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Abstract 26 

Simulating streamflow in ungauged catchments remains a challenging task in hydrology and 27 

increases the demand for regionalization studies worldwide. Here, we investigate the effect of three 28 

modes of parameter transfer, including temporal (transferring across different periods), spatial 29 

(transferring between same calibration periods but different sites), and spatiotemporal (transferring 30 

across both different periods and sites) on simulating streamflow using HBV conceptual rainfall-31 

runoff model at 576 unregulated catchments throughout Iran (407,000 Km2). Our main conclusions 32 

are: (1) temporal mode shows the best performance, with the lowest decline in performance (median 33 

decline of 5.8%) as measured using the NSE efficiency metric, (2) difference between spatial and 34 

spatiotemporal options was negligible (median decline of 13.7% and 15.1% respectively), (3) all 35 

parameters are associated with some uncertainties and those related to runoff and snow components 36 

of the model are associated with the highest and lowest uncertainties, respectively, (4) overall, the 37 

model performance in arid regions is not as good as humid regions which confirmed that elevation 38 

and climate play a major role in parameter estimation in these areas, and (5) aridity and catchment 39 

elevation are two major controls on model transferability at regional (climate classes) and local (the 40 

whole country) scales. We also show that the superiority of the temporal mode is maintained with: (i) 41 

increasing spatial distance between gauged (donor) and ungauged (target) catchments, (ii) increasing 42 

time lag (10 years) between calibration and validation, and (iii) gradually increased time lags between 43 

calibration and validation. Our study suggest that spatiotemporal parameter transfer can be a reliable 44 

option for PUB studies and climate change-related studies, at least in wetter catchments. However, 45 

further research is needed to explore the complicated relationship between temporal and spatial 46 

aspects of hydrological variability. 47 

 48 

Keywords: Aridity, Parameter transfer, Rainfall-runoff model, Ungauged catchment 49 

 50 

 51 
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Introduction 52 

The simulation of streamflow in ungauged catchments remains a challenging task in the hydrologic 53 

sciences (Sivapalan et al., 2003) because the model parameters cannot be calibrated against 54 

streamflow since there are no observations. The process of finding appropriate parameter sets to 55 

simulate streamflow in ungauged sites by learning from model calibration in gauged sites is generally 56 

referred to as “regionalization”. Over the last decade, an increasing number of studies have used 57 

conceptual rainfall-runoff models to test different regionalization approaches (Lee et al., 2005; Merz 58 

and Blöschl, 2004; Perrin et al., 2001; Reichl et al., 2009; Samuel et al., 2011; Vaze et al., 2010; 59 

Vogel, 2005; X. Yang et al., 2020a; Yang et al., 2019). The main issue in regionalization is related to 60 

the operational application of these models outside of calibration periods, where the parameter sets 61 

face their true examination (Dakhlaoui et al., 2017; Patil and Stieglitz, 2015; Refsgaard and Knudsen, 62 

1996; Yang et al., 2020b). Parameter transfer, or regionalization, outside of the calibration period can 63 

be in time (simulating streamflow for periods for which no observations are available), in space 64 

(simulating in ungauged sites) or both (hereafter referred to as “spatiotemporal”). Hrachowitz et al. 65 

(2013), Blöschl et al. (2013), and Parajka et al. (2013) provide a comprehensive overview of the 66 

achievements and discussions in PUB research during the PUB decade initiative (2003-2012) 67 

initiative of the International Association of Hydrological Sciences (IAHS). 68 

 69 

Temporal transfer of hydrological model parameters is the most common approach in regionalization 70 

studies (Patil and Stieglitz, 2015). An implicit assumption in the temporal transfer is that calibrated 71 

parameters are temporally stable. However, many recent studies have shown that calibrated model 72 

parameters have not been temporally stable (e.g., Brigode et al., 2013; Dakhlaoui et al., 2017; Merz 73 

et al., 2011; Yang et al., 2018) and conditions of calibration period determine their values (Juston et 74 

al., 2009).  75 

 76 
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Parameters transfer in spatial mode, from gauged to ungauged sites, is another strategy widely used 77 

in numerous studies for streamflow prediction in ungauged basins (PUB) across the world (Choubin 78 

et al., 2019; McIntyre et al., 2005; Oudin et al., 2008; Patil and Stieglitz, 2014, 2015; Samuel et al., 79 

2011; Sivapalan et al., 2003; Yang et al., 2018; Young, 2006; Zhang and Chiew, 2009). Two widely 80 

used approaches are Spatial Proximity (SP) and Physical Similarity (PS). The implicit hypothesis of 81 

the SP approach is that two adjacent catchments behave similarly in hydrological response because 82 

they are likely to have similar physical and climatic conditions (Chiew et al., 2008; Petheram et al., 83 

2009). However, this may not always be the case as nearby catchments can sometimes have different 84 

characteristics and therefore not behave similarly (Kennard et al., 2010; Petheream and Bristow, 85 

2008; Thornton et al., 2007). The second parameter transfer approach is PS (Choubin et al., 2019; 86 

Kay et al., 2007; Samaniego et al., 2010). In the PS transfer approach, parameter sets are transferred 87 

from the most physically similar catchment(s) to the ungauged catchment (Bao et al., 2012; Bárdossy, 88 

2007; McIntyre et al., 2005; Samuel et al., 2011). It remains, however, challenging to determine 89 

which physical characteristics are key for successful parameter regionalization.  90 

 91 

A few studies have pointed to a significant difference between the performance of temporal and 92 

spatial parameter transfer (e.g., Arsenault and Brissette, 2014; Merz and Blöschl, 2004; Parajka et al., 93 

2005; Yang et al., 2020a; Zhang and Chiew, 2009) and some have shown less difference between 94 

their performance (Oudin et al., 2008; Patil and Stieglitz, 2015). Although there is a considerable 95 

number of PUB studies on the development and comparison of approaches to transfer rainfall-runoff 96 

model parameters from gauged to ungauged catchments in different sites, both in terms of size and 97 

climate (McIntyre et al., 2005; Merz et al., 2011; Post and Jakeman, 1996; Young, 2006), not many 98 

studies have carried out a direct comparison of these three modes within/between climate classes in 99 

a study area. The present paper goes beyond Patil and Stieglitz (2015) in terms of climate  classes and 100 

the number of studied catchments and also adds to the existing literature by addressing the PUB 101 

paradox. Many PUB studies are conducted in catchments where actually many observations are 102 
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available. Consequently, these studies, especially those with a high number of catchments involved, 103 

have been conducted in regions with a dense and well-organized observation network (the US, 104 

Austria, and France), mainly temperature climates, where the need for regionalization might be 105 

limited. Here, we investigate several methods for regionalization across Iran. Iran is an example of a 106 

country where regionalization might be even more important because of the low gauge density and a 107 

climate regime that is completely different compared to the widely studied in France, Austria, and 108 

the US.  109 

 110 

In Iran, streamflow gauges are generally not in good condition. There are only 1,194 active gauges 111 

and with respect to the total area of the country (1,648,000 km2), there is only one active gauge per 112 

