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Gilchrist, Fumio Hayashi, Hibiki Ichiue, Junko Koeda, Davide Porcellacchia, Mototsugu Shintani, and Nao
Sudo, seminar and conference participants at CIGS End of the Year Conference 2019, ECB-BoJ-BoE Joint
Research Workshop, Econometric Society World Congress 2020, SED 2021, Bank of Japan, University of
Pavia, Kobe University, University of Pompeu Fabra, Osaka University, and University of Oxford. Mavroeidis
acknowledges the financial support of the European Research Council via Consolidator grant number 647152.
Views expressed in the paper are those of the authors and do not necessarily reflect the official views of the
Bank of Japan.

�Bank of Japan, daisuke.ikeda@boj.or.jp.
�University of Oxford, Department of Economics: shangshang.li@economics.ox.ac.uk
§University of Oxford, Department of Economics: sophocles.mavroeidis@economics.ox.ac.uk.
¶University of Oxford, Department of Economics: francesco.zanetti@economics.ox.ac.uk.



1 Introduction

Adjustments in the overnight nominal interest rate have been the primary tool for the imple-

mentation of monetary policy since the early 1980s. In recent years, however, the short-term

nominal interest rate reached an effective lower bound (ELB) in several countries, making the

standard policy tool de facto ineffective. Two prominent examples are Japan that reached

the ELB since the domestic financial crisis of 1997–1998, and the United States that reached

the ELB in the aftermath of the global financial crisis of 2007–2008. The central banks in

these countries countervailed the inapplicability of the standard policy tool by embarking on

unconventional monetary policy (UMP) that involves the purchases of long-term government

bonds and the use of forward guidance to signal future policy action.1

The effectiveness of UMP is a central issue for policymakers. One view is that the ELB

restricts the effectiveness of monetary policy, thus representing an important constraint on

what monetary policy can achieve, as argued by Eggertsson and Woodford (2003), Gust

et al. (2017) and Eberly et al. (2020). An alternative view is that UMP can affect long-

term interest rates so significantly that UMP has been fully effective in circumventing the

ELB constraint, as argued by Swanson and Williams (2014) and Debortoli et al. (2019).

This latter view has been termed as the ELB ‘irrelevance hypothesis.’ The issue of the

effectiveness of UMP has gained relevance since the ELB is likely to bind more often in the

future with historically low levels of the longer-run natural rate of interest (Duarte et al.,

2020).

This paper studies the ELB irrelevance hypothesis both theoretically and empirically. It

develops a dynamic stochastic general equilibrium (DSGE) model with UMP. To the best of

our knowledge, this is the first study that analytically characterizes the irrelevance hypothesis

in a DSGE model. The model provides the theoretical underpinning to our novel empirical

tests, and it shows that censored and kinked vector autoregressive models (VARs) are a

suitable empirical framework to test the irrelevance hypothesis. Our empirical results show

that the hypothesis is strongly rejected for both Japan and the U.S. Despite the rejection,

the estimated impulse responses to a monetary policy shock indicate strong delayed effects

of UMP in each country.

The idea of the irrelevance hypothesis is that observable properties of macroeconomic

1See Christensen and Rudebusch (2012), Liu et al. (2019), Campbell et al. (2020), and Carlson et al. (2020)
for the U.S., and Ugai (2007), and Bank of Japan (2016) for Japan. Ueda (2012) provides a comparison of
monetary policy between the U.S. and Japan.
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variables such as their dynamics and volatilities remain unchanged when the economy moves

in and out of an ELB regime, for otherwise the ELB is empirically relevant. This idea

can be applied to any theoretical model with the ELB. This insight allows us to test the

irrelevance hypothesis using reduced-form VAR models and therefore, our empirical results

about this hypothesis hold for any theoretical model with the ELB as long as it has a VAR

representation. The purpose of our DSGE model is to formalize this idea by showing that

such a theoretical model actually exists, and to guide our empirical approach to identifying

the effectiveness of UMP when the irrelevance hypothesis does not hold.

In our model, UMP consists of (i) quantitative easing (QE) implemented by long-term

government bond purchases that directly affect long-term government bond yields, and (ii)

forward guidance (FG) under which the central bank commits to keeping short-term interest

rates low in the future. A key variable in the model is the ‘shadow rate,’ which we label i∗t

and it is defined as the short-term interest rate that the central bank would set if there were

no ELB. The short rate it is given by it = max{i∗t , i}, where i is the ELB. The shadow rate is

equal to the short rate in a non-ELB regime, but it is unobservable in an ELB regime where

the policy rate is constrained at the ELB. The shadow rate can be negative and interpreted

as the indicator of the desired stance of monetary policy in terms of the short rate.

In the model the central bank resorts to UMP in an ELB regime by using the shadow

rate for the guidance of its policy stance, as in the case of a non-ELB regime where the

short rate is equal to the shadow rate. The model shows that UMP entails wide degrees of

effectiveness, including the ELB irrelevance in which UMP retains the same effectiveness as

the conventional policy that adjusts the short rate as if there were no ELB. We show that

under the irrelevance of the ELB, the log-linearized DSGE model can be written in terms of

inflation, the output-gap, the long-term interest rate or the shadow rate, and it retains the

same VAR representation for both ELB and non-ELB regimes, thus providing the theoretical

foundation to our empirical tests.

Motivated by our theoretical results, we use the censored and kinked structural VAR

model developed by Mavroeidis (2021) to test the irrelevance hypothesis. Our DSGE model

shows that a direct appraisal of the irrelevance hypothesis is to test whether a short-term

interest rate, which is subject to the ELB, can be excluded from the VARs that include

alternative measures of monetary policy that are not subject to the ELB, such as a long-

term interest rate and the shadow rate. The exclusion of the short rate in VARs that include
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the long rate is a novel empirical test developed in this paper. The exclusion of the short

rate in VARs that include the shadow rate, which is proposed by Mavroeidis (2021), is our

second test for robustness.

Our theoretical model implies that under the irrelevance hypothesis there is no attenu-

ation in the response of the long rate to shocks when short rates are at the ELB, a focal

point for the assessment of the irrelevance hypothesis in Swanson and Williams (2014) and

Gilchrist et al. (2015). We study the attenuation effect by focusing on the different impact

of the monetary policy shock on the long rate in the non-ELB and ELB regimes. Our mon-

etary policy shock is a traditional monetary policy shock – a shock to the short rate – in a

non-ELB regime while it is a UMP shock – a shock to the shadow rate, which encapsulates

the conduct of UMP. Motivated by our theory, we use the VAR model to characterize ana-

lytically a formal test for the attenuation effect in the response of the long rate to a shock

to monetary policy at the ELB.

We conduct the tests of the ELB irrelevance hypothesis on postwar data for Japan and

the U.S. We consider several different VAR specifications, varying the lag order and the

estimation sample (to account for structural change), and using alternative measures of

monetary policy such as government bond yields with different maturities. In all cases,

the tests overwhelmingly and consistently reject the hypothesis that the ELB has been

empirically irrelevant for both economies. Our conclusion is therefore fairly robust: the ELB

does represent a constraint on what monetary policy can achieve in those economies.2 We

also firmly reject the hypothesis of no attenuation in the response of the yield curve to

monetary policy shocks during ELB regimes in both economies.

The rejection of the irrelevance hypothesis leaves open the question of the degree of

effectiveness of UMP in an ELB regime compared to the conventional policy in a non-

ELB regime. To address this question, we identify the dynamic effects of conventional and

unconventional policies by combining the identifying power of the ELB with additional sign

restrictions on impulse responses to a monetary policy shock à la Uhlig (2005). The ELB

enables partial identification of impulse responses to a monetary policy shock, as shown in

Mavroeidis (2021), because a change in the behaviour of the economy across ELB and non-

ELB regimes is informative about the relative impact of conventional and unconventional

2This evidence corroborates Bernanke (2020) who claims that “it also seems unlikely that the new tools
deployed during the Great Recession entirely compensated for the limits imposed by the lower bound,”and
is consistent with the findings in Gust et al. (2017) and Del Negro et al. (2017), who attribute an important
role to the ELB for the decline in output during the financial crisis.

3



policy. The identified set based only on the ELB turns out to be fairly wide, so we use the

insights from our DSGE model to impose the theoretically-congruous sign restrictions that

were used in Debortoli et al. (2019). The sign restrictions markedly sharpen the identified

set of impulse responses.

We find that the effects of monetary policy on inflation and output on impact (i.e., within

one quarter) declined when the economy entered an ELB regime: they dropped by more than

15 percent in the U.S., and more than 50 percent in Japan, relative to conventional policy.

However, the cumulative effects of monetary policy exhibited the opposite pattern one and

two years ahead: they appear to have been stronger during an ELB regime relative to a

non-ELB regime, except for the response of output gap in the U.S., which remained weaker.

