a topological twist equivalent to the topological A-twist on Σ. The

Lorentz group on the plane is mixed with an unbrokenU(1)R ⊂ SU(2)R symmetry.
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The twist assigns a new spin

L ′ = L+
1

2
R (4.1.2)

to a field of charge L under rotations on the plane. It preserves the supercharges

that commute with the new Lorentz group, resulting a supersymmetry algebra

{
Q,Q

}
= P0 (4.1.3)

where P0 generates translations on S1.

After the twisted is performed, it is more convenient to adopt the twisted field

notation [CK16, CCP15, BFK22].

The vector multiplet is denoted as

V = (σ,Aµ, λ, λ,Λ1, Λ1̄, D) , (4.1.4)

where σ is the real scalar, Aµ is the gauge connection, D is the auxiliary field, and

λ, λ, Λ, Λ are gauginos. The abelian Yang-Mills lagrangian is

LYM =
1

2
F01F01̄ +

1

2
(−2iF11̄)

2 +
1

2
D2 +

1

2
|Dµ σ|2

− iλD0λ− iΛ1̄D0Λ1 + 2iΛ1̄D1λ− 2iΛ1D1̄λ , (4.1.5)

which is exact with respect to Q and Q in (4.1.3). The Chern-Simons term is given

by

LCS =
κ

4π

[
iϵµνρ

(
Aµ∂µAρ −

2i

3
AµAνAρ

)
− 2Dσ+ 2iλλ+ 2iΛ1̄Λ1

]
, (4.1.6)

which is not exact.

The twisted chiral multiplet is denoted as

Φ = (ϕ,ψ, η, F) . (4.1.7)
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Its lagrangian is given by

LΦ =ϕ†(−D20 − 4D1D1̄ + σ2 + iD− 2iF11̄
)
ϕ− F†F

−
i

2
ψ(D0 + σ)ψ− 2iη(D0 − σ)η

+ 2iψD1η− 2iηD1̄ψ

− iψλϕ+ iϕ†λψ

− 2iϕ†Λ1η+ 2iηΛ1̄ϕ , (4.1.8)

which is exact under Q and Q.

In addition, a background vector multiplet Vf for a maximal torus of a flavour

symmetry Tf ⊂ Gf contains a real scalar component mf valued in the Cartan sub-

algebra of the flavour group, and a background connectionAf. For example we can

turn on a real mass of the background vector multiplet for the U(1)t topological

symmetry, which is the Fayet-Iliopoulos parameter ζ. Then the Fayet-Iliopoulos

term is

LFI = −
iζ

2π
D . (4.1.9)

4.2 Supersymmetric Index

In the operator formalism, the twisted index counts the supersymmetric ground

states H annihilated by the superchargesQ andQ. The space H of supersymmetric

ground states forms a representation of the global symmetry Tt × Tf where Tt is
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topological and Tf is flavour. The fugacities can be defined via

q = e−2πβ(ζ+iAt) , (4.2.1a)

yj = e
−2πβ(mj+iAf) , (4.2.1b)

x = e−2πβ(σ+iA) , (4.2.1c)

the same way as in Chapter 3.

The twisted index is then in the form

I = Tr(−1)FqJ
N∏
i=1

yJii , (4.2.2)

where J is the Cartan generator of the topological symmetry Tt = U(1)t, and Ji is

the generator ofU(1)i in Tf. The trace is performed over the Hilbert space H which

is assumed to be locally finitely graded so that the coefficient of a monomial in q

and yi is a finite integer.

From the perspective of the A-twist in two dimensions, the twisted index for gauge

group G = U(1) can be computed via the Bethe formula [BZ17, NS15]

I =
∑
x=xi

Z(x;m)

∣∣∣∣
m=0

H(x)g−1 , (4.2.3)

over solutions xi of the Bethe ansatz equation (3.1.4), where Z(x;m) denotes the

classical and one-loop contribution in supersymmetric localisation and

H =
∂2 logZ
∂ log x∂m . (4.2.4)

is the hessian determinant independent of the flux m. The twisted index is a

meromorphic function of the fugacities q and yi. When g = 1, it reduces to the

torus index discussed in Section 2.1.3.

Note that in this notation, the Bethe ansatz equation (3.1.4) can be expressed in terms
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of the classical and one-loop determinant Z instead of the twisted superpotential

W,

exp
(
i
∂ logZ
∂m

)
= 1 . (4.2.5)

For a general U(1) gauge theory of the type considered in Chapter 2, the classical

and one-loop determinant takes the following form

Z =qmxκm

(
N∏
b ′=2

y
κb ′m
b ′

)
xκR(g−1)

(
N∏
b ′=2

y
κRb ′(g−1)
b ′

)
× N∏

i=1

(
xQ1

i/2
∏N
b ′=2 y

Qb′

i/2
b ′

1− xQ
1
i

∏N
b ′=2 y

Qb
′
i

b ′

)(Q1 im)+(ri−1)(g−1)
 . (4.2.6)

Here the notation of extended charge matrices (2.2.5) has been used, whereQ1i :=

Qi are the gauge charges and {Qb
′

i}
N
b ′=2 are the flavour charges. The independent

flavour fugacities {yb ′}Nb ′=2 are defined such that

yi ≡
N∏
b ′=2

y
Qb

′
i

b ′ . (4.2.7)

The corresponding hessian is given by

H(x) = κ+

N∑
i=1

(Q1i)
2

1
2
+

xQ
1
i

∏N
b ′=2 y

Qb
′
i

b ′

1− xQ
1
i

∏N
b ′=2 y

Qb
′
i

b ′

 . (4.2.8)

It is convenient to use the mixed Chern-Simons levels (2.2.12)

{κj, κRj | j = 1, . . . ,N}

for each chiral multiplet satisfying κj+ 1
2
Qj ∈ Z. It enables us to write the classical

and one-loop determinant exclusively in terms of the flavour fugacities yj for each
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chiral multiplet as

Z =qmxκm

(
N∏
j=1

y
κjm

j

)
xκR(g−1)

(
N∏
j=1

y
κRj(g−1)

j

)
× N∏

i=1

(
x

Qi/2y
1/2
i

1− xQiyi

)(Qim)+(ri−1)(g−1)
 . (4.2.9)

Then the hessian simply reads

H(x) = κ+

N∑
i=1

(Qi)
2

(
1

2
+

xQiyi

1− xQiyi

)
. (4.2.10)

In the case of g = 1, the classical and one-loop determinant is trivial,

Z(x;m)

∣∣∣∣
m=0

= 1 .

Hence the twisted index (4.2.3) indeed returns the number of solutions of the Bethe

ansatz equation, in agreement with the expected torus supersymmetric index

discussed in Chapter 2.

4.3 Contour Integral Formula

The contour integral formula of the twisted index can be derived using the Cou-

lomb branch supersymmetric localisation. In this section, we briefly review the

derivation of the contour integral formula [BFK22], which is based on a modifica-

tion to the localisation scheme in [BZ15, CK16, BZ17]. Schematically, the modified

Coulomb localisation scheme considers the lagrangian

L =
1

t2

(
1

e2
LYM + Lτ

)
+
1

g2
LΦ + LCS + LFI , (4.3.1)
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with the exact deformation

Lτ =
iτ

2

(
Q+Q

)(
λ+ λ̄

)
= −iτD1d , (4.3.2)

where

D1d = D− 2F11̄ (4.3.3)

is an auxiliary field in the one-dimensional vector multiplet. The modification is

to introduce this one-dimensional Fayet-Iliopoulos parameter τ to ensure a mean-

ingful result for each individual flux m ∈ Z. This feature is necessary if we want

to unambiguously interpret the coefficient of qm as counting the supersymmetric

ground states with U(1)t charge m, as in the hamiltonian definition (4.2.2).

In the limit t2 → 0 and e2 finite, the path integral localises to solutions of the

following equations

∗FA + iD = 0 , (4.3.4a)

∂̄Aϕi = 0 , (4.3.4b)

dAσ = 0 , (4.3.4c)

F01 = F01̄ = 0 , (4.3.4d)

(mi +Qiσ)ϕi = 0 . (4.3.4e)

After integrating out the fermionic zero modes, the localised path integral leads to

the contour integral formula [BZ17]

I =
∑
m∈Z

1

2πi

∮
JK

dx
x
HgZ(x;m) . (4.3.5)

The contour is explicitly given by the Jefrrey-Kirwan residues

1

2πi

∮
JK

dx
x

=
∑
x∗

JK-Res
x=x∗

(Q∗, η)
dx
x
, (4.3.6)
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with

JK-Res
x=0

(Q,η)
dx
x

:= Θ(Qη) sign(Q) , (4.3.7)

where η ̸= 0 is an auxiliary real parameter, and Q∗ denotes the Jeffrey-Kirwan

charge of the pole at x∗.

• For the interior poles at xQiyi = 1 coming from the chiral multipletsΦi, their

Jeffrey-Kirwan charges are taken to be the corresponding gauge charges Qi.

• For the boundary poles at x = 0 and x = ∞ associated with the monopole

operators, the Jeffrey-Kirwan charges are taken to be

Q+ =


−κ+ if κ+ ̸= 0

m− τ ′ otherwise
, (4.3.8a)

Q− =


+κ− if κ− ̸= 0

m− τ ′ otherwise
, (4.3.8b)

where the one-dimensional Fayet-Iliopoulous parameter τ is re-scaled as

τ ′ :=
e2vol(Σ)
2π

τ . (4.3.9)

The contribution from each magnetic flux m ∈ Z is separately independent of the

auxiliary parameter η provided τ ′ ̸= m. However, the twisted index might jump

across the wall τ ′ = m according to

I(τ ′ = m+ ϵ) − I(τ ′ = m− ϵ)

=qm

[
δκ+,0 Res

x=0
+ δκ−,0 Res

x=∞
]

dx
x
H(x)gZ(x;m) . (4.3.10)

where ϵ→ 0+. Therefore we require τ ′ /∈ Z, which ensures that the Jeffrey-Kirwan

charges are always non-vanishing and the contribution to the twisted index from

each flux m ∈ Z is well-defined.
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Finally, the contour prescription used in [BZ15, CK16, BZ17] is recovered by sending

τ ′ → +∞ with η > 0 or τ ′ → −∞ with η < 0. That this is independent of the

auxiliary parameter η is equivalent to the statement that sum of (4.3.10) over m ∈ Z

is proportional to a formal delta function at q = 1.

In general, a pole from a chiral multiplet in the localisation formula corresponds to a

solution of the Bethe ansatz equation (4.2.5). However, each individual residue does

not reproduce the corresponding summand in the Bethe formula (4.2.3). This can

be understood as the results of taking different limits in the “de-compactification”

procedure. The Bethe ansatz equation evaluates at the limit β → 0, while the

localisation formula was derived by taking β→ ∞. Nevertheless, both formulae

agree only after summing up all the contributions from each chiral multiplets.

4.4 Geometric Interpretation

The definition (4.2.2) of the twisted index can be interpreted as the supersym-

metric index (2.1.26) of the supersymemtric quantum mechanics obtained by the

twist. The supersymmetric index is identified with the holomorphic Euler char-

acteristic (2.1.28). Therefore the geometric interpretation of the twisted index is

expected to be in the following form [BFKX22]

I =
∑
m

qm

∫
Â(Mm) ch(Vm) ,

where m labels the magnetic sectors, Mm denotes the moduli space parametrising

the saddle points of the localised path integral, and Vm is roughly a complex of

vector bundles encoding the massive fluctuations of the chiral multiplets and the

Chern-Simons terms.
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For such an interpretation to be meaningful, it is necessary for the contribution

to the twisted index from each individual flux m ∈ Z to be unambiguous. This

necessitates the introduction of the one-dimensional Fayet-Iliopoulos parameter

τ in (4.3.2). The wall-crossing phenomena in τ are then reflected in jumps in the

structure of the moduli spaces Mm and the complexes Vm.

This general expectation was verified in previous work [BFK19, BFK22] for a class

of theories with N = 4 supersymmetry, where for generic τ ′ ̸= m the moduli spaces

Mm exclusively parametrise vortex-like configurations on Σwhere the gauge group

is either completely broken or broken to a discrete subgroup. Here we extend the

geometric interpretation to theories with topological saddle points, where there

is an unbroken continuous gauge symmetry and the moduli spaces Mm must be

described as quotient stacks.

There is an important distinction between saddle points where the unbroken gauge

symmetry is the whole G = U(1) or a discrete subgroup. The latter involves a

relatively mild extension of [BFK22] to deal with moduli spaces with orbifold

singularities. We only focus on theories without orbifold singularities with the

constraint |Qi| = 1. We therefore consider theories with topological saddle points

where G = U(1) is fully unbroken with all matter fields set to vanish. The moduli

space Mm has a component that is roughly the Picard variety Picm(Σ) ∼= T2g

parametrising degree m holomorphic line bundles on Σ.

4.4.1 Higgs Branch Localisation

For the class of theories of our interest, this geometric interpretation can be realised

using the Higgs branch localisation scheme [BFKX22] such that both topological

and vortex saddle points appear. It is similar to the Higgs branch localisation
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schemes implemented for two-dimensional N = (2, 2) theories in [BC15, DGLFL13,

CCP15], and for three-dimensional N = 2 theories in [FHY14, BP14]. In this

localisation scheme we take the lagrangian (4.3.1) with an additional exact term

LH = −
i

2

(
Q+Q

)(
λ+ λ̄

)
µ(ϕ) , (4.4.1)

where µ(ϕ) =
∑N
j=1Qj|ϕj|

2 is the moment map for the gauge action. After setting

g = t, the resulting lagrangian

L =
1

t2

(
1

e2
LYM + LΦ + Lτ + LH

)
+ LCS + LFI (4.4.2)

is taken to the limit t2 → 0 while e2 is kept finite. The supersymmetric saddle

points are then solutions to the following set of generalised vortex equations,

1

e2
∗ FA +

N∑
j=1

Qj|ϕj|
2 − t2σ

κeff(σ)

2π
− τ = 0 , (4.4.3a)

∂̄Aϕi = 0 , (4.4.3b)

dAσ = 0 , (4.4.3c)

(mi +Qiσ)ϕi = 0 (4.4.3d)

for all i = 1, . . . ,N, where FA is the curvature of the gauge connection A, and

∗ is the Hodge star operator on Σ. In these equations, ϕj should be understood

as a section of Krj/2
Σ ⊗ LQj , where KΣ is the canonical bundle on Σ and L is the

holomorphic gauge bundle on Σ.

Note that the dependence on the three-dimensional Fayet-Iliopoulos parameter

ζ has dropped out but the equations depend critically on the one-dimensional

Fayet-Iliopoulos parameter τ. The term proportional to the effective Chern-Simons

level κeff is kept to capture potential saddle points where |σ| → ∞ with σ0 := t2σ

finite.
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The solutions to equations (4.4.3) fall into topologically distinct sectors labelled by

the flux

m :=
1

2π

∫
Σ

FA ∈ Z . (4.4.4)

A constraint on the existence of saddle points with a given flux m is found by

integrating the D-term equation (4.4.3a) over the Riemann surface Σ to give

(τ ′ −m) +
e2 vol(Σ)
4π2

t2σκeff(σ) =

N∑
j=1

Qj ∥ϕj∥2 , (4.4.5)

where τ ′ is rescaled according to (4.3.9), and

∥ϕj∥2 :=
e2

2π

∫
Σ

ϕ̄j ∧ ∗ϕj (4.4.6)

is a positive definite inner product on sections of KrjΣ ⊗ LQj .

4.4.2 Classification of Saddles

Assuming the one-dimensional Fayet-Iliopoulos parameter is generic, i.e., τ ′ ̸= m,

there are two classes of solutions in each magnetic flux sector m ∈ Z. They are

analogous to the Higgs vacua and topological vacua for generic mass parameters

in flat spacetime, which are discussed in Section 2.2.2.

• Vortex saddles are solutions where σ remains finite in the limit t2 → 0 and

the term proportional the effective Chern-Simon level keff in equation (4.4.3a)

can be ignored. The saddle equations (4.4.3) then reduces to the abelian

vortex equations

1

e2
∗ FA +

N∑
j=1

Qj|ϕj|
2 = τ , ∂̄Aϕi = 0 , (mi +Qiσ)ϕi = 0 . (4.4.7)

For generic real mass parameters mi, the space of solutions decomposes

as a disjoint union of components where a single ϕi is non-vanishing and
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σ = −mi/Qi. From the constraint (4.4.5), a component of the moduli space

where ϕi is non-vanishing exists if and only if

sign(τ ′ −m) = sign(Qi) . (4.4.8)

• Topological saddles are solutions where |σ| → ∞ in the limit t2 → 0, such

that the combination σ0 := t2σ remains finite and has a unique non-vanishing

solution. This requires ϕj = 0 for all j = 1, . . . ,N and therefore the constraint

(4.4.5) becomes

τ ′ −m = −
e2 vol(Σ)
4π2

σ0κ
± . (4.4.9)

If a solution exists, then it is in the form

σ0 ∼ −
τ ′ − ζ

κ±
, (4.4.10)

ignoring the positive multiplicative factor. When σ→ +∞, a solution at

σ0 ∼ −
τ ′ − ζ

κ+
> 0 . (4.4.11a)

exists if and only if κ+ ̸= 0 and sign(τ ′ − m) = − sign κ+. Similarly when

σ→ −∞, a solution at

σ0 ∼ −
τ ′ − ζ

κ−
< 0 . (4.4.11b)

exists if and only if κ− ̸= 0 and sign(τ ′ −m) = sign κ−.

In summary, a unique solution with ±σ0 > 0 exists, if κ± ̸= 0 and

sign(τ ′ −m) = sign(Q±) , (4.4.12)

whereQ± are the Jeffrey-Kirwan charges (4.3.8) at the boundary poles, acting

as the gauge charges of the monopole operators. In analogy to the condi-

tion (4.4.8) on vortex saddles, this is consistent with the interpretation of

attributing the topological vacua to monopole operators.
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In addition, if κ± = 0 then a non-compact Coulomb branch parametrised by

±σ0 > 0 appears at τ ′ = m, which is responsible for the wall-crossing phenomena

in equation (4.3.10). These three classes are analogous to the trichotomy of flat

space supersymmetric vacua [IS13] discussed in Section 2.2.2.

If we align the auxiliary parameter η in the Jeffrey-Kirwan residue (4.3.7) as

sign(τ ′ −m) = sign(η) , (4.4.13)

then the components of the moduli space of saddles with flux m are in one-to-one

correspondence with the poles selected by the contour prescription in Section 4.3.

There is a component of the vortex moduli space with ϕi ̸= 0 when the pole at

xQiyi = 1 is selected. Similarly, there is a topological saddle point with ±σ0 > 0

whenever the residue at x±1 → 0 is selected.

4.4.3 Geometric Integral Formula

The moduli space M of saddle points of the path integral splits into disjoint unions

of topologically distinct components

M =
⊔
m∈Z

Mm

labelled by the flux m. When all the mass parameters {mj = 0}Nj=1 are set to vanish,

the twisted index localises to the following schematic form

∑
m∈Z

qm

∫
Â(Mm) ch(Lm) , (4.4.14)

where Mm parametrises both the vortex and topological saddles, and Lm encodes

the Chern-Simons terms.



4.4. Geometric Interpretation 74

As we turn on non-vanishing mass parameters {mj ̸= 0}Nj=1, the remaining moduli

space Mm is the fixed points of the of the flavour Tf action on Mm. Based on the

structure of supersymmetric quantum mechanics, the supersymmetric localisation

leads to the following expression [BFK22, BFKX22] for the twisted index

I =
∑
m∈Z

qm

∫
Â(Mm)

ch
(⊗

αLm,α

)
ch
(
∧̂

•
Em

)
=

∑
m∈Z

qm

∫
Â(Mm)

Â(Em)

e(Em)
ch
(⊗

α

Lm,α

)
, (4.4.15)

where the index bundle Em is formally a perfect complex of sheaves encoding the

massive fluctuations of the chiral multiplets, andLm,α are holomorphic line bundles

arising from various Chern-Simons terms. This is analogous to the supersymmetric

index (2.1.28). The notation ∧̂ denotes the normalised exterior algebra [MO15]

∧̂
•
V := (detV)−1/2 ⊗∧•V

= (detV)−1/2
⊗
i⩾0

(−1)i ∧i V .

The integral should be understood equivariantly with respect to the flavour sym-

metry Tf in (2.2.1), leading to the dependence on the real mass parameters. The

Dirac genus Â(Mm) comes from the tangent directions of the Tf action on Mm,

while the Chern character ch
(
∧̂

•
Em

)
from the index bundle Em appears as the

contributions of the normal directions of the Tf action on Mm.

The integrand consists of some characteristic classes, namely the Dirac genus Â(F),

the Euler class e(F), and the total Chern character ch(F) of some fibre bundle

F
π−→ M. In terms of the Chern roots αi defined by the diagonalised curvature A of

the bundle E

A := g−1
(
iF

2π

)
g = diag(α1, . . . , αN) , (4.4.16)
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the relevant characteristic classes can be computed [Nak03] as

ch(F) =
N∑
j=1

eαj , (4.4.17a)

e(F) =
N∏
j=1

αj , (4.4.17b)

Â(F) =

N∏
j=1

αj

2 sinh(αj/2)
. (4.4.17c)

In addition, the first Chern class and the Todd class

c1(F) =
N∑
j=1

αj , (4.4.17d)

td(F) =
N∏
j=1

αj

1− e−αj
(4.4.17e)

are needed for later computations.

It is expected to reproduce the contour integral formula (4.3.5) of twisted indices

with the appropriate geometric objects. The contributions from the moduli spaces

and the gauge bundles are explicitly constructed in Chapter 5 and Chapter 6, while

the mechanism of generating the Chern-Simons contributions is further discussed

in Chapter 7.

4.4.4 Schematic Construction

Before diving into the details in Chapter 5 and Chapter 6, let us give a brief

schematic for the specific geometric construction. Consider a single component

Mm of the moduli space. For vortex saddles, each component moduli space Mm

is a symmetric product of the curve Σ from the non-vanishing chiral multiplet.

For topological saddles, Mm are Picard stacks. The massive fluctuations of chiral

multiplets Φj generate an index bundle E•
j , which is a perfect complex of sheaves
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as the derived push-forward

E•
j := R

•π∗(L
Qj ⊗K

rj/2) , (4.4.18)

where L, K are respectively the universal line bundle and the canonical bundle

on the product space Mm × Σ, and Qj, rj are the gauge and the R-charge of Φj.

The class ch(E•
j ) = ch(E0j ) − ch(E1j ) makes sense in equivariant K-theory and the

complex behaves like a vector bundle of rank dj − g + 1 for the purpose of such

computations.

• For vortex saddles, the full construction can be found in Chapter 5. The

moduli space is a symmetric product

Mvor
m = SymdiΣ ≡ Σdi , (4.4.19)

coming from the single non-vanishing chiral multipletΦi. Following compu-

tations in Section 5.2.1, the tangent direction contributes a class

Â(Σdi) =

(
ηe

−η/2

1− e−η

)di−g+1
exp

[
Q2iθ

(
1

2
−
1

η
+

e−η

1− e−η

)]
.

The index bundle contributions are discussed in 5.2.2. An application of the

Grothendiek-Riemann-Roch theorem (5.2.23) gives

ch(E•
j ) = e

Qjη

[
(dj − 2g+ 1) +

g∑
a=1

e−Q
2
jθaθ

]
.

for the massive fluctuations of remaining vanishing chiral multiplets {Φj}j̸=i.

Therefore the Chern roots can be read off as

(
Qjη, . . . ,Qjη︸ ︷︷ ︸

dj−2g+1

, Qjη−Q
2
j θ1, . . . , Qjη−Q

2
j θg
)
.

It can be completed to Tf-equivariant forms by adding the real mass (mj −Qjmi)
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as the equivariant parameter, promoting to a Tf-equivariant Chern character

ch(E•
j ) = zje

Qjη
(
(dj − g+ 1) −Q

2
j θ
)
,

where zj := yj/y
Qj
i . The contribution of these fluctuations to the twisted

index can be evaluated as

Â(E)

e(E) =
∏
j̸=i

(
(e−Qjηzj)

1/2

1− e−Qjηzj

)dj−g+1
exp

[
Q2j θ

(
1

2
+

e−Qjηzj

1− e−Qjηzj

)]
.

After integrating over the symmetric product Σdi , this gives the contribution

to the twisted index from the vortex saddle with ϕ ̸= 0.