1,380 Km2 (IEM, 2016). The minimum density of streamflow gauges recommended by WMO 113 

(WMO, 2009) is one gauge per 1,875 km2 and 1,000 km2 for mountains and interior plains, 114 

respectively. Prediction of streamflow time series in ungauged catchments is a global challenge in 115 

hydrology, and this also applies to Iran - especially in its arid and semi-arid regions. Hence, PUB is 116 

chosen as an essential issue in this study, where we utilize three modes of temporal, spatial, and 117 

spatiotemporal parameter transfer using the available dataset in Iran that covers an extensive range 118 

of climate types. 119 

 120 

To our knowledge, there are only two PUB studies conducted in Iran across the Karkheh River Basin 121 

in the west. Masih et al. (2010) defined hydrological similarity based on four similarity measures: 122 

spatial proximity, drainage area, catchment properties, and Flow Duration Curves (FDC) in 11 123 

ungauged catchments. Their results showed that the physical similarity approach based on similarity 124 

in quantiles of FDC in the HBV model leads to the best performance. In another study, Choubin et 125 

al. (2019) defined the catchment similarity based on morphological, topographic, soil type and land 126 

use, and remote sensing-based characteristics in four catchments. They concluded that physical 127 
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similarity by applying the semi-distributed SWAT model is an efficient method to estimate 128 

streamflow times series in ungauged catchments.  129 

 130 

Our study compares temporal transferability with spatial and spatiotemporal strategies, using the 131 

HBV  hydrological model across 576 catchments throughout Iran (Fig. 1). The temporal mode is 132 

implemented using a split-sample test procedure (Parajka et al., 2005), where the available data is 133 

divided into two calibration and validation periods. We use the nearest neighbor catchment as a donor 134 

of calibrated parameters for the spatial/spatiotemporal parameter transfer strategy. 135 

 136 

The main questions addressed in this study are:  137 

(i) How do spatial and spatiotemporal transfer of hydrological model parameters differ with an 138 

increase in lag time (temporal) between calibration and validation?  139 

(ii) How do spatial and spatiotemporal transfer of the hydrological model differ with an increase in 140 

spatial distance between gauged (donor) and ungauged (target) catchments?  141 

(iii) How do hydrological model parameters differ between two calibration periods? 142 

(iv) How do dynamic and statistic catchment characteristics control model transferability at local and 143 

regional scales? 144 

 145 

2. Study area, model, and dataset  146 

2.1. Study area 147 

Our study area is Iran. There are four general climate regions in Iran based on De Martonne 148 

classification system (De Martonne, 1926; Rahimi et al. 2013). The climate varies greatly within the 149 

country, from wet maritime weather along the Caspian Sea coast, including humid and semi-humid, 150 

toward drier conditions in the interior, including arid and semi-arid.  151 

There is considerable annual and seasonal variability in rainfall across Iran, with mean annual 152 

precipitation (MAP) ranges from 360 mm (central parts) to more than 2000 mm (northern parts of the 153 
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country) (mean = 724 mm) (IMO, 2018). The spatial variability of precipitation is particularly large 154 

between the north, northwest, west, and central parts of the country (from less than 400 to more than 155 

2000 mm) (see Table 2). Altitude greatly impacts the amount of rainfall in the mountainous areas of 156 

Iran, and runoff hydrographs show quite different spatial patterns (IEM, 2018).  157 

 158 

2.2. HBV rainfall-runoff model  159 

The HBV model is a semi-distributed conceptual rainfall-runoff model. It was originally developed 160 

in Sweden (Bergström, 1976). It requires three input variables at the daily time step: precipitation, 161 

temperature, and potential evapotranspiration. For PUB studies, it has been widely used in semi-arid 162 

(Choubin et al., 2019; Lidén and Harlin, 2000; Love et al., 2010; Masih et al., 2010)and humid (Clark 163 

et al., 2017; Merz and Blöschl, 2004; Pool et al., 2017; Samuel et al., 2011; Seibert and Beven, 2009) 164 

regions. The model version used herein, modified by Parajka and Viglione (2012), includes snow 165 

routine, a soil routine, routing routine using the unit hydrograph, and a response function with three 166 

linear reservoir equations (Osuch et al., 2019). This modified version has 15 parameters (Table 4) 167 

(Parajka et al., 2007). 168 

 169 

2.3. Forcing data 170 

Daily precipitation time series for all catchments are aggregated from the Iran precipitation dataset 171 

provided by the Iran Energy Ministry (IEM) (IEM, 2018) and Iran Meteorological Organization 172 

(IMO) (IMO, 2018). In this dataset, rainfall data are collected from point observations at gauge 173 

locations, but we estimated rainfall fields through two methods, IDEW and lapse rate: 174 

 175 

(i) IDW and Elevation (IDEW) method. The IDEW is an interpolation technique and offers the 176 

possibility of defining elevation and distance weighting, making it more suitable for mountainous 177 

regions of Iran. This technique was shown to be more suitable for mountainous catchments in the 178 
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Karkheh River Basin and southwestern Iran (Masih et al., 2011, 2010; Modallakdoust et al., 2008). 179 

The equation for this method is as follows: 180 

^

1 1

1 1
( ) ( )

N N

k D i i Z i i

i i

p W w d p W w z p
D Z= =

= +                                                                                         (1) 181 

where
^

kp is interpolated precipitation for grid cell (mm/time step), Wz(-) and WD (-) are total 182 

weighting factors for elevation and distance, respectively, pi is precipitation value (mm/time step) of 183 

the i-th gauge station, and N is the number of precipitation gauges used for interpolation of the current 184 

grid cell. Similarly, w(z)i (–) and w(d)i (–) are the individual gauge weighting factors for elevation 185 

and distance, respectively, and Z (–) and D (–) are the normalization quantities given by the sum of 186 

individual weighting factors w(z)i and w(d)i, respectively, for all interpolated gauges. The weighting 187 

factors w(d)i and w(z) based on the elevation and inverse of distance are as follows: 188 
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                                                                                                  (3) 190 

where d is the distance (km) between the current grid and the precipitation gauge, z is the absolute 191 

elevation difference (m) between the current grid cell and the precipitation gauge, b (–) and a (–) are 192 

constants for elevation and distance weightings, respectively, and zmax (m) and zmin (m) are the 193 

maximum and minimum limiting values for computing elevation weightings. 194 

Time series of daily precipitation data are used for interpolation in 5 × 5 km2 grids, which are then 195 

aggregated at the catchment scale. The parameters of interpolation, i.e., the exponents a and b, the 196 

radius of influence, and importance factors WZ and WD and, are determined by cross-validating the 197 

interpolated precipitation using Jack-Knife method (Varljen et al., 1999). The cross-validation was 198 

done for 1081 selected grid cells/precipitation gauge locations scattered throughout Iran. 199 