Therefore, UMP seems to have had a delayed but stronger effect than conventional policy

on inflation in the U.S., and on both inflation and output in Japan. Thus, we conclusively

reject the hypothesis that the ELB has been empirically irrelevant in both countries, and find

that responses of inflation and output to UMP have been different across time and across

countries.

Related literature. Our analysis is closely related to two strands of research. The first

pertains to theoretical studies that investigate the transmission mechanism of unconventional

monetary policy. Among those, regarding QE, our theoretical model is close in spirit to

Andrés et al. (2004), Chen et al. (2012), Harrison (2012), Gertler and Karadi (2013), Liu et al.

(2019), and Sudo and Tanaka (2021). These studies introduce assets with different maturities

and limit arbitrage across assets to break the irrelevance of QE that is shown by Eggertsson

and Woodford (2003).3 Regarding FG, our model follows Reifschneider and Williams (2000),

and it considers this mechanism in a general equilibrium model that directly accounts for

QE. Our main contribution to this first strand of literature is to develop a simple model of

UMP, which incorporates the shadow rate and provides the theoretical underpinnings to our

empirical analyses.

The second strand of literature pertains to empirical studies that assess the effectiveness

of unconventional policy. It includes Swanson and Williams (2014) and Debortoli et al.

(2019), who use SVARs to investigate the (ir)relevance of the ELB constraint by comparing

impulse responses to shocks between normal times and ELB episodes. Differing from our

3For other possible channels of QE, see Krishnamurthy and Vissing-Jorgensen (2011). See also Sims and
Wu (2021) for a recent discussion on the theoretical frameworks to study UMP.
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SVAR, these studies do not include short-term interest rates in their SVARs. Another related

study by Inoue and Rossi (2019) uses an SVAR with shocks to the entire yield curve and

finds evidence that UMP has been effective in the U.S. Our empirical methodology is closely

related to Hayashi and Koeda’s (2019), who propose an SVAR model for Japan that includes

short rates and takes into account the ELB, and our empirical model for Japan relies heavily

on the insights from their empirical analysis. The main difference of our methodology from

Hayashi and Koeda’s (2019) is that we use a shadow rate to model UMP, which nests both

QE and FG using the policy rule in Reifschneider and Williams (2000), while Hayashi and

Koeda (2019) use excess reserves to model QE and an inflation exit condition to model FG.

Our methodology provides a simpler framework to test the ELB irrelevance hypothesis and

to compare the effectiveness of UMP relative to conventional policy.

Finally, our empirical analysis uses the estimation methodology in Mavroeidis (2021), who

also reports evidence against the irrelevance hypothesis for the U.S. using a three-equation

VAR model. We have several differences from that study: we develop a novel theoretical

DSGE model of UMP that provides the underpinnings for a new test of the irrelevance

hypothesis based on the exclusion of short rates; we characterize analytically and obtain a

new formal test of no attenuation of the effect of monetary policy on long rates at the ELB;

we use sign restrictions motivated from our theoretical model to sharpen the identification

of impulse responses; we estimate the dynamic effects of UMP and the shadow rates in each

country; we study Japanese data and conduct several robustness checks.

The structure of the paper is as follows. Section 2 develops a simple New Keynesian DSGE

model with UMP that provides theoretical underpinnings to our empirical model and the

tests of the ELB irrelevance hypothesis. Section 3 introduces the econometric methodology

and presents the tests of the irrelevance hypothesis from the reduced-form solution of the

SVAR. Section 4 describes the data and reports our empirical results. Section 5 studies the

effectiveness of UMP and its differences relative to conventional monetary policy. Section

6 concludes. The appendices provide supporting material on the derivation of the DSGE

model, additional empirical results, and the estimates of the shadow rates for Japan and the

U.S.
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2 A theoretical model of UMP

In this section, we develop a simple theoretical model of UMP and provide theoretical under-

pinnings to our empirical specifications and testing approaches to the irrelevance hypothesis.

Section 2.1 presents the model with a focus on UMP. Section 2.2 studies the linear and non-

linear VAR representations of the model that underpin our empirical analysis. Section 2.3

simulates the model and illustrates how UMP can make the ELB irrelevant. The details of

the model, equation derivations, parameterization, and model simulations are reported in

Appendix A.

2.1 Central equations

Overview. The model is a New Keynesian model in which QE and FG are active under

the ELB. The economy consists of households, firms, and a central bank. The firm sector is

standard as in a typical New Keynesian model. The household sector comprises two types

of households. Constrained households purchase long-term government bonds only, but un-

constrained households can trade both short- and long-term government bonds subject to

a trading cost. The trading cost captures bond market segmentation, as in the preferred

habitat theory originally proposed by Modigliani and Sutch (1966), and it introduces imper-

fect substitutability between long- and short-term government bonds that generates a spread

between the yields of these bonds.4 The trading cost depends on the amount of long-term

government bonds circulated in the market. By purchasing long-term government bonds,

the central bank can affect the spread and thereby the long-term yield.

Conventional monetary policy. The central bank sets the short-term nominal interest

rate it using a standard Taylor rule subject to the ELB. Let ŷt, π̂t, and ît denote the deviation

of output, inflation, and the short-term interest rate from the steady state in period t.

Following conventional notation, the caret on a variable denotes the deviation of the variable

from steady state. The short-term interest rate is set according to

ît = max{̂i∗t , î}, (1)

î∗t = −αît + (1 + α)̂iTaylort , (2)

4The preferred habit model is the predominant modelling framework to study UMP. See among others
Chen et al. (2012), Liu et al. (2019), and Sims and Wu (2021).
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îTaylort = ρi

(
(1− λ∗)̂it−1 + λ∗î∗t−1

)
+ (1− ρi) (rππ̂t + ryŷt) + εit, (3)

where α ≥ 0, λ∗ ≥ 0, ρi ≥ 0, rπ ≥ 0, ry ≥ 0, and εit is a monetary policy shock. Equation

(1) encapsulates the ELB constraint, where î is the ELB and î∗t is the shadow rate.5

We use the term ‘shadow rate’ since î∗t is unobserved under the ELB and therefore

censored at the ELB, while it is observed and equal to ît outside the ELB constraint. Our

shadow rate represents the desired stance of monetary policy for the short-term interest rate,

as opposed to the effective policy stance, e.g., in Wu and Xia (2016).

A monetary policy shock in our model is a shock to the shadow rate, which is identical to

a shock to the short-term interest rate in the non-ELB regime. Equations (2) and (3) allow

for FG to influence the system in the ELB regime, as we discuss below. In the non-ELB

regime when î∗t , î
∗
t−1 ≥ î, equations (1)-(3) reduce to ît = î∗t = îTaylort with the Taylor-rule

rate îTaylort being equal to

îTaylort = ρiît−1 + (1− ρi) (rππ̂t + ryŷt) + εit. (4)

This equation is a standard Taylor rule that sets the current interest rate in response to the

interest rate in period t− 1, and current inflation and output.

Forward guidance. Equations (2) and (3) allow FG to maintain the short-term interest

rate at a lower level than the rate implied by the standard Taylor rule (4). The intensity

of FG is governed by the two parameters λ∗ and α. To see the isolated effect of λ∗, we

first consider the case of α = 0 that implies î∗t = îTaylort in equation (2). In the non-ELB

regime equation (3) collapses to the standard Taylor rule (4). In the ELB regime of î∗t−1 < î,

if λ∗ = 0, the lagged term of equation (3) is ρiît−1 = ρiî; if λ∗ > 0, however, the lagged

term becomes ρiî + ρiλ
∗(̂i∗t−1 − î) < ρiî, exerting additional downward pressures on îTaylort

in equation (3) and on i∗t in equation (2) since î∗t = îTaylort . The decrease in î∗t today keeps

the interest rate ît low from equation (1), and moreover it keeps the future interest low by

reducing the shadow rate tomorrow, leading to the same effect of FG in Debortoli et al.

(2019).

Next consider the case of α > 0. Equation (2) implies that FG is additionally strength-

ened since the shadow rate is kept lower than the Taylor-rule rate, î∗t = îTaylort +α(̂iTaylort − î) <
5For the interest rate, the deviation from steady state is expressed in terms of the gross interest rate.

That is, ît = (it − i)/(1 + i), where i is the short-term net interest rate in steady state. Hence, since
the ELB is equal to i and it ≥ i, the deviation of i from the steady-state interest rate can be written as:
î = (i− i)/(1 + i).
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îTaylort under the ELB. Our implementation of FG is similar to Reifschneider and Williams

(2000). For a given degree of interest rate smoothing (ρi > 0), the parameter λ∗ > 0 gener-

ates downward pressure on the shadow rate in the ELB regime, and α > 0 further magnifies

the downward reduction of the shadow rate and keeps the interest rate ît lower for a longer

time spell compared to the case of α = 0.