• For the topological saddles, the full construction can be found in Chapter 6.

The moduli stack M
top
m can be decomposed into

M
top
m = Picm(Σ)× [pt/C∗] , (4.4.20)

if we choose a base point on Σ. Then the characteristic classes in the in-

tegral (4.4.15) can be understood as C∗-equivariant classes on the moduli

space

Mm = Picm ≃ T2g .

The integral splits into two parts:

– An integral of the equivariant classes over the moduli space Mm,

– A contour integral
1

2πi

∮
dx
x
,

where x is the Chern character of the trivial C∗-equivariant holomorphic

vector bundles with weight +1.

For the contribution from the tangent directions, we have Â(Mm) = 1 because

the tangent bundle is flat. Following computations in Section 6.2.2, the Chern
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character of the index bundle can be computed via the Grothendieck-Riemann-

Roch theorem [BJG+71] as

ch(E•
j ) = (dj − 2g+ 1) +

g∑
a=1

e−Q
2
jθa ,

from which the Chern roots manifest as

(
0, . . . , 0︸ ︷︷ ︸
dj−2g+1

,−Q2j θ1, . . . ,−Q
2
j θg
)
.

The degree of the complex is denoted as dj := deg(E•
j ). Completing to an

C∗-equivariant form [Lib07] adds the real massQjσ+mj of the fluctuation of

Φj to all the Chern roots, leading to an overall multiplicative factor of xQjyj

on the Chern character. The factor generated from the chiral multiplet Φj

in (4.4.15) can be evaluated to be

Â(E•
j )

e(E•
j )

= exp
[(
1

2
+

xQjyj

1− xQjyj

)
(Qj)

2θ

](
x

Qj/2y
1/2
j

1− xQjyj

)(Qjm)+(rj−1)(g−1)

.

After integrating over the Picard variety Picm(Σ), this gives the contribution

to the twisted index from the topological saddle.

Lastly the line bundles Lα in (4.4.15) can be interpreted as the determinant line

bundles obtained by integrating out additional auxiliary chiral multiplets. This is

consistent with the physical phenomenon that integrating out heavy fermions in

three-dimensional theories induces effective Chern-Simons terms as a low-energy

effect [Red84a, Red84b, AGW84]. It is these determinant line bundles that give the

level structure in the corresponding quantum K-theory.
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4.5 Window Phenomenon

Schematically, the quantum K-theory of a toric stack X concerns with integrals in

the form of the holomorphic Euler characteristic

∑
m

qm

∫
Â(M̃m) ch(Lm) , (4.5.1)

where M̃m is the moduli space of stable quasi-maps of degree m from the curve Σ

into X, and Lm is some determinant line bundles giving arise to the level structure.

In three-dimensional gauge theory, the twisted index localises to an integral (4.4.14)

of the same form over the full moduli space Mm of saddle points when all mass

parameters are vanishing. The connection between these saddles and quantum

K-theory is the following.

• For vortex saddles, the moduli space Mm parametrises generalised vor-

tices [BDG+18], which are identified algebraically via the Hitchin-Kobayashi

correspondence [JT80, GP93, ACGP03] as stable quasi-maps into the Higgs

branch X. The D-term equation (4.4.3a) serves as the stability condition. The

loci of quasi-maps contain a finite number of “unstable” points at which the

vortices are located.

If no topological saddles exist, the moduli space M̃m coincides with the

moduli space Mm of vortices, and the twisted index corresponds to integrals

of the quantum K-theory of X, which has been well studied in the literature as

a lift from quantum cohomology. Specifically the twisted index is the trivial

correlator ⟨1⟩Σ in K-theoretic languages [Giv15, JM20, JM19, JMNT20, UY20].

The Chern-Simons contribution Lm is constructed from determinant line

bundles (7.3.1) of auxiliary chiral multiplets, which are analogous to the level
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structure in quantum K-theory [RZ18]. This gives a natural ground for our

conjecture that the Chern-Simons level in gauge theories is equivalent to the

quantum K-theory level.

The window phenomenon refers to the fact that quantum K-theory is ill-

defined outside the critical window where topological saddles do appear.

• For topological saddles, the moduli space Mm of saddles parametrises a

more general type of maps into a quotient stack, where the stability condi-

tion (4.4.3a) does not apply. The loci of the maps contain an infinite number

of “unstable” points. The precise mathematical description for topological

saddles is currently missing in the literature of quantum K-theory. As topo-

logical saddles have not been taken into account in quantum K-theory, we

expect this is the key missing ingredient to properly define quantum K-theory

outside the critical window.

The window phenomenon is also manifest from the contour integral formula (4.3.5)

of twisted indices. The Chern-Simons level determines the power of the exponential

parameter x appearing in the contour integral, which are responsible for the

boundary poles at x = 0 and x = ∞. These boundary poles are contributions

from the topological saddle points. Therefore, the Chern-Simons level controls the

existence of topological vacua.

Consider the g = 1 case where the twisted index is expected to reproduce the

sueprsymmetric index. The power of x is simply(
κ+

1

2

N∑
j=1

Q2j

)
m (4.5.2)



4.6. Examples 81

as the hessian factor drops out. The pole at x = 0 only appears if

κ < −
1

2

N∑
j=1

Q2j , (4.5.3)

which coincides with the critical Chern-Simons levels from (3.2.2) and (2.3.1), up

to a sign. The same story holds for the pole at x = ∞.

In summary, we have demonstrated that the window phenemenon of Chern-Simons

levels in three-dimensional gauge theories coincide with the window phenomenon

in quantum K-theory. The observations from the semi-classical vacua and twisted

chiral rings are both strong evidence for this connection. Finally the construction

in Chapter 7 of Chern-Simons contributions to the twisted indices gives a natural

interpretation from a geometric point of view. We expect the topological vacua

are the key ingredients to define quantum K-theory properly at levels outside of

the critical window. Furthermore, three-dimensional mirror symmetry should

provide insights into quantum K-theories of dual spaces.

4.6 Examples

We consider a U(1) Chern-Simons theory at level κ ∈ 1
2
+ Z⩾0 with one chiral

multiplet Φ of R-charge r = 1 and charge Q = +1. The flavour symmetry Tf

is trivial and there are no real mass parameters. The effective Chern-Simons

level (2.2.6a) is

κeff(σ) = κ+
1

2
sign(σ) (4.6.1)

and so the asymptotic level (2.2.8a) is

κ± = κ± 1

2
. (4.6.2)
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The cases κ = 1
2

and κ > 1
2

are quite different. The former has a neutral monopole

operator and is mirror to a free chiral multiplet. This difference is reflected in

the structure of the saddle points in our computation of the twisted index and

therefore we treat the two cases separately. We also restrict attention to the twisted

index with g > 0.

4.6.1 U(1) 1
2

with One Chiral Field

First consider κ = 1
2
. In this case κeff(σ) = 1

2
(1 + sign(σ)), and therefore κ+ = 1

and κ− = 0. There is a neutral monopole operator and the theory is mirror to

a free chiral multiplet, together with specific background mixed Chern-Simons

couplings.

The contour integral (4.3.5) for the twisted index is

I =
∑
m∈Z

(−q)m

2πi

∮
C

dx
x

xm

(1− x)m+g
. (4.6.3)

where we have shifted q → −q. In the presence of a one-dimensional Fayet-

Iliopoulos parameter τ, the contour is a Jeffrey-Kirwan residue prescription with

charges

Q+ = −1 , Q1 = 1 , Q− = m− τ ′ . (4.6.4)

Note that the charge Q− associated to the residue at x = ∞ now depends on the

one-dimensional Fayet-Iliopoulos parameter τ according to equation (4.3.8) since

κ− = 0.

For g > 0 the residue at x = ∞ vanishes. So there is no wall-crossing phenomena.

The twisted index is given by computing the residue at x = 1 with η > 0, or
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equivalently minus the residue at x = 0 with η < 0, giving the result

I = (−1)gq1−g(1− q)g−1 . (4.6.5)

While the twisted index is non-zero only for fluxes 1 − g ⩽ m ⩽ 0, there are in

fact [BFK19] supersymmetric ground states for all m ⩾ 1− g.

We now reproduce this result by evaluating the contributions from vortex and

topological saddle points. The existence of vortex and topological saddle points is

constrained by equation (4.4.5), which becomes

(τ ′ −m) +
e2 vol(Σ)
4π2

σ0κ
eff(σ) = ∥ϕ∥2 , (4.6.6)

together with the equation σϕ = 0. The existence of solutions depends on the sign

of τ ′ −m.

• When τ ′−m > 0, there are vortex saddle points withσ0 = 0. The moduli space

of vortex solutions with flux m is the symmetric product Mm = Σd where

d = m+ g− 1. Following the computations in Chapter 5, the contribution to

the twisted index is∫
Σd

Â(TΣd) ch(L1/2) =

∫
Σd

(
ηe−η

1− e−η

)m

exp
[
θ

(
1−

1

η
+

e−η

1− e−η

)]
=

1

2πi

∫
x=1

dx
x

xm

(1− x)m+g
. (4.6.7)

• When τ ′ −m < 0, there are topological saddle points with

ϕ = 0 , σ0 = −
4π2

e2vol(Σ)(τ
′ −m) > 0 . (4.6.8)

The moduli space of topological solutions with flux m is the Picard variety

Mm = PicmΣ. Following the computations in Chapter 6, the contribution to
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the twisted index is∫
Σd

Â(TΣd) ch(L1/2) =
1

2πi

∫
x=0

dx
x

∫
PicmΣ

(
x

1− x

)m

exp
[(

1

1− x

)
θ

]
=

1

2πi

∫
x=0

dx
x

xm

(1− x)m+g
, (4.6.9)

where the residue at x = 0 is taken since σ0 > 0.

A Coulomb branch of solutions with σ0 < 0 opens at τ ′ − m = 0 so there is the

potential for wall-crossing. However, the vanishing of the residue at x = ∞ means

that the twisted index is independent of τ. This reproduces the Jeffrey-Kirwan

residue prescription with charges (4.6.4) and sign(η) = sign(τ ′ −m). The result is

independent of η for each flux m by construction.

4.6.2 U(1)κ with One Chiral Field

Now consider one chiral multiplet with κ > 1
2

such that κ± = κ ± 1
2
> 0. There

are no gauge neutral monopole operators and the structure of the twisted index

differs considerably.

The contour integral (4.3.5) for the twisted index is now

I =
∑
m∈Z

(−q)m

2πi

∮
C

dx
x
xκm

(
x

1/2

1− x

)m(
κ+

1

2

1+ x

1− x

)g
, (4.6.10)

where the contour is a Jeffrey-Kirwan residue prescription with charges

Q+ = −κ−
1

2
< 0 , Q1 = 1 , Q− = κ−

1

2
> 0 . (4.6.11)

The index is now manifestly independent of τ and there is no wall-crossing. We

therefore enumerate the residues at x = 1 and x = ∞ with η > 0, or equivalently

minus the residues at x = 0 with η < 0.
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In this case it is illuminating to spell out the contributions from individual residues.

For example, with g = 2 and k = 3
2

we find

−I0 =
1

q
− 4 , (4.6.12a)

I1 =
1

q
− 3− q− 2q2 − 5q3 − 14q4 − · · · = 1− 4q+

√
1− 4q

2q
, (4.6.12b)

I∞ = −1+ q+ 2q2 + 5q3 + 14q4 + · · · = 1− 4q−
√
1− 4q

2q
. (4.6.12c)

Notice that the contributions I1 and I∞ are not rational function of q and so

cannot individually reproduce a reasonable index. In fact they do not count honest

supersymmetric ground states but only perturbative ground states. These are

subject to instanton corrections that remove pairs of perturbative ground states

corresponding to cancelations in the sum I1 + I∞ = −I0.

We can reproduce these contributions from an analysis of vortex and topological

saddle points. The saddle points are again constrained by

(τ ′ −m) +
e2 vol(Σ)
4π2

σ0κ
eff(σ) = ∥ϕ∥2 , (4.6.13)

and depend on the sign of τ ′ −m.

• When τ ′ −m > 0, there are both vortex saddle points and topological saddle

points with σ0 < 0. The contributions from these saddle points reproduce

the residues at x = 1 and x = ∞ respectively.

• When τ ′ − m < 0, there are topological saddle points with σ0 > 0, whose

contribution reproduces the residue at x = 0.

There is no Coulomb branch at τ ′ − m = 0 and the twisted index is independent

of τ. This reproduces precisely the Jeffrey-Kirwan residue prescription with
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charges (4.6.11) and sign(η) = sign(τ ′−m). The result is independent of η for each

flux m by construction.



Chapter 5

Vortex Saddles

This chapter contains the full algebro-geometric construction of the twisted index

for vortex saddle points, which is introduced in Chapter 4. The schematics can

be found in Section 4.4. We first analyse the structure of the moduli space of the

vortex saddles. Then the individual contributions from the tangent directions, the

normal directions, and the Chern-Simons terms are constructed. Finally the total

contribution to the twisted index is evaluated, which is in agreement with the

contour integral formula.

5.1 Moduli Space

The moduli space of vortex saddle points consists of solutions to

1

e2
∗ FA +

N∑
j=1

Qj|ϕj|
2 = τ ,

∂̄Aϕj = 0 , (mj +Qjσ)ϕj = 0 ,

(5.1.1)
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for all chiral multiplets j ∈ {1, . . . ,N}, modulo gauge transformations. The moduli

space is a disjoint union of topologically distinct components Mm labelled by the

magnetic flux m ∈ Z. The entire moduli space is realised as an infinite-dimensional

Kähler quotient. Under our assumption |Qj| = 1 each component Mm is a finite-

dimensional smooth Kähler manifold. Unless stated otherwise, we have kept Qj

explicit throughout to better understand each contributions. In particular, the

dependence on Q2j would have been easily lost during long computations if it is

set to Q2j = 1 beforehand.

For generic mass parametersmi, the moduli space further decomposes as a disjoint

union of components

Mm =
⊗
i

Mm,i (5.1.2)

where a single chiral multiplet ϕi is non-vanishing and σ = −mi/Qi. Each

component parametrises solutions to the abelian vortex equations

1

e2
∗ FA +Qi|ϕi|

2 = τ , ∂̄Aϕi = 0 , (5.1.3)

where ϕi transforms as a section of Krj/2
Σ ⊗ LQi on Σ. A small modification of the

standard analysis applies and each component is either a symmetric product of

the curve Σ or empty,

Qi = +1 : Mm,i =


Σdi if τ ′ > m

∅ if τ ′ < m

(5.1.4)

Qi = −1 : Mm,i =


∅ if τ ′ > m

Σdi if τ ′ < m

(5.1.5)

where

di := Qim+ ri(g− 1) (5.1.6)
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is the degree of Krj/2
Σ ⊗ LQi and Σd := SymdΣ with the understanding that this

is empty for d < 0. The symmetric product Σdi parametrises the positions of

the vortices. The assumption |Qi| = 1 is important to get a symmetric product,

otherwise the moduli space has orbifold singularities where a discrete gauge

subgroup is unbroken.

Note that if the auxiliary parameter η is aligned with τ ′ −m, i.e.,

sign(τ ′ −m) = sign(η) ,

then the component Mm,i of the moduli space is non-empty whenever the Jeffrey-

Kirwan residue prescription selects the pole at xQiyi = 1 from the chiral multiplet

Φi. The task in the remainder of this chapter is to reproduce the residue at this

pole from supersymmetric localisation.

It is useful to use an algebraic description of moduli spaces of abelian vortices in

terms of holomorphic pairs. Let us assume sign(τ ′ − m) = sign(Qi) so that the

vortex moduli space Mm,i is non-empty. Then the Hitchin-Kobayashi correspond-

ence [JT80, GP93, ACGP03] says that there is an algebraic description parametrising

pairs (L,ϕi) where L is a holomorphic line bundle of degree m andϕi is a non-zero

section of Krj/2
Σ ⊗ LQi . The symmetric product Σdi in equation (5.1.5) parametrises

the zeros of the section ϕi.

For simplicity and to avoid a profusion of signs at intermediate steps in the

calculation, we assume

Qi = +1 (5.1.7)

for the non-vanishing chiral multipletΦi, along with τ ′ > m. A similar computation

applies toQi = −1 and the final result is presented in a uniform way for both cases.
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5.2 Contributions to Index

The contribution to the twisted index from a component Mm,i of the vortex moduli

space is

Im,i =

∫
Â(Mm,i)

Â(E)

e(E) ch
(⊗

α

Lα

)
(5.2.1)

where E is a perfect complex of sheaves encoding the massive fluctuations of

the remaining chiral multiplets Φj̸=i of vanishing expectation values around the

vortex configurations, and Lα are holomorphic line bundles arising from the mixed

Chern-Simons terms. Note that we have omitted the labels m, i from the bundles E

and Lα for brevity.

This integral should be understood equivariantly with respect to the flavour sym-

metry Tf with parameters yi. It can be evaluated using intersection theory on sym-

metric products, and converted into a contour integral following [Mac62, Arb85].

This extends a computation performed in [BFK22] to a wider class of theories.

5.2.1 Tangent Direction

We first consider the contribution from the directions tangent to Mm,i, which is the

symmetric product Σdi when τ ′ > m and otherwise empty.

Let us briefly summarise some notations for the intersection theory on a symmetric

product. There are standard generators

ζa, ζ̄a ∈ H1(Σd,Z) ≃ H1(Σ,Z) ∀a ∈ {1, . . . , g} , (5.2.2a)

η ∈ H2(Σd,Z) ≃ H2(Σ,Z) (5.2.2b)
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arising from cohomology classes [Mac62, Arb85] on Σ. We then define the Dol-

beault cohomology classes

θa := ζa ∧ ζ̄a ∈ H1,1(Σd,Z) ≃ H1,1(Σ,Z) , (5.2.3)

and for convenience their sum

θ :=

g∑
a=1

θa . (5.2.4)

The Chern character of the tangent bundle [Mac62] is given by

ch(TΣdi) = (g− 1) + [(di − 2g+ 1) − θ]e
η

= (g− 1) + (di − 2g+ 1)e
η +

g∑
a=1

eη−Q
2
iθa , (5.2.5)

from which the curvature of the symmetric product Σdi can be read off as

AΣdi = diag
[
η, . . . , η︸ ︷︷ ︸
di−2g+1

,
(
η−Q2iθ1

)
, . . . ,

(
η−Q2iθg

)
, 0, . . . , 0︸ ︷︷ ︸

g−1

]
. (5.2.6)

From here we can evaluate the Â-genus

Â(Σdi) =

di∏
n=1

αn

2 sinh(αn/2)
=

di∏
n=1

e−
αn/2 αn

1− e−αn

=e−
1
2 c1(Σdi) td(Σdi) (5.2.7)

as follows.

The factor involving the first Chern class is simply

e−
1
2 c1(Σdi) = exp

(
−
di − g+ 1

2
η+Q2i

θ

2

)
= (e−η)

1
2 (di−g+1) exp

(
1

2
Q2iθ

)
. (5.2.8)
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The Todd class factor can be split into

td(Σdi) =
di∏
n=1

αn

1− e−αn
=

(
η

1− e−η

)di−2g+1 g∏
a=1

η−Q2iθa

1− e−η+Q
2
iθa

, (5.2.9)

where the g-fold product can be manipulated as
g∏
a=1

η−Q2iθa

1− e−η+Q
2
iθa

=

g∏
a=1

η−Q2iθa
1− e−η(1+Q2iθa)

=

g∏
a=1

η−Q2iθa
(1− e−η) − e−ηQ2iθa

=

g∏
a=1

η−Q2iθa
1− e−η

(
1−

e−η

1− e−η
Q2iθa

)−1

=

g∏
a=1

η

1− e−η

(
1−

Q2iθa

η
+

e−η

1− e−η
Q2iθa

)

=

(
η

1− e−η

)g g∏
a=1

exp
[
Q2iθa

(
−
1

η
+

e−η

1− e−η

)]
(5.2.10)

by repeatedly utilising the nilpotency θ2a = 0 for any a = 1, . . . , g. Hence the Todd

class can be written as

td(Σdi) =
(

η

1− e−η

)di−g+1 g∏
a=1

exp
[
Q2iθa

(
−
1

η
+

e−η

1− e−η

)]

=

(
η

1− e−η

)di−g+1
exp

[
Q2iθ

(
−
1

η
+

e−η

1− e−η

)]
. (5.2.11)

Combining (5.2.8) and (5.2.11) gives the desired form of the Â-genus as

Â(Σdi) =

(
ηe

−η/2

1− e−η

)di−g+1
exp

[
Q2iθ

(
1

2
−
1

η
+

e−η

1− e−η

)]
. (5.2.12)

5.2.2 Index Bundle

We now consider the index bundle Ej̸=i, encoding fluctuations of each of the

remaining massive chiral multiplets Φj̸=i around configurations in Mm,i. These
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are coming from the normal directions of the flavour Tf action on the full moduli

space Mm.

At a point (L,ϕi) on the moduli space Mm,i, each chiral multiplet Φj̸=i generates

one-dimensional N = (0, 2) chiral multiplet and Fermi multiplet fluctuations. Due

to the supersymmetry they are valued in the following cohomologies.

• Chiral multiplet fluctuations are valued in

E0j := H
0
(
Σ, LQj ⊗ Krj/2

Σ

)
. (5.2.13a)

• Fermi multiplet fluctuations are valued in

E1j := H
1
(
Σ, LQj ⊗ Krj/2

Σ

)
. (5.2.13b)

The line bundle L is the gauge bundle with the gauge chargeQj inherited from the

three-dimensional chiral multiplet Φj. The canonical bundle KΣ comes from the

topological twist mixing in the R-symmetry. When we move around in the moduli

space Mm,i, the dimensions of these vector spaces may jump. But the difference of

their dimensions is constant by the Riemann-Roch theorem

dimE0j − dimE1j = h
0
(
LQj ⊗ Krj/2

Σ

)
− h1

(
LQj ⊗ Krj/2

Σ

)
≡ dj − g+ 1

= Qjm+ (g− 1)(rj − 1) , (5.2.14)

where dj is the degree of the line bundle

dj = deg
(
LQj ⊗ Krj/2

Σ

)
= Qj deg(L) + rj

2
deg(KΣ)

= Qjm+
rj

2
(2g− 2) . (5.2.15)
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We can therefore formally regard the difference of these vector spaces as the fibre of

a holomorphic vector bundle on the moduli space Mm,i of rank dj − g+ 1. At least

this defines a reasonable K-theory class for use in the computation of the twisted

index.

The above schematics needs to be defined more precisely for computations, which

requires the universal construction. The massive fluctuations should be described

by a complex of sheaves. We recall the construction of the universal bundle on a

symmetric product. We consider the pair of projection maps

Σdi × Σ

Σdi Σ

π p . (5.2.16)

There is a unique universal line bundle L on Σdi × Σ with the property that its

restriction to a point q = (L,ϕi) on the symmetric product Σdi is the holomorphic

line bundle L onΣ, i.e., L
∣∣
q
= L. We also defineK := p∗KΣ to be the pull-back of the

canonical bundle on the curve. With this in hand, the fluctuations ofΦj transform

in a perfect complex of sheaves on Σdi defined by the derived push-forward

E•
j := R

•π∗(L
Qj ⊗K

rj/2) . (5.2.17)

The stalks of E•
j over a point (L,ϕi) on the symmetric product are the vector spaces

E•j .

We can extract the Chern roots of E•
j following standard computations [Arb85].

Here we abuse the notations and identify the cohomology classes η and θ with

their pull-back by π. The first Chern class of L is then

c1(L) = mηΣ + γ+ η , (5.2.18)
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where ηΣ is the pull-back of the class of a point on Σ, and γ is the pull-back of the

class of the diagonal Σ⊗ Σ satisfying

γ2 = −2ηΣθ ,

γ3 = ηΣγ = 0 .

The class γ does not play a role in what follows.

Following a small modification to the standard computation [Arb85], the Chern

character ch
(
LQj

)
reads

ch
(
LQj

)
= eQjc1(L) =

∞∑
n=0

(Qj)
n(mηΣ + γ+ η)n

n!

= 1+QjmηΣ +Qjγ+Qjη+
Q2j

2
(−2ηΣθ)

= 1+QjmηΣ +Qjγ+Qjη−Q
2
j ηΣθ

= eQjη
(
1+QjmηΣ +Qjγ−Q2j ηΣθ

)
, (5.2.19)

where θ denotes the pull-back of the class in H1,1(Σdi ,Z).