The monthly R2 (coefficient of determination) ranges from 0.58 to 0.92. Considering the high spatial 200 

variability of precipitation in highlands, the R2 values are considered satisfactory. A detailed 201 
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comparison of model efficiency under areal precipitation and gauge (point observations) data is 202 

beyond the scope of this paper. The main parameters used for the interpolation were: WD = 0.8 and 203 

WZ = 0.2, radius of influence = 80 km, a = 2, and b = 1 (Masih et al., 2010). The limiting values for 204 

elevation weighting zmax and zmin are selected as 4600 m and 40 m, respectively. 205 

 206 

(ii) A lapse rate correction is was also tested to account for the elevation effect. Catchment rainfall is 207 

increased by a correction factor that is allowed to vary with mean catchment elevation. This correction 208 

factor was set to 4% in lowland catchments of Iran (below 150 m a.s.l.) and 18 to 25% in the highland 209 

catchments (above 2000 m a.s.l.) and assumed to increase linearly in between.  210 

 211 

The results showed that the difference between the IDEW and the lapse rate methods, in terms of 212 

catchment averaged rainfall is relatively small (in the order of 3.8%). Hence, the values of catchment 213 

rainfall calculated by the IDEW method are used for this study. 214 

 215 

There is at least one rain gauge and temperature/evaporation station in each catchment. Daily 216 

temperature time series are generated from the IEM and IMO observations using a regression-based 217 

method by applying elevation as explanatory factor. The reference evapotranspiration is estimated 218 

with the Hargreaves method (Hargreaves et al., 1985) using maximum, minimum, and average 219 

temperature. With the Standard Normal Homogeneity Test (SNHT) (Haimberger, 2007), the time 220 

series of three model inputs was shown to be homogenous, and no breakpoints were observed. The 221 

missing values in the data sets were estimated based on the values from neighboring gauges using the 222 

regression method. Overall, the temperature data of a gauge showed a good correlation with 223 

corresponding data from the neighboring gauges (R2 > 0.89) used for filling the missing records. In 224 

the case of precipitation data, this correlation is R2 > 0.85. On average, 7.2% and 10.5% of the 225 

temperature and precipitation data, respectively, had to be filled for all 963 catchments.  226 

 227 
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Figure 1 shows the climatic attributes estimated using the period  from 1993 to 2008 for the 576 study 228 

catchments. This figure shows low climate variability in precipitation, temperature, PET, and 229 

percentage of snow cover between two calibration periods in the study catchments. There is no trend 230 

or change point in the annual mean of four climatic variables from 1993 to 2008 in the study 231 

catchments, evaluated with the Hubert’s segmentation procedure. Thus, variability in four variables 232 

is in the form of inter-annual. Table 1 shows the mean annual values of climatic variables for four 233 

climate regions over two calibration periods (1993-2001 and 2001-2008). 234 

 235 

Fig. 1. Inter-annual climate variability over the period 1993 to 2008 in the study catchments. The period is 236 

split into two: 1993-2001 and 2001-2008. 237 

 238 

 239 

 240 

 241 
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Table 1 242 

Mean annual values of four catchment characteristics for four climate regions over two calibration periods. 243 

Region Calibration Period Precipitation 

(mm) 

Temperature (oC) PET (mm) Snow cover 

(%) 

Humid 1993-2001 570 12.58 390.5 10.5 

2001-2008 566 12.7 390.8 11.5 

Semi humid 1993-2001 526 13.11 397.25 10.6 

2001-2008 533.3 13.4 406.75 11.3 

Semi-arid 1993-2001 504 13.75 414.5 9.8 

2001-2008 522.5 13.42 419.37 10.7 

Arid 1993-2001 479.5 14 427 9.1 

2001-2008 483.7 14.17 425.3 9.8 

Iran (all regions) 1993-2001 520 13.37 407.27 10 

2001-2008 526 13.41 412.5 10.9 

 244 

2.4. Catchment dataset 245 

The dataset used in this study includes daily precipitation at 1081 stations and daily air temperature 246 

at 612 climatic stations in 996 catchments. Digital maps of land use (MODIS Land Cover Product), 247 

global soil map (based on the FAO map), aquifers map (based on 1:250000 Iran energy Ministry 248 

map), and the main geological formations (1:250000 map of USGS) are used. These digital maps are 249 

combined with the catchment boundaries to derive each land-use type, soil type, aquifer area, and 250 

geological unit. 33 catchments out of 996 preliminary catchments with high permeability (karstic 251 

aquifers) and dry catchments with very high and variable permeability are removed since the 252 

employed model is not capable to simulate these conditions. We carefully screened the runoff data 253 

for errors, and outliers are removed.  254 

 255 

To calibrate and validate the HBV model, daily runoff data from 963 gauged catchments are used 256 

with areas ranging from 64.7 km2 to 8432 km2 and a median of 496 km2 (Table 2). 97 of these 257 

catchments range in area between 64.7 and 150 km2, 206 catchments between 150 and 350 km2, 334 258 

catchments between 350 and 1000 km2, 326 catchments between 1000 and 8432 km2. The catchment 259 

area increases from wet to dry regions so that its median values for humid and semi-arid regions are 260 

the lowest and highest, respectively (Table 3). The spatial distribution of measuring gauges (in terms 261 

of number and distribution per unit area) deteriorates from wet to dry conditions for hydrometric and 262 
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meteorological stations. This catchment dataset has a daily streamflow dataset from water year (WY) 263 

1992 to 2008 (i.e., September 22, 1992, to September 21, 2008). In this study, the period of 1993 to 264 

2008 is split into two consecutive calibration periods. Catchment descriptors for all 963 study 265 

catchments are presented in Table 2. 266 

 267 

The water years 1993-2001 were used as calibration period 1 and the water years 2001-2008 for 268 

calibration period 2. The period 1992-1993 is used for model warm-up. We calibrated HBV model 269 

parameters for these two periods separately. Only those catchments where the results provide NSE ≥ 270 

0.5 (following Parajka et al., 2007) for both periods are retained for the next step. Applying this 271 

threshold reduced the number of catchments considered in this study to 576 (Fig. 2). The minimum 272 

and median catchment areas are 104.6 km2 and 608.2 km2, respectively. Figure 2 shows the location 273 

of 576 selected catchments and their classification into four climate regions. Table 3 shows the 274 

median values of catchment descriptors for different climate regions. 275 

 276 

Table 2 277 

Statistics of catchment descriptors (CDs) (n = 963). 278 

Category Catchment descriptor Median 
Range 

Min Max 

Topographic 
Mean elevation (m) 1416 -28 5,595 

Mean slope (%) 18.8 0 45.1 

Physiographic Area (km2) 574.2 64.7 8,432 

Climatic 

Aridity Index (PET/P) (-) 0.69 0.1 2.83 

Mean annual precipitation (mm) 724 367 2015 

Mean annual temperature (oC) 14.3 5.9 24.4 

PET (mm) 459 151 1194 

Land use 

Rangeland (%) 33.1 2.8 87.4 

Agriculture (%) 27.6 3.42 46.42 

Forest (%) 13.5 0.01 41.7 

Residential (%) 4.3 0 21.8 

 279 

 280 

 281 

 282 

 283 



Page 13 of 41 

 