Quantitative easing. In the ELB regime, the short-term interest rate is fixed at the ELB,

and the central bank starts QE by purchasing long-term government bonds (consol bonds).

The long-term bond issued in period t pays µj−1 dollars at time t + j. Let PL,t denote the

price of the long-term bond, and let RL,t+1 denote the return of holding it from period t to

t+ 1. The price and the return conditional on period-t information are linked as

PL,t = Et

(
1 + µPL,t+1

RL,t+1

)
. (5)

where Et is the expectation operator conditional on period-t information. The gross yield

to maturity (or the long-term interest rate) at time t, R̄L,t, can be defined as

PL,t =
1

R̄L,t

+
µ(

R̄L,t

)2 +
µ2(
R̄L,t

)3 + ...

or

PL,t =
1

R̄L,t − µ
. (6)

Log-linearizing equations (5) and (6) around steady state and combining them yields

ˆ̄RL,t =

(
1− µ

R̄L

)
EtR̂L,t+1 +

µ

R̄L

Et
ˆ̄RL,t+1. (7)

where R̄L > µ is the long-term interest rate in steady state.

Unrestricted households that trade both long- and short-term government bonds, pay a

unitary cost for trading long-term bonds. An arbitrage between holding short- and long-term

bonds yields

EtR̂L,t+1 = ît +
ζ

1 + ζ
ζ̂t, (8)

where ζ̂t and ζ are the trading cost in deviation from steady state and in steady state,

respectively. The trading cost introduces a spread between the returns of holding long-

and short-term bonds. The trading cost is assumed to be increasing in the real amount of

long-term bonds circulated in the market, b̂L,t, and is given by

ζ̂t = ρζ b̂L,t, (9)
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where ρζ > 0 represents the elasticity of the trading cost with respect to the amount of

long-term bonds in the market.

The central bank conducts QE according to the rule:

b̂L,t = min
{
γ(̂i∗t − î), 0

}
. (10)

Parameter γ ≥ 0 governs how aggressively the central bank purchases long-term bonds under

the ELB, with γ = 0 corresponding to no purchase. In the ELB regime, where î∗t ≤ î holds,

the central bank purchases and absorbs long-term bonds from the market, so that b̂L,t ≤ 0.

The central bank conducts QE by using the shadow rate î∗t as policy guidance similar to

the conventional monetary policy. For instance, assume α = 0 in equation (2), such that

î∗t = îTaylort . In the ELB regime, the more the shadow rate drops as a result of a decrease in

inflation or output, the more the central bank purchases long-term government bonds. Thus,

the central bank consistently aims at stabilizing inflation and output in both the non-ELB

and ELB regimes.

Since constrained households hold long-term government bonds only while unconstrained

households also hold short-term government bonds, the ‘effective’ interest rate relevant to

output and inflation is the weighted sum of the returns of holding short- and long-term

government bonds, ωuît + (1 − ωu)EtR̂L,t+1, where ωu ∈ (0, 1) is the population share of

unconstrained households.6 The Euler equation is then given by

ŷt = Etŷt+1 −
1

σ

(
ωuît + (1− ωu)EtR̂L,t+1 − Etπ̂t+1

)
− χbzbt , (11)

where zbt is a demand (preference) shock, and σ, χb > 0. Note that the expected return of

holding the long-term bonds EtR̂L,t+1 depends on the trading cost ζ̂t (equation 8), which

depends on the real value of long-term bonds in the market b̂L,t (equation 9), which in turn

is controlled by QE that uses the shadow rate î∗t as policy guidance (equation 10). Hence,

EtR̂L,t+1 can be written as a function of î∗t . Substituting equations (8)–(10) into the Euler

equation (11) yields

ŷt = Etŷt+1 −
1

σ

(
(1− λ∗)̂it + λ∗î∗t − Etπ̂t+1

)
− χbzbt , (12)

where λ∗ is given by

λ∗ ≡ (1− ωu)
ζ

1 + ζ
ρζγ (13)

6The underlying assumption in deriving the effective interest rate is that the consumption of the two
types of households is identical in steady state.
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The parameter λ∗ determines the effectiveness of QE. If λ∗ = 0, for instance as a result of

ρζ = 0 or γ = 0, equation (12) reduces to the standard Euler equation that omits the shadow

rate. If λ∗ = 1, QE is ‘fully effective’ and the interest rate ît becomes irrelevant to the Euler

equation and the dynamics of the system, and consequently the ELB will be irrelevant for

the dynamics of the economy. From equation (13), the effectiveness of QE increases in the

share of restricted households, 1 − ωu, the trading cost in steady state, ζ, the elasticity of

the trading cost with respect to the amount of long-term government bonds circulated in

the market, ρζ , and strength in the purchasing of long-term bonds by the central bank in

response to a change in the shadow rate, γ.

Comparing equations (11) and (12) shows that the effective interest rate relevant to

output and inflation is equal to the weighted interest rate, (1 − λ∗)̂it + λ∗î∗t . Thus the

weighted interest rate can also be interpreted as the effective interest rate, and this appears

as a lagged variable in the Taylor rule (3) that implements FG. The parameter λ∗ depends

on structural parameters pertaining to QE, as shown in equation (13). In this sense, the

parameter λ∗ encapsulates the effectiveness of UMP that reflects both QE and FG.

Long-term interest rates. Combining equations (7)–(10) yields the long-term interest

rate, given by

ˆ̄RL,t =


(

1− µ

R̄L

)
ît +

µ

R̄L

Et
ˆ̄RL,t+1, î∗t > î(

1− µ

R̄L

)(
(1− λ∗)̂it + λ∗î∗t − ωuît

1− ωu

)
+

µ

R̄L

Et
ˆ̄RL,t+1, î∗t ≤ î

(14)

where ît is set by equation (1). Equation (14) shows that the effects of the the shadow

rate and the degree of the effectiveness of UMP on the long-term interest rate are different

between the two regimes. In the non-ELB regime, ît = î∗t and the expectation hypothesis

holds: the long rate is given by the weighted sum of the expected short rates today and

in the future. In the ELB regime, the short rate is bounded at ît = î and the long rate is

affected by QE as the shadow rate appears in the lower equation in (14).

In the limiting case where the number of unconstrained households becomes infinitesi-

mally small asymptotically, ωu → 0, the difference between the two regimes in equation (14)

vanishes and the long-term interest rate can be written in the form

ˆ̄RL,t =

(
1− µ

R̄L

)(
λ∗î∗t + (1− λ∗)̂it

)
+

µ

R̄L

Et
ˆ̄RL,t+1. (15)
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In this case, the expectation hypothesis holds with respect to the effective interest rate,

λ∗î∗t + (1−λ∗)̂it. In addition, equation (15) makes clear the presence of the attenuation bias

of the long rate in the ELB regime and that it is related to the UMP effectiveness parameter

λ∗. In the case of full effectiveness of UMP, i.e., λ∗ = 1, the long rate is always given by the

expected sum of the shadow rates and there will be no attenuation of the long rate in the

ELB regime. However, in the case of less effective UMP, i.e., λ∗ < 1, the long rate responds

less to the shadow rate, giving rise to its attenuated response in the ELB regime.

System of equations. We close the model by reporting the standard New Keynesian

Phillips curve that relates the current inflation to expected inflation and output, given by

π̂t = δEtπ̂t+1 + κŷt − χazat , (16)

where δ ≥ 0, κ ≥ 0, and zat is a supply (productivity) shock. The supply and demand shocks

follow an AR(1) process. To summarize, our model of UMP comprises the six equations (1),

(2), (3), (12), (14), and (16), the six endogenous variables {ŷt, π̂t, ît, î∗t , î
Taylor
t , ˆ̄RL,t}, and the

three shocks {zat , zbt , εit}.

2.2 DSGE model and VAR representations

We use our DSGE model developed in Section 2.1 to derive the VAR representations that

underpin our empirical models and tests to be introduced in Section 3.

The joint effect of QE and FG. Before deriving VAR representations, it is useful to note

that we cannot separate out the effects of the two parameters λ∗ and α in the system, but the

model allows us to identify their joint effect on the system, encapsulated by ξ∗ ≡ λ∗(1 + α).

The next lemma states the result formally.

Lemma 1 For any λ∗ 6= λ∗′ and α 6= α′ that satisfy ξ∗ ≡ λ∗(1 + α) = λ∗′(1 + α′), the model

with λ∗ and α is observationally equivalent to the model with λ∗′ and α′.

The proof is straightforward. By using equation (2) to substitute out î∗t , the effective interest

rate, (1 − λ∗)̂it + λ∗î∗t , can be replaced with (1 − ξ∗)̂it + ξ∗îTaylort . The parameter λ∗ does

not appear anywhere in the model except in ξ∗ = λ∗(1 + α). The parameter α appears only

in equation (1) as ît = max{̂iTaylort − α(̂it − îTaylort ), î}. But this equation is observationally
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equivalent to ît = max{̂iTaylort , î} because only ît is observable, and thus the joint effect of

QE and FG is summarized by the parameter ξ∗ that encompasses λ∗ and α.