To compute ch
(
K

rj/2
)
, we want to know the first Chern class of the canonical bundle

KΣ on Σ. By inverting the definition

deg(KΣ) = 2g− 2 ≡
∫
Σ

c1(k) , (5.2.20)

the first Chern class c1(KΣ) can be written as

c1(KΣ) = (2g− 2)ωΣ , (5.2.21)
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whereωΣ is the volume form on Σ. Then the Chern character of the pull-back is

ch
(
K

rj/2
)
= e

rj
2 c1(p∗(KΣ))

= e
rj
2 (2g−2)ηΣ

= 1+ rj(g− 1)ηΣ . (5.2.22)

The Chern character ch(E•
j ) is related to ch(LQj ⊗ K

rj/2) via the Grothendiek-

Riemann-Roch theorem [BJG+71, Arb85]

ch(R•π∗F) td(Y) = π∗(ch(F) td(X)) , (5.2.23)

where the appropriate identifications are

F = LQj ⊗K
rj/2 , (5.2.24a)

X = Σ× Σdi , (5.2.24b)

Y = Σdi . (5.2.24c)

The proper morphismπ in (5.2.23) is identified with the projectionπ : Σ×Σdi → Σdi

in (5.2.16). The application of the Grothendiek-Riemann-Roch theorem thus gives

ch(E•
j ) td(Σdi) = π∗

[
ch
(
LQj ⊗K

rj/2
)

td(Σ× Σdi)
]

= π∗
[
ch
(
LQj

)
ch
(
K

rj/2
)

td(Σ)
]

td(Σdi) , (5.2.25)

where td(Σdi) cancels on both sides, and

td(Σ) = 1+
1

2
c1(Σ) = 1− (g− 1)ηΣ. (5.2.26)
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Therefore the Chern character ch(E•
j ) is computed as follows

ch
(
E•
j

)
= π∗

[
ch
(
LQj

)
ch
(
K

rj/2
)
(1− (g− 1)ηΣ

]
= π∗

[
eQjη

(
1+ (g− 1)(rj − 1)ηΣ −QjmηΣ +Qjγ−Q2j ηΣθ

)]
= eQjη

(
Qjm+ (g− 1)(rj − 1) −Q

2
j θ
)

= eQjη
(
(dj − g+ 1) −Q

2
j θ
)

= eQjη
[
(dj − 2g+ 1) +

g∑
a=1

e−Q
2
jθaθ

]
. (5.2.27)

The push-forward π∗ effectively acts as an integration, picking out the coefficients

of ηΣ.

Combining the result of ch(E•
j ) in (5.2.27) and

dim(E•
j ) = dj − g+ 1

from (5.2.14), the curvature of the complex E•
i can therefore be effectively written

as

AE•
j
= diag

(
Qjη, . . . ,Qjη︸ ︷︷ ︸

dj−2g+1

, Qjη−Q
2
j θ1, . . . , Qjη−Q

2
j θg
)
. (5.2.28)

It is easy to check that this expression is consistent with the above computations.

We need to take into account the equivariancy as well. On vortex saddle points

parametrised by the moduli space Mm,i = Σdi , the real vectormultiplet scalar is

fixed to σ = −mi, where the real mass of theΦj fluctuations is

mj −Qjmi . (5.2.29)

This promotes to a Tf-equivariant Chern character

ch(E•
j ) = zje

Qjη
(
(dj − g+ 1) −Q

2
j θ
)
, (5.2.30)
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where we have identified

yl = e
−ml (5.2.31)

up to a scaling for all l = 1, . . . ,N, and defined

zj := yj/y
Qj
i . (5.2.32)

Effectively all the Chern roots (5.2.28) gain an addition term (mj −Qjmi) from the

equivariancy, becoming

(
Qjη+mj −Qjmi, . . . , Qjη+mj −Qjmi︸ ︷︷ ︸

dj−2g+1

,

Qjη−Q
2
j θ1 +mj −Qjmi, . . . , Qjη−Q

2
j θg +mj −Qjmi

)
. (5.2.33)

These equivariant Chern roots have a similar structure to those in (5.2.6), so the

contribution Â(E•
j )

e(E•
j )

to the twisted index from an individual chiral multipletΦj can

be evaluated in a similar way via

Â(E•
j )

e(E•
j )

=

dj−g+1∏
n=1

1

2 sinh(αn/2)
=

dj−g+1∏
n=1

e−
αn/2

1− e−αn
. (5.2.34)

The numerator and the denominator can be evaluated separately. The numerator

exponentiates the first Chern class as

e−
1
2 c1(E•

j)) =

dj−g+1∏
n=1

e−
αn/2

= exp
(
1

2
(dj − g+ 1)(−Qjη−mj +Qjmi) +

1

2
Q2j θ

)
=
(
e−Qjηzj

) 1
2 (di−g+1) exp

(
1

2
Q2j θ

)
. (5.2.35)
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The denominator reads

dj−g+1∏
n=1

1

1− e−αn
=

dj−2g+1∏
n=1

1

1− e−Qjηzj

 g∏
a=1

1

1− e−Qjηzj exp
(
Q2j θa

)
=

dj−2g+1∏
n=1

1

1− e−Qjηzj

 g∏
a=1

1

1− e−Qjηzj
(
1+Q2j θa

)
=

dj−g+1∏
n=1

1

1− e−Qjηzj

 g∏
a=1

1

1−
e
−Qjηzj

1−e
−Qjηzj

Q2j θa

=

(
1

1− e−Qjηzj

)dj−g+1 g∏
a=1

(
1+

e−Qjηzj

1− e−Qjηzj
Q2j θa

)

=

(
1

1− e−Qjηzj

)dj−g+1
exp

(
e−Qjηzj

1− e−Qjηzj
Q2j θ

)
, (5.2.36)

where θ2a = 0 has been used repeatedly. Finally multiplying them together gives

the full expression

Â(E•
j )

e(E•
j )

=

(
e−Qjη/2z

1/2
j

1− e−Qjηzj

)dj−g+1
exp

[
Q2j θ

(
1

2
+

e−Qjηzj

1− e−Qjηzj

)]
(5.2.37)

for the contribution from a single chiral multiplet Φj.

In total, the fluctuations from all the massive chiral multiplets {Φj}j̸=i are encoded

in the product

E =
⊗
j̸=i

E•
j . (5.2.38)

Therefore the final result for their contributions to the index is

Â(E)

e(E) =
∏
j̸=i

(
(e−Qjηzj)

1/2

1− e−Qjηzj

)dj−g+1
exp

[
Q2j θ

(
1

2
+

e−Qjηzj

1− e−Qjηzj

)]
. (5.2.39)

5.2.3 Chern-Simons Term

The supersymmetric Chern-Simons terms generate holomorphic line bundles on

the moduli space Mm,i
∼= Σdi according to the general mechanism in [CT08]. A
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careful translation into the algebraic framework of this paper leads to the conclusion

that the Chern-Simons levels κ, κa ′ , κR, and κRa ′ generate holomorphic line bundles

⊗
α

Lα = (Lκ ⊗ LκRR )

N⊗
a ′=2

(
L
κa ′
a ′ ⊗ L

κRa ′
Ra ′

)
. (5.2.40)

Here a full construction of these bundles are not required since we only need the

their first Chern classes for our computations. We come back to their construction

later in Chapter 7.

The pure gauge and R-symmetry bundles (Lκ ⊗ LκRR ) have

c1(L) = θ−mη , (5.2.41)

c1(LR) = −(g− 1)η . (5.2.42)

The contribution to the integrand of equation (5.2.1) is therefore

ch(Lκ ⊗ LκRR ) = eκ(θ−mη)e−κR(g−1)η . (5.2.43)

This result passes a consistency check. It is compatible with the contribution (5.2.39)

from massive fluctuations of chiral multiplets and the fact that integrating out a

massive chiral multiplet of charge Qj and R-charge rj with real mass mj → ±∞
shifts

κ→ κ±
Q2j

2
, (5.2.44)

κR → κR ±
Qj

2
(rj − 1) . (5.2.45)

The mixed symmetry bundles
(
Lκa ′ ⊗ L

κRa ′
Ra ′

)
have Chern characters

ch(Lκa ′
a ′ ) = y

κa ′m
a ′ , (5.2.46a)

ch(LκRa ′
Ra ′ ) = y

κRa ′(g−1)
a ′ . (5.2.46b)
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Here we have mostly relied on consistency arguments. In Chapter 7, we show

that these line bundles can be precisely built from the determinant line bundles of

auxiliary chiral multiplets.

5.3 Evaluation of Supersymmetric Index

Collecting the contribution (5.2.12) from the tangent directions to the moduli space,

the fluctuations (5.2.39) of massive chiral multiplets, and the supersymmetric

Chern-Simons terms (5.2.43), the contribution (5.2.1) to the twisted index from the

component Mm,i of the vortex moduli space is

Im,i =

∫
Σdi

ek(θ−mη)e−kR(g−1)η
(
ηe

−η/2

1− e−η

)di−g+1
exp

[
θ

(
1

2
−
1

η
+

e−η

1− e−η

)]
×

N∏
j̸=i

(
(e−Qjηzj)

1/2

1− e−Qjηzj

)dj−g+1
exp

[
Q2j θ

(
1

2
+

e−Qjηzj

1− e−Qjηzj

)]
(5.3.1)

if τ ′ > m, and vanishes otherwise.

The final step is to convert the integration over the symmetric product into a contour

integral using the Don Zagier formula [Tha92],∫
Σd

A(η)eθB(η) =

∮
u=0

du
u

A(u) [1+ uB(u)]g

ud
. (5.3.2)

The integral in equation (5.3.1) has precisely this form with

A(η) = e−kmηe−kR(g−1)η
(
ηe−η/2

1− e−η

)di−g+1∏
j̸=i

[
(e−Qjηzj)

1/2

1− e−Qjηzj

]dj−g+1
, (5.3.3)

B(η) = k+

(
1

2
−
1

η
+

e−η

1− e−η

)
+
∑
j̸=i

Q2j

(
1

2
+

e−Qjηzj

1− e−Qjηzj

)
, (5.3.4)
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and therefore we find

Im,i =

∮
u=0

due−kmue−kR(g−1)u
(
e

−u/2

1− e−u

)di−g+1 N∏
j̸=i

[
(e−Qjuzj)

1/2

1− e−Qjuzj

]dj−g+1
×

[
k+

1

2

(
1+ e−u

1− e−u

)
+

N∑
j̸=i

Q2j

2

(
1+ e−Qjuzj
1− e−Qjuzj

)]g

=

∮
x=y−1

i

dx
x
xkm+kR(g−1)

(
(xyi)

1/2

1− xyi

)di−g+1 N∏
j̸=i

[
(xQjyj)

1/2

1− xQjyj

]dj−g+1
×

[
k+

1

2

(
1+ xyi
1− xyi

)
+

N∑
j̸=i

Q2j

2

(
1+ xQjyj
1− xQjyj

)]g
, (5.3.5)

where the substitution e−u = xyi has been made in the second line. Note that we

have assumed Qi = +1 from (5.1.7) for our computations. A similar calculation

can be performed in the case Qi = −1.

The final result, under the assumption that |Qi| = 1 is that the contribution to the

twisted index from vortex saddle points parametrised by Mm,i is

Im,i =

∮
x=y

−1/Qi

i

dx
x
xkm+kR(g−1) ×

N∏
j=1

[
(xQiyj)

1/2

1− xQjyj

]dj−g+1[
k+

N∑
j=1

Q2j

(
1

2
+

xQjyj

1− xQjyj

)]g
(5.3.6)

if sign(τ ′ − m) = sign(Qi), and zero otherwise. This exactly reproduces the

contribution to the twisted index from the pole at xQiyi = 1 when the auxiliary

parameter η is chosen such that sign(η) = sign(τ ′ −m).



Chapter 6

Topological Saddles

This chapter contains the full algebro-geometric construction of the twisted index

for topological saddle points, which is introduced in Chapter 4. The schematics can

be found in Section 4.4. We first analyse the structure of the moduli space of the

topological saddles. Then the individual contributions from the tangent directions,

the normal directions, and the Chern-Simons terms are constructed. Finally the

total contribution to the twisted index is evaluated, which is in agreement with the

contour integral formula.

6.1 Moduli Space

Topological saddle points are configurations where ϕj = 0 for all j = 1, . . . ,N and

there is a unique finite expectation value for σ0 := t2σ that solves the equation

τ ′ −m = −
e2 vol(Σ)
4π2

σ0κ
± (6.1.1)
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in the region ±σ0 > 0. Topological saddle points exist provided κ± ̸= 0 and

sign(τ ′−m) = sign(Q±). If we choose the auxiliary parameter such that sign(η) =

sign(τ ′ − m), there are topological saddle points with ±σ0 > 0 whenever the

Jeffrey-Kirwan residue prescription selects the poles at x±1 → 0. The task in this

chapter is to reproduce the residues at these poles.

The only massless bosonic fluctuations around a topological saddle are those of

the gauge connection A. Topological saddle points with flux m ∈ Z are therefore

parametrised by connections A on a principle U(1) bundle satisfying

∗FA =
2π

vol(Σ)m , (6.1.2)

modulo gauge transformations onΣ. As for vortex saddle points, the contribution to

the twisted index is expected to be the supersymmetric index of a supersymmetric

quantum mechanics whose target is the moduli space of solutions to these equations.

However, gauge transformations act trivially on FA and σ0, so the U(1) gauge

symmetry is unbroken and the quantum mechanics is gauged.

To describe the supersymmetric quantum mechanics concretely, we use the al-

gebraic description of solutions to (6.1.2) as holomorphic line bundle L of degree

c1(L) = m. We then expect a supersymmetric sigma model to the Picard variety

Picm(Σ), parametrised by the complex structure ∂̄A which transforms as a chiral

multiplet under N = (0, 2) supersymmetry.

However, any holomorphic line bundle has a C∗ worth of automorphisms, corres-

ponding to unbroken complexified gauge transformations. It is therefore more

appropriate to describe the supersymmetric quantum mechanics as a sigma model

to the Picard stack,

Mm = Picm(Σ) . (6.1.3)
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We can make this more concrete at the cost of introducing an auxiliary base point

p ∈ Σ. Decomposing complex gauge transformations into those trivial at p and

constant gauge transformations, we have

Mm = Mm × [pt/C∗] , (6.1.4)

where the moduli space is a Picard variety isomorphic to the complex torus

Mm = Picm(Σ) ∼= T2g . (6.1.5)

In this way, the supersymmetric quantum mechanics is a hybrid of a non-linear

sigma model with target space T2g and a U(1) gauge theory.

The supersymmetric quantum mechanics is not, however, a product due to the

massive fluctuations of the chiral multipletsΦj. They transform in a perfect complex

on Mm generated by fluctuations annihilated by ∂̄A. Choosing an auxiliary base

point as above, this becomes a C∗-equivariant complex on Mm. So the fluctuations

roughly transform as sections of a holomorphic vector bundle on the target space

T2g of the sigma model and are also charged under the unbroken U(1) gauge

symmetry.

6.2 Contributions to Index

The contributions to the twisted index from topological saddle points can be

expressed in the same form as vortex saddle points (6.2.1), given by∫
Â(Mm)

Â(E)

e(E) ch
(⊗

α

Lα

)
, (6.2.1)

where E is a perfect complex arising from fluctuations of the massive chiral mul-

tiplets {Φj}Nj=1, and Lα are holomorphic line bundles arising from the mixed Chern-
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Simons terms. We have again omitted the topological label m on the bundles E and

Lα for brevity. Note that however they are not labelled by a chiral index i, unlike

the vortex case.

To make this more precise, we choose an auxiliary base point on Σ and decompose

the moduli stack Mm = Mm × [pt/C∗]. The characteristic classes in equation (6.2.1)

are then to be understood as C∗-equivariant classes on Mm. The integral over the

moduli stack decomposes into two parts:

• A regular integral over the moduli space Mm = Picm(Σ). This is the usual

contribution from an N = (0, 2) supersymmetric non-linear sigma model.

• A contour integral
1

2πi

∮
C

dx
x
,

where x is the Chern character of the trivial C∗-equivariant holomorphic

vector bundle with weight +1. This is the contribution due to the unbroken

U(1) gauge symmetry.

The purpose of the contour integral over C is of course to project onto gauge

invariant contributions. This is not meaningful as it stands because the integrals

of C∗-equivariant classes in equation (6.2.1) over the moduli space Mm produce

rational functions of x. It is therefore necessary to specify whether the integrand

should be expanded inside or outside the unit circle, which correspond to the

residues at x = 0 or x = ∞ respectively.

Our prescription is guided by physical intuition. First, note that the path integral

construction identifies x = e−2πβ(σ+iA) where σ is the real vectormultiplet scalar

and A is a constant gauge connection around the circle. Topological saddle points
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with σ0 > 0 are therefore associated with the region x→ 0, while those with σ0 < 0

are associated with x→ ∞. The natural expectation for the contour C is therefore

σ0 > 0 :
1

2πi

∫
x=0

dx
x
, (6.2.2a)

σ0 < 0 :
1

2πi

∫
x=∞

dx
x
. (6.2.2b)

This gains further support from the hamiltonian interpretation of the twisted index

as counting supersymmetric ground states. The supersymmetric ground states

depend on the sign of the real mass of fluctuations, which is dominated by σ as

|σ| → ∞. For example, the ground state wavefunctions of a one-dimensional chiral

multiplet of charge +1 are

σ > 0 : ϕne−σ|ϕ|2 , n ⩾ 0 , (6.2.3a)

σ < 0 : ϕ
n
e−σ|ϕ|2ψ , n ⩾ 0 (6.2.3b)

with contributions to the index

σ > 0 : 1+ x+ x2 + · · · =
1

1− x
, (6.2.4a)

σ < 0 : −x−1 − x−2 + · · · = 1

1− x
. (6.2.4b)

So projecting onto uncharged states at the level of the index is equivalent to

σ > 0 :
1

2πi

∫
x=0

dx
x

1

1− x
= 1 , (6.2.5a)

σ < 0 :
1

2πi

∫
x=∞

dx
x

1

1− x
= 0 , (6.2.5b)

which select the coefficient of x0 in the expansions around x = 0 and x = ∞
respectively. The general prescription (6.2.2) is basically a broad generalisation of

this observation.

In summary, we have two contributions from potential topological vacua with
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σ0 > 0 and σ0 < 0 are given by the following integrals

I0 =
1

2πi

∫
x=0

dx
x

∫
Â(Mm)

Â(E)

e(E) ch(Lk ⊗ LkRR ) , (6.2.6)

I∞ =
1

2πi

∫
x=∞

dx
x

∫
Â(Mm)

Â(E)

e(E) ch(Lk ⊗ LkRR ) , (6.2.7)

where we interpret E, L, and LR as C∗-equivariant objects on the moduli space

Mm
∼= T2g. In the next section we evaluate these explicitly and show that they

reproduce the appropriate contributions to the twisted index according to the

contour prescription (4.3.6).

6.2.1 Tangent Direction

Let us first summarise some notation for intersection theory on the Picard variety

Mm
∼= T2g. The Dolbeault cohomology ring is generated by classes

ζa ∈ H1,0(T2g,Z) ∀a ∈ {1, . . . , g} , (6.2.8a)

ζ̄a ∈ H0,1(T2g,Z) ∀a ∈ {1, . . . , g} . (6.2.8b)

We define

θa := ζa ∧ ζ̄a ∈ H1,1(T2g,Z) , (6.2.9)

and

θ :=

g∑
a=1

θa (6.2.10)

with normalisation ∫
T2g

θg

g! = 1 . (6.2.11)

The tangent bundle is flat, and therefore the contribution from the tangent directions

is simply

Â(Mm) = 1 . (6.2.12)
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6.2.2 Index Bundle

We now consider the index bundle Ej encoding the massive fluctuations of each of

the chiral multiplets Φj around configurations in Mm. These are coming from the

normal directions of the flavour Tf action on the full moduli space Mm.

At a point on the moduli space corresponding to a holomorphic line bundle L, each

chiral multiplet generates chiral and Fermi multiplet fluctuations solving

∂̄Aϕj = 0 , ∂̄Aηj = 0 , (6.2.13)

where ϕj and ηj transform as zero-form and one-form sections of LQj ⊗ K
rj/2
Σ

respectively. The fluctuations of Φj around this point therefore generate the

following vector spaces.

• Chiral multiplet fluctuations are valued in

E0j := H
0
(
Σ, LQj ⊗ Krj/2

Σ

)
. (6.2.14)

• Fermi multiplet fluctuations are valued in

E1j := H
1
(
Σ, LQj ⊗ Krj/2

Σ

)
. (6.2.15)

The line bundle L is the gauge bundle with the gauge chargeQj inherited from the

three-dimensional chiral multiplet Φj. The canonical bundle KΣ comes from the

topological twist mixing in the R-symmetry. As L varies in Picm(Σ) the dimensions

of these vector spaces may jump. But by the Riemann-Roch theorem the difference



6.2. Contributions to Index 110

is a constant equal to

dimE0j − dimE1j = h
0
(
LQj ⊗ Krj/2

Σ

)
− h1

(
LQj ⊗ Krj/2

Σ

)
≡ dj − g+ 1

= Qjm+ (g− 1)(rj − 1) , (6.2.16)

where dj is the degree of the line bundle

dj = deg
(
LQj ⊗ Krj/2

Σ

)
= Qj deg(L) + rj

2
deg(KΣ)

= Qjm+
rj

2
(2g− 2) . (6.2.17)

This means the difference behave like the fibre of a holomorphic vector bundle on

Picm(Σ) for the purpose of K-theoretic computations involved in the twisted index.

More precisely we need to describe the massive fluctuations as a complex of sheaves.

It is again useful to consider the universal construction. This is canonical for the

moduli stack Mm. But for concreteness we pick a base point b ∈ Σ and pass to the

moduli space Mm = Picm(Σ). There is a corresponding diagram

Picm(Σ)× Σ

Picm(Σ) Σ

π p (6.2.18)

A universal line bundle L is defined such that on restriction to a point q ∈ Picm(Σ)

corresponding to a holomorphic line bundle L on Σ, i.e., L
∣∣
q
≃ L. The universal

line bundle is not unique due to the C∗ automorphisms. There is the possibility

to transform L → L⊗ π∗N. However, this can be fixed by demanding L is trivial

on restriction to the base point b ∈ Σ. Note that there is a unique universal line

bundle on the moduli stack Mm × Σ without such a choice. We also define the

pull-back of the canonical bundle K = p∗KΣ.
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The massive fluctuations of the chiral multipletΦi generate a perfect complex E•
i

of sheaves defined by the derived push-forward

E•
j := R

•π∗
(
LQj ⊗K

rj/2
)
. (6.2.19)

The stalks of E•
j at L ∈ Picm(Σ) are the vector spaces E•j considered above. The class

ch
(
E•
j

)
= ch(E0j ) − ch(E1j ) makes sense in equivariant K-theory and the complex

behaves like a vector bundle of rank dj−g+1 for the purpose of such computations.

To compute the contribution to the twisted index, we begin by computing the Chern

character of E•
j . This is a small modification of a standard argument presented

in [Arb85]. In what follows, we again abuse notation and identify the class θ with

its pull-back via π. Similarly ηΣ denotes the class of a point on Σ and its pull-back

via p. The following computations are similar to those in Section 5.2.2.

First, the Chern class of the universal line bundle is

c1(L) = mηΣ + γ , (6.2.20)

where the class γ satisfies

γ2 = −2ηΣθ ,

γ3 = ηΣγ = 0 .

The class γ does not play a role in what follows.

We therefore find

ch
(
LQi

)
= eQic1(L)

= 1+QimηΣ +Qiγ+
Q2i
2
γ2

= 1+QimηΣ +Qiγ−Q2iηΣθ . (6.2.21)
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Similarly, using

c1(K) = (2g− 2)ηΣ

from (5.2.21), we find

ch
(
K

rj/2
)
= e

rj
2 c1(K)

= erj(g−1)ηΣ

= 1+ rj(g− 1)ηΣ . (6.2.22)

Combining these results

ch
(
LQj ⊗K

rj/2
)
= 1+ djηΣ +Qjγ−Q2j ηΣθ . (6.2.23)

Using the Grothendiek-Riemann-Roch theorem (5.2.23), we can now compute the

Chern character of E•
j as

ch
(
E•
j

)
= π∗

[
ch(LQj ⊗K

rj/2) td(PicmΣ× Σ)
]

= π∗
[

ch
(
LQi ⊗K

ri/2
)
(1− (g− 1)ηΣ)

]
= π∗

[
1+ (dj − g+ 1)ηΣ +Qiγ−Q2iηΣθ

]
= (dj − g+ 1) −Q

2
j θ

= (dj − 2g+ 1) +

g∑
a=1

e−Q
2
jθa , (6.2.24)

where in the final line we have expressed the result in such a way that the Chern

roots are manifest.