Table 3 284 

The median values of catchment descriptors for different climate regions (n = 576). 285 

Catchment descriptor 
Humid 

(G1) 

Semi-humid 

(G2) 

Semi-arid 

(G3) 

Arid 

(G4) 

No. of catchments 199 256 93 28 

Area (km2) 372 538 1192 1096 

Mean elevation (m) 1776 2426 873 368 

Mean slope (%) 22.5 31.2 15.3 10.2 

Aridity Index (-) 0.35 0.49 0.59 1.24 

Mean annual precipitation (mm) 1065 816 673 392 

Mean annual temperature (oC) 8.4 10.2 14 20 

PET (mm) 293 390 386 718 

Rangeland (%) 15.4 26.1 37.2 52.6 

Agriculture (%) 19.3 28.7 32.7 27.6 

Forest (%) 23.8 16.9 9.2 3.3 

Residential (%) 3.7 6.1 5.2 2.4 

 286 

 287 

Fig. 2. The location of 576 catchments grouped in climate regions; blue is humid, orange is semi-humid, yellow 288 

is semi-arid, and green is arid. The triangles have been plotted at the outlet of catchments.  289 

 290 

 291 

 292 

 293 
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3. Methodology 294 

3.1. Model calibration and evaluation  295 

Adjusting hydrological model parameters is an essential part of hydrological simulations. The 296 

goodness-of-fit was improved by optimizing these parameter values until the difference between 297 

measured and simulated runoff was satisfactory during model calibration.  298 

The Differential Evolution optimization algorithm (DEoptim) (Storn and Price, 1997) is used to 299 

calibrate the model parameters through the DEoptim package in R (Ardia et al., 2011). The algorithm 300 

is in the class of genetic algorithms that maximize a given objective function (Mitchell, 1998). 301 

DEoptim parameters were set to itermax = 400, population size (NP) = 400, trace = 7, crossover 302 

probability = 0.5, and step-size = 0.8. The upper and lower boundaries of each HBV parameter were 303 

determined according to Parajka et al. (2007) (Table 4). The model was run in a lumped fashion for 304 

each catchment. 305 

 306 

Model calibration and evaluation (transferability) are evaluated using Nash-Sutcliffe Efficiency 307 

(NSE) (Nash and Sutcliffe, 1970). The NSE criterion is a form of the normalized least-squares 308 

objective function. It places more emphasis on high flows. Its optimal value is 1.  309 

n
obs sim 2

i i

i=1

n
obs 2

i obs

i=1

(Q -Q )

NSE=

(Q -Q )

 
 
 
 
  




                                                                                                                        (4) 310 

where Qi
sim and Qi

obs are the daily simulated and observed runoff values at the time i, respectively. 311 

obsQ  is the mean value of daily observed runoff. One year before each calibration period was used as 312 

the warm-up period to reduce the impact of the uncertain initial conditions on model performance.  313 

 314 

 315 

 316 
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3.2. Parameter transfer strategies and tested modes 317 

In this study, parameter transfer from gauged to ungauged catchments is examined under spatial and 318 

spatiotemporal strategies. Model performance in gauged catchments is also examined under temporal 319 

mode. Patil and Stieglitz (2015) also examined these tested strategies and mode in 294 catchments in 320 

the United States. The spatial strategy used in this study is the Nearest Neighbor (NN) method. This 321 

spatial parameter transfer strategy is carried out at the scale of regional (climate regions) and local 322 

(entire Iran). We examine them across Iran as follows: 323 

(1) Temporal (TEM): Model parameters from period 1 are transferred to period 2, and vice versa 324 

(for the same catchment). 325 

(2) Spatial (SPA): Model parameters of a catchment are obtained from transferring method (nearest 326 

neighbor) over the same time period (separately for two calibration periods). 327 

(3) Spatiotemporal (SPA_TEM): Here, model parameters are transferred in temporal (between time 328 

periods) and spatial (by nearest neighbor) domain, simultaneously. 329 

 330 

4. Results  331 

4.1. Model performance over the calibration periods (at-site) 332 

We calibrate the model for 963 catchments in two consecutive calibration periods. None of them 333 

showed an NSE lower than 0.29. Subsequently, we eliminate 349 from the initial set of 963 334 

unregulated catchments due to poor model performance for two consecutive periods (calibration NSE 335 

< 0.5). The discarded catchments (387 catchments with calibration NSE < 0.5) are mostly in dry (n = 336 

218) and some in wet (n = 169) regions, where karstic aquifers show complex interaction between 337 

surface water and groundwater. Overall, 576 gauged catchments out of the 963 catchments set showed 338 

NSE ≥ 0.5 for both periods (Fig. 3 left panel). These results, in combination with Fig. 1, show that 339 

the model provides better performance in wetter catchments (humid and semi-humid) than the drier 340 

ones (arid and semi-arid) and are generally in accordance with the findings by Parajka et al. (2005) 341 

in Austria and Oudin et al. (2008) in France. 342 
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Figure 3 (right panel) shows the spatial distribution of average model performance for the 576 343 

catchments over calibration periods. In the northwestern, northern, and across the interior western 344 

catchments, model performance is substantially better than in the other parts of the country. 345 

Conversely, interior, western and southeastern catchments are generally more difficult to model since 346 

spatially variable rainfall events make the streamflow vary in amplitude.  347 

 348 

Fig. 3. Gauge location in Iran. Left panel: Location of all 963 catchments considered within Iran; the 576 349 

catchments maintained (NSE ≥ 0.5) for parameter transfer strategy are shown by black triangles, the excluded 350 

catchments by grey triangles. Right panel: Average calibration efficiency of the two calibration periods over 351 

the 576 catchments. The triangles have been plotted at the outlet of catchments. 352 

 353 

To compare the calibration results of the two periods, we plotted the NSE values obtained with HBV 354 

across the two calibration periods in 576 catchments (Fig. 4). The relationship between NSE values 355 

of these two calibration periods is somewhat weak (Pearson’s r = 0.55), with fairly widespread data 356 

points scattered along with both sides of line 1:1. This indicates that model performance can vary 357 

quite a bit with the calibration period. For all 576 catchments, about 82% of catchments have an NSE 358 

value of more than 0.6 for two calibration periods. Figure 4 also demonstrates that humid (median 359 

NSE = 0.72) and semi-humid (median NSE = 0.66) catchments show in general better performance 360 

than the semi-arid (median NSE = 0.59) and arid (median NSE = 0.61) classes. 361 
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 362 

Fig. 4. Comparison of the NSE values between two calibration periods for all four climate classes (n = 576). 363 