As an illustrative example, consider a case in which QE is half as effective as the con-

ventional monetary policy (i.e., λ∗ = 0.5) but FG is active with α = 1. In this scenario,

the monetary policy shock εit is twice as large in the ELB regime as the same shock in the

non-ELB regime (or, equivalently, at the ELB regime with λ∗ = 1 and α = 0). The im-

pact of such a monetary policy shock at the ELB regime is of the same magnitude as the

equivalent shock in the non-ELB regime. Thus, the effectiveness of UMP in the theoretical

model depends on ξ∗ that encapsulates the joint effect of λ∗ and α, and encompasses the

combination of QE and FG.

ELB irrelevance and VAR representations. Now we establish the VAR representa-

tions of the DSGE model under the ELB irrelevance hypothesis, where UMP is as effective

as the conventional policy: ξ∗ = 1. There will be different VAR representations, depending

on what assumptions we impose on the model. Specifically, we begin by considering the

following assumption.

Assumption 1 The number of unrestricted households becomes infinitesimally small asymp-

totically: ωu → 0.

Under the ELB irrelevance, the solution to the model entails two VAR(1) representations,

as formalized in the following proposition.

Proposition 1 Consider the DSGE model in equations (1), (2), (3), (12), (14), and (16)

under the ELB irrelevance: ξ∗ = 1. Then,

i) [ŷt, π̂t, î
∗
t ] has a VAR(1) representation.

ii) Under Assumptions 1, [ŷt, π̂t,
ˆ̄RL,t] has a VAR(1) representation.

Proof. Appendix A.4.

Proposition 1(i) shows that under the ELB irrelevance, the short-term interest rate it

is redundant for the dynamics of output and inflation once the shadow rate is included in

the VAR. Whether the short rate is constrained by the ELB or not does not influence the

dynamics of output and inflation, so that the ELB is irrelevant. What distinguishes our VAR
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from a standard linear VAR is that the shadow rate is censored at the ELB. In other words,

for an econometrician, the shadow rate is observable, and equal to the nominal interest rate,

only when it is above the ELB (equation 1).

Proposition 1(ii) shows that the long rate can be a sufficient indicator of monetary policy.

Under Assumptions 1, the shadow rate and the long rate become interchangeable as implied

by equation (15) with ξ∗ = 1. Intuitively, in such a special case, the expectation hypothesis

holds and the long rate is given by the expected sum of the shadow rates today and in the

future, giving rise to a one-to-one relation between the long rate and the shadow rate. The

corollary of Proposition 1(ii) is that under the irrelevance hypothesis there is no attenuation

of the response of the long rate, i.e., the dynamics of the long rate are identical between the

non-ELB and ELB regimes. We will use Proposition 1 to underpin our approach to testing

the ELB irrelevance hypothesis and no attenuation effect in Section 3.

Assumption 1 plays a critical role in deriving the VAR representation with the long rate

under the ELB irrelevance. Without the assumption, equation (14) shows that even under

the ELB irrelevance of ξ∗ = 1, the long rate is kinked at the ELB: the first-term in equation

(14) is smaller by ωu/(1 − ωu) × î in the ELB regime than in the non-ELB regime. Why

does the long rate have to decrease more in the ELB regime to make the ELB irrelevant?

The reason is straightforward. Unrestricted households hold short-term government bonds

whose relevant interest rate is the short rate. To stimulate the aggregate consumption as

if the economy were not at the ELB, consumption by the restricted households must be

stimulated more, which requires a stronger decrease in the long rate under the ELB. Put

differently, the decrease in the long rate needed to satisfy the irrelevance of monetary policy

at the ELB regime becomes less pronounced with the reduction of unrestricted agents. Thus,

Assumption 1 is important to validate the VAR representation with the long rate.

ELB relevance and VAR representations. Now consider the case of a less effective

UMP than conventional policy (i.e., ξ∗ ≤ 1). In this general case, the model does not have

a tractable solution under rational expectations and thus it would not have a VAR repre-

sentation. However, the model admits a tractable solution if the formation of expectations

slightly deviates from rational expectations by the following assumption.

Assumption 2 In each period t, agents know the true ξ∗ ≤ 1 today and form expectations

under the presumption of ξ∗ = 1 from period t+ 1 onward.
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This assumption implies that agents entail behavioral expectations and believe that UMP

will be as effective as the conventional policy from the next period t+1 onwards. Under this

assumption, the VAR model has a piecewise linear representation, as stated in the following

proposition.

Proposition 2 Under Assumption 2, the DSGE model in equations (1), (2), (3), (12), and

(16) has a piecewise linear VAR representation with a kink at the ELB.

Proof. Appendix A.5

Proposition 2 implies that in the case of ξ∗ < 1 the dynamics of the economy differ

between the non-ELB and ELB regimes as the dynamics in each regime is represented by

a distinct VAR where a change in regimes occurs when the short-term interest rate crosses

the ELB. This result echos with Aruoba et al. (2021), who argue that a piecewise linear

solution to a DSGE model with an occasionally binding ELB constraint can be interpreted

as describing the behavior of boundedly rational agents. Our specific assumption on the

expectation formation in Proposition 2 represents a form of bounded rationality.

In our VAR representation in Proposition 2, equation (1) continues to hold, and the

shadow rate is unobserved and censored in the ELB regime. By allowing for a kink in the

dynamics, Proposition 2 shows that a censored and kinked VAR model provides a suitable

empirical specification for testing the irrelevance hypothesis.

2.3 Simulations

Before developing our empirical framework in the next section, we illustrate the effects of

UMP and study impulse responses to a monetary policy shock in the ELB regime by solving

the model under Proposition 2.7 The analysis aims at illustrating the effects of UMP and it is

not designed to draw quantitative implications. Appendix A.3 reports the parameterization

of the model.

No UMP. The dash-dotted line in Figure 1 shows simulated paths for the theoretical

model under Proposition 2 in the case of no UMP (ξ∗ = 0). The economy starts from

the steady state and large negative demand shocks hit in periods t = 6 and t = 7. The

7While our analysis focuses on monetary policy, Appendix A.6 reports the responses of output and
inflation to demand and supply shocks under the ELB to illustrate the role of the effectiveness of UMP for
these shocks.
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Figure 1: The effects of UMP

Note: The figure shows the dynamic path of the model under Proposition 2 where a severe demand shock
hits the economy in periods t = 6 and t = 7. The dynamic path is computed by transforming the theoretical
model under Proposition 2 into the reduced form equations (19b) and (19a) and calculating the response to
the shocks.‘No ELB’ represents the model without the ELB, where the interest rate equation (1) is replaced
by it = i∗t . ‘SS’ denotes a steady state, ‘dev.’ denotes a deviation, and ‘diff.’ denotes a difference.

consecutive negative demand shocks bring the economy to the ELB and generate a severe

recession by decreasing output and inflation sharply. At the ELB (dash-dotted line), the

interest rate it cannot be lowered in response to the fall in inflation. This raises the real

interest rate, decreases consumption and output, and puts further downward pressure on

inflation through the Phillips curve (16). This negative feedback loop magnifies the falls in

output and inflation compared to the hypothetical economy without the ELB (star-marked

line).

UMP. UMP can offset the negative impact of the ELB. When UMP is partially effective

(ξ∗ = 0.5; the dashed line), the magnitude of the falls in output and inflation are mitigated

relative to the case without UMP (ξ∗ = 0; the dash-dotted line). When UMP is fully effective

(ξ∗ = 1; the solid line), although the interest rate it remains at the ELB, output and inflation

follow the same paths as in the case of no ELB (star-marked line), as shown in Figure 1.

In response to a decrease in the shadow rate i∗t , the central bank increases the purchase of

long-term government bonds and, by doing so, it lowers the long-term government bond yield

by compressing its premium, which boosts consumption and output. When ξ∗ = 1, UMP

perfectly offsets the contractionary effect of the ELB. The interest rate it becomes irrelevant

to the dynamics of the economy, which evolves as if there were no ELB. In other words, the

ELB becomes irrelevant for the dynamics of the economy when ξ∗ = 1.
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Figure 2: Impulse responses to a monetary policy shock at the ELB

Note: ‘Proposition 2’ denotes the theoretical model under Proposition 2 and ‘OccBin’ denotes the model
solved by the algorithm developed by Guerrieri and Iacoviello (2015). For analyzing the impulse responses
under the ELB, for each case of ξ∗, the initial condition is set as endogenous variables which are realized
using OccBin in response to a severe negative demand shock.