Combining the result of ch(E•
j ) in (6.2.24) and

dim(E•
j ) = dj − g+ 1

from (6.2.16), the curvature of the complex E•
i can therefore be effectively written
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as

AE•
j
= diag

(
0, . . . , 0︸ ︷︷ ︸
dj−2g+1

,−Q2j θ1, . . . ,−Q
2
j θg
)
. (6.2.25)

We need to take into account the C∗-equivariancy. On topological saddle points

parametrised by the moduli space Mm = Picm(Σ), the real mass of the Φj fluctu-

ations is

mj +Qjσ . (6.2.26)

This promotes to a C∗-equivariant Chern character

ch
(
E•
j

)
= xQjyj

[
(dj − 2g+ 1) +

g∑
a=1

e−Q
2
jθa

]
, (6.2.27)

where we have identified

x = e−σ , (6.2.28a)

yj = e
−mj (6.2.28b)

up to a scaling. Effectively all the Chern roots (6.2.25) gain an addition term

(mj +Qjσ) from the equivariancy, becoming

(
mj +Qjσ, . . . ,mj +Qjσ︸ ︷︷ ︸

dj−2g+1

,

−Q2j θ1 +mj +Qjσ, . . . ,−Q
2
j θg +mj +Qjσ

)
. (6.2.29)

The contribution to the twisted index is now given by the equivariant Â-genus of

the complex E•
j . This is straightforward to compute from the equivariant Chern

roots (6.2.29) by a now familiar set of manipulations.
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Â(E•
j )

e(E•
j )

=

dj−g+1∏
n=1

1

2 sinh(αn/2)
=

dj−g+1∏
n=1

e−
αn/2

1− e−αn
. (6.2.30)

The numerator and the denominator can be evaluated separately. The numerator

exponentiates the first Chern class as

e−
1
2 c1(E•

j)) =

dj−g+1∏
n=1

e−
αn/2

= exp
(
1

2
(dj − g+ 1)(−mj −Qjσ) +

1

2
Q2j θ

)
=
(
xQjyj

) 1
2 (di−g+1) exp

(
1

2
Q2j θ

)
. (6.2.31)

The denominator reads

dj−g+1∏
n=1

1

1− e−αn
=

dj−2g+1∏
n=1

1

1− xQjyj

 g∏
a=1

1

1− xQjyj exp
(
Q2j θa

)
=

dj−2g+1∏
n=1

1

1− xQjyj

 g∏
a=1

1

1− xQjyj
(
1+Q2j θa

)
=

dj−g+1∏
n=1

1

1− xQjyj

 g∏
a=1

1

1−
x
Qjyj

1−x
Qjyj

Q2j θa

=

(
1

1− xQjyj

)dj−g+1 g∏
a=1

(
1+

xQjyj

1− xQjyj
Q2j θa

)

=

(
1

1− xQjyj

)dj−g+1
exp

(
xQjyj

1− xQjyj
Q2j θ

)
, (6.2.32)

where θ2a = 0 has been used repeatedly. Finally multiplying them together gives

the full expression

Â(E•
j )

e(E•
j )

=

(
x

−Qj/2y
1/2
j

1− xQjyj

)dj−g+1
exp

[
Q2j θ

(
1

2
+

xQjyj

1− xQjyj

)]
(6.2.33)

for the contribution from a single chiral multiplet Φj.

In total, the fluctuations from all the massive chiral multiplets {Φj}Nj=1 are encoded
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in the product

E =

N⊗
j=1

E•
j . (6.2.34)

Therefore the final result for their contributions to the index is

Â(E)

e(E) =

N∏
j=1

(
x

−Qj/2y
1/2
j

1− xQjyj

)dj−g+1
exp

[
Q2j θ

(
1

2
+

xQjyj

1− xQjyj

)]
. (6.2.35)

6.2.3 Chern-Simons Term

The supersymmetric Chern-Simons again induce holomorphic line bundles over

the moduli space Mm
∼= T2g. In the algebraic framework the Chern-Simons levels

κ, κa ′ , κR, and κRa ′ induce holomorphic line bundles

⊗
α

Lα = (Lκ ⊗ LκRR )

N⊗
a ′=2

(
L
κa ′
a ′ ⊗ L

κRa ′
Ra ′

)
. (6.2.36)

Here a full construction of these bundles are not required since we only need the

their first Chern classes for our computations. We come back to their construction

later in Chapter 7.

The pure gauge and R-symmetry bundles (Lκ ⊗ LκRR ) have

c1(L) = θ , (6.2.37a)

c1(LR) = 0 , (6.2.37b)

and transform equivariantly with weights m and (g− 1) respectively. The equivari-

ant Chern characters are therefore

ch(Lκ) = (xmeθ)κ = xκmeκθ , (6.2.38a)

ch(LκRR ) = xκR(g−1) . (6.2.38b)
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This is compatible with the contribution (6.2.35) from fluctuations of Φj and the

fact that integrating out a massive chiral multiplet of charge Qj and R-charge Rj

shifts the supersymmetric Chern-Simons levels as in equation (5.2.45).

The mixed symmetry bundles
(
Lκa ′ ⊗ L

κRa ′
Ra ′

)
have Chern characters

ch(Lκa ′
a ′ ) = y

κa ′m
a ′ , (6.2.39a)

ch(LκRa ′
Ra ′ ) = y

κRa ′(g−1)
a ′ . (6.2.39b)

Here we have mostly relied on consistency arguments. In Chapter 7, we show

that these line bundles can be precisely built from the determinant line bundles of

auxiliary chiral multiplets.

6.3 Evaluation of Supersymmetric Index

Combining all these contributions, the contribution to the integrand from the

integration over the moduli space Mm = Picm(Σ) ∼= T2g is

∫
Picm(Σ)

xkmekθxkR(g−1)
N∏
j=1

(
(xQjyj)

1/2

1− xQjyj

)dj−g+1
exp

((
1

2
+

xQjyj

1− xQjyj

)
Q2j θ

)

=xkm+kR(g−1)

N∏
j=1

(
(xQjyj)

1/2

1− xQjyj

)dj−g+1 ∫
Picm(Σ)

exp
(
k+

N∑
j=1

Q2j

(
1

2
+

xQjyj

1− xQjyj

))
θ

=xkm+kR(g−1)

N∏
j=1

(
(xQjyj)

1/2

1− xQjyj

)dj−g+1[
k+

N∑
j=1

Q2j

(
1

2
+

xQjyj

1− xQjyj

)]g
. (6.3.1)

Note that the integral
∫

Picm(Σ) effectively picks out the coefficients of the volume form
θg

g! . The contributions from topological saddle points therefore exactly reproduce

the potential residues at x = 0 and x = ∞ in the Jeffrey-Kirwan residue prescription

with η aligned with τ ′ −m.



Chapter 7

Chern-Simons Term from

Determinant Line Bundle

It is a general phenomenon for three-dimensional theories that when heavy fermi-

ons are integrated out, they induce an effective Chern-Simons term as an low-energy

effect [Red84a, Red84b, AGW84].

• In this chapter we first develops the physical intuition of this mechanics from

the abelian Higgs model in Section 7.1.

• Then we propose an algebro-geometric construction of the Chern-Simons

contributions to the twisted index from determinant line bundles of auxiliary

chiral multiplets in Section 7.2.

• Finally we give the full construction of the Chern-Simons contributions for

both vortex saddles and topological saddles in Section 7.3, completing the

discussion from Chapter 4.
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7.1 Abelian Higgs Model

It can be understood at the level of lagrangian of vortices [CT08] in the abelian

Higgs model

L =
1

2
gab(X)Ẋ

aẊb .

When considering a bosonic lagrangian without Chern-Simons interactions, adding

suitable fermion content and integrating out its zero modes produces an effective

Chern-Simons term

Leff = −κAa(X)Ẋ
a . (7.1.1)

This has been shown explicitly for aU(N)Yang-Mills Chern-Simons theory coupled

to a real adjoint scalar σ and scalars {qi}nfi=1 in the fundamental representation of the

gauge group [CT08]. The Chern-Simons term in the lagrangian can be reproduced

by integrating out chiral multiplets {Φi}Ni=1 in the anti-fundamental representation

of the U(N) gauge group. The resulting effective Chern-Simons lagrangian from a

single chiral multiplet Φ is given by

Leff = −
1

2
sign(m)Tr(ωa)Ẋa , (7.1.2)

in the limit the mass m → ∞. The trace Tr(ωa) is over the the connection ω on

the index bundle, which is the bundle over the vortex moduli space defined by the

space of zero mode solutions of the Dirac equation

(
i /D− (σ+m)

)
Ψ = 0 ,

where Ψ is a Dirac fermion in the chiral multiplet Φ.

This formula (7.1.2) is obtained by integrating out these zero modes. The dynamics

of these zero modes is described in terms of the grassmannian coordiantes ξl of
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the fibre of the index bundle by the kinetic term

ξ̄l(iDt −m)ξl , (7.1.3)

where the covariant derivative is defined by

Dtξl = ∂tξl + i(ωa)lnẊaξn . (7.1.4)

Integrating out the fermion ξ in the path integral leads to the normalised determ-

inant

det
(
iDt −m
i∂t −m

)
= det

(
−∂τ − iωa∂τX

a −m

−∂τ −m

)
, (7.1.5)

where τ = it is the compact euclidean time with periodicity τ ∈ [0, β).

The solution χ of eigenvalue λ to the equation

(−∂τ − iωa∂τX
a −m)χ = λχ (7.1.6)

is given by

χ = e−(m+λ)τV(τ) , (7.1.7)

where V(τ) is the time-ordered product

V(τ) = T exp
(
−i

∫τ
0

dτ ′ωa∂τ ′Xa
)
. (7.1.8)

Denoting the eigenvalues of V(β) as evl and imposing the periodicity condition

χ(0) = χ(β) gives

λl =
vl + 2πin

β
−m, n ∈ Z . (7.1.9)
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Now the determinant is obtained as

det
(
iDt −m
i∂t −m

)
=
∏
l

∏
n

2πin/β+ vl/β−m

2πin/β−m

=
∏
l

(
1−

vl

βm

)
sinh(βm/2− vl/2)

sinh(βm/2)

→ exp
(
−
1

2
sign(m)

∑
l

vl

)
(7.1.10)

as β → ∞. This contribution to the path integral corresponds exactly to the

effective lagrangian (7.1.2). The zero modes have induced an effective magnetic

field F = dA, where A = Tr(ω) is the Chern-Simons one-form. If we integrate out

N = 2κ chiral multiplets, then the Chern-Simons term (7.1.1) is recovered.

In general, we would like to identify Chern-Simons terms as effects of some

“determinant” of the bundles encoding the chiral multiplets.

7.2 Determinant Line Bundle

In quantum K-theory, the level structure is defined by determinant line bundles [RZ18].

Let χ be a Deligne-Mumford stack. The determinant line bundle for a locally free,

finitely generated Oχ module E is defined as

det(E) := ∧rank(E)E . (7.2.1)

Similarly the determinant line bundle at level k is defined to be

Dk(E) := (detE)−k . (7.2.2)
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Let E• be a complex of coherent sheaves on χ, which has a bounded complex of

locally free, finitely generated Oχ modules E• and a quasi-isomorphism

E• → E• . (7.2.3)

Then the determinant of E• is defined as

det(E•) :=
⊗
n

det(En)(−1)
n

. (7.2.4)

To define the level structure in a quantum K-theory, let M be the algebraic stack of

pre-stable nodal curves, and BunG be the relative moduli stack

BunG
ϕ−→ M

of principal G-bundles on the fibres of the universal curve C → M. Given a finite-

dimensional representation R of G, the level-k determinant line bundle over the

ϵ-stable quasi-map space Q is defined as

Dk := (det(Rπ∗(L×G R)))−k , (7.2.5)

where L → C is the universal principal bundle given by the pull-back of the

universal principal G-bundle P̃ → CBun. Here CBun
π̃−→ BunG is the universal

curve as the pull-back of C along ϕ, and C
π−→ Q is the universal curve on the

quasi-map space.

7.3 Chern Simons Term

Consider an additional auxiliary chiral multiplet Φj. It can be interpreted to

generate Chern-Simons terms via its determinant line bundle. The determinant
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line bundle of E•
j is

det
(
E•
j

)
= det

(
E0j − E1j

)
= ∧dj−g+1(E0j − E1j ) . (7.3.1)

Note that the first Chern class of this line bundle is the same as the one of E•
j ,

c1
(
det
(
E•
j

))
= c1

(
∧dj−g+1E•

j

)
= c1

(
E•
j

)
. (7.3.2)

7.3.1 Vortex Saddles

For vortex saddles, the first Chern class is

c1
(
det
(
E•
j

))
= Qjη(dj − g+ 1) −Q

2
j θ (7.3.3)

from the Chern roots (5.2.28). Since it is a line bundle, the Chern character of the

determinant bundle at level k is given by

ch(Dk(E•
j )) = exp

[
c1
(
(detE•

j )
−k
)]

= e−kQjη(dj−g+1)ekQ
2
jθ . (7.3.4)

Completing to equivariant forms (5.2.33) gives

ch(Dk(E•
j )) = e

kQ2jθe−k(dj−g+1)(Qjη−Qjmi+mj)

= ekQ
2
jθe−kQ

2
jmηy

−kQ2jm

i y
kQjm

j ×

e−kQj(rj−1)(g−1)ηy
−kQj(rj−1)(g−1)

i y
k(rj−1)(g−1)

j . (7.3.5)

With the Don Zagier formula (5.3.2) and the appropriate substitution from (5.3.5),

the η factors can be effectively re-written via e−η 7→ xyi, producing

ch(Dk(E•
j )) = e

kQ2jθxkQ
2
jmy

kQjm

j xkQj(rj−1)(g−1)y
k(rj−1)(g−1)

j . (7.3.6)
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Note that it already reproduces the relevant factors

xκm

(
N∏
j=1

y
κjm

j

)
xκR(g−1)

(
N∏
j=1

y
κRj(g−1)

j

)

from the one-loop determinant (4.2.9), if we identify the charges of this auxiliary

chiral multiplet Φj with the Chern-Simons terms as follows

kQ2j 7→ κ , (7.3.7a)

kQj 7→ κj , (7.3.7b)

kQj(rj − 1) 7→ κR , (7.3.7c)

k(rj − 1) 7→ κRj . (7.3.7d)

After integration over the moduli space, the θ factor ekQ2jθ contributes to the

Chern-Simons level in the hessian (4.2.10).

It is clear that introducing multiple auxiliary chiral multiplets of various charges

is sufficient to generate arbitrary Chern-Simons levels in the above factors.

7.3.2 Topological Saddles

In case of topological saddles, the first Chern class is a straightforward evaluation

c1
(
det
(
E•
j

))
= −Q2j θ (7.3.8)

from the Chern roots (6.2.25). Since it is a line bundle, the Chern character of the

determinant bundle at level k is given by

ch(Dk(E•
j )) = exp

[
c1
(
(detE•

j )
−k
)]

= ekQ
2
jθ . (7.3.9)
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Completing to equivariant forms (6.2.29) gives

ch(Dk(E•
j )) = e

kQ2jθe−k(dj−g+1)(Qjσ+mj)

= ekQ
2
jθxkQ

2
jmy

kQjm

j xkQj(rj−1)(g−1)y
k(rj−1)(g−1)

j , (7.3.10)

which is the same expression (7.3.6) for the vortex case.

It already reproduces the relevant factors

xκm

(
N∏
j=1

y
κjm

j

)
xκR(g−1)

(
N∏
j=1

y
κRj(g−1)

j

)

from the one-loop determinant (4.2.9), if we identify the charges of this auxiliary

chiral multipletΦj with the Chern-Simons terms according to (7.3.7). After integ-

ration over the moduli space, the θ factor ekQ2jθ contributes to the Chern-Simons

level in the hessian (4.2.10).

Thus we conclude that the Chern-Simons contributions can be obtained by integ-

rating out additional auxiliary chiral multiplets.



Chapter 8

Higher Rank Abelian Theory

In this chapter we briefly discuss a generalisation of the N = 2 supersymmetric

U(1) gauge theories discussed in Chapter 2 to a higher rank abelian group U(1)K.

It is expected to inherit most of the structures from the rank one case. However,

there is a potential mixing between topological and vortex vacua, which leads to

more intricate window phenomenon and geometric interpretation.

Instead of trying to give a complete treatment, we aim to set up the notations and

explore heuristically, following the general outline set up in the previous chapters.

Furthermore, these more general theories admit mirror symmetry, which we

investigate with some examples in Section 8.5.
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8.1 Semi-Classical Vacua

Consider N = 2 supersymmetric U(1)K gauge theories, with N chiral multiplets

{Φj}
N
j=1 for N ⩾ K. The j-th chiral field Φj is assigned with gauge charge {Qaj}

K
a=1

in the a-th U(1) group, and R-charge rj. Again, we set the complex superpotential

to vanish,W = 0.

We introduce various mixed Chern-Simons terms at the following levels:

• κab denote gauge levels,

• κab ′ denote gauge-flavour levels,

• κRa denote gauge-R levels,

• κRa ′ denote flavour-R levels.

The chiral multiplet index has been split into i = (a, a ′), where a ′ ∈ {K+ 1, . . . ,N}

labels the (N−K) independent flavour fugacities. The gauge and flavour levels can

be combined into a symmetric matrix κij and a vector κRi. Cancellation of parity

anomalies requires

κij +
1

2

N∑
k=1

Qi kQ
j
k ∈ Z , (8.1.1a)

κRi +
1

2

N∑
k=1

Qi k(rk − 1) ∈ Z . (8.1.1b)

To have non-singular moduli spaces of vacua, the entriesQi j of the extendedN×N

charge matrix are required to be have unit modulus,

∣∣Qi j∣∣ = 1 . (8.1.2)
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The real mass mj are introduced for the global flavour symmetry Gf. There are

also three-dimensional Fayet-Iliopoulos parameters ζa associated with the global

topological symmetry Tt =
⊗K
b=1U(1)b. The global symmetry Tt ×Gf for generic

Fayet-Iliopoulos parameters ζa and massesmj contains a maximal torus

Tf =

(
N⊗
j=1

U(1)j

)
/U(1)K . (8.1.3)

Since K linear combinations of the U(1)j generators are gauged, K linear combin-

ations of ζa and mj can be absorbed into shifts of the vector multiplet scalar σa

following

σa 7→ σa + δσa , (8.1.4a)

ζa 7→ ζa −
∑
b

κabδσb , (8.1.4b)

mj 7→ mj −
∑
a

Qajδσa . (8.1.4c)

After integrating out auxiliary fields, the classical scalar potential is obtained [DT00]

as

U =

K∑
a=1

e2a

(
N∑
j=1

Qaj|ϕj|
2 −

K∑
b=1

κabσb − ζa

)2
+

N∑
j=1

M2
j (σ)|ϕj|

2 , (8.1.5)

where ϕj and σa are the scalars in the chiral multiplet and vector multiplet

respectively, and ζa is the three-dimensional Fayet-Iliopoulos parameter.

The effective mass of ϕj is given by

Mj(σ) =

K∑
a=1

Qajσa +mj . (8.1.6)

The dynamically generated Chern-Simons terms give corrections to the mixed

gauge-gauge, gauge-flavour, gauge-R, and flavour-R mixed Chern-Simons levels
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respectively as

κeff
ab = κab +

1

2

N∑
j=1

QajQbj signMj(σ) , (8.1.7a)

κeff
ab ′ = κab ′ +

1

2

N∑
j=1

QajQb ′j signMj(σ) , (8.1.7b)

κeff
Rb = κRb +

1

2

N∑
j=1

Qbj(rj − 1) signMj(σ) , (8.1.7c)

κeff
Rb ′ = κRb ′ +

1

2

N∑
j=1

Qb ′j(rj − 1) signMj(σ) . (8.1.7d)

We define the asymptotic Chern-Simons levels as

κ±ab := κeff
ab(σa → ±∞) = κab ±

1

2

N∑
j=1

|Qaj|Qbj , (8.1.8a)

κ±ab ′ := κ
eff
ab ′(σa → ±∞) = κab ′ ± 1

2

N∑
j=1

|Qaj|Qb ′j , (8.1.8b)

κ±Ra := κeff
Ra(σa → ±∞) = κRa ±

1

2

N∑
j=1

|Qaj|(rj − 1) . (8.1.8c)

The effect of the dynamical generation of gauge-flavour Chern-Simons terms can

be interpreted as the renormalisation of Fayet-Iliopoulos parameter. The resulting

effective Fayet-Iliopoulos parameter is

ζeff
a = ζa +

N∑
b ′=K+1

κeff
ab ′mb ′ , (8.1.9)

wherema ′ are the independent mass parameters satisfying

mj =

N∑
a ′=K+1

Qa
′

jma ′ . (8.1.10)

The combined effects of the dynamical generation of gauge-gauge and gauge-
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flavour Chern-Simons terms are captured by the effective parameter

Fa(σ) =

K∑
b=1

κeff
abσb + ζa +

N∑
b ′=K+1

κeff
ab ′mb ′

= ζa +

K∑
b=1

κabσb +

N∑
b ′=K+1

κab ′mb ′ +
1

2

N∑
j=1

Qaj|Mj(σ)| . (8.1.11)

Hence the semi-classical scalar potential is obtained as

U =

K∑
a=1

e2a

(
N∑
j=1

Qaj|ϕj|
2 − Fa(σ)

)2
+

N∑
j=1

M2
j (σ)|ϕj|

2 . (8.1.12)

As discussed in Chapter 4, the theory can be twisted onto a target space Σg × S1,

where Σg is a Riemann surface of genus g, and S1 is a circle of radius β. The twisted

is performed using the unbroken R-symmetry, which preserves an N = (0, 2)

quantum mechanics on S1 with a pair of supercharges Q and Q.

Exponentiating Fa(σ) gives a factor of the form

qa

K∏
b=1

xκabb

N∏
b ′=K+1

y
κab ′
b ′ , (8.1.13)

where the fugacities are defined as

qa := e−βζa , (8.1.14a)

xb := e−βσb , (8.1.14b)

yb ′ := e−βmb ′ . (8.1.14c)

This results in factors involving the mixed Chern-Simons terms in the one-loop
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determinant

Z =

[
K∏
a=1

qma
a

(
K∏
b=1

xκabmab

)(
N∏

b ′=K+1

y
κab ′ma
b ′

)]
×(

K∏
b=1

x
κRb(g−1)
b

)(
N∏

b ′=K+1

y
κRb ′(g−1)
b ′

)
× N∏

i=1

 ∏K
b=1 x

Qb
i/2

b

∏N
b ′=K+1 y

Qb′

i/2
b ′

1−
∏K
b=1 x

Qb i
b

∏N
b ′=K+1 y

Qb
′
i

b ′

(
∑K
c=1Q

c
imc)+(ri−1)(g−1)

 , (8.1.15)

for the twisted theory on S1 × Σ.

The semi-classical vacua of the scalar potential (8.1.12) are the solutions to to the

following set of vortex equations

N∑
j=1

Qaj|ϕj|
2 = Fa(σ) ∀a , (8.1.16a)

Mj(σ)ϕj = 0 ∀j , (8.1.16b)

where (8.1.16a) is the D-term equation.

Analogous to the U(1) vacua discussed in Section 2.2.2, the vacuum solutions can

be classified into the following classes:

• Higgs branch vacua occur when at least K chiral multiplet scalars {ϕi | i ∈ I}

are non-vanishing. Their effective massesMi(σ) must vanish due to (8.1.16a),

fixing the values of all vector multiplet scalars σa. The right hand side of the

vortex equation (8.1.16a) is now fixed

∑
i∈I

Qai|ϕi|
2 = ζa +

K∑
b=1

+κabσb +
1

2

∑
j̸∈I

Qaj|Mj(σ)| , (8.1.17)

for given gauge chargesQai and real massesmi. For generic mass parameters

mi, there are exactly K non-vanishing chiral multiplet scalars.
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• Topological branch vacua are discrete solutions of the scalars σa to

Fa(σ) = ζ
eff
a +

K∑
b=1

κeff
ab(σ)σb = 0

at low energies where all chiral multiplet scalars ϕj = 0. This can only occur

if κeff
ab(σ) ̸= 0 for generic mass parametersmj.