Legend of the climate classes according to Fig. 2. 364 

 365 

4.2. Parameter uncertainty in regionalization approaches 366 

Here, we judge the model parameters in two ways. First, we assess the stability of the model 367 

parameters over time by comparing parameter distribution for different calibration periods. Second, 368 

we assess the difference between the calibrated parameter value and the regionalized parameter value 369 

obtained with spatial mode. As such, we assess parameter stability across space. Third, we analyze 370 

the impact of the difference in temperature (ΔT) and precipitation (ΔP) between two periods on 371 

calibrated model parameters. The insights obtained in this section can be used to understand and 372 

explain the regionalization results in the next section. 373 

 374 

4.2.1. Stability of model parameters over time 375 

Figure 5 shows the 1:1 comparison of 15 HBV model parameters (differentiated for four climate 376 

classes) during two calibration periods. The r1 correlation coefficients and median values of calibrated 377 

parameters for two periods are presented in Table 4. The degree-day factor (DDF) shows most 378 
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stability over time, as indicated by a correlation coefficient of 0.6. The weakest relationship is 379 

obtained for the storage coefficient for slow response, K2, with a correlation coefficient of 0.29. This 380 

confirms that not only model performance, as shown in section 4.2, but also parameter values, can 381 

vary quite a bit across calibration periods. The parameters of the model are less stable for semi-arid 382 

and arid classes compared to humid and semi-humid classes. 383 

 384 

Fig. 5. 1:1 plot of all 15 HBV model parameter values for calibration periods. Legend of the climate classes 385 

according to Fig. 2. Legend of the climate classes according to Fig. 2. 386 

 387 

To explore to what extent the variation in parameters during the two calibration periods can be 388 

attributed to a difference in temperature and precipitation in these two periods, we plotted the change 389 

in parameter value against ΔP and Delta ΔT (Fig. 6). It was found that among the 15 calibrated 390 

parameters (Fig. 5), eight parameters (SCF, DDF, Lprat, K1, K2, FC, BETA, and Cperc) seem to 391 

have remarkable variations between the two calibration periods.  392 
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Figure 6 shows that, at the country level, parameter values show an increasing trend parallel with an 393 

increase in ΔP except for SCF, K2, BETA, and Cperc (Fig. 6a to 6h). For ΔT, the difference in all 394 

parameters shows an increasing trend parallel with an increase of ΔT except for DDF, Lprat, FC, and 395 

BETA. 396 

 397 

Fig. 6. 1:1 plot of difference in model parameters (ΔParameter) and (a to h) difference in precipitation (ΔP), (i 398 

to p) difference in temperature (ΔT). Legend of the climate classes according to Fig. 2. 399 

 400 

4.2.2. Stability of parameters over space using regionalization 401 

Here, we evaluate the difference between the original parameter value (obtained through calibration) 402 

and the regionalized parameter value using the best spatial mode; for each of the parameters, we 403 
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evaluate the distance between both values for each catchment. Figure 7 shows the normalized 404 

parameter range for all 576 catchments. According to this distance distribution, the most and least 405 

robust parameters are DDF (r2 = 0.61) and Croute (r2 = 0.37) respectively. The r2 correlation 406 

coefficients between calibrated and regionalized parameters are presented in Table 4. 407 

 408 

Table 4 409 

The calibrated parameters of the HBV model, the parameters value range (lower and upper limits), the 410 

correlation coefficient (r1), median values of parameters for two calibration periods, and the correlation 411 

coefficient (r2) between calibrated and regionalized parameters. 412 

Parameter Description Lower Upper Median r1 r2 

SCF Snow correction factor [-] 1 1.5 1.15 0.56 0.59 

DDF Degree day factor [mm/oC day] 0 5 2.29 0.6 0.61 

Tr 
Threshold temperature above which precipitation is rain 

[oC] 
1 3 

1.98 
0.49 0.53 

Ts 
Threshold temperature below which precipitation is snow 

[oC] 
-3 1.0 

-0.68 
0.55 0.58 

Tm Threshold temperature above which melt starts  [oC] -2 3 0.05 0.42 0.5 

Lprat 
Parameter related to the limit for potential evaporation [-

] 
0 1 

0.42 
0.42 0.39 

FC Field capacity [mm] 0 600 300.84 0.58 0.6 

BETA The nonlinear parameter for runoff production [-] 0 20 9.52 0.4 0.39 

K0 Storage coefficient for very fast response [day] 0 2 0.8 0.46 0.55 

K1 Storage coefficient for fast response [day] 2 30 15.13 0.51 0.45 

K2 Storage coefficient for slow response [day] 30 180 135.68 0.29 0.41 

lsuz Threshold storage state 1 100 45.12 0.5 0.47 

Cperc Constant percolation rate [mm/day] 0 8 3.32 0.36 0.51 

bmax Maximum base at low flows [day] 0 30 13.79 0.44 0.45 

Croute Free scaling parameter [day2 /mm] 0 50 20.61 0.31 0.37 

 413 
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Fig. 7. Distance between calibrated and spatial mode regionalized parameter value, normalized over the 414 

parameter range of. Each boxplot contains 576 values; one for each catchment. 415 

 416 

4.3. Model performance achieved with the different regionalization approaches 417 

In the next step, we compare the performance of the HBV model between the two parameter transfer 418 

strategies and temporal mode. Figure 8 shows the boxplot comparison of NSE values for all four 419 

cases: calibration, temporal (TEM), spatial (SPA), and spatiotemporal (SPA_TEM). The best 420 

performance is for calibration mode (NSE = 0.75), followed by TEM (NSE= 0.64, decline of 15% 421 

compared to calibration), SPA (NSE = 0.46, decline of 39% and for SPA_TEM (NSE = 0.39, decline 422 

of 48%).  The results from Fig. 8 show that the temporal regionalization performed better than the 423 

SPA and SPA_TEM. 424 

 425 

Fig. 8. Boxplot of the NSE values for calibration, temporal mode, and two tested strategies. 426 