Impulse responses to a monetary policy shock. Figure 2 plots impulse responses to

a 0.25 percentage points cut in the shadow rate under the ELB starting from period t = 1

for the theoretical model solved under Proposition 2 (solid line) and the model solved by the

OccBin algorithm (dashed line), developed by Guerrieri and Iacoviello (2015).8 We report

the solutions obtained by the OccBin algorithm since it solves the model without assuming

expectations of full effectiveness of UMP in the future (a form of bounded rationality) in

Proposition 2 and it has been a popular approach to solving DSGE model at the ELB (see

Atkinson et al., 2020). Similar to our solution of the model under Proposition 2, the OccBin

algorithm assumes that the non-ELB regime is absorbing and the interest rate remains

positive once the economy exits the ELB regime.

Overall the responses of the interest rate, output, and inflation are similar between the

model solution under Proposition 2 and the OccBin solution, as shown in Figure 2. The

responses of the interest rate are muted because the economy starts from the ELB triggered

by a severe demand shock in period t = 1. Without the ELB, the interest rate (left panels)

would fall by about 0.15 percentage points (pts), reported in the figure as the lowest value

on the y-axis. In the case of no UMP (ξ∗ = 0; top panels), the responses of output (central

panels) and inflation (right panels) are muted for both the model solution under Proposition

8The impulse responses are computed by using the same method employed in reporting our empirical
results. For the detail of the calculation, see Section 5.
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2 and the OccBin solution. Because the economy is at the ELB, the monetary policy shock

in period t = 2 does not have significant effects on the economy without UMP. In the case

of partial UMP (ξ∗ = 0.5; middle panels), QE is activated in response to a decrease in the

shadow rate triggered by the monetary policy shock, and output and inflation increase. In

the case of fully effective UMP (ξ∗ = 1; bottom panels), the ‘irrelevance hypothesis’ holds

and the responses of output and inflation coincide with those under the hypothetical economy

with no ELB under both solution methods.

3 Empirical model

Our theoretical model in Section 2 highlights three important features to study the irrele-

vance hypothesis: i) the censoring of the shadow rate at the ELB, ii) a potential kink of

the dynamics of the economy at the ELB, and iii) a parameter that encapsulates the ef-

fectiveness of UMP. We embed these features in our empirical model designed to test the

irrelevance hypothesis using the flexible VAR approach of the literature on monetary policy.

In this section, we present our empirical model, derive the tests of the ELB irrelevance and

no attenuation hypotheses, and describe our approach to the identification of the effects of

conventional and unconventional monetary policy.

3.1 Censored and kinked SVAR

The econometric model that we use is the censored and kinked SVAR (CKSVAR) developed

by Mavroeidis (2021). Its structural form is given by:

it = max {i∗t , it} , (17a)

i∗t = −αit + (1 + α)
(
γY1t +B2Xt +B∗22X

∗
2t + A∗−122 ε2t

)
, (17b)

Y1t = β (λi∗t + (1− λ) it) +B1Xt +B∗12X
∗
2t + A−111 ε1t, (17c)

where it is the short-term interest rate that is subject to the observable lower bound of it,

i∗t is the shadow rate, Y1t is a vector of unconstrained endogenous variables such as inflation

and output, Xt comprises exogenous and predetermined variables, including lags of Y1t and

it, X
∗
2t consists of lags of i∗t , and εt are i.i.d. structural shocks with identity covariance matrix.

Equation (17a) represents the ELB constraint, and it corresponds to equation (1) in the

theoretical model, except for the lower bound that is allowed to vary over time in equa-
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tion (17a). Thus, the shadow rate is censored and unobservable under the ELB, as in the

theoretical model.

Equation (17b) represents the short-term interest rate rule that nests the FG rule of Reif-

schneider and Williams (2000), and it corresponds to equations (2) and (3) in the theoretical

model. The parameter α has the same interpretation as in the theoretical model.

Equation (17c) describes the dynamics of variables of interest such as inflation and output

and the relationship between these variables and interest rates. The parameter λ is the

equivalent of λ∗ in the theoretical model and characterizes the effectiveness of UMP relative

to conventional policy on impact. Specifically, from equation (17c) we see that above the

ELB (i.e., when it = i∗t > it), the contemporaneous effect of a change in the short-term

interest rate it by one unit on Y1t is β, but the corresponding effect at the ELB, driven by

a change in the shadow rate i∗t , is λβ. When λ = 1, the two effects are equal, while λ = 0

corresponds to the case in which UMP has no contemporaneous effect on Y1t.

Similar to the theoretical model, the parameter λ partially characterizes the impulse

responses to a monetary policy shock at the ELB, since the response of the interest rate also

depends on the degree of FG, and thus the joint effect of α and λ determines the response of

endogenous variables to UMP. To see this in the context of the SVAR model, consider the

impulse response to the monetary policy shock of ε2t = A∗22 ignoring nonlinearities.9 The

effect on Y1t is β/ (1− γβ) above the ELB, and ξβ/ (1− ξγβ) at the ELB, where:

ξ = λ (1 + α) . (18)

So, it is, in fact, ξ, not λ, that measures the effectiveness of an UMP shock – a shock to the

shadow rate below the ELB, see Mavroeidis (2021) for further discussion. The parameter

ξ is the equivalent ξ∗ in Lemma 1 of the theoretical model. In the proof of Proposition 2

(see Appendix A.5), we show that the UMP parameter ξ∗ in the theoretical model under

Proposition 2 can be mapped in the system of equations (17a)-(17c), and the ξ∗ in the

theoretical model coincides with the corresponding parameter ξ in the empirical model.

Our discussion about the parameter ξ concerned the relative effectiveness of UMP on

impact. The dynamic effects of UMP on Y1t are governed by the coefficients on the lags

of the shadow rate B∗12 in equation (17c). For example, the case of completely ineffective

UMP on Y1t at all horizons can be represented by the joint restrictions ξ = 0 and B∗12 = 0.

A more restrictive case is that UMP is also ineffective on the short-term interest rate it,

9We will discuss the specification of the impulse response functions in Section 5, see equation (26).
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in addition to having no effect on Y1t, which can be implemented by ξ = 0, B∗12 = 0, and

B∗22 = 0. This implies that the shadow rate has no contemporaneous and cumulative impact

on the endogenous variables and completely drops out of the right-hand side of equations

(17a)-(17c). We refer to this case as the kinked SVAR (KSVAR), using the same terminology

in Mavroeidis (2021).

3.2 Reduced-form solution of the SVAR and identification

To implement our empirical tests and gain intuition on the identification and estimation of

the CKSVAR model, we derive the reduced-form solution for Y1t and it using equations (17a)-

(17c). Mavroeidis (2021) develops the methodology for the identification and estimation of

the CKSVAR, showing that the model is generally under-identified, but the parameter ξ,

defined in equation (18), and the impulse responses to the monetary policy shock ε2t, are

partially identified in general. The reduced-form solution for Y1t and it is:

it = max {C21X1t + C22X2t + C∗22X
∗
2t + u2t, it} (19a)

Y1t = C11X1t + C12X2t + C∗12X
∗
2t + u1t − β̃Dt (C2Xt + C∗22X

∗
2t + u2t − it) (19b)

where Dt ≡ 1{it=it} is the indicator of the ELB regime, Xt ≡ (X ′1t, X
′
2t)
′, X2t consists of the

lags of it, the matrices C11, C12, C
∗
12, C2 ≡ (C21, C22), and C∗22 are reduced-form coefficients,

ut ≡ (u′1t, u
′
2t)
′ are reduced-form errors, and Ω ≡ var (ut) .

The reduced-form equations in (19) represent a censored and kinked VAR. Equation

(19a) entails the censoring of the shadow rate, represented by the max operator. Equation

(19b) allows for a kink at the ELB and the coefficients and variance can change across

regimes. Therefore, our empirical model nests the theoretical model under Proposition 2,

while imposing minimal structure and allowing for flexible coefficients in the VAR.

The coefficient of the kink β̃ in equation (19b) is identified, together with the remaining

reduced-form parameters. In other words, we can infer from the data whether the slope

coefficients and the variance of Y1t change across regimes by testing whether β̃ = 0. However,

the parameter β̃ does not have a structural interpretation and relates to the underlying

structural parameters through the following equations:

β̃ = (1− ξ) (I − ξβγ)−1 β, (20)

γ = (Ω′12 − Ω22β
′) (Ω11 − Ω12β

′)
−1
. (21)
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As shown in Mavroeidis (2021), the structural parameters ξ, β and γ are partially identified,

in the sense that there is a set of different combinations for values of the structural parameters

that satisfies equations (20) and (21) and generate any given value of the reduced form

parameters β̃ and Ω. Therefore, the impulse responses to a monetary policy shock are set-

identified. In our empirical analysis below, we will sharpen the identified set by using sign

restrictions on the impulse responses.

3.3 Hypothesis tests of ELB irrelevance

We now develop our tests for the ELB irrelevance hypothesis (IH) from the reduced-form

solution of the SVAR. A central implication of our theoretical framework was that the dy-

namics of the economy are independent from whether policy rates are at the ELB or not.