• Coulomb branch refers to the non-isolated solutions of the vector multiplet

scalars σa where Fa(σ) = κeff
ab(σ) = 0 when all chiral multiplet scalars ϕi

vanish.

• A mixing of Higgs and Coulomb branches can occur when the number |I| of

vanishing chiral multiplet scalars is 0 < |I| < K, where the vacuum consists

of both non-isolated values of the chiral multiplet scalars ϕi and the vector

multiplet scalars σa.

The vacuum structure is considerably more intricate compared to the the U(1)

case discussed in Section 2.2.2. The mixed types are of particular difficulty for

analogous analysis.

8.2 Window Phenomenon

There also exists the window phenomenon on the space of Chern-Simons levels,

where a Higgs branch can exist alone within a certain region but must accompany

a topological branch outside the region.

Similar to (2.3.1), the critical Chern-Simons levels κcrit
ab are defined to be the bare
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Chern-Simons levels such that the effective Chern-Simons levels in (8.1.7a) vanish,

0 = κcrit
ab +

1

2

N∑
j=1

QajQbj signMj(σ) , (8.2.1)

where signMj(σ) depends on all σa from each U(1) component. The space of σa

is divided into chambers by Mj(σ) = 0. Each chamber admits a different set of

critical levels. Away from these critical levels, there may exist topological vacua

in addition to Higgs vacua. There may not exist a finite window for any choice of

Fayet-Iliopoulos parameters

8.3 Bethe Ansatz Equations

The Bethe ansatz equations for U(1)K theories are given by

exp
(
i
∂ logZ
∂ma

)
= 1 ∀a . (8.3.1)

For the theories of our interests, substituting in the classical and one-loop determ-

inant (8.1.15) gives

∏
{j|Qa j>0}

(
1−

K∏
b=1

x
Qb j
b

N∏
b ′=K+1

y
Qb

′
j

b ′

)Qa j

=(−1)N−qa

(∏
b

x
κ+ab
b

)(∏
b ′

y
κ+
ab ′
b ′

)
×

∏
{j|Qa j<0}

(
1−

K∏
b=1

x
−Qb j
b

N∏
b ′=K+1

y
−Qb

′
j

b ′

)−Qa j

(8.3.2)

for each a = 1, . . . , K. The constant exponent N± is defined as

N± =
∑

{j|Qa j≷0}

Qaj ,
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which roughly counts the number of positively or negatively charged chiral mul-

tiplets. The splitting of the index set into positive and negative charges is to make

the equations close to polynomials of xa. Equivalently, the Bethe ansatz equations

can also be written as

∏
{j|Qa j>0}

(
1−

K∏
b=1

x
−Qb j
b

N∏
b ′=K+1

y
−Qb

′
j

b ′

)Qa j

=(−1)Q
a
jN+qa

(∏
b

x
κ−ab
b

)(∏
b ′

y
κ−
ab ′
b ′

)
×

∏
{j|Qa j<0}

(
1−

K∏
b=1

x
Qb j
b

N∏
b ′=K+1

y
Qb

′
j

b ′

)−Qa j

. (8.3.3)

8.4 Twisted Index

Consider the twisted index on S1 × Σ, where Σ is a closed orientable Riemann

surface of genus g. In the operator formalism, the twisted index counts the

supersymmetric ground states H annihilated by the supercharges Q and Q. The

space H of supersymmetric ground states forms a representation of the global

symmetry Tt ×Gf. The twisted index is then in the form

I = Tr(−1)F
K∏
a=1

qJaa

N∏
i=1

yJii , (8.4.1)

where Ja is the Cartan generator of the a-thU(1) factor in the topological symmetry

Tt, and Ji is the generator of U(1)i in Gf. The Hilbert space H is assumed to be

locally finitely graded.

This definition (8.4.1) of the twisted index can be interpreted as the supersymmetric

index of the supersymmetric quantum mechanics obtained by the twist. The
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geometric construction can be expected to be in the following form [BFKX22]

I =
∑
m

qm

∫
Â(Mm) ch(Em) , (8.4.2)

where m labels the magnetic sectors, Mm denotes the moduli space parametrising

the saddle points of the localised path integral, and Em is a perfect complex of

sheaves encoding the massive fluctuations of the chiral multiplets.

It can be shown [BFKX22] that with appropriate localisation schemes, this geometric

construction reproduces the Jeffrey-Kirwan contour integral formula of twisted

indices [BZ15]:

I =
∑

m1,...,mK

(
1

2πi

)K ∮
JK

dx1
x1

. . .
dxK
xK

det(Hab)gZ(x1, . . . , xK;m1, . . . ,mK) , (8.4.3)

where Z is the classical and one-loop determinant (8.1.15) and the hessian factors

are

Hab =
∂2 logZ

∂ log xa∂mb
. (8.4.4)

8.4.1 Geometric Interpretation

Generalising the work [BFKX22] on the U(1) case, the moduli space of saddles

splits into disjoint unions of topologically distinct components Mm, where for a

U(1)K theory

m = (m1, . . . ,mK)

labels the distinct magnetic sectors. For vortex saddles, each component moduli

spaceMm isK copies of symmetric products of the curveΣ from theKnon-vanishing

chiral multiplets. For topological saddles, Mm are Picard stacks.
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The contribution to the twisted index can then be written in the form

I =
∑
m∈ZK

qm1
1 q

m2
2 . . . qmK

K

∫
Â(Mm)

Â(Em)

e(Em)
ch
(⊗

α

Lα

)
, (8.4.5)

whereLα are holomorphic line bundles arising from Chern-Simons terms. We have

shown that they can be interpreted as the determinant line bundles of additional

auxiliary chiral multiplets. This is consistent with the physical phenomenon that

integrating out heavy fermions in three-dimensional theories induces effective

Chern-Simons terms as a low-energy effect [Red84a, Red84b, AGW84]. It is these

determinant line bundles that give the level structure in the corresponding quantum

K-theory.

8.5 Mirror Symmetry

In this section we explore two examplesU(1)K gauge theories and their mirror pairs,

under the three-dimensional mirror symmetry [DT00]. Their twisted indices are

verified to agree under the mirror, with the appropriate choices of Chern-Simons

levels.

8.5.1 U(1)2 with Three Chiral Fields

Consider a U(1)2 gauge theory with three chiral multiplets. Let the gauge charge

matrix Qaj be

Qaj =

1 −1 0

0 1 −1

 . (8.5.1)
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Without loss of generality, the real masses are set to

m1 = −m, (8.5.2a)

m2 = 0 , (8.5.2b)

m3 = −m (8.5.2c)

with the associated flavour charges (1, 0, 1) for a single independent mass parameter

−m. The extended charge matrix is then

Qi j =


1 −1 0

0 1 −1

1 0 1

 , (8.5.3)

where the top two rows are the gauge charges, and the third row is the flavour

charges.

The effective masses of ϕj are then

M1 = σ1 −m, (8.5.4a)

M2 = −σ1 + σ2 , (8.5.4b)

M3 = −σ2 −m. (8.5.4c)

The effective gauge Chern-Simons levels (8.1.7a) and effective gauge-flavour Chern-

Simons levels (8.1.7b) are respectively given by

κeff
ab =

κ11 + 1
2

signM1 +
1
2

signM2 κ12 −
1
2

signM2

κ21 −
1
2

signM2 κ22 +
1
2

signM2 +
1
2

signM3

 (8.5.5)

and

κeff
ab ′ =

κeff
13 = κ13 +

1
2

signM1

κeff
23 = κ23 −

1
2

signM3

 . (8.5.6)
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The semi-classical vacuum equations (8.1.16) become

|ϕ1|
2 − |ϕ2|

2 = F1(σ) , (8.5.7a)

|ϕ2|
2 − |ϕ3|

2 = F2(σ) , (8.5.7b)

(σ1 −m)ϕ1 = 0 , (8.5.7c)

(−σ1 + σ2)ϕ2 = 0 , (8.5.7d)

(−σ2 −m)ϕ3 = 0 , (8.5.7e)

where the effective parameters (8.1.11) are given by

F1(σ) = ζ1 + κ11σ1 + κ12σ2 − κ13m+
1

2
|σ1 −m|−

1

2
|− σ1 + σ2| , (8.5.8a)

F2(σ) = ζ2 + κ21σ1 + κ22σ2 − κ23m+
1

2
|− σ1 + σ2|−

1

2
|− σ2 −m| . (8.5.8b)

The one-loop determinant (8.1.15) for this theory is

Z =(qm1
1 q

m2
2 )
(
xκ11m1+κ21m21 xκ12m1+κ22m22 yκ13m1+κ23m23

)
×(

x
κR1(g−1)
1 x

κR2(g−1)
2 y

κR3(g−1)
3

)
×(

x
1/2
1

1− x1

)m1+(r1−1)(g−1)

×(
x

−1/2
1 x

1/2
2

1− x−11 x2

)−m1+m2+(r2−1)(g−1)

×(
x

−1/2
2 y

1/2
3

1− x−12 y3

)−m2+(r3−1)(g−1)

. (8.5.9)
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Higgs Branch

The Higgs branch is obtained at σ1 = σ2 = m such that the effective masses all

vanish. Hence the vacuum is the solutions to the remaining D-term equations

|ϕ1|
2 − |ϕ2|

2 = ζ1 + (κ11 + κ12 − κ13)m, (8.5.10a)

|ϕ2|
2 − |ϕ3|

2 = ζ2 + (κ21 + κ22 − κ23)m. (8.5.10b)

Via symplectic quotient, the full moduli space MH atm = 0 can be constructed as

µ−1
1 (ζ1) ∩ µ−1

2 (ζ2)

U(1)2
, (8.5.11)

where the corresponding moment maps µ1 and µ2 for the two U(1) components

of the gauge group U(1)2 action are

µ1 := |ϕ1|
2 − |ϕ2|

2 = ζ1 , (8.5.12a)

µ2 := |ϕ2|
2 − |ϕ3|

2 = ζ2 . (8.5.12b)

The moment map for the flavour symmetry is

µ3 := |ϕ1|
2 + |ϕ3|

2 . (8.5.12c)

They generate flows on the C3 space of the chiral multiplets via the Poisson bracket

∂iϕj = {µi, ϕj}ω = ω
(
Xµi , Xϕj

)
, (8.5.13)

whereω is the standard symplectic form

ω = i
(
dϕ1 ∧ dϕ̄1 + dϕ2 ∧ dϕ̄2 + dϕ3 ∧ dϕ̄3

)
, (8.5.14)
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and the hamiltonian vector fields X are in the form

XH =

3∑
i=1

(
∂H

∂ϕ̄i

∂

∂ϕi
−
∂H

∂ϕi

∂

∂ϕ̄i

)
. (8.5.15)

The induced maps are the gauge and flavour actions

eαµ1 : (ϕ1, ϕ2, ϕ3) 7→ (eiαϕ1, e
−iαϕ2, ϕ3) , (8.5.16a)

eβµ2 : (ϕ1, ϕ2, ϕ3) 7→ (ϕ1, e
iβϕ2, e

−iβϕ3) , (8.5.16b)

eγµ3 : (ϕ1, ϕ2, ϕ3) 7→ (eiγϕ1, ϕ2, e
iγϕ3) . (8.5.16c)

The flavour symmetry is degenerate at ϕ1 = ϕ3 = 0, which corresponds to the

point µ3 = 0.

We can express the coordinates ϕj in terms of the moment maps as

|ϕ1|
2 =

1

2
(µ3 + ζ1 + ζ2) , (8.5.17a)

|ϕ2|
2 =

1

2
(µ3 − ζ1 + ζ2) , (8.5.17b)

|ϕ3|
2 =

1

2
(µ3 − ζ1 − ζ2) . (8.5.17c)

This requires the flavour moment map to be

µ3 ⩾ max{(ζ1 + ζ2), (−ζ1 + ζ2), (−ζ1 − ζ2)} . (8.5.18)

When the Fayet-Iliopoulos parameters ζ1, ζ2 lie in the Kähler cone [DT00] of the

moduli space MH, it can be constructed as a toric variety

MH =
C3 − F∆
G× Γ

, (8.5.19)

where F∆ is a subset of C3. It depends on the data encoded in the toric fan ∆which

is constructed from linear relations among the gauge charges. The group G is the



8.5. Mirror Symmetry 140

complexified gauge actions

C∗
1 : (ϕ1, ϕ2, ϕ3) 7→ (λ1ϕ1, λ

−1
1 ϕ2, ϕ3) , (8.5.20a)

C∗
2 : (ϕ1, ϕ2, ϕ3) 7→ (ϕ1, λ2ϕ2, λ

−1
2 ϕ3) . (8.5.20b)

The gauge charge vectors have a single linear relation1
0

+

−1

1

+

 0

−1

 = 0 (8.5.21)

between them, giving three one-dimensional vectors in Z

v1 = v2 = v3 = 1 , (8.5.22)

which is the gauge charges of its dual theory under mirror symmetry. This can be

found easily by regarding the gauge charges as two vectors {(1,−1, 0), (0, 1,−1)} in

Z3, and computing their orthogonal vector to be (1, 1, 1). The vectors {vj} generate

a one-dimensional cone belonging to the fan ∆. The set F∆ is found by associating

ϕj with vj, and taking all the loci ϕi = · · · = ϕj = 0 whenever {vi, . . . , vj} do not

span a cone in the fan ∆. In this case the set is empty

F∆ = ∅ . (8.5.23)

The generating vectors {v1, v2, v3} induce a map ψ : C3 → C given by

ψ : (ϕ1, ϕ2, ϕ3) 7→ ϕ1ϕ2ϕ3 , (8.5.24)

whose kernel kerψ is the complexified gauge symmetry

G = kerψ = (C∗)2 . (8.5.25)

The group Γ is discrete given by

Γ =
Z

spanZ{v1, v2, v3}
∼= Z2 , (8.5.26)
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which gives rise to a Z2 orbifold singularity. The moduli space is then

MH =
C3

(C∗)2 × Z2
. (8.5.27)

Coulomb Branch

The Coulomb branch is the non-isolated solutions to

F1(σ) = F2(σ) = 0 (8.5.28)

when all chiral multiplets vanish, which requires the effective Chern-Simons

levels (8.5.5) to vanish.

The hypersurfaces

Dj :=
{
(σ1, σ2) ∈ R2 |Mj(σ1, σ2) = 0

}
for j = 1, 2, 3 (8.5.29)

split the space of σ1 and σ2 into seven chambers. Away from the hypersurface

Mi = 0, the chiral multiplet ϕi must vanish in the vacua according to (8.1.16b).

The critical Chern-Simons levels (8.2.1) for the effective levels to vanish depend

on the chamber on the σ1–σ2 “toric” diagram, as shown in Figure 8.1 assuming

m > 0.

• In the finite triangular chamber C1 bounded by

signM1 = −1 ⇒ σ1 < m, (8.5.30a)

signM2 = −1 ⇒ σ2 < σ1 , (8.5.30b)

signM3 = −1 ⇒ σ2 > −m, (8.5.30c)
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Figure 8.1. Critical Chern-Simons Levels on Toric Diagram
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the critical Chern-Simons levels are

κcrit
ab =

 1 −1
2

−1
2
1

 . (8.5.31a)

• In the infinite chamber C2 below C1, the critical Chern-Simons levels are

κcrit
ab =

0 1
2

1
2
0

 . (8.5.31b)

• In the infinite chamber C3, the critical Chern-Simons levels are

κcrit
ab =

0 1
2

1
2
−1

 . (8.5.31c)
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• In the infinite chamber C4, the critical Chern-Simons levels are

κcrit
ab =

 1 −1
2

−1
2
0

 . (8.5.31d)

• In the infinite chamber C5, the critical Chern-Simons levels are

κcrit
ab =

−1 −1
2

−1
2
0

 . (8.5.31e)

• In the infinite chamber C6, the critical Chern-Simons levels are

κcrit
ab =

 0 −1
2

−1
2
1

 . (8.5.31f)

• In the infinite chamber C7, the critical Chern-Simons levels are

κcrit
ab =

 0 −1
2

−1
2
0

 . (8.5.31g)

A Coulomb branch vacua may open up when the effective Chern-Simons levels are

vanishing. For example, in the chamber C1 this requires the bare Chern-Simons

levels to be set to the critical levels (8.5.31a). In addition the Fayet-Iliopoulos

parameters ζa can be chosen appropriately such that ζeff
a vanishes as well. Then

there is a Coulomb branch with a toric moduli space CP2. We refer to this theory

at the critical levels (8.5.31a) as [DT00] the theory A.

In other words, the theory A admits a Coulomb branch

MC
A = CP2 (8.5.32)

if and only if the vector multiplet scalars σ1 and σ2 are restricted to the triangular

polytope ∇ bounded by the hypersurfaces {Dj}
3
j=1 in Figure 8.1. The projective
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toric variety CP2 can be interpreted [LV98, HKK+03] as a T2 fibration over the

polytope ∇. It is isomorphic to the Higgs branch of its mirror symmetric theory.

The Coulomb branches in other chambers can be accessed by shifting the bare

Chern-Simons levels accordingly.

Mirror Symmetry

Given aU(1)K theory withN chiral multiplets of chargesQ, there exists aU(1)N−K

theory under mirror symmetry [Bat94] with N chiral multiplets of charges Q̃

satisfying
N∑
i=1

QaiQ̃bi = 0 (8.5.33)

for alla = 1, . . . , K and b = K+1, . . . ,N. With this choice of labels for Q̃, the bottom

(N−K) rows are the gauge charges while the top K rows are flavour charges in the

mirror theory. Under mirror symmetry, the moduli spaces of Coulomb branch and

Higgs branch are exchanged. To directly compare withQ of the original theory, we

swap the rows of the charge matrix Q̃ to put the gauge charges on top as {Q̃bi}Kb=1.

Now let us consider the mirror theory B to the theory A with charges (8.5.3), mass

parameters (8.5.2), and bare Chern-Simons levels (8.5.31a). It is a supersymmetric

quantum electrodynamics with charges

Q̃i j =


1 1 1

1 −1 0

0 1 −1

 , (8.5.34)

where the first row is the gauge charges. Without loss of generality, we can set the

one of the masses to vanish m̃2 = 0.
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The effective masses of the chiral multiplets ϕ̃j are then

M̃1 = σ̃+ m̃1 , (8.5.35a)

M̃2 = σ̃ , (8.5.35b)

M̃3 = σ̃+ m̃3 . (8.5.35c)

The effective gauge Chern-Simons levels (8.1.7a) and effective gauge-flavour Chern-

Simons levels (8.1.7b) are respectively given by

κ̃eff
11 = κ̃11 +

1

2
sign M̃1 +

1

2
sign M̃2 +

1

2
sign M̃3 (8.5.36)

and

κ̃eff
ab ′ =

κ̃eff
12 = κ̃12 +

1
2

sign M̃1 −
1
2

sign M̃2

κ̃eff
13 = κ̃13 +

1
2

sign M̃2 −
1
2

sign M̃3

 . (8.5.37)

The semi-classical vacuum equations (8.1.16) become

|ϕ̃1|
2 + |ϕ̃2|

2 + |ϕ̃3|
2 = F(σ̃) , (8.5.38a)

(σ̃+ m̃1)ϕ̃1 = 0 , (8.5.38b)

σ̃ϕ̃2 = 0 , (8.5.38c)

(σ̃+ m̃2)ϕ̃3 = 0 , (8.5.38d)

where the effective parameter (8.1.11) is given by

F(σ̃) = ζ̃+ κ̃11σ̃− κ̃13m̃3 +
1

2
|σ̃+ m̃1|+

1

2
|σ̃|+

1

2
|σ̃+ m̃3| . (8.5.39)
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The one-loop determinant (8.1.15) for this theory is

Z =q̃m̃
(
x̃κ̃11m̃ỹκ̃12m̃2 ỹκ̃13m̃3

)(
x̃κ̃R1(g−1)ỹ

κ̃R2(g−1)
2 ỹ

κ̃R3(g−1)
3

)
×(

x̃
1/2ỹ

1/2
2

1− x̃ỹ2

)m̃+(r̃1−1)(g−1)

×(
x̃

1/2ỹ
−1/2
2 ỹ

1/2
3

1− x̃ỹ−12 ỹ3

)m̃+(r̃2−1)(g−1)

×(
x̃

1/2ỹ
−1/2
3

1− x̃ỹ−13

)m̃+(r̃3−1)(g−1)

. (8.5.40)

With masses all vanishing, a Higgs branch opens up at σ̃ = 0 with the vortex

equation

|ϕ̃1|
2 + |ϕ̃2|

2 + |ϕ̃3|
2 = ζ̃ (8.5.41)

This gives a moduli space

MH
B = CP2 (8.5.42)

for the Higgs branch after quotienting out theU(1)gauge transformations, provided

ζ̃ > 0. This is the same space as the Coulomb branch MC
A of theory A.

In terms of symplectic geometry, the moment maps are

µ̃1 = |ϕ̃1|
2 + |ϕ̃2|

2 + |ϕ̃3|
2 = ζ̃ , (8.5.43a)

µ̃2 = |ϕ̃1|
2 − |ϕ̃2|

2 , (8.5.43b)

µ̃3 = |ϕ̃2|
2 − |ϕ̃3|

2 . (8.5.43c)

The corresponding flows are

eαµ̃1 : (ϕ̃1, ϕ̃2, ϕ̃3) 7→ (eiαϕ̃1, e
iαϕ̃2, e

iαϕ̃3) , (8.5.44a)

eβµ̃2 : (ϕ̃1, ϕ̃2, ϕ̃3) 7→ (eiβϕ̃1, e
−iβϕ̃2, ϕ̃3) , (8.5.44b)

eγµ̃3 : (ϕ̃1, ϕ̃2, ϕ̃3) 7→ (ϕ̃1, e
iγϕ̃2, e

−iγϕ̃3) . (8.5.44c)
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The moduli space can be realised as a symplectic quotient

MH
B = µ̃−1

1 (ζ)/U(1) , (8.5.45)

where U(1) is the gauge action (8.5.44a). The flavour flows become degenerate at

eβµ̃2 : ϕ̃1 = ϕ̃2 = 0 , (8.5.46a)

eγµ̃3 : ϕ̃2 = ϕ̃3 = 0 , (8.5.46b)

eα(µ̃1+µ̃2) : ϕ̃1 = ϕ̃3 = 0 , (8.5.46c)

giving the respective degeneration loci on the space of µ̃2 and µ̃3 as

(0,−1) : µ̃2 = 0 , µ̃3 ⩽ 0 , (8.5.47a)

(1, 0) : µ̃2 ⩽ 0 , µ̃3 = 0 , (8.5.47b)

(−1, 1) : µ̃2 = −µ̃3 ⩽ 0 . (8.5.47c)

The generating vectors {(0,−1), (1, 0), (−1, 1)} are shown in Figure 8.2.

Figure 8.2. Toric Fan and Polytope of CP2

D̃3

D̃1

D̃2

ṽ1

ṽ3

ṽ2
(1, 0)

(0,−1)

(−1,−1)

When ζ̃ > 0, the moduli space MH
B is toric. These degeneration loci correspond to
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the one-dimensional cones in the toric fan ∆̃. The moduli space can be constructed

from the fan ∆̃ as

MH
B =

C3 − F∆̃
G̃× Γ̃

. (8.5.48)

The one-dimensional cones in the toric fan ∆̃ are generated by three vectors

{ṽ1, ṽ2, ṽ3} which are identified with the charge vectors of the theory A via the

relation (8.5.33) between mirror charges,

ṽ1 = (1, 0) , (8.5.49a)

ṽ2 = (−1, 1) , (8.5.49b)

ṽ3 = (0,−1) . (8.5.49c)

Each pair of the vectors generate a two-dimensional cone in ∆̃. But there is no

three-dimensional cone generated by all three of {ṽ1, ṽ2, ṽ3}. Hence the subset F∆̃

is given by

F∆̃ =
{
ϕ̃1 = ϕ̃2 = ϕ̃3 = 0

}
. (8.5.50)

The generating vectors {ṽ1, ṽ2, ṽ3} induce a map ψ̃ : C3 → C2 given by

ψ̃ : (ϕ̃1, ϕ̃2, ϕ̃3) 7→ (ϕ̃1ϕ̃
−1
2 , ϕ̃2ϕ̃

−1
3 ) , (8.5.51)

the kernel kerψ of which is the complexified gauge symmetry

G = ker ψ̃ = C∗ . (8.5.52)

acting via

G : (ϕ̃1, ϕ̃2, ϕ̃3) 7→ (λϕ̃1, λϕ̃2, λϕ̃3) . (8.5.53)

The group Γ is discrete given by

Γ =
Z2

spanZ{v1, v2, v3}
∼= 1 . (8.5.54)
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The moduli space is then

MH
B =

C3 − {0}

C∗
∼= CP2 . (8.5.55)

This toric space is projective and therefore can also be encoded as a polytope.