 427 

4.4. Accounting for temporal and spatial proximities 428 

To further analysis the advantage that the temporal mode has over the other two (spatial and 429 

spatiotemporal) modes, we considered the following two scenarios: 430 
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Scenario 1: The spatial distribution is not suitable for some catchments, which results in a large 431 

distance between them and their nearest neighbor (donor) catchment. This scenario considers the SPA 432 

and SPA_TEM strategies at a clear disadvantage compared to TEM mode. 433 

Scenario 2: The calibration periods 1 and 2 are consecutive and there is no temporal lag between 434 

them. If the meteorological inputs for some of catchments have not changed significantly over these 435 

two periods (especially in adjacent catchments), the temporal transfer mode may be superior to the 436 

other two strategies (Patil and Stieglitz, 2015). 437 

 438 

To reduce the effects of the two considered scenarios, we repeated the parameter transfer strategies 439 

under individual conditions 1 and 2. 440 

Individual Condition 1: We remove the catchments that have the nearest neighbor catchment more 441 

than 68 km away (the median nearest neighbor distance is 69.4 km). This reduces the number of 442 

catchments from 576 to 289. 443 

Individual Condition 2: We consider a temporal lag distance (10 years) between two calibration 444 

periods so that calibration periods 1 changed to WY from 1993 to 1999 (instead of 1993-2001) and 445 

calibration period 2 changed to WY from 2009 to 2014 (instead of 2001-2008). Nonetheless, unlike 446 

individual condition 1, all 576 catchments are retained for simulations. It worth nothing that Merz et 447 

al. (2009) suggested that the minimum calibration period for interpreting the temporal variability of 448 

hydrological processes of a catchment is five years. 449 

 450 

Figures. 9a and 9b show the boxplot of NSE values from four scenarios for individual conditions 1 451 

and 2, respectively. The results for both cases are similar to those results for calibration and parameter 452 

transfer strategies (Fig. 8). For individual condition 1 the highest NSE value is obtained for the 453 

calibration scenario (NSE = 0.78), after that TEM (NSE = 0.67; decline of 13.7%), SPA (NSE = 0.51; 454 

decline of 34.5%) and then SPA_TEM (NSE = 0.43; decline of 44.6%) strategies. For individual 455 
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condition 2, the median NSE values for calibration, TEM, SPA and SPA_TEM PTSs are: 0.73, 0.59 456 

(decline of 18.9%), 0.44 (decline of 39.4%) and 0.36 (decline of 50.2%) respectively. 457 

 458 

Fig. 9. Boxplot of the NSE values for calibration, temporal mode, and two tested strategies. (a) individual 459 

condition 1 and (b) individual condition 2. 460 

 461 

4.5. Accounting for spatial distance to donor catchment 462 

Here, we plot the NSE-calibration versus the (i) NSE-mode and (ii) delta-NSE, as well as NSE-463 

decline versus distance to the donor catchment. Figure 10a shows the relationship between the 464 

calibration efficiency of the donor catchment and the model's efficiency on the ungauged catchment 465 

under three modes. Results suggest that using a well-modeled catchment as donor warrants a good 466 

level of efficiency of the mode for the ungauged catchment. However, conversely, if the poorly 467 

calibrated catchments are used as donors, the performances of the parameter transfer strategies are 468 

clearly affected. This effect is consistent across the three evaluated modes. 469 

 470 

Figure 10b shows a decline in NSE value (ΔNSE) versus the distance to donor catchment for spatial 471 

and spatiotemporal. The greater distance leads to poorer performance of parameter transfer. The 472 

correlation coefficient between NSE-decline and the spatial distance is r = 0.15 and r = 0.19 for spatial 473 

and spatiotemporal, respectively. As seen in this Fig., there is an upward trend between NSE-decline 474 
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and the spatial distance for both spatial and spatiotemporal. The use of linear regression quantifies 475 

that the effect of distance is somewhat stronger for spatiotemporal (R2 = 0.039) compared to spatial 476 

(R2 = 0.022) (Fig. 10b).  477 

 478 

We consider 16 separate temporal lag distances between two calibration periods, so that the 479 

calibration periods 1 changed to 16 WYs from 1993 to 2014 (i.e., 1993-1999, 1994-2000, 1995-2001, 480 

1996-2002, 1997-2003, 1998-2004, 1999-2005, 2000-2006, 2001-2007, 2002-2008, 2003-2009, 481 

2004-2010, 2005-2011, 2006-2012, 2007-2013, and 2008-2014) and calibration period 2 changed to 482 

WY from 2009 to 2014 (instead of 2001-2008). Figure 10c shows the NSE for temporal and 483 

spatiotemporal (y-axis) against NSEs for each WY (x-axis). As seen in Fig. 10c, reducing the 484 

temporal lag between calibration periods reduces the difference between their 485 

temporal/spatiotemporal performance. This is a gradual decline in performance so that the greatest 486 

difference is between WY 1993-1999 and calibration period 2 (2009-2014) for temporal, but the WY 487 

changes to 1995-2001 and 1996-2002 for spatiotemporal. The linear regression for temporal distance 488 

quantifies that the effect of temporal distances is much stronger for spatiotemporal (Fig. 10c) than the 489 

spatiotemporal under spatial distance (Fig. 10b). 490 

 491 

Fig. 10. (a) NSE-calibration versus NSE-mode; (b) NSE-decline (ΔNSE) versus spatial distance from donor 492 

catchment for spatial and spatiotemporal and (c) NSE-mode versus the water years between both periods. 493 

Dotted lines indicate the trend lines. Circle, square, and triangle indicate temporal, spatial, and spatiotemporal, 494 

respectively. Legend of the climate classes follows Fig. 2. 495 

 496 
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4.6. Controls on model transferability 497 

Figure 11 shows the correlation matrix between catchment characteristics and parameter transfer 498 

strategies. As seen in this Fig., dynamic characteristics have a relatively strong relationship with 499 

ΔNSE for local and regional scales. The main reason is that precipitation, temperature, and snow 500 

cover changes between the two periods have a remarkable impact on model transferability (Table 3). 501 

Among these dynamic characteristics, aridity has the strongest correlation with ΔNSE for both local 502 

and regional scales. This correlation is more significant for the local scale than the regional one. ΔP 503 

has a more complicated correlation with ΔNSE between two scales. For all three parameter transfer 504 

strategies, its correlation is positive in arid and semi-arid catchments, whereas it is negative in the 505 

humid, semi-humid catchments, and when evaluated at the country level. The correlation between ΔT 506 

and ΔNSE is negative for humid, semi-humid, semi-arid, and Iran, whereas it is positive for the arid 507 

class. Δsnow shows a negative correlation with ΔNSE for both regional and local scales. Its 508 

correlation is stronger at the regional scale than the local one.  509 

In the case of the static characteristics, there is a positive correlation between area and ΔNSE for 510 

semi-humid, semi-arid, arid, and Iran, whereas it is negative for humid. The whole country has a 511 

greater correlation than the regional scale. For the elevation case, this correlation is negative for two 512 

regional and local scales. The elevation has a more significant impact on model transferability than 513 

the catchment area for both scales. 514 

In general, correlation coefficients are higher for the temporal transfer strategy than for the spatial 515 

and spatiotemporal strategies, aridity and elevation are the two main controls on model transferability, 516 

both at the regional (climate classes) and national scale. 517 
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 518 

 519 

Fig. 11. Correlation matrix between catchment characteristics and parameter transfer strategies. TEM is 520 

temporal, SPA is spatial, ST is spatiotemporal, DP is ΔP, DT is ΔT, Dsnow is Δsnow, DTEM, DSPA, and 521 

DST are ΔNSE for temporal, spatial, and spatiotemporal, respectively. The values are correlation coefficients. 522 