We use this fundamental implication to formulate two testable hypotheses.

Irrelevance hypothesis 1 (IH1). Our first approach to test the IH is motivated by Swan-

son (2018) and Debortoli et al. (2019), who argue that monetary policy remains similarly

effective across ELB and non-ELB regimes and that long-term interest rates are a plausible

indicator of the stance of monetary policy. These authors develop SVARs that include long-

term, rather than short-term interest rates as indicators of monetary policy. They use such

VARs to identify the impulse responses of the macroeconomic variables to monetary policy

as well as the response of policy to economic conditions, and find that those responses are

similar across ELB and non-ELB regimes in the U.S. The implicit and testable assumption

that underlies their analysis is that the short-term interest rate can be excluded from the

dynamics of all the other variables in the system, and the dynamics of the system do not

change when the economy enters the ELB regime. In other words, under the IH, the dynam-

ics of the economy can be represented by VARs with the long rate but without the short

rate, which we formally showed in Proposition 1(ii).

The hypothesis can be tested as an exclusion restriction in an SVAR that includes both

the short and long rates. Since the short rate is subject to the ELB constraint, the relevant

framework is the CKSVAR (that allows for the shadow rate to affect the economy in the

ELB regime) and the special case of KSVAR (that precludes the shadow rate to affect the

economy in the ELB regime) introduced in Section 3.1. Specifically, looking at the reduced-
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form specification in equation (19b), the IH can be formulated as:

IH1 : C12 = C∗12 = 0 and β̃ = 0. (22)

In words, C12 = C∗12 = 0 means that lags of the short rate (it) and the shadow rate (i∗t ) can

be excluded from the equation (19b) that governs the unconstrained variables (Y1t) in the

VAR, and β̃ = 0 means that the slope coefficients and the variance of the errors of those

equations (for Y1t) remain the same when the economy moves across regimes.

Irrelevance hypothesis 2 (IH2). The second test of the IH is motivated by Proposition

1(i), which shows that when UMP is fully effective, the dynamics of the economy can be

adequately represented by a VAR that entails the pure censoring of i∗t and no kink. Such a

VAR is a special case of the reduced-form VAR (19) that arises when the following testable

restrictions are imposed:

IH2 : C12 = 0, C22 = 0 and β̃ = 0. (23)

In words, C12 = 0 and C22 = 0 means that the lags of the short rate (it) can be excluded

from equation (19), and β̃ = 0 means that the slope coefficients and the variance of the

errors of those equations (for Y1t) remain the same when the economy moves across regimes.

We call the structural form of the VAR under IH2 as a purely censored SVAR (CSVAR) as

the shadow rate is censored but affects the dynamics equally across regimes.

It is worth noting that both IH1 and IH2 do not rely on a specific model of UMP, such as

the one in Section 2, as long as the long rate or the shadow rate represents the monetary policy

stance, because any VAR that includes short rates must admit a CSVAR representation with

constant parameters across regimes when the irrelevance hypothesis holds. Otherwise, the

ELB would result in observable changes across regimes, violating the hypothesis that the

ELB is empirically irrelevant.

3.4 Attenuation effect

Swanson and Williams (2014) and Gilchrist et al. (2015) argue that an implication of a

binding ELB constraint is that the effect of shocks on long-term interest rates may be atten-

uated when the policy rate lies at the ELB. They investigate this phenomenon empirically

using time-varying-parameter regressions of different maturity yields on news shocks at daily

frequency.
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We shall use the CKSVAR model to characterize analytically and obtain formal tests

of the aforementioned attenuation effect. Specifically, we will show analytically how the

model-implied impulse response of the long yields to a monetary policy shock on impact

is attenuated during ELB-regimes relative to non-ELB regimes, and that this attenuation

effect is state-dependent and thus time-varying.

Let IRj,t denote the impact response of variable j to an infinitesimal monetary policy

shock derived from the CKSVAR model in Equation (17). Also, let IRj,NA denote the same

response under the assumption that there is no attenuation. Then, it can be shown that (see

Appendix B):

IRj,t = (1− aj,t) IRj,NA, aj,t :=
β̃j
βj

Φ

(
it − i∗t|t−1

$

)
, (24)

where βj and β̃j are the j th elements of the coefficient vectors that appear in structural and

reduced-form equations, (17) and (19), respectively, i∗t|t−1 := C21X1t + C22X2t + C∗22X
∗
2t is

the predicted value of the shadow rate in period t, $ is the standard deviation of i∗t − i∗t|t−1
when the monetary policy shock ε2t is zero, and Φ (·) is the Standard Normal cumulative

distribution function. The factor aj,t attenuates the impact of the monetary policy shock

on Y1t,j as the economy approaches the ELB, provided aj,t ∈ [0, 1]. This attenuation is

notably time-varying and depends on the distance of the shadow rate from the ELB it.

When the shadow rate is far above the ELB, Φ
(
it−i∗t|t−1

$

)
is approximately zero and there is

no attenuation. The attenuation increases in it − i∗t|t−1, provided β̃j/βj > 0.

Equation (24) allows us to derive a formal test of the hypothesis that there is no at-

tenuation based only on the reduced-form VAR specification (19). In other words, this test

does not rely on any additional assumptions (such as sign restrictions) that one might use

to identify the structural parameters β and the structural impulse responses. Specifically,

suppose that the vector of unconstrained variables Y1t in the empirical model (19) includes

a long-term yield of a particular maturity, R̄L,t, and let β̃L denote the coefficient of the kink

in the reduced-form equation associated with R̄L,t in equation (19b). Then, the hypothesis

that there is no attenuation of the response of R̄L,t to monetary policy shocks arising from

the ELB is given by:

HNA : β̃L = 0. (25)

In the theoretical model studied in Section 2, no attenuation effect is equivalent to the ELB

irrelevance as implied by Proposition 1(ii). But the empirical model is less restrictive than

the theoretical model, and HNA is clearly weaker hypothesis than the irrelevance hypotheses
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IH1 (22) and IH2 (23) defined above. Therefore, in our empirical framework, failing to reject

HNA does not necessarily imply that the ELB is empirically irrelevant.

We will test HNA using long yields at various maturities in Section 4.3.

4 Empirical results

This section discusses the data for the U.S. and Japan, and tests the hypothesis that the

ELB has been empirically irrelevant in each country using the hypothesis testing approach

that is underpinned by Proposition 1 and established in Section 3.3. In addition, it tests the

hypothesis of no attenuation effect in the response of long-term interest rates at the ELB, as

formulated in Section 3.4, and it examines whether the short-term interest rate, including

the shadow rate at the ELB, is a sufficient indicator of monetary policy including UMP, as

implied by Proposition 2.

4.1 Data

Our empirical analysis focuses on the U.S. and Japan. We choose data series for the baseline

specification of the SVAR model to maintain the closest specification possible to related

studies and thereby include representative series for inflation, output, and measures for

short- and long-term yields.

For the U.S., we use quarterly data for inflation based on the GDP deflator, a measure

of the output gap from the Congressional Budget Office, the short-term interest rate from

the Federal Funds Rate, and the 10-year government bond yield from the 10-year Treasury

constant maturity rate. Figure 3 plots these series. We also consider the different measures

of money listed in Appendix C. The data are from the FRED database at the Federal Reserve

Bank of St. Louis and the Center for Financial Stability databases. The estimation sample

for the baseline specification is from 1960q1 to 2019q1.10 We set the value of the effective

lower bound on the Federal Funds Rate equal to 0.2, such that the short-term interest rate is

at the ELB regime 11 percent of the time, which is consistent with Bernanke and Reinhart

(2004) who suggest that the effective lower bound on nominal interest rates may be above

zero for institutional reasons.

For Japan, we use quarterly data for core CPI inflation, a measure of the output gap

10See Appendix C for further details about the data. Alternative specifications with money are estimated
over different time periods due to constraints on data availability.
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Figure 3: U.S. quarterly data

Inflation 

1960 1980 2000 2020

0.0

2.5

5.0

7.5

10.0

12.5
Inflation Output Gap 

1960 1980 2000 2020

-5

0

5 Output Gap 

10-year Bond Yields 

1960 1980 2000 2020

5

10

15
10-year Bond Yields 

Federal Funds Rate 

1960 1980 2000 2020

5

10

15
Federal Funds Rate 

provided by the Bank of Japan, and the Call Rate. In addition, we use two alternative

measures for long yields: the 9-year and the 10-year government bond yields, which are

available for different sample periods. The data sources are the Bank of Japan for the output

gap and the Call Rate, the Ministry of Finance for the 9-year and the 10-year government

bond yields, and Statistics Bureau of Japan for core CPI inflation. The available sample is

from 1985q3 to 2019q1 if we include the 9-year government bond yield in the VAR, which

is our baseline case, and from 1987q4 to 2019q1 if we use the 10-year yield. Following

Hayashi and Koeda (2019), we set the ELB to track the interest on reserves (IOR).11 For the

sample period 1985q3-2019q1, the Call Rate is at the ELB for 49 percent of the observations.