The polytope ∇̃ is the region bounded by hypersurfaces {D̃1, D̃2, D̃3} orthogonal

to the generating vectors, as shown in Figure 8.2. They may be obtained as the

appropriate bounds on the flavour moment maps µ̃1 and µ̃2 given by

µ̃2 ⩽ ζ , (8.5.56a)

µ̃2 − µ̃3 + 2ζ ⩾ 0 , (8.5.56b)

µ̃3 + ζ ⩾ 0 . (8.5.56c)

On the hypersurfaces {D̃1, D̃2, D̃3}, some of the chiral multiplets are forces to vanish

according to

D̃1 : ϕ̃2 = ϕ̃3 = 0 , (8.5.57a)

D̃2 : ϕ̃1 = ϕ̃3 = 0 , (8.5.57b)

D̃3 : ϕ̃1 = ϕ̃2 = 0 . (8.5.57c)

The hypersurfaces {D̃1, D̃2, D̃3} can be identified with the hypersurfaces {D1, D2, D3}

in (8.5.29) for the mirror theory with appropriate parameter maps. Then the poly-

tope ∇̃ is identified with the region C1 where the Coulomb branch of theory A is

isomorphic

MC
A = MH

B = CP2 . (8.5.58)



8.5. Mirror Symmetry 150

Bethe Ansatz Equations

Taking the one-loop determinant (8.5.9) for the theory A, the exponent

iBa =
∂ logZ
∂ma

(8.5.59)

of the Bethe ansatz equations are

iB1 = logq1 + κ11 log x1 + κ12 log x2 + κ13 logy3 +

log
(
x

1/2
1

1− x1

)
− log

(
x

−1/2
1 x

1/2
2

1− x−11 x2

)
, (8.5.60a)

iB2 = logq2 + κ21 log x1 + κ22 log x2 + κ23 logy3 +

log
(
x

−1/2
1 x

1/2
2

1− x−11 x2

)
− log

(
x

−1/2
2 y

1/2
3

1− x−12 y3

)
.

(8.5.60b)

The Bethe ansatz equations eiBa = 1 are

1 = eiB1 = q1x
κ11
1 xκ122 yκ133

(
x

1/2
1

1− x1

)(
x

−1/2
1 x

1/2
2

1− x−11 x2

)−1

, (8.5.61a)

1 = eiB2 = q2x
κ12
1 xκ222 yκ233

(
x

−1/2
1 x

1/2
2

1− x−11 x2

)(
x

−1/2
2 y

1/2
3

1− x−12 y3

)−1

. (8.5.61b)

Rearranging and relabelling y3 7→ y gives

q1 = x
−κ11−1
1 x

−κ12+1/2
2 (1− x1)(1− x

−1
1 x2)

−1y−κ13 , (8.5.62a)

q2 = x
−κ21+1/2
1 x−κ22−12 (1− x−11 x2)(1− x

−1
2 y)

−1y−κ23+
1/2 . (8.5.62b)

We can send x1 7→ x−11 , x2 7→ x−12 , and y 7→ y−1 to examine solutions at infinity.

The effect is flipping the signs on Chern-Simons levels, up to an overall factor of

(−1)K. The results for this case K = 2 are

q1 = x
κ11−1
1 x

κ21+1/2
2 (1− x1)(1− x

−1
1 x2)

−1yκ13 , (8.5.63a)

q2 = x
κ12+1/2
1 xκ22−12 (1− x−11 x2)(1− x

−1
2 y)

−1yκ23+
1/2 , (8.5.63b)
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which are equivalent to (8.5.62). Substituting in the critical Chern-Simons levels

from (8.5.31a) produces

q1 = (1− x1)(1− x
−1
1 x2)

−1yκ13 , (8.5.64a)

q2 = (1− x−11 x2)(1− x
−1
2 y)

−1yκ23+
1/2 . (8.5.64b)

To eliminate factors of y, we can set the mixed gauge-flavour Chern-Simons levels

to be critical at k13 = 0 and k23 = −1
2
, i.e.,

κij =


1 −1

2
0

−1
2
1 −1

2

0 −1
2
1 .

 . (8.5.65)

Then the Bethe ansatz equations become

q1 = (1− x1)(1− x
−1
1 x2)

−1 , (8.5.66a)

q2 = (1− x−11 x2)(1− x
−1
2 y)

−1 . (8.5.66b)

Twisted Index

For the theory A, the hessian factors

Ha =
∂2 logZ

∂ log xa∂ma
=

∂iBa

∂ log xa
(8.5.67)

are computed to be

H1 = κ11 + 1+
x1

1− x1
+

x−11 x2

1− x−11 x2
, (8.5.68a)

H2 = κ22 + 1+
x−11 x2

1− x−11 x2
+

x−12 y

1− x−12 y
. (8.5.68b)
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The contour integral formula for the twisted index is then

I =
∑
m1

∑
m2

(
1

2πi

)2 ∮
JK

dx1
x1

dx2
x2

Hg1H
g
2Z(x1, x2;m1,m2) , (8.5.69)

where the integral is evaluated with the Jeffrey-Kirwan prescription.

Consider the case g = 0 where the hessian factor can be ignored. Take the gauge

Chern-Simons levels to be the critical levels in (8.5.31a). Set R-charges to ri = 0 to

compare with the mirror theory of R-charges r̃i = 1. The one-loop determinant

(8.5.9) becomes

Z =(qm1
1 q

m2
2 )
(
x
m1−

1
2m2

1 x
− 1
2m1+m2

2 yκ13m1+κ23m23

)(
x−κR11 x−κR22 y−κR33

)
×(

x
1/2
1

1− x1

)m1+1
(
x

−1/2
1 x

1/2
2

1− x−11 x2

)−m1+m2+1
(
x

−1/2
2 y

1/2
3

1− x−12 y3

)−m2+1

. (8.5.70)

The contour integral is then

I =
∑

m1,m2

qm1
1 q

m2
2 y

κ13m1+(κ23−1/2)m2+1/2−κR3
3

(
1

2πi

)2
×∮

JK

dx1
x1

dx2
x2

x2m1−m2−κR1
1 x−m1+2m2−κR2

2 ×

(
1

1− x1

)m1+1
(

1

1− x2
x1

)−m1+m2+1
(

1

1− y3
x2

)−m2+1

. (8.5.71)

The Jeffrey-Kirwan charges (Q1, Q2) for the three denominator factors are respect-

ively

Qx1=1 = (1, 0) ,

Qx1=x2 = (−1, 1) ,

Qx2=y3 = (0,−1) ,

which are responsible for the the interior poles at (1, 1), (1, y3), and (y3, y3). Taking
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η = (1, 1) selects only the residue at (x1, x2) = (1, 1).

However, for N = 2 theory there are potentially additional residues from the

topological vacua at (0, 0), (0, y3), (0,∞), (1, 0), (1, y3), (1,∞), (∞, 0), (∞, y3), and

(∞,∞). The Jeffrey-Kirwan charges for the xa factor can be assigned analogously

to the U(1) theory [BFKX22] as follows

Qxa=0b = −δabκ
eff
aa(σa 7→ ∞) , (8.5.72a)

Qxa=∞
b = δabκ

eff
aa(σa 7→ −∞) . (8.5.72b)

The resulting normalised charge vectors for this U(1)2 theory Are

Qx1=0 = (−1, 0) ,

Qx1=∞ = (1, 0) ,

Qx2=0 = (0,−1) ,

Qx2=∞ = (0, 1) .

Taking into account both interior and boundary poles, η = (1, 1) selects residues

at (1, 1), (1,∞), and (∞,∞).

The residues can be computed following the procedure in Appendix A. The Jeffrey-

Kirwan charge vectors are ordered anti-clockwise. For simplicity, these mixed

Chern-Simons levels κR1 and κR2 are set to zero, which only shifts the residues at

boundaries into different magnetic sectors. The index is then

y
1/2−κR3
3

1− y3
, (8.5.73)

which is simply the zeroth sector contribution from the pole at (1, 1).
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In the mirror theory B, the classical and one-loop determinant (8.5.40) at ri = 1 is

Z =q̃m̃x̃κ̃11m̃ỹκ̃12m̃2 ỹκ̃13m̃3

(
x̃−κ̃R11 ỹ−κ̃R22 ỹ−κ̃R33

)
×(

x̃
1/2ỹ

1/2
2

1− x̃ỹ2

)m̃(
x̃

1/2ỹ
−1/2
2 ỹ

1/2
3

1− x̃ỹ−12 ỹ3

)m̃(
x̃

1/2ỹ
−1/2
3

1− x̃ỹ−13

)m̃

.

(8.5.74)

To compare with the mirror, set the gauge-flavour Chern-Simons levels to be critical

at κ̃11 = −3
2
, κ̃12 = −1, and κ̃13 = −1

2
. For simplicity, set κ̃R1 = 0. The index at

g = 0 and ri = 1 is then

−
q̃ỹ−κR22 ỹ−κR33

1− q̃
. (8.5.75)

With the mirror map q̃→ 1/y3, it becomes

ỹ−κR22 ỹ−κR33

1− y3
, (8.5.76)

which matches (8.5.73) by setting

κR3 =
1

2
,

κ̃R2 = 0 ,

κ̃R3 = 0 .

8.5.2 U(1) with Two Chiral Fields

Now consider simpler U(1) mirror theories with two chiral multiplets. Take the

theory A with charge matrix

Qi j =

1 −1

0 1

 , (8.5.77)
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masses m1 = m2 = −m ⩽ 0, and gauge Chern-Simons level κ11 = 1 critical at

−m ⩽ σ ⩽ m. The Coulomb branch opens at σ ⩽ −m for ζ = 0. The mirror theory

B has charge matrix

Q̃i j =

1 1
0 1

 , (8.5.78)

masses m̃1 = m̃2 = −m̃ ⩽ 0, and gauge Chern-Simons level κ̃11 = −1 critical at

σ̃ ⩾ m̃. The Higgs branch opens at σ̃ = m̃.

The one-loop determinants are respectively

ZA =qmxmyκ12m2 xκR1(g−1)y
κR2(g−1)
2 ×(

x
1
2

1− x

)m+(r1−1)(g−1)
(

x−
1
2y

1
2

2

1− x−1y2

)m+(r2−1)(g−1)

, (8.5.79)

and

ZB =q̃m̃x̃−m̃ỹκ̃12m̃2 x̃κ̃R1(g−1)ỹ
κ̃R2(g−1)
2 ×(

x̃
1
2

1− x̃

)m̃+(r̃1−1)(g−1)
(
x̃
1
2 ỹ

1
2

2

1− x̃ỹ2

)m̃+(r̃2−1)(g−1)

. (8.5.80)

For simplicity, κR1 = κ̃R1 = 0 is taken, which only shifts the boundary residues

into different magnetic sectors. Taking η = 1 for both theories selects the poles at

x = 1, x = ∞, x̃ = 1, and x̃ = ỹ−12 . The twisted indices at g = 0 are then computed

to be

IAri=0 = −
y

1/2+κR2

1− y
, (8.5.81)

and

IBri=1 = −
q̃ỹ

1/2+κ̃12+κ̃R2

1− q̃ỹ
1
2 κ̃12

(8.5.82)

7→ −
yq

1/2+κ̃12+κ̃R2

1− yq
1
2 κ̃12

, (8.5.83)
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where IBri=1 is mapped under q̃ 7→ y and ỹ 7→ q in the last line. They agree with

each other when κR2 = 1
2
, κ̃12 = −1

2
, and κ̃R2 = 0.



Appendix A

Mutivariate Jeffrey-Kirwan Integral

In this Chapter we develop the computational techniques for multivariate Jeffrey-

Kirwan residues.

• The basics of multivariate residues is reviewed in Section A.1.

• We then propose a procedure to compute the multivariate Jeffrey-Kirwan

residues in Section A.2.

• The conjecture is verified for twisted indices of abelian quiver gauge theories

in Section A.3.

A.1 Multivariate Residue

Consider a meromorphic n-form

ω =
h(z)dz1 ∧ . . .∧ dzn
f1(z) . . . fn(z)

, (A.1.1)
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where h(z) : Cn → C and f(z) = (f1(z), . . . , fn(z)) : Cn → Cn are holomophic

functions.

Definition A.1.1. A pole of the meromorphic n-form ω is [LR18] a point p ∈ Cn

where f has an isolated zero, i.e.,

f(p) = 0 , (A.1.2)

and

f−1(0) ∩U = p , (A.1.3)

for a sufficiently small neighbourhood U of p.

Definition A.1.2. The residue at a pole p is defined as an integral over a product

of n circles, i.e., an n-torus,

Resp(ω) :=
1

(2πi)n

∮
Γϵ

h(z)dz1 ∧ . . .∧ dzn
f1(z) . . . fn(z)

, (A.1.4)

where Γϵ := {z ∈ Cn | |fi(z)| = ϵi} is the pre-image of an n-torus under f, and the

integration cycle is oriented such that

d(arg f1)∧ . . .∧ d(arg fn) ⩾ 0. (A.1.5)

It can be generalised to the case where there are different number of denominator

factors f(z) = (f1(z), . . . , fm(z)) than the number n of variables. For m < n, the

relevant construction is called a residual form. For m > n, the denominator

factors need to be grouped into exactly n partitions. The residue also depends the

partitioning, in addition to the pole. Hence, unlike univariate residues, a generic

multivariate residue is not solely determined by the pole.
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When the jacobian determinant at a pole p

J(p) := det
i,j

(
∂fi

∂zj

)∣∣∣∣
z=p

(A.1.6)

is non-vanishing, the residue is said to be non-degenerate. Non-degenerate residues

can be directly evaluated by a coordinate transformation [AHCCK10] u = f(z) as

Resp(ω) =
1

(2πi)n

∮
|ui|⩽ϵi

h(f−1(u))du1 ∧ . . .∧ dun
J(p)u1(z) . . . un(z)

=
h(p)

J(p)
. (A.1.7)

However, this formula immediately breaks down for higher order poles as they

are degenerate.

To evaluate a generic residue, we need to utilise the transformation law [GH78,

p.657-658], which is general property of residues.

Theorem A.1.1 (Transformation Law). Let I = ⟨f1(z), . . . , fn(z)⟩ be the ideal gener-

ated by a finite set of holomorphic functions fi such that the solution to

f1(z) = . . . = fn(z) = 0

is a finite set of points {p, . . . , q}, i.e., zero-dimensional. Suppose the zero-

dimensional ideal J = ⟨g1(z), . . . , gn(z)⟩ is a subspace J ⊆ I. Then J is related

to I by a holomorphic matrix A such that

gi(z) =
∑
j

aijfj(z) . (A.1.8)

Then the residue at p satisfies

Resp
(
h(z)dz1 ∧ . . .∧ dzn
f1(z) . . . fn(z)

)
= Resp

(
det(A)(z)h(z)dz1 ∧ . . .∧ dzn

g1(z) . . . gn(z)

)
. (A.1.9)

The transformation formula (A.1.9) can simplify the computation of a multivariate

residue to the product of univariate residues, by choosing all of g1, . . . , gn to be



A.1. Multivariate Residue 160

univariate. A set of these univariate polynomials can be obtained from the Gröbner

bases of {f1(z), . . . , fn(z)} with different lexicographic monomial orders.

A univariate polynomial gi(zi) in zi is taken to be the first element of the Gröbner

basis generated with the order zi+1 ≻ zi+2 ≻ · · · ≻ zn ≻ z1 ≻ · · · ≻ zi. By

computing all cyclic permutations of this ordering, we obtain a set of n univariate

polynomials {g1(z1), . . . , gn(zn)}.

The transformation matrix A can be obtained using the algorithm implemented

in [Lic14]. Shown in Algorithm A.1 is the Mathematica code for two ideal generators

in two variables. The matrix A is assembled row by row by taking the first row of

tT with the corresponding lexicographic ordering. An improved version of this

method is used by the function MultivariateResidue [LR18].

Algorithm A.1. Mathematica Code for Computing Transformation Matrix

1 moduleGroebnerBasis [ polys_ , vars_ , cvars_ , opts___ ] := Module [

2 { newpols , re l s , len = Length [ cvars ] , gb , j , k , r u l s } ,

3 r e l s = Flat ten [ Table [ cvars [ [ j ] ] ∗ cvars [ [ k ] ] , { j , len } , { k , j , len } ] ] ;

4 newpols = Join [ polys , r e l s ] ;

5 gb = GroebnerBasis [ newpols , Join [ cvars , vars ] , opts ] ;

6 r u l = Map [ ( # : > { } ) & , r e l s ] ;

7 gb = Flat ten [ gb / . r u l ] ;

8 Collect [ gb , cvars ]

9 ]

10

11 fF = { f [ 1 ] , f [ 2 ] } (∗ set o f i d e a l generators ∗ )

12 vars = { x_2 , x_1 } ; (∗ l e x i c og r ap h i c o rder ing o f va r i ab l es ∗ )

13

14 (∗ encode p o s i t i o n s o f i d e a l generators i n a mat r i x ∗ )
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15 coords = Array [ ee , 3 ] ;

16 fmat = { { fF [ [ 1 ] ] , 1 , 0 } , { fF [ [ 2 ] ] , 0 , 1 } } ;

17 newfF = fmat . coords ;

18

19 mgb = moduleGroebnerBasis [ newfF , vars , coords ] ;

20 mgb = Select [mgb, Coeff ic ient [#1 , coords [ [ 1 ] ] ] =!= 0 & ] ;

21 gG = ( Coeff ic ient [#1 , coords [ [ 1 ] ] ] &) /@ mgb (∗ groebner bas is ∗ )

22 sS = F i rs t /@ PolynomialReduce [ fF , gG, vars ] ;

23

24 (∗ check wi th b u i l t − i n groebner bas is ∗ )

25 gb = GroebnerBasis [ fF , vars ] ;

26 gb === gG

27 r u l = { ee [ 1 ] −> 1 , ee [ 2 ] −> − fF [ [ 1 ] ] , ee [ 3 ] −> − fF [ [ 2 ] ] } ;

28 Map [ Expand [# / . r u l ] & , mgb] (∗ want zeroes ∗ )

29 Expand [ sS . gG − fF ] (∗ want zeroes ∗ )

30

31 tT = Outer [D, mgb, Rest [ coords ] ]

32 Expand [gG − tT . fF ] (∗ want zeroes ∗ )

A.2 Jeffrey-Kirwan Prescription

Consider the n-form

ω =
h(z)dz1 ∧ . . .∧ dzn
f1(z) . . . fm(z)

, (A.2.1)

where m ⩾ n, and fi are linear functions in z1, . . . , zn. Following [FŁM19], the

Jeffrey-Kirwan residue ofω is defined as

JK-Resp(ω) =
1

|J(p)fi∈F|

h(p)∏
fi ̸∈F fi

, (A.2.2)
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where F is a set of exactly n factors responsible for the pole at p. Given a fixed

charge vector η, the Jeffrey-Kirwan prescription dictates to only take the sum of

residues at those poles such that the charge vectors of the responsible factors form

a convex cone containing η. Moreover, the final result is independent of the choice

of η.

However, this formula is only valid if all denominator factors are linear functions.

Hence it is desirable to build a dictionary to evaluate Jeffrey-Kirwan residues in

terms of multivariate residues. The idea is that the Jeffrey-Kirwan prescription

determines the partitioning of denominator factors.

Conjecture A.2.1. The following procedure is conjectured to compute the Jeffrey-

Kirwan residue at a given contributing pole p.

1. Determine the denominator factors f1, . . . , fn responsible for this pole.

2. Split the denominator factors into n partitions such that each responsible

factor is placed in a separate partition.

3. Compute the multivariate residue of the resulting n-form using the trans-

formation law (A.1.9).

The result of the computation gives the individual Jeffrey-Kirwan residue up to a

sign, which is determined by the ordering of the denominator factors.

For two-forms, we can order the charge vectors of the denominator factors by their

polar angles. This gives the correct combination of residues as in the Jeffrey-Kirwan

prescription. However, for higher forms, it is yet to know how to order the charge

vectors correctly.
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A.3 Examples

Consider the abelianA2 linear quiver gauge theory withN = 4 in three dimensions,

as shown in Fig A.1. At genus g = 0, the B-twisted index Z[A2]
g=0,B is expected to be

identical to the A-twisted index ZSQED[3]
g=0,A of the quantum electrodynamics of three

hypermultiplets in the mirror, and vice versa.

Figure A.1. A2 Linear Quiver Diagram

x1
y1

x2
x1

y2
x2

y1

x1 x2

y2

A.3.1 B-Twist of Abelian Linear Quiver

First consider the mirror of the A2 linear quiver, which is the supersymmetric

quantum electrodynamics with three hypermultiplets. The contour integral for-

mula for the A-twisted index is [CK16, (6.35)]

Z
SQED[3]
g=0,A =− (t− t−1)−1

∑
m

qm ×

1

2πi

∮
JK

dx
x

(
x− y1t

y1 − xt

)m(
x− y2t

y2 − xt

)m(
x− y3t

y3 − xt

)m
. (A.3.1)

Taking η = 1 selects the residues at y1/t, y2/t, and y3/t, which sum to [CK16,

(6.40)]

Z
SQED[3]
g=0,A =

t−1(1− t−6)

(1− t−2)(1− qt−3)(1− q−1t−3)
. (A.3.2)

After the change of variables t 7→ t−1, and q 7→ y1
y2

, the A-twisted index reads

Z
SQED[3]
g=0,A = −

(t+ t3 + t5)y1y2
(t3y1 − y2)(t3y2 − y1)

. (A.3.3)
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We would like to compute the B-twisted index Z[A2]
g=0,B of the quiver from Jeffrey-

Kirwan prescription and verify if it is identical to this expression.

The contour integral formula of the index Z[A2]
g=0,B is

Z
[A2]
g=0,B

=(t− t−1)2
∑
m1,m2

qm1

1 qm2

2

1

(2πi)2

∮
JK

dx1
x1

dx2
x2(

x1 − y1t

y1 − x1t

)m1
(
x2 − y2t

y2 − x2t

)m2
(
x1 − x2t

x2 − x1t

)m1−m2

×

x1y1t

(x1 − y1t)(y1 − x1t)

x2y2t

(x2 − y2t)(y2 − x2t)

x1x2t

(x2 − x1t)(x1 − x2t)
. (A.3.4)

The only contributing sector is expected to be the zeroth sector m1 = 0,m2 = 0,

which has the integrand

ω0,0 =
t(1− t2)2y1y2x1x2 dx1dx2

(x1 − y1t)(y1 − x1t)(x2 − y2t)(y2 − x2t)(x2 − x1t)(x1 − x2t)
. (A.3.5)

The six denominator factors have charge vectors (Q1, Q2) listed below

(−1, 0), (1, 0), (0,−1), (0, 1), (1,−1), (−1, 1) . (A.3.6)

Note that its Jeffrey-Kirwan residue can still be computed using (A.2.2).

Given the charge vector η = (1, 1), the Jeffrey-Kirwan prescription picks the

following three poles

(y1/t, y2/t), (y1t, y1/t
2), (y2/t

2, y2/t) ,

whose charge vectors form cones containing η.

Consider first the pole at (y1/t, y2/t) for the procedure in Conjecture A.2.1. The

responsible denominator factors are (y1 − x1t) and (y2 − x2t). We then split all
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denominator factors into two partitions {f1, f2}, each containing one responsible

factor, say

{f1, f2} = {(y1 − x1t), (y2 − x2t)(x1 − y1t)(x2 − y2t)(x2 − x1t)(x1 − x2t)} .