 523 

5. Discussion 524 

Comparing the model performance in terms of NSE values (Fig. 4) and model parameters (Fig. 5) by 525 

applying two calibration periods demonstrated that the performance of the HBV model did not change 526 

significantly for the same catchments between two different periods. Median, minimum, and 527 

maximum ΔNSE values between two calibration periods are 0.001, 0, and 0.28, respectively, between 528 

576 study catchments. Similar conclusions have been demonstrated by Vaze et al. (2010), Razavi and 529 

Tolson (2013), and Patil and Stieglitz (2015). Dispersion of data points (median NSE values for each 530 

catchment) in Figs. 4 and 5 indicates a lack of systematic bias, which clarifies that there is no 531 

superiority of one calibration period over the other (calibration period 1 against 2). About 69.8% of 532 
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our catchments (402 out of 576), the difference between optimal NSEs for calibration periods 1 and 533 

2 is less than 10% (median NSE = 6.8%). This is consistent with the conclusion by Merz et al. (2011), 534 

who demonstrated that NSE for HBV model, across 273 catchments in Austria, showed small 535 

variability across six consecutive five years for calibration. This finding is also consistent with Patil 536 

and Stieglitz (2015), who demonstrated that KGE values (Gupta et al., 2009) for the EXP-HYDRO 537 

model (Patil and Stieglitz, 2014; Patil et al., 2014b, 2014a) across 294 catchments in the U.S., showed 538 

small variability across two calibration periods. Although, the difference in performance between the 539 

two calibration periods is highly dependent on (i) the length of the calibration period and (ii) climate 540 

variability within the calibration period (Yapo et al., 1996). Variation in climate between the two 541 

periods is small (Table 3), but still can lead to reduction in model performance from calibration to 542 

transferability, especially at the local scale. Note that the catchments used in the study were already 543 

selected to have a performance of at least 0.5 in both calibration periods, thereby already limiting the 544 

variability between both periods. As noted in Section 4.1, the model performed better in humid 545 

catchments compared to dry catchments. The origin of this model is in humid regions (Sweden), so 546 

that it seems to perform better in humid regions or arid regions with periodic climatic conditions 547 

similar to humid regions. 548 

 549 

The results of calibrated parameters (Fig. 5) show that there is temporal variability in the 15 calibrated 550 

parameter values. This variability can be considered as “uncertainty”, as the parameter values are 551 

calibration period dependent. According to Fig. 4, the parameters with the largest and smallest scatter 552 

show the highest and lowest uncertainties, respectively. Therefore, the most and least uncertain 553 

parameters are K2 (r1 = 0.29) and DDF (r1 = 0.6) respectively. Interestingly, in Seibert (1997), 554 

Uhlenbrook et al. (1999), Merz and Blöschl (2004), the most uncertain parameters were Cperc, FC 555 

and K2, respectively, and the least uncertain ones were DDF, DDF, and K1 respectively.  556 

 557 
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Our results showed that Cperc (r1 = 0.36), Croute (r1 = 0.31) and K2 (r1 = 0.29) were known as the 558 

three most sensitive parameters to the changes across the calibration periods. In a more detailed 559 

investigation, the uncertainty of the parameters is investigated by calculating the parameter distance 560 

distribution. The results show that DDF, FC, SCF, and Ts have lower uncertainty, whereas Croute, 561 

BETA, Lprat, and K2 have higher uncertainty. One of the reasons for the high uncertainty of Croute 562 

is that its value tends to be large in lowland and mountainous catchments (about 12%), implying a 563 

more non-linear channel response in these catchments (increasing discharge result in faster response), 564 

but the hydrological reason for these patterns is unclear. This pattern was shown in Merz and Blöschl 565 

(2004) for some of the catchments in northern Austria. Two other parameters (Cperc and K2) are 566 

affected by the runoff generation conditions of the catchments, not the input data conditions during 567 

two calibration periods. The most stable parameters in terms of temporal are DDF (r1 = 0.6), FC (r1 568 

= 0.58) and SCF (r1 = 0.56) which represent: (1) degree day factor, (2) field capacity and (3) snow 569 

correction factor which are unlikely to be affected by severe temporal changes during calibration 570 

periods. These three parameters are affected by snow and soil conditions of calibration periods and 571 

studied catchments. Generally, the parameters related to snow and runoff routines are the lowest and 572 

highest uncertain parameters compared to the other model routines.  573 

 574 

Nevertheless, the parameters, which are stables in terms of temporal variability, are different for 575 

different types of the rainfall-runoff model used. Patil and Stieglitz (2015) calibrated EXP-HYDRO 576 

in 294 catchments in the U.S. for two calibration periods. They concluded that the TEM variability is 577 

different between all parameters. In their study, the parameter f, showed the lowest uncertainty 578 

(highest correlation) between calibration periods (lowest uncertainty). Merz and Blöschl (2004) 579 

calibrated the HBV model in 308 catchments of Austria for two calibration periods and founded that 580 

the range of R2 between two sets of calibrated parameters ranged between 0.09 and 0.64 (only 5 out 581 

of 11 parameters have R2 ≥ 0.5). Oudin et al. (2008) compared TOPMO (6 parameters) and GR4J (4 582 

parameters) models for 913 catchments in France. Their results showed the superiority of the GR4J 583 
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model compared to TOPMO in terms of a higher correlation between the parameters across 584 

calibration periods. Although, it is difficult to judge how the model parameters values (for all 585 

hydrological rainfall-runoff models used in the literature on the model parameters transfer) will 586 

change in response to wet and dry periods and land-use changes within catchments. This insight 587 

requires more extensive and comprehensive research (Eckhardt et al., 2003; Patil and Stieglitz, 2015; 588 

Wang and Kalin, 2011). Thus, even when considering variable parameters (Section 4.2.1), model 589 

transferability will still be prone to error. The error became larger when study catchments behaved 590 

differently under extreme events. Other possible effects of climate variability in the long-term are 591 

changes in vegetation and the water table that need to be assessed in data-sparse catchments of Iran. 592 

 593 

Our results from the parameter transfer strategies (Fig. 8) show the overall superiority of the temporal 594 

(TEM) transfer mode over spatial (SPA) and spatiotemporal (SPA_TEM) transfer strategies. 595 

Individual comparison of them across all 576 catchments clarified that the TEM mode has the best 596 

performance at 414 catchments (and worst at 88 catchments), the SPA strategy is best in 118 597 

catchments (and worst at 219 catchments), and the SPA_TEM strategy is best in 44 catchments (and 598 

worst at 269 catchments). Figure 12 shows the location of catchments, where either the SPA or 599 