Following Hayashi and Koeda (2019), we use a trend growth series to account for the declining

equilibrium real interest rate in Japan during the 1990s.12 Figure 4 plots these series.

4.2 Testing the ELB irrelevance hypothesis

We now test the ELB irrelevance hypothesis for the U.S. and Japan using the two null

hypotheses, IH1 and IH2, formalized by (22) and (23), respectively.

11Specifically, ELB = IOR + 7bp, which is slightly higher than Hayashi and Koeda (2019) who use
IOR+5bp, in order to treat 2016q1 as being at the ELB.

12Specifically, we use the annual average growth rate of potential GDP as an additional control in our
model. See Hayashi and Koeda (2019, pp. 1081–1083) for an extended discussion of this issue and its
implications.
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Figure 4: Japanese quarterly data
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Testing IH1. The basic idea of IH1 is that a long-term interest rate is a sufficient indicator

of monetary policy stance, and thereby a short-term interest rate becomes redundant and

can be excluded from the VAR under the ELB irrelevance. The results of the likelihood

ratio test of the null hypothesis IH1 in (22) are reported in Table 1. Panel A reports results

based on a KSVAR model, in which lags of the shadow rate i∗t do not appear on the right-

hand-side of equation (19). In this case, we test IH1 against an alternative hypothesis that

imposes C∗12 = 0, and this test only has power against the violation of C12 = 0. We do so

because the KSVAR model is simpler to estimate, and a rejection of C12 = 0 would suffice to

reject IH1. Panel B reports the results using the general CKSVAR. The table reports results

for specifications with different lag lengths of the VAR(p), where p = 1, . . . , 5. Column

pv-p reports the p-value of a test for selecting the number of lags in the model,which is an

alternative approach to the Akaike Information Criterion (AIC), also reported in the Table.

Both measures consistently select four lags for the U.S. and two lags for Japan. Column

p-val reports the asymptotic p-value of our test of (22).

Table 1 shows that the data strongly reject the exclusion restrictions implied by IH1 for

both countries and in both the KSVAR and CKSVAR specifications. Hence, the short-term

interest rate cannot be excluded from the VAR, and thus it makes the dynamics of the system

differ between the non-ELB and ELB regimes even if the long-term interest rate – 10-year

yields for the U.S. and 9-year yields for Japan – is added to the VAR. The result continues

to hold for Japan with 10-year yields, which are available from 1987q3, and is reported in
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Table 1: Test for excluding short rates from VAR that includes long rates

Panel A: KSVAR
United States Japan

p loglik pv-p AIC LR df p-val loglik pv-p AIC LR df p-val
5 -213.4 - 2.62 53.12 18 0.000 248.1 - -2.18 27.82 18 0.065
4 -221.5 0.446 2.55 49.57 15 0.000 239.9 0.425 -2.30 28.10 15 0.021
3 -234.4 0.112 2.53 42.13 12 0.000 232.2 0.471 -2.42 28.58 12 0.004
2 -266.0 0.000 2.66 41.93 9 0.000 223.8 0.445 -2.53 25.71 9 0.002
1 -296.7 0.000 2.78 32.87 6 0.000 184.8 0.000 -2.19 32.32 6 0.000

Panel B: CKSVAR
p loglik pv-p AIC LR df p-val loglik pv-p AIC LR df p-val
5 -191.3 - 2.60 82.43 33 0.000 284.7 - -2.42 90.39 33 0.000
4 -202.7 0.290 2.53 72.15 27 0.000 277.1 0.766 -2.61 91.55 27 0.000
3 -223.0 0.011 2.53 51.93 21 0.000 258.1 0.081 -2.62 73.52 21 0.000
2 -256.3 0.000 2.64 49.44 15 0.000 242.1 0.018 -2.68 56.16 15 0.000
1 -290.3 0.000 2.76 37.12 9 0.000 204.8 0.000 -2.43 63.03 9 0.000

Note: Panel A reports results for a KSVAR(p) with inflation, output gap, long rate and policy rate. Panel
B reports corresponding results for a CKSVAR(p) that includes shadow rates. Estimation sample is 1960q1-
2019q1 for the U.S. and 1985q3-2019q1 for Japan. Long rates are 10-year government bond yields for the
U.S. and 9-year yields for Japan. loglik is the value of the log-likelihood. pv-p is the asymptotic p-value of
a LR test of (C)KSVAR(p) against (C)KSVAR(p + 1). AIC is the Akaike information criterion. LR test
statistic for excluding short rates from equations for inflation, output gap and long rates. df is number of
restrictions. Asymptotic p-values reported.

Table 14 in Appendix D.

The result of the rejection of IH1 continues to hold even if we use yields with shorter

maturities. Table 2 shows the results for the null hypothesis IH1 when we include yields with

maturities in the range from 1 to 7 years in the VAR for the U.S. and Japan. The entries

show results for the VAR specification with the preferred number of lags according to the

AIC. The results show that the exclusion restrictions from IH1 are strongly and consistently

rejected across the whole range of maturities for both countries. Our results imply that

a government bond yield with maturity within the 1- to 10-year range cannot replace the

shadow rate as the indicator of monetary policy stance, and the dynamics of the economy

differs between the non-ELB and ELB regimes.

Testing IH2. The idea of the hypothesis IH2 in (23) is that once the shadow rate is included

in the VAR, the short-term interest rate can be excluded from the VAR under the irrelevance

hypothesis. We test IH2 with the three core observables, inflation and output gap in Y1t,

and the short-term interest rate, and we also include the long-term interest rate in Y1t for

26



Table 2: Test for excluding short rates from VAR with long rates by maturity

Panel A: KSVAR
United States Japan

YTM sample p LR df p-val sample p LR df p-val
7 1970q4–2019q1 3 38.69 12 0.000 1985q3–2019q1 2 23.20 9 0.006
5 1963q2–2019q1 3 41.93 12 0.000 1985q3–2019q1 2 25.15 9 0.003
3 1963q2–2019q1 3 46.32 12 0.000 1985q3–2019q1 2 30.97 9 0.000
2 1977q4–2019q1 4 38.82 15 0.001 1985q3–2019q1 2 33.05 9 0.000
1 1963q2–2019q1 3 59.65 12 0.000 1985q3–2019q1 2 49.90 9 0.000

Panel B: CKSVAR
YTM sample p LR df p-val sample p LR df p-val

7 1970q4–2019q1 3 51.03 21 0.000 1985q3–2019q1 2 58.32 15 0.000
5 1963q2–2019q1 3 56.33 21 0.000 1985q3–2019q1 2 58.50 15 0.000
3 1963q2–2019q1 3 58.54 21 0.000 1985q3–2019q1 2 62.04 15 0.000
2 1977q4–2019q1 4 66.84 27 0.000 1985q3–2019q1 2 63.77 15 0.000
1 1963q2–2019q1 3 73.06 21 0.000 1985q3–2019q1 2 72.41 15 0.000

Note: Panel A reports results for a KSVAR(p) with inflation, output gap, long rate, and policy rate. Panel
B reports corresponding results for a CKSVAR(p) that includes shadow rates. Estimation sample varies for
each long-term rate used for the U.S. and 1985q3–2019q1 for Japan. Long rates are government bond yields
with year to maturity reported in the first column (YTM). p is the preferred lag length selected by AIC
criteria. LR is the test statistic for excluding short rates from equations for inflation, output gap and long
rates. df is number of restrictions. Asymptotic p-values reported.

robustness. Under IH2 the shadow rate is censored in the ELB regime but affects Y1t equally

in both regimes according to the reduced form equation (19). We test IH2 using a likelihood

ratio test as we tested IH1.

Table 3 reports the results of the likelihood ratio test of IH2 for the U.S. and Japan. The

results for our baseline specifications are reported in the row starting with ‘10 or 9’ in the

first column. We include 4 lags for the U.S. and 2 lags for Japan, according to the AIC. The

results show that the IH2 is rejected for both economies at the 5 percent level of significance.

The result continues to hold for Japan with 10-year yields and is reported in Table 15 in

Appendix D. Table 3 also shows that the result of the rejection of IH2 continues to hold even

if we include an alternative yield within the range of 1 to 7 years in Y1t.