Following the transformation law A.1.1, first we compute the Gröbner bases of f1

and f2. Taking the order x2 ≻ x1 gives a basis whose first entry only depends on

x1, while taking the order x1 ≻ x2 gives another basis whose first entry depends

only on x2. These two entries are then taken to be the new denominator factors g1

and g2 given by

g1 =− y1 + x1t

g2 =
(
−1+ t2

)
y1 ×[

−y21 +
(
1+ t2

)
y1x2 − t

2x22
]

×[
y2x2 + t

2y2x2 − t
(
y22 + x

2
2

)]
.

The transformation matrix A taking (f1, f2) to (g1, g2) is found to be

A =

−1 0

a21 −t2

 , (A.3.7)

where

a21 =
[
y2x2 + t

2y2x2 − t
(
y22 + x

2
2

)]
×[

−
((
−1+ t2

)
y21
)

×(
−1+ t2

)
y1
(
−tx1 + x2 + t

2x2
)

×

t
(
−x1x2 − t

2x1x2 + t
(
x21 + x

2
2

))]
,
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satisfying

A ·

f1
f2

 =

g1
g2

 .
The determinant det(A) = t2, giving a transformed integrand

ω ′
0,0 =

det(A)t(1− t2)2y1y2x1x2 dx1dx2 dx1dx2
g1g2

=
t3(−1+ t2)y2x1x2 dx1dx2

(y1 − tx1)(y1 − x2)(y1 − t2x2)(y2x2 + t2y2x2 − t(y22 + x
2
2))
. (A.3.8)

Now its residue can be evaluated as the product of two univariate residues.

Hence, the multivariate residue at (y1/t, y2/t) with respect to this partitioning

{f1, f2} is computed to be

Res(y1/t,y2/t)(ω0,0) =
ty1y2

(ty1 − y2)(ty2 − y1)
. (A.3.9)

Note that the result flips signs if we exchange f1 and f2 in the partitioning. To

get the correct combination of Jeffrey-Kirwan residues, we order the denominator

factors such that their corresponding charge vectors are in anti-clockwise order.

Similarly, the residues at (y1t, y1/t2) and (y2/t
2, y2/t) are

Res(y1t,y1/t2)(ω0,0) = −
t2y1y2

(y1 − ty2)(y1 − t3y2)
(A.3.10)

and

Res(y2/t2,y2/t)(ω0,0) = −
t2y1y2

(ty1 − y2)(t3y1 − y2)
. (A.3.11)

The sum of the three residues is

Z
SQED[3]
g=0,A =

(t+ t3 + t5)y1y2
(t3y1 − y2)(t3y2 − y1)

, (A.3.12)
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which reproduces the expected result in (A.3.3) up to an overall minus sign. This

minus sign could also have been obtained if we picked clockwise ordering for the

charge vectors instead of the anti-clockwise ordering.

It can also be verified that the sectors ofm1 ̸= 0 orm2 ̸= 0 have residues summing

to zero from these three poles.

Although the computation is done for the particular choice of η = (1, 1), it can

be shown that the result does not depend on this choice, as long as η is not

chosen to align with any of the charges (Q1, Q2) in (A.3.6). This can be expli-

citly seen by plotting the charges on the Q1–Q2 plane, and observe that any

choice of η is contained within three convex cones, each giving one of the factors

in (A.3.9), (A.3.10), and (A.3.11).

A.3.2 A-Twist of Abelian Linear Quiver

For the mirror theory, the contour integral formula [CK16, (6.44)] for the B-twisted

index of quantum electrodynamics with three hypermultiplets is

Z
SQED[3]
g=0,B =− (t− t−1)

∑
m

(−q)m
1

2πi

∮
JK

dx
x(

x− y1t

y1 − xt

)m(
x− y2t

y2 − xt

)m(
x− y3t

y3 − xt

)m
×

xy1t

(x− y1t)(y1 − xt)

xy2t

(x− y2t)(y2 − xt)

xy3t

(x− y3t)(y3 − xt)
. (A.3.13)
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Setting η = 1 picks the residues at y1/t, y2/t, and y3/t, which sum to

Z
SQED[3]
g=0,B =−

t4y21y2

(1− t2)(y1 − y2)(t2y1 − y2)(t2y1 − y3)

+
t4y1y

2
2

(1− t2)(y1 − y2)(t2y2 − y1)(t2y2 − y3)

−
t2y21y2

(1− t2)(y1 − y2)(t2y2 − y1)(t2y3 − y1)

−
t2y1y

2
2

(1− t2)(y1 − y2)(t2y1 − y2)(t2y3 − y2)
. (A.3.14)

To map to parameters t ′ = t−1, q1 = y1/y2, q2 = y2/y3 in the mirror, we implement

the following change of variables

t 7→ t−1 , (A.3.15a)

y1 7→ q1q2y3 , (A.3.15b)

y2 7→ q2y3 , (A.3.15c)

which results in

Z
SQED[3]
g=0,B

=
q1q2

[
(1+ q2)t

6 + q21q2(1+ q2)t
6 + q1

(
t6 + q22t

6 − q2
(
t2 + 2t4 + 2t8 + t10

))]
−(q1 − t2)(q1q2 − t2)(−q2 + t2)(−1+ q1t2)(−1+ q2t2)(−1+ q1q2t2))

= −
q1q2(1+ q1)t

2

(q1 − t2)(1− q1t2)

−
q1q

2
2

[
t2 + t4 + t6 + q21(t

2 + t4 + t6) − q1(1+ t
8)
]

t2(q1 − t2)(1− q1t2)

−
q1q

3
2

[
t2 + t4 + . . .+ t10 + q31(t

2 + t4 + . . .+ t10) − (q1 + q
2
1)(1+ t

12)
]

t4(q1 − t2)(1− q1t2)

−
q1q

4
2

[
t2 + t4 + . . .+ t14 + q41(t

2 + t4 + . . .+ t14) − (q1 + q
2
1 + q

3
1)(1+ t

16)
]

t6(q1 − t2)(1− q1t2)

+ O(q52) , (A.3.16)

where the last expression is the expansion in q2. In this case all sectors are expected

to contribute. So the computation becomes more complicated.
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The contour integral formula for A-twisted index of A2 quiver is

Z
[A2]
g=0,A =(t− t−1)−2

∑
m1,m2

qm1

1 qm2

2

1

(2πi)2

∮
JK

dx1
x1

dx2
x2(

x1 − y1t

y1 − x1t

)m1
(
x2 − y2t

y2 − x2t

)m2
(
x1 − x2t

x2 − x1t

)m1−m2

. (A.3.17)

Setting the charge vector η = (1, 1) again picks up the interior poles at

(y1/t, y2/t), (y1t, y1/t
2), (y2/t

2, y2/t) .

However, the boundary poles involving 1/x1 and 1/x2 still need to be considered.

In this case, we follow [BFKX22, (2.17)] to assign both 1/x1 and 1/x2 with the charge

(−∞,−∞). Because there is no Chern-Simons terms in N = 4 theory. It turns out

that in this case, none of the boundary poles are selected by the Jeffrey-Kirwan

prescription, as they always have a charge vector in the exact opposite direction

of η.

To compare with (A.3.16), the contour integral formula for the B-twisted index is

evaluated form2 = 0, 1, 2, 3, 4.

• The sector of m2 = 0 does not have non-vanishing residues at the selected

poles.

• The m2 = 1 sector has contributions at (y1/t, y2/t) and (y2/t
2, y2/t) for

m1 ⩾ 1. The series of residues evaluated for eachm1 at individual poles do

not resemble the expansion of rational functions. However, their sum gives

−
q1q2(1+ q1)t

2

(q1 − t2)(1− q1t2)
,

which is identical to the q2 term in the expansion in (A.3.16).

• The m2 = 2 sector has contributions at (y1/t, y2/t) and (y2/t
2, y2/t) sum-



A.3. Examples 170

ming to

−
q21q

2
2(1+ t

2)2

(q1 − t2)(1− q1t2)

form1 ⩾ 2, and contributions at (y1/t, y2/t) and (y1/t, y1/t
2) summing to

q21q
2
2(1+ t

2 + t4)

t2

form1 = 1. The sum of these two factors is

−
q1q

2
2(t

2 + t4 + t6 + q21(t
2 + t4 + t6) − q1(1+ t

8))

t2(q1 − t2)(1− q1t2)
,

which is identical to the q22 term in the expansion in (A.3.16).

• The m2 = 3 sector has contributions at (y1/t, y2/t) and (y2/t
2, y2/t) sum-

ming to

−
q31q

3
2(1+ t

2 + t4)(1+ (1− q1)t
2 + t4)

t2(q1 − t2)(1− q1t2)

form1 ⩾ 3, and contributions at (y1/t, y2/t) and (y1/t, y1/t
2) summing to

q1q
3
2(1+ t

2 + . . .+ t8)

t4
+
q21q

3
2(1+ t

2)2(1+ t4)

t4

form1 = 1, 2. The total sum is

−
q1q

3
2

[
t2 + t4 + . . .+ t10 + q31(t

2 + t4 + . . .+ t10) − (q1 + q
2
1)(1+ t

12)
]

t4(q1 − t2)(1− q1t2)
,

which is identical to the q32 term in the expansion in (A.3.16).

• The m2 = 4 sector has contributions at (y1/t, y2/t) and (y2/t
2, y2/t) sum-

ming to

−
q41q

4
2(1+ t

2)2(1− q1t
2 + t4)(1+ t4)

t4(q1 − t2)(1− q1t2)

form1 ⩾ 4, and contributions at (y1/t, y2/t) and (y1/t, y1/t
2) summing to

q1q
4
2(1+ t

2 + . . .+ t12)

t6
+
q21q

4
2(1+ t

2)2(1+ t4 + t8)

t6

+
q31q

4
2(1+ t

2 + t4)(1+ t2 + . . .+ t8)

t6
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form1 = 1, 2, 3. The total sum is

−
q1q

4
2

[
t2 + t4 + . . .+ t14 + q41(t

2 + t4 + . . .+ t14) − (q1 + q
2
1 + q

3
1)(1+ t

16)
]

t6(q1 − t2)(1− q1t2)
,

which is identical to the q42 term in the expansion in (A.3.16).



Appendix B

Physical Background

This chapters reviews some of the foundations in physics for this thesis.

• Section B.1 briefly reviews classical gauge theories following [DEF+99, Nak03].

• Section B.2 is a review of abelian N = 2 gauge theories in three dimensions,

following [AHI+97].

B.1 Gauge Theories

This section briefly reviews classical gauge theories following [DEF+99, Nak03].

A gauge theory [Nak03] is a field theory where the gauge field is the connection

on a principal bundle P →M, whereM is the spacetime manifold of dimension n.

The structure group G of P is called the gauge group.

The connection on P is a G-invariant distribution [DEF+99] on P which projects

isomorphically onto the tangent space TM. It can be encoded in a g-valued
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one-form A ∈ Ω1(g), written as

A = Aµdxµ (B.1.1)

in components. It induces a covariant derivative operator D defined by

D := d +A (B.1.2)

on any associated bundles.

The local curvature two-form F ∈ Ω2(g)

F := dA+ [A∧A] =
1

2
Fµνdxµ ∧ dxν (B.1.3)

is called the field strength, where the components read

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν] . (B.1.4)

It satisfies the Bianchi identity

D F = dF+ [A, F] = 0 . (B.1.5)

The lagrangian is

L = −
1

2
Trg(F∧ ∗F) = −

1

4
Trg(FµνFµν)dnx . (B.1.6)

The variation with respect to A yields the equation of motion

D ∗F = Dµ Fµν = 0 . (B.1.7)

For example, electromagnetism is described by an abelian gauge theory on a

manifold M of dimension n = 4. The gauge group is unitary G = U(1), and the

principal bundle P is trivial. The gauge group elements are complex numbers
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z of modulus |z| = 1 on the unit circle. The elements of the corresponding Lie

algebra g = u(1) =
√
−1R are then the imaginary phases as the tangent space

to the circle. The connection one-form is the gauge potential A = Aµdxµ where

Aµ are imaginary numbers. The field strength is then simply F = dA where the

components are

Fµν = ∂µAν − ∂νAµ .

The electric field E and magnetic field B can be identified as

Ei = −iFi0 , (B.1.8a)

Bi = −
i

2
ϵijkF

jk . (B.1.8b)

The Bianchi identity reads

∂µFνρ + ∂ρFµν + ∂νFρµ = 0 ,

which reduces to two of the Maxwell’s equations

∇× E+
∂B

∂t
= 0 , (B.1.9a)

∇ · B = 0 . (B.1.9b)

The Maxwell lagrangian is

L = −
1

4
FµνF

µνd4x = 1

2
(E2 − B2)d4x . (B.1.10)

The equation of motion ∂µFµν = 0 reduces to the other two Maxwell’s equations

∇ · E = 0 , (B.1.11a)

∇× B−
∂E

∂t
= 0 . (B.1.11b)
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B.2 Supersymmetric Gauge Theories

This section is a review of abelian N = 2 gauge theories in three dimensions,

following [AHI+97].

Consider a three-dimensional N = 2 supersymmetric quantum electrodynam-

ics [AHI+97] with Nf > 0 flavours, i.e., chiral multiplets {Φj, Φ̃j}Nf
j=1 of charges ±1.

This theory flows to an interacting fixed point in the infra-red. In comparison, the

four-dimensional theories are always infra-red free.

The classical moduli space of vacua contain Coulomb and Higgs branches.

• The Higgs branch has (2Nf − 1) dimensions. It can be parametrised by

gauge invariant operatorsMij = ΦiΦ̃j, subject to the constraintMijMmn =

MmjMin.

• The Coulomb branch is one-dimensional. It is parametrised by σ+ iγ, where

σ is the vector multiplet scalar in (2.1.13), and γ is the dual photon defined

by Fµν = ϵµνρ∂
ργ. It is cylindrical with radius proportional to the coupling

g in (2.1.17). The scalar γ ∈ S1 is rotated around S1 by the “magnetic” global

U(1)J symmetry, with a period of g2.

The Higgs and Coulomb branches intersect at σ = 0.

Despite that there is no instanton corrections in abelian theories, the quantum

perturbative effects still change the topology of the moduli space. The Coulomb

branch can be consistently parametrised by the vacuum expectation value of the

chiral superfield V = exp
(
(σ+ iγ)/g2

)
for large σ. As the metric for γ receives

quantum corrections, the topology of the moduli changes in perturbation theory.

Because the Higgs branch is invariant under the U(1)J symmetry, and intersects
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with the Coulomb branch at σ = 0, the radius of the circle S1 where γ lives

must vanish at σ = 0. Therefore the moduli space looks like an intersection of

three cones near the origin, where the Coulomb branch splits into two distinct

regions parametrised by V± ∼ exp
(
±(σ+ iγ)/g2

)
. So the quantum Coulomb

branch involves two unconstrained chiral superfields V±. The Higgs branch is still

parametrised byMij since it does not receive corrections.

The dynamics is constrained by the global symmetries. The charges are listed in

Table B.1. The U(1)R charges of the chiral multiplets are chosen to be zero so their

fermions have charge −1.

U(1)R U(1)J U(1)A SU(Nf) SU(Nf)

Φj 0 0 1 Nf 1

Φ̃j 0 0 1 1 Nf

Mij 0 0 2 Nf Nf

V± Nf ±1 −Nf 1 1

Table B.1. Charges of Global Symmetries

For Nf = 1, all three cones parametrised by {M,V+, V−} have one complex dimen-

sion. At the origin there is a renormalisation fixed point. The same fixed point

can be reached by the theory described by the fields {M,V+, V−} with a superpo-

tential W = −MV+V−, giving the same moduli space. In general for Nf > 1, the

corresponding theory has

W = −Nf(det(M)V+V−)
1/Nf .

This is analogous to the superpotential corresponding to four-dimensional N = 1

quantum chromodynamics [Sei94] when Nf > Nc + 1.



Appendix C

Mathematical Background

This chapters reviews some of the mathematical foundations for this thesis.

• Section C.1 briefly reviews line bundles and vector bundles on Riemann

surface, following [HSW99].

• Section C.2 reviews the abelian vortex equation and the Hitchin-Kobayashi

correspondence.

C.1 Bundles on Riemann Surfaces

This section is a review of line bundles and vector bundles on Riemann surfaces,

following [HSW99].
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C.1.1 Riemann Surfaces

Definition C.1.1. A Riemann surface is a one-dimensional complex manifold with

an atlas of coordinate charts {ϕα : Uα → C} such that a transition map ϕβ ◦ ϕ−1
α is

an invertible holomorphic function ϕα(Uα ∩Uβ) → ϕβ(Uα ∩Uβ) for all α and β.

The most basic example is the sphere S2 with the two standard stereographic charts

ϕ0 : U0 → C , (C.1.1a)

ϕ1 : U1 → C , (C.1.1b)

whereU0 = S2 \ {N} andU1 = S2 \ {S}. Its transition map z ′(z) = ϕ1 ◦ϕ−1
0 (z) = z−1

is holomorphic fromC∗ toC∗. The pointpwhere z = ϕ0(p) = ∞ can be understood

as the north pole {N}. The two-sphere with this complex structure is known the

Riemann sphere and the complex projective line, denoted by CP1 or P1.

The torus T2 can be defined as C∗/Z where the integer n acts by z 7→ λnz with

|λ| ̸= 1. The coordinate patches can be taken as the overlapping annuli in C∗.

Definition C.1.2. A holomorphic map f :M→ N of Riemann surfacesM andN is

a continuous map, such that for each chart ϕα : Uα → C on M and ϕ̃α : Ũα → C

on N the representative ϕα ◦ f ◦ ϕ̃−1
β is holomorphic.

For example, a holomorphic map from the Riemann sphere CP1 to itself is defined

by a rational function fromC toC. Consider a rational functiong(z) = ϕ0◦f◦ϕ−1
0 (z)

of the coordinate z = ϕ0(p). A point p0 = ϕ−1
0 (z0) where g(z0) = ∞ is mapped

to the north pole under f, which no longer belongs to U0. The representative

ϕ1 ◦ f ◦ ϕ−1
0 (z0) =

1
f(z0)

= 0 is therefore holomorphic.
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C.1.2 Line Bundles

Definition C.1.3. A holomorphic line bundle L over a Riemann surface M is a

two-dimensional complex manifold L with a holomoprhic projection π : L → M

such that

• for each point p ∈ M, the fibre Fp = π−1(p) ≃ C at p is a one-dimensional

vector space;

• each point p ∈M has a neighbourhood U and a homeomorphism ψU called

the local trivialisation such that the diagram

π−1(U) U× C

U

≃
ψU

π

(C.1.2)

is commutative;

• the transition map gVU = ψV ◦ψ−1
U is of the form

(p,w) 7→ (p, f(p)w) , (C.1.3)

where f : U ∩ V 7→ C∗ is a non-vanishing holomorphic function, which

uniquely determines the transition map gVU.

For a point p ∈M, we can construct a line bundle Lp, by using the coordinate z on

the neighbourhoodU0 centred at p as the transition map to the patchU1 =M \ {p}.

Explicitly the transition map is

g01 : U1 × C → U0 × C ,

(p,w) 7→ (p, z(p)w) . (C.1.4)
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The line bundle Lp is holomorphic since g01(p) = z(p) is holomorphic and non-

vanishing on the intersection U0 ∩U1.

Definition C.1.4. A holomorphic section of a line bundle L overM is a holomorphic

map s :M→ L such that π ◦ s = idM.

In a local trivialisation {(Ui, ψi)}, the section is defined by a holomorphic function

si on Ui via

ψi ◦ s : Ui → Ui × C ,

p 7→ (p, si(p)) . (C.1.5)

On the overlap Ui ∩ Uj the holomorphic functions si, sj are then related by the

transition function sj = gjisi since

(
ψj ◦ψ−1

i

)
◦
(
ψi ◦ s

)
: Ui → Ui × C → Uj × C ,

p 7→ (p, si(p)) 7→ (p, gji(p)si(p)) . (C.1.6)

A section s is therefore uniquely determined by a collection {si} of local functions

patched together by the transition functions {gij}. Given two holomorphic sections

s and t of L→M, they can be used to construct a global meromorphic function on

M via
si

ti
=
gijsj

gijtj
=
sj

tj
. (C.1.7)

The space of all sections of L→M form a vector space H0(M,L).

The line bundle Lp has a canonical section sp, where the local functions are simply

z on U0 and 1 on U1. It has as a single simple zero at p.

The canonical bundle K → M is the cotangent bundle T∗M of holomorphic one-

forms. On a chart Uα with coordinate z, the neighbourhood π−1(Uα) ≃ Uα × C is
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trivial, and we choose a section dz(p) over Uα as the natural basis for each fibre Fp.

This frame [Nak03] over Uα gives a natural map Fp → C given by

ω(p) = fdz(p) 7→ f ∈ C. (C.1.8)

The local trivialisation of the sectionω is

ψα ◦ω : p 7→ (p, f(p)) , (C.1.9)

where the one-form coordinate f is regarded as a local function. Given two

charts (Uα, ϕα) and (Uβ, ϕβ) on the base M and their coordinates z and z ′(z) =

ϕβ ◦ ϕ−1
α (z), a one-form on the overlap can be written asω = fα dz = fβ dz ′. The

local trivialisations are then given by the one-form coordinates via

p 7→ (p, fα(p)) ∈ Uα × C , (C.1.10a)

p 7→ (p, fβ(p)) ∈ Uβ × C , (C.1.10b)

where the fibre coordinates are related by fα = fβ
dz ′
dz by the transition function

gαβ = dz ′
dz .

The O(n) bundle on CP1 is defined by choosing the transition function to be

g01 = zn on the overlap U0 ∩ U1 ≃ C∗ of the standard patches U0 and U1. A

holomorphic section s is then given by local functions s0 and s1 on C related by

s0(z) = z
ns1(z

′) (C.1.11)

on the intersection C∗. The local functions are given by polynomials of degree less

than or equal to n. The dimension of all sections is then

h0
(
CP1,O(n)

)
= n+ 1 (C.1.12)

Definition C.1.5. For a compact Riemann surface M, its genus g is defined to be
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the dimension of H0(M,K).

For example, the canonical bundle K on CP1 has sections given by f0(z)dz and

f1(z
′)dz ′ where f0 and f1 are holomorphic functions on C. The transition function

is given by g01 = dz ′
dz = −z2 piecing together the local functions via

f0(z) = −z2f1(z
−1) . (C.1.13)

However, expanding f0 and f1 shows that both must vanish. Therefore there

are no non-zero global sections of the canonical bundle. The genus of CP1 is

g = H0
(
CP1, K

)
= 0 as expected.

On the torus T2 = C∗/Z, a one-form is given by dz
z

as it is invariant under the

integer action, i.e., d(λz)
λz

= dz
z

. It defines a non-vanishing section of the canonical

bundle K → T2, which means that K is isomorphic to the trivial bundle T2 × C.

Sections of the trivial bundle are holomorphic functions which are constants on a

compact manifold. Therefore the genus of T2 is g = H0
(
T2, K

)
= 1.

In terms of local objects, line bundles are given by transition functions gij onUi∩Uj,

and their sections are given by functions fi on Ui. They are examples of sheaves.

Sheaves

To classify line bundles, we need to introduce sheaf theory.

Definition C.1.6. A sheaf S on a topological space X associates to each open set

U ⊂ X an abelian group S(U), and to subset U ⊂ V a restriction map rVU : S(V) →

S(U) such that

• for U ⊂ V ⊂W, rWU = rVU ◦ rWV ;
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• if rU(U∩V)(σ) = rV(U∩V)(τ) for some σ ∈ S(U) and τ ∈ S(V), then there exists

ρ ∈ S(U ∪ V) such that r(U∪V)U(ρ) = σ and r(U∪V)V(ρ) = τ;

• if r(U∪V)U(σ) = 0 and r(U∪V)V(σ) = 0 for some σ ∈ S(U ∪ V), then σ = 0.

Some familiar Examples of sheaves are

• trivial sections, i.e., locally constant functions on U,

• holomorphic functions O(U) on U,

• sections O(L)(U) of a holomorphic line bundle L over U,

• non-vanhisng holomorphic functions O∗(U) on U .