SPA_TEM is the best case. No specific and regular geographic pattern is deduced from the spatial 600 

distribution of tested catchments in terms of the superiority of SPA and SPA_TEM strategies over 601 

the TEM case. Table 5 shows the comparison of two groups of transfer strategies between studied 602 

catchments (Group 1: TEM mode performing best; Group 2: SPA or SPA_TEM strategy performing 603 

best) in terms of three hydroclimatic indices: aridity index (PET/P), annual runoff ratio (Q/P) and 604 

mean annual rainfall (P). Even though the median values of these three indices show that the 605 

catchments in group 1 are wetter (lower and higher values of PET/P and P, respectively) and less 606 

flashy (lower Q/P). Nevertheless, Fig. 12 shows in some parts of the study area with a low density of 607 

catchments and larger distance between neighboring catchments (e.g., in the central, southwestern 608 

and southeastern parts of Iran), the TEM mode is not superior to SPA and SPA_TEM strategies. This 609 
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relatively irregular geographical pattern was also demonstrated in the U.S. by Patil and Stieglitz 610 

(2015), who found that in regions with low catchment density, the temporal mode of parameter 611 

transfer does not always outperform the other two strategies. 612 

 613 

Fig. 12. Location of catchments where the temporal mode performs best (grey triangles) and catchments where 614 

either spatial or spatiotemporal perform best (black triangles). The triangles have been plotted at the outlet of 615 

catchments. 616 

 617 

Table 5 618 

Median values of three hydro-climatic descriptors for two catchment groups (shown by Fig. 12) (n = 576). 619 

Numbers in parentheses are standard deviation values. 620 

Group No. Best performance   P (mm) Q/P PET/P 

1 Temporal 774 (245) 0.38 (0.09) 0.59 (0.33) 

2 Spatial or spatiotemporal 387 (188) 0.42 (0.12) 1.14 (0.38) 

 621 

The evaluation of characteristics (aridity, differences in precipitation, temperature and snow cover of 622 

calibration and validation periods, catchment area and elevation) on model transferability showed 623 

that the slight climatic variability between the two calibration periods has a remarkable effect on 624 

model transferability. Our result shows that aridity and catchment elevation are the two major controls 625 

on model transferability at two regional (climate classes) and local (the whole country) scales. These 626 
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effects are most robust at a regional scale. This finding shows that negligible climatic variability 627 

affects the model transferability more at a smaller scale than a larger scale. The more noticeable effect 628 

of static characteristics (catchment area and elevation) on model transferability indicates that these 629 

two physical characteristics are useful descriptors for model transferability. 630 

Under the two individual conditions, model transferability shows that the TEM mode retained its 631 

superiority over the SPA and SPA_TEM strategies. For Individual Condition 1, when only those 632 

catchments with the nearest neighbor < 68 km away are maintained, the SPA and SPA_TEM 633 

strategies showed performance improvement compared to the base scenario, so that their differences 634 

with calibration is about 3.59% lower than the base scenario (in terms of NSE value). This is an 635 

expected result because reducing the spatial distance between donor and target catchments will most 636 

likely reduce the spatial variability of hydrological behavior and improve performance (Oudin et al., 637 

2008; Patil and Stieglitz, 2015). This finding is confirmed by testing the relationship between ΔNSE 638 

and spatial distance (Fig. 10b) so that increasing spatial distance between donor and target catchments 639 

increases ΔNSE for SPA and SPA_TEM (see section 4.5). For Individual Condition 2 (when a 10-640 

year temporal gap is added between two calibration periods), the NSE difference between calibration 641 

and the TEM mode is 4.51% higher than the base scenario and is virtually unchanged between 642 

calibration and two other strategies.  643 

 644 

In a more accurate evaluation, linear regression confirmed that as the temporal distance between 645 

calibration periods increases, the performance of the SPA_TEM strategy decreases with a greater 646 

slope compared to the increased spatial distance between the donor and target catchments (R2 = 0.925 647 

vs. R2 = 0.039). Therefore, an increase in the temporal lag between calibration and validation periods 648 

reduces the model performance gap between the TEM mode and the SPA and SPA_TEM strategies 649 

more than the case with an increase in spatial distance.  650 

Overall, our finding is consistent with Patil and Stieglitz (2015) across 294 catchments in the U.S. 651 

Here, the temporal gap between calibration and TEM mode as well as between calibration and the 652 
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SPA and SPA_TEM strategies is 10 years. Maybe one reason for this higher difference between our 653 

results with Patil and Stieglitz (2015) is due to a longer temporal gap (10-year versus 8-year). 654 

Nevertheless, this 10-year temporal gap reduced the performance of the examined strategies, but it is 655 

not entirely clear how these strategies will compare for larger (i.e., >30 years or more) temporal gaps.  656 

 657 

5. Conclusion 658 

This study, which is so far the most comprehensive PUB study in Iran, investigated three strategies 659 

for transferring model parameters, including temporal, spatial, and spatiotemporal, during two 660 

calibration periods using a conceptual rainfall-runoff model called HBV at 576 unregulated 661 

catchments across Iran. Our results showed that temporal mode has the best performance, with the 662 

lowest decline in performance than calibration (median decline of 14.66%), while these declines for 663 

spatial and spatiotemporal were 38.6% and 48%, respectively. Thus, we conclude that the stability of 664 

the parameters of the HBV model in the temporal mode is higher than for spatial strategy. Hence, 665 

temporal comes out best, making sense because the model has “seen” the catchment. This finding is 666 

in accordance with previous studies by Zhang and Chiew (2009) in Australia, Parajka et al. (2005) in 667 

Austria, and Patil and Stieglitz (2015) in the U.S. We also showed that the superiority of temporal 668 

mode is maintained under three scenarios ((1) a decrease in the spatial (geographical) distance 669 

between donor and target catchments; and (2) an increase in the temporal lag (10 years) between 670 

calibration and validation periods and (3) a gradual increase in the temporal lag between calibration 671 

and validation periods). This finding is consistent with a previous study by Patil and Stieglitz (2015), 672 

but with relatively poorer performance at both temporal and spatial transfer strategies. We also 673 

concluded that an increase in temporal lag between calibration and validations leads to a reduction in 674 

the model performance gap between the temporal mode and spatial and spatiotemporal strategies. 675 

This finding suggests that spatiotemporal parameter transfer can be a fairly reliable option for PUB 676 

studies and climate change-related studies, at least in wetter catchments. Our results are obtained 677 

from two consecutive calibration periods (by averaging model parameters). However, more research 678 
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is needed to: (i) examine longer calibration periods, (ii) obtain a stronger relationship between 679 

temporal mode and spatial strategy, (iii) explore the effects of increasing time lag (>10 years) between 680 

calibration and validation periods on results to achieve more confident about the variability of the 681 

hydrological model parameters. Exploring dynamic (aridity and differences in precipitation, 682 

temperature and snow cover of calibration and validation periods) and static (catchment area and 683 

mean elevation) controls on model transferability showed that aridity and catchment elevation are 684 

two major controls on model transferability at two regional (climate classes) and local (the whole 685 

country) scales.  686 

 687 

Finally, it can be inferred that if there is a catchment for which only a limited period of observations 688 

is available, it is preferred to calibrate the model on this limited period above having parameters from 689 

a donor catchment. However, in many cases, even a limited period of observations will not be 690 

available, and spatial or spatiotemporal are the only options left. 691 
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