Definition C.1.7. The p-th cohomology group of a sheaf S onM relative to an open

cover {Uα} ofM is the quotient group

Hp(M, S) :=
ker δ : Cp → Cp+1

im δ : Cp−1 → Cp
, (C.1.14)

where the chain group Cp is the alternating elements in Sp given by the sections

on p intersections, i.e.,

Sp =
⊕

α0 ̸=···̸=αp

S(Uα0 ∩ · · · ∩Uαp) , (C.1.15)

and the coboundary operator δ is a homomorphism of abelian groups Cp → Cp+1

by

(δf)α0...αp+1 =
∑
i

(−1)i fα0...α̂i...αp+1
∣∣
Uα0∩···∩Uαp+1

. (C.1.16)

For a holomorphic line bundle L → M and the sheaf S of holomorphc functions,

the zero-th cohomology is

H0(M,L) := H0(M,L) = ker δ , (C.1.17)
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which is the space of global holomorphic sections of L. The reason is that the

boundary of a zero chain f ∈ C0 is (δf)αβ = fα − fβ, which vanishes if and only if

the local sections fα piece together to give a global section.

The isomorphism classes of holomorphic line bundles are given by elements of the

sheaf cohomology group H1(M,O∗). This is because the transition functions gαβ

lie in C1 for the sheaf O∗ of non-vanishing holomorphic functions, and they are in

the kernel of δ since

(δg)αβγ = gαβgβγgγα = id . (C.1.18)

Theorem C.1.1 (Serre Duality). If L is a line bundle on a compact Riemann surface

M, then

H1(M,L) ≃ H0(M,K⊗ L∗)∗ , (C.1.19)

where ∗ denotes the dual vector space.

Theorem C.1.2. Given a short exact sequence

0→ S → T → U → 0 (C.1.20)

of sheaves onM, then there is a long exact sequence of cohomology groups

0→ H0(M, S) → H0(M,T) → H0(M,U)
δ0−→ H1(M, S) → · · ·

· · · → Hp(M, S) → Hp(M,T) → Hp(M,U)
δp−→ Hp+1(M, S) → · · · , (C.1.21)

where {δq} are the coboundary operators.

Consider the coboundary operator δ0 : H0(M,U) → H1(M, S). The elements

{uα ∈ H0(M,U)} satisfy uα − uβ = 0. There exist elements {tα ∈ C0(T)} such that

tα 7→ uα. Then {(tα − tβ) ∈ C1(T)} are mapped to {uα − uβ = 0}. By exactness of

the short exact sequence, there exists a unique sαβ ∈ C1(S) such that sαβ 7→ tα−tβ.
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It satisfies δs = 0 and hence s ∈ H1(M, S). The coboundary operator is defined by

δ0u := s.

For example, given a line bundle L→M and the line bundle Lp associated with a

point p ∈M, there is a short exact sequence

0→ O(LL−1p )
sp−→ O(L) → Op(L) → 0 , (C.1.22)

where sp is the canonical section of Lp vanishing only at p. If a section s ∈ O(L)

vanishes at p with multiplicity m, then the section ss−1p ∈ O(LL−1p ) vanishes at p

with multiplicity (m− 1). The sheaf Op(L)(U) is the sections of L over U ∩ {p}. Its

space of global sections is given by π−1(p) = C, which is one-dimensional. This

gives rise to a long exact sequence

0→ H0(M,LL−1p ) → H0(M,L) → C δ−→ H1(M,LL−1p ) → · · · . (C.1.23)

When the map δ is non-zero, the map H0(M,L) → C must be zero. By exactness

there is an isomorphism

H0(M,LL−1p ) ≃ H0(M,L) (C.1.24)

via multiplication by the section sp. Therefore if δ ̸= 0, then all global sections of L

must vanish at p.

Consider the short exact sequence of sheaves

0→ Z → O
exp−−→ O∗ → 1 , (C.1.25)

where O is holomorphic functions, and O∗ is non-vanishing holomorphic functions.
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This gives rise to a long exact sequence

0→ Z → C → C∗ → H1(M,Z) → H1(M,O) → H1(M,O∗)

→ H2(M,Z) → H2(M,O) → · · · . (C.1.26)

The leading part of the sequence is due to the fact that holomorphic functions

on compact Riemann surfaces are constants. By exactness, H1(M,Z) injects into

H1(M,O) since exponentiation is surjective onto C∗. AsH2(M,O) must vanish and

H2(M,Z) ≃ Z, the sequence reduces to

0→ H1(M,O)

H1(M,Z)
→ H1(M,O∗)

δ−→ Z → 0 . (C.1.27)

Definition C.1.8. The degree of a line bundle L is

degL = c1(L) := δ([L]) , (C.1.28)

which is also called the first Chern class. The degree of the Lp bundle is normalised

to degLp = 1.

The degree of product bundles satisfy degL1 ⊗ L2 = degL1 + degL2. This implies

that if a section s ∈ H0(M,L) vanishes at points {pi}ni=1 then

degL =

n∑
i=1

mi ,

where {mi}
n
i=1 are the multiplicities of the zeros. This can be seen from the fact

that the bundle LL−m1
p1

· · ·L−mp
pn is trivial as it has a global non-vanishing section

ss−m1
p1

· · · s−mp
pn . The trivial bundle has degree zero. As a corollary, if degL < 0,

then L has no non-trivial holomorphic sections.

The dimension h1(M,O) = g since H1(M,O) ≃ H0(M,K)∗ by Serre duality of
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Theorem C.1.1. Consider the short exact sequence,

0→ C → O
d−→ O(K) → 0 , (C.1.29)

where d is the derivative operator. It gives a long exact sequence

0→ C → C → H0(M,O(K)) → H1(M,C) → H1(M,O)

→ H1(M,O(K)) → H2(M,C) → 0 . (C.1.30)

The map H1(M,O(K)) → H2(M,C) is an isomorphism since H1(M,O(K)) ≃

H0(M,O)∗ ≃ C and H2(M,C) ≃ C. Hence the map H1(M,O) → H1(M,O(K))

must be zero. Because h0(M,O(K)) = h1(M,O) are g-dimensional, we have by

exactness the dimension h1(M,C) = 2g. Then H1(M,Z) = Z2g as there is no

torsion in H1. Therefore the exact sequence (C.1.27) becomes

0→ Cg

Z2g
→ H1(M,O∗) → Z → 0 . (C.1.31)

The groupH1(M,O∗) is called the Picard group ofM. The space Cg
Z2g is topologically

a 2g-dimensional torus.

Line bundles are classified with sheaf theory, which is essentially linear. Each line

bundle has an integer invariant, its degree. The space Jd of classes of line bundles

of degree d is a complex torus. They are isomorphic to the jacobian of the Riemann

surface.

C.1.3 Vector Bundles

Definition C.1.9. A vector bundle of rankm on a Riemann surfaceM is a complex

manifold Ewith a holomorphic projection π : E→M such that
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• for each point p ∈M, the fibre π−1(p) at p is anm-dimensional vector space;

• each point p ∈M has a neighbourhood U and a homeomorphism ψU called

the local trivialisation such that the diagram

π−1(U) U× Cm

U

≃
ψU

π

(C.1.32)

is commutative;

• the transition map gVU = ψV ◦ψ−1
U is of the form

(p,w) 7→ (p, g(p)w) , (C.1.33)

where g : U ∩ V 7→ GL(m,C) is a holomorphic map, which uniquely determ-

ines the transition map gVU.

Since the transition functions are matrices and non-commutative in general, sheaf

theory cannot be used to classify vector bundles in the same way as for line bundles.

Definition C.1.10. The degree of a vector bundle E of rankm is

degE = c1(E) := deg(detE) , (C.1.34)

where detE := ∧mE is the determinant line bundle.

Their sheaf cohomolgies can be related by the Riemann-Roch theorem.

Theorem C.1.3 (Riemann-Roch). If E is a vector bundle on a compact Riemann

surface of genus g, then

h0(M,E) − h1(M,E) = degE+ (1− g) rankE . (C.1.35)
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C.2 Abelian Vortex Equations

This section briefly reviews the abelian vortex equations, and their moduli space

of solutions. The analytic description can be translated to an algebraic description

by the Hitchin-Kobayashi correspondence [JT80, GP93, ACGP03, MS04].

Consider a holomorphic line bundle L of degree d with a hermitian metric on a

Riemann surface Σ. Let A and ϕ be a smooth connection and a smooth section re-

spectively. The space Fd of pairs (A,ϕ) is an infinite-dimensional Kähler manifold.

It inherits from the metric on Σ and the hermitian metric on L a flat metric

g =
1

4π

∫
Σ

(
1

e2
δA∧ ∗δA+ ∗|δϕ|2

)
dΣ . (C.2.1)

The abelian vortex equations are

1

e2
∗ FA + |ϕ|2 − τ = 0 , (C.2.2a)

∂̄Aϕi = 0 , (C.2.2b)

where FA is the curvature and ∂̄A is the holomorphic structure inherited from dA

and the complex structure on Σ. The moduli space of vortices is the quotient

Md := Nd/G , (C.2.3)

where Nd ⊂ Fd is the space of solutions (A,ϕ), and G : Σ → U(1) is the gauge

group.

The moduli spaceMd can be interpreted as an infinite-dimensional Kähler quotient.

The second constraint (C.2.2b) defines a Kähler submanifold Ed ⊂ Fd where the
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gauge group G acts with a moment map

1

e2
∗ FA + µ(ϕ) (C.2.4)

with µ(ϕ) = |ϕ|2. Therefore the vortex moduli space can be written as a Kähler

quotient

Md = Ed // G . (C.2.5)

By the Hitchin-Kobayashi correspondence, the moduli space Md can be paramet-

rised by pairs (L,ϕ), where L is a holomorphic line bundle of degree d and ϕ is a

non-vanishing holomorphic section of L. There exists a map Md → Symd(Σ) to

the symmetric product parametrising degree d divisors on Σ, which is given by

simply taking the divisor

D = p1 + · · ·+ pd (C.2.6)

of zeroes ofϕ. The points {p1, . . . , pd} are the centres of the vortices. The hermitian

line bundle can be recovered by the map

j : Symd(Σ) → Picd(Σ) ≃ JΣ

{D} 7→ OΣ(D) , (C.2.7)

from which the connection A can be defined uniquely. Therefore the moduli space

Md can be described as

Md ≃ Symd(Σ) . (C.2.8)



Bibliography

[ACGP03] L. Alvarez-Consul and O. Garcia-Prada, Hitchin-Kobayashi Correspondence,

Quivers, and Vortices, Commun. Math. Phys. 238, 1–33 (2003),

math/0112161.

[AGW84] L. Alvarez-Gaume and E. Witten, Gravitational Anomalies, Nucl. Phys. B

234, 269 (1984).

[AHCCK10] N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A Duality for the S

Matrix, JHEP 03, 020 (2010), 0907.5418.

[AHI+97] O. Aharony, A. Hanany, K. Intriligator, N. Seiberg and M. J. Strassler,

Aspects of N = 2 Supersymmetric Gauge Theories in Three Dimensions, Nucl.

Phys. B 499, 67–99 (1997), hep-th/9703110.

[Arb85] E. Arbarello, Geometry of Algebraic Curves, Grundlehren der

Mathematischen Wissenschaften, Springer, New York, 1985.

[ARW17] O. Aharony, S. S. Razamat and B. Willett, From 3D Duality to 2D Duality,

JHEP 11, 090 (2017), 1710.00926.

[Bat94] V. V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces

in toric varieties, J. Alg. Geom. 3, 493–545 (1994), alg-geom/9310003.

[BC15] F. Benini and S. Cremonesi, Partition Functions of N = (2, 2) Gauge Theories

on S2 and Vortices, Commun. Math. Phys. 334(3), 1483–1527 (2015),

1206.2356.

[BDG+18] M. Bullimore, T. Dimofte, D. Gaiotto, J. Hilburn and H. Kim, Vortices and

https://arxiv.org/abs/math/0112161
https://arxiv.org/abs/0907.5418
https://arxiv.org/abs/hep-th/9703110
https://arxiv.org/abs/1710.00926
https://arxiv.org/abs/alg-geom/9310003
https://arxiv.org/abs/1206.2356


Bibliography 192

Vermas, Adv. Theor. Math. Phys. 22, 803–917 (2018), 1609.04406.

[BFK19] M. Bullimore, A. E. V. Ferrari and H. Kim, Twisted Indices of 3D N = 4 Gauge

Theories and Enumerative Geometry of Quasi-Maps, JHEP 07, 014 (2019),

1812.05567.

[BFK22] M. Bullimore, A. E. V. Ferrari and H. Kim, The 3D Twisted Index and

Wall-Crossing, SciPost Phys. 12(6), 186 (2022), 1912.09591.

[BFKX22] M. Bullimore, A. E. V. Ferrari, H. Kim and G. Xu, The Twisted Index and

Topological Saddles, JHEP 05, 116 (2022), 2007.11603.

[BJG+71] P. Berthelot, O. Jussila, A. Grothendieck, M. Raynaud, S. Kleiman, L. Illusie

and P. Berthelot, Théorie des Intersections et Théorème de Riemann-Roch,

Lecture Notes in Mathematics, Springer, Berlin, 1971.

[BMO10] A. Braverman, D. Maulik and A. Okounkov, Quantum Cohomology of the

Springer Resolution, (2010), 1001.0056.

[BP14] F. Benini and W. Peelaers, Higgs Branch Localization in Three Dimensions,

JHEP 05, 030 (2014), 1312.6078.

[BX22] M. Bullimore and G. Xu, Chern-Simons Terms and Quantum K-Theory,

In Preparation (2022).

[BZ15] F. Benini and A. Zaffaroni, A Topologically Twisted Index for

Three-Dimensional Supersymmetric Theories, JHEP 07, 127 (2015), 1504.03698.

[BZ17] F. Benini and A. Zaffaroni, Supersymmetric Partition Functions on Riemann

Surfaces, Proc. Symp. Pure Math. 96, 13–46 (2017), 1605.06120.

[CCP15] C. Closset, S. Cremonesi and D. S. Park, The Equivariant A-Twist and Gauged

Linear Sigma Models on Two-Sphere, JHEP 06, 076 (2015), 1504.06308.

[CK16] C. Closset and H. Kim, Comments on Twisted Indices in 3D Supersymmetric

Gauge Theories, JHEP 08, 059 (2016), 1605.06531.

[CKW17] C. Closset, H. Kim and B. Willett, Supersymmetric Partition Functions and the

https://arxiv.org/abs/1609.04406
https://arxiv.org/abs/1812.05567
https://arxiv.org/abs/1912.09591
https://arxiv.org/abs/2007.11603
https://arxiv.org/abs/1001.0056
https://arxiv.org/abs/1312.6078
https://arxiv.org/abs/1504.03698
https://arxiv.org/abs/1605.06120
https://arxiv.org/abs/1504.06308
https://arxiv.org/abs/1605.06531


Bibliography 193

Three-Dimensional A-Twist, JHEP 03, 074 (2017), 1701.03171.

[CT08] B. Collie and D. Tong, The Dynamics of Chern-Simons Vortices, Phys. Rev. D

78, 065013 (2008), 0805.0602.

[DEF+99] P. Deligne, P. Etingof, D. S. Freed, L. C. Jeffrey, D. Kazhdan, J. W. Morgan,

D. R. Morrison and E. Witten, editors, Quantum Fields and Strings: A Course

for Mathematicians. Vol. 1, 2, AMS, Providence, 1999.

[DGLFL13] N. Dorond, J. Gomis, B. Le Floch and S. Lee, Exact Results in D = 2

Supersymmetric Gauge Theories, JHEP 05, 093 (2013), 1206.2606.

[Don96] S. K. Donaldson, The Seiberg-Witten Equations and 4-Manifold Topology,

Bulletin of the American Mathematical Society 33, 45–70 (1996).

[DT00] N. Dorey and D. Tong, Mirror Symmetry and Toric Geometry in Three

Dimensional Gauge Theories, JHEP 05, 018 (2000), hep-th/9911094.

[FHY14] M. Fujitsuka, M. Honda and Y. Yoshida, Higgs Branch Localization of 3D

N = 2 Theories, PTEP 2014(12), 123B02 (2014), 1312.3627.

[FŁM19] L. Ferro, T. Łukowski and P. Matteo, Amplituhedron meets Jeffrey-Kirwan

Residue, J. Phys. A 52(4), 045201 (2019), 1805.01301.

[GH78] P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley &

Sons, New York, 1978.

[Giv00] A. B. Givental, On the WDVV-Equation in Quantum K-Theory, Michigan

Mathematical Journal 48, 295–304 (2000).

[Giv15] A. Givental, Permutation-Equivariant Quantum K-Theory I-XI, (2015),

1508.02690.

[GL03] A. B. Givental and Y. P. Lee, Quantum K-Theory on Flag Manifolds,

Finite-Difference Toda Lattices and Quantum Groups, Invent. Math. 151,

193–219 (2003), math/0108105.

[GP93] O. Garcia-Prada, Invariant Connections and Vortices, Commun. Math. Phys.

https://arxiv.org/abs/1701.03171
https://arxiv.org/abs/0805.0602
https://arxiv.org/abs/1206.2606
https://arxiv.org/abs/hep-th/9911094
https://arxiv.org/abs/1312.3627
https://arxiv.org/abs/1805.01301
https://arxiv.org/abs/1508.02690
https://arxiv.org/abs/math/0108105


Bibliography 194

156, 527–546 (1993).

[HHL11a] N. Hama, K. Hosomichi and S. Lee, Notes on SUSY Gauge Theories on

Three-Spheres, JHEP 03, 127 (2011), 1012.3512.

[HHL11b] N. Hama, K. Hosomichi and S. Lee, SUSY Gauge Theories on Squashed

Three-Spheres, JHEP 05, 014 (2011), 1102.4716.

[HKK+03] K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil

and E. Zaslow, Mirror Symmetry, volume 1 of Clay Mathematics

Monographs, AMS, Providence, 2003.

[HSW99] N. J. Hitchin, G. B. Segal and R. S. Ward, Integrable Systems: Twistors, Loop

groups, and Riemann surfaces, Clarendon Press, 1999.

[IS13] K. Intriligator and N. Seiberg, Aspects of 3D N = 2 Chern-Simons-Matter

Theories, JHEP 07, 079 (2013), 1305.1633.

[JM19] H. Jockers and P. Mayr, Quantum K-Theory of Calabi-Yau Manifolds, JHEP 11,

011 (2019), 1905.03548.

[JM20] H. Jockers and P. Mayr, A 3D Gauge Theory/Quantum K-Theory

Correspondence, Adv. Theor. Math. Phys. 24(2), 327–457 (2020), 1808.02040.

[JMNT20] H. Jockers, P. Mayr, U. Ninad and A. Tabler, Wilson Loop Algebras and

Quantum K-Theory for Grassmannians, JHEP 10, 036 (2020), 1911.13286.

[JT80] A. M. Jaffe and C. H. Taubes, Vortices and Monopoles: Structure of Static

Gauge Theories, Birkhäuser, Basel, 1980.

[KWY10] A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in

Superconformal Chern-Simons Theories with Matter, JHEP 03, 089 (2010),

0909.4559.

[Lee04] Y. P. Lee, Quantum K-Theory I: Foundations, Duke Math. J. 121, 389–424

(2004), math/0105014.

[Lib07] M. Libine, Lecture Notes on Equivariant Cohomology, (2007), 0709.3615.

https://arxiv.org/abs/1012.3512
https://arxiv.org/abs/1102.4716
https://arxiv.org/abs/1305.1633
https://arxiv.org/abs/1905.03548
https://arxiv.org/abs/1808.02040
https://arxiv.org/abs/1911.13286
https://arxiv.org/abs/0909.4559
https://arxiv.org/abs/math/0105014
https://arxiv.org/abs/0709.3615


Bibliography 195

[Lic14] D. Lichtblau, Practical Computations with Gröbner Bases, (2014).

[LR18] K. J. Larsen and R. Rietkerk, MultivariateResidues: A Mathematica Package for

Computing Multivariate Residues, Comput. Phys. Commun. 222, 250–262

(2018), 1701.01040.

[LV98] N. C. Leung and C. Vafa, Branes and toric geometry, Adv. Theor. Math. Phys.

2, 91–118 (1998), hep-th/9711013.

[Mac62] I. G. MacDonald, Symmetric Products of an Algebraic Curve, Topology ,

319–343 (1962).

[Man82] N. S. Manton, A Remark on the Scattering of BPS Monopoles, Phys. Lett. B

110, 54–56 (1982).

[MO12] D. Maulik and A. Okounkov, Quantum Groups and Quantum Cohomology,

(2012), 1211.1287.

[MO15] D. Maulik and A. Okounkov, Lectures on K-Theoretic Computations in

Enumerative Geometry, (2015), 1512.07363.

[MS04] N. Manton and P. Sutcliffe, Topological Solitons, Cambridge Monographs on

Mathematical Physics, Cambridge University Press, Cambridge, 2004.

[Nak03] M. Nakahara, Geometry, Topology and Physics, IoP, London, 2003.

[NS09] N. A. Nekrasov and S. L. Shatashvili, Quantum Integrability and

Supersymmetric Vacua, Prog. Theor. Phys. Suppl. 177, 105–119 (2009),

0901.4748.

[NS15] N. A. Nekrasov and S. L. Shatashvili, Bethe/Gauge Correspondence on Curved

Spaces, JHEP 01, 100 (2015), 1405.6046.

[NW10] N. Nekrasov and E. Witten, The Omega Deformation, Branes, Integrability, and

Liouville Theory, JHEP 09, 092 (2010), 1002.0888.

[Red84a] A. N. Redlich, Gauge Noninvariance and Parity Violation of Three-Dimensional

Fermions, Phys. Rev. Lett. 52, 18 (1984).

https://arxiv.org/abs/1701.01040
https://arxiv.org/abs/hep-th/9711013
https://arxiv.org/abs/1211.1287
https://arxiv.org/abs/1512.07363
https://arxiv.org/abs/0901.4748
https://arxiv.org/abs/1405.6046
https://arxiv.org/abs/1002.0888


Bibliography 196

[Red84b] A. N. Redlich, Parity Violation and Gauge Noninvariance of the Effective Gauge

Field Action in Three-Dimensions, Phys. Rev. D 29, 2366–2374 (1984).

[RSV20] D. Robbins, E. Sharpe and T. Vandermeulen, A Generalization of

Decomposition in Orbifolds, JHEP 21, 134 (2020), 2101.11619.

[RWZ20] Y. Ruan, Y. Wen and Z. Zhou, Quantum K-Theory of Toric Varieties, Level

Structures, and 3D Mirror Symmetry, (2020), 2011.07519.

[RZ18] Y. Ruan and M. Zhang, The Level Structure in Quantum K-Theory and Mock

Theta Functions, (2018), 1804.06552.

[Sei94] N. Seiberg, Exact Results on the Space of Vacua of Four-Dimensional SUSY

Gauge Theories, Phys. Rev. D 49, 6857–6863 (1994), hep-th/9402044.

[SW94] N. Seiberg and E. Witten, Electric-Magnetic Duality, Monopole Condensation,

and Confinement in N = 2 Supersymmetric Yang-Mills Theory, Nucl. Phys. B

426, 19–52 (1994), hep-th/9407087.

[Tha92] M. Thaddeus, Stable Pairs, Linear Systems and the Verlinde Formula, (1992),

alg-geom/9210007.

[UY20] K. Ueda and Y. Yoshida, 3D N = 2 Chern-Simons-Matter Theory, Bethe ansatz,

and Quantum K-Theory of Grassmannians, JHEP 08, 157 (2020), 1912.03792.

[WB92] J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton

University Press, Princeton, 1992.

[Wil17] B. Willett, Localization on Three-Dimensional Manifolds, J. Phys. A 50(44),

443006 (2017), 1608.02958.

[Wit82] E. Witten, Constraints on Supersymmetry Breaking, Nucl. Phys. B 202, 253

(1982).

[Wit98] E. Witten, Mirror Manifolds and Topological Field Theory, AMS/IP Stud. Adv.

Math. 9, 121–160 (1998), hep-th/9112056.

[ZZ20] M. Zhang and Y. Zhou, K-Theoretic Quasimap Wall-Crossing, (2020),

https://arxiv.org/abs/2101.11619
https://arxiv.org/abs/2011.07519
https://arxiv.org/abs/1804.06552
https://arxiv.org/abs/hep-th/9402044
https://arxiv.org/abs/hep-th/9407087
https://arxiv.org/abs/alg-geom/9210007
https://arxiv.org/abs/1912.03792
https://arxiv.org/abs/1608.02958
https://arxiv.org/abs/hep-th/9112056


Bibliography 197

2012.01401.

https://arxiv.org/abs/2012.01401


List of Symbols

F(σ), 22, 23

Fa(σ), 129

Qi j, 20

Qj, 19

Φj, 19

Tr(−1)F, 17

ch, 75
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