Robustness checks. It is possible that the short rate is necessary to explain long rates

even if the short rate is not necessary to characterize inflation and output dynamics. This

could occur if real rates trend over time, so having both in the VAR picks up low-frequency

movements. We address this concern by testing IH1 : C12 = C∗12 = 0 and β̃ = 0 for the

inflation and output equations only while allowing the short and shadow rates to affect the

27



Table 3: Testing CSVAR against CKSVAR with long rates by maturity

United States Japan
YTM sample p LR df p-val sample p LR df p-val

10 or 9 1960q1–2019q1 4 34.42 19 0.016 1985q3-2019q1 2 51.02 11 0.000
7 1970q4–2019q1 3 26.80 15 0.030 1985q3–2019q1 2 50.86 11 0.000
5 1963q2–2019q1 3 29.26 15 0.015 1985q3–2019q1 2 49.27 11 0.000
3 1963q2–2019q1 3 31.83 15 0.007 1985q3–2019q1 2 53.09 11 0.000
2 1977q4–2019q1 4 45.49 19 0.001 1985q3–2019q1 2 56.03 11 0.000
1 1963q2–2019q1 3 51.04 15 0.000 1985q3–2019q1 2 70.62 11 0.000

Note: The estimated model is a CKSVAR(p) for the U.S. and Japan with inflation, output gap, policy rate,
and a measure of long-term rate. Long rates are government bond yields with year to maturity reported
in the first column (YTM). As baseline specifications, the 10-year yield is used for the U.S. and the 9-year
yields is used for Japan. Sample availability varies for each long-term rate used. LR is the value of the LR
test statistic, df is number of exclusion restrictions, and p-value is the asymptotic χ2

df p-value of the test.

long rate. We find that this weaker version of IH1 is also robustly rejected (Table 7 in

Appendix D).

Next we check the robustness of our results to possible omission of alternative channels

of unconventional monetary policy, by adding money growth to the Y1t variables of the

VAR that we use to test the null hypothesis IH1 in (22). Using several different monetary

aggregates for the U.S., we consistently reach the same conclusion: the IH is firmly rejected

(Table 8 in Appendix D).

We also check the robustness of the U.S. results to the well-documented fall in macroe-

conomic volatility in the mid-1980s, known as the Great Moderation, as well as a possible

change in monetary policy regime occurring at that time by performing the same tests over

the subsample 1984q1–2019q1 (see Tables 9 and 10 in Appendix D). In addition, Caldara

and Herbst (2019) show that accounting for the endogenous reaction of financial conditions

is critical to avoiding an attenuation bias in the responses of variables to monetary policy

shocks. Gilchrist and Zakrajsek (2012) use credit spreads to internalize the central contribu-

tion of financial frictions during ELB episodes. Thus, we check the robustness of our results

by including credit spreads in the VAR (see Tables 11-13 in Appendix D). Our conclusion

remains the same: the IH1 and IH2 are firmly rejected.

Finally, we check the power of our irrelevance tests IH1 and IH2 by generating simulated

series from our theoretical model for values of ξ∗ in the range [0.7, 0.99]. Since the theoretical

model is solved under Proposition 2, ξ∗ in the theoretical model coincides with ξ in the

empirical model and the simulated series are equivalent between the two models. We find that
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Table 4: Test for no attenuation

United States Japan
YTM p LR p-val p LR p-val

10 or 9 4 15.84 0.000 2 16.63 0.000
7 3 10.33 0.001 2 14.95 0.000
5 3 13.19 0.000 2 15.13 0.000
3 3 17.15 0.000 2 27.70 0.000
2 4 16.81 0.000 2 33.17 0.000
1 3 35.90 0.000 2 46.06 0.000

Note: The table reports corresponding results for a CKSVAR(p) that includes shadow rates. Estimation
sample is 1960q1–2019q1 for the U.S. and 1985q3–2019q1 for Japan. Long rates are government bond yields
with year to maturity reported in the first column. As baseline specifications, the 10-year yield is used for
the U.S. and the 9-year yield is used for Japan. p is the preferred lag length selected by AIC criteria. LR is
the likelihood ratio test statistic for the hypothesis of no attenuation. Asymptotic p-values reported.

the rejection rate of the tests declines as ξ∗ approaches the value of one (i.e., the irrelevance

hypothesis holds true), showing that our tests are powerful. The result is reported in Tables

16 and 17 in Appendix D.

4.3 Testing the attenuation effect

We use our CKSVAR model to test the null hypothesis of no attenuation in the response of

long-term interest rates to monetary policy shocks at the ELB, formalised as IHNA in (25) in

Section 3.4. Table 4 reports the results of the test for the VAR model that includes long rates

of different maturities ranging from 1 year to 10 years. The null is firmly and consistently

rejected across different yields to maturity for both countries. The result implies that long

rates of different maturities have responded differently to monetary policy shocks between

the ELB and non-ELB regimes in both the U.S. and Japan.

Our approach to testing no attenuation effect differs from the one employed by Swanson

and Williams (2014) who find that responses of 1- and 2-year U.S. bond yields to various

macroeconomic news shocks, identified using high frequency data over the period 1990–

2012, were not attenuated throughout 2008 to 2010 but became attenuated in late 2011. We

instead focus on responses to a monetary policy shock – a shock to the shadow rate using

quarterly data over a longer sample. We discuss the implications of different sample periods

at the end of Appendix D.
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Table 5: Test for excluding long rates from VAR by maturity

United States Japan
YTM sample p LR df p-val sample p LR df p-val

10 or 9 1960q1–2019q1 3 2.43 6 0.876 1985q3–2019q1 2 6.32 4 0.177
7 1970q4–2019q1 3 5.15 6 0.524 1985q3–2019q1 2 10.38 4 0.035
5 1963q2–2019q1 3 4.99 6 0.545 1985q3–2019q1 2 7.00 4 0.136
3 1963q2–2019q1 3 7.05 6 0.316 1985q3–2019q1 2 4.99 4 0.288
2 1977q4–2019q1 4 11.53 8 0.174 1985q3–2019q1 2 3.40 4 0.493
1 1963q2–2019q1 3 11.70 6 0.069 1985q3-2019q1 2 5.19 4 0.268

Note: The estimated model is a CKSVAR(p) for the U.S. and Japan with inflation, output gap, policy rate
and a different measure of long-term rates. Long rates are government bond yields with year to maturity
reported in the first column (YTM). As baseline specifications, the 10-year yield is used for the U.S. and the
9-year yield is used for Japan. Sample availability varies for each long-term rate used. The null is that the
lags of long rates can be excluded from the equations describing the dynamics of inflation and the output
gap from the unrestricted model. p is chosen by AIC. LR is the value of the LR test statistic, df is number
of exclusion restrictions, and p-value is the asymptotic χ2

df p-value of the test.

4.4 Testing the (ir)relevance of long rates

Our statistical tests rejected the ELB irrelevance hypothesis and the possibility of excluding

the short rate by controlling for the long rate. We now assess whether movements in the

short rate, including the shadow rate during ELB regimes, are sufficient to encapsulate the

effects of both conventional and unconventional monetary policies for inflation and output

by testing the exclusion restriction on the long rate. Proposition 2 implies that the exclusion

restriction on the long rate holds in the theoretical model.

We perform this test using the CKSVAR model that includes inflation, output gap,

the long rate, and the short rate. The null hypothesis is that lags of the long rate can

be excluded from the equations for inflation and output gap. In performing this test, we

impose the assumption that the short rate does not react to the long rate by imposing zero

restrictions on the lags of long rates in the interest rate equation (19a). This is consistent

with the standard Taylor rule (3) in the theoretical model. Table 5 reports the results using

long rates of various maturities. It shows that the null hypothesis cannot be rejected and

that the long rate can be excluded from the model at the 5 percent level of significance in

both countries and at most maturities. The result implies that the short rate and the shadow

rate may be sufficient indicators of monetary policy during the non-ELB and ELB regimes

in both countries.
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5 The effectiveness of UMP

Our testing results established that the dynamics of the economy are different across the

ELB and non-ELB regimes for both the U.S. and Japan, leading us to conclude that the

ELB has been empirically relevant. But the results are silent on the magnitude of the

differences in the effects of monetary policy between the two regimes. Here we address

this issue by estimating the (partially identified) impulse responses to a monetary policy

shock from the CKSVAR models over time to gauge the effectiveness of UMP relative to

conventional monetary policy. In doing so, we use inflation, output gap, the short rate, and

the shadow rate for the CKSVAR models, as this specification is broadly in line with the

test results obtained in Section 4.

5.1 State-dependent impulse responses

Since the empirical model is nonlinear, the impulse response functions (IRFs) are state-

dependent. We will follow the approach in Koop et al. (1996), already used in Section 2.3,

according to which the IRF to a monetary policy shock of magnitude ς is given by the

difference in the expected path of the endogenous variables when the policy shock takes the

value ς, versus the path when the shock is zero, conditional on the state of the economy prior

to the shock. This approach is the most commonly used in the literature, see, e.g., Hayashi

and Koeda (2019). In our model, there is an additional complication that lagged shadow

rates are unobserved, so we evaluate the IRFs at the smoothed estimates of those latent

variables. In the same notation of the empirical model in Section 3, let Yt ≡ (Y ′1t, it)
′ denote

the vector of endogenous variables, and X
∗
t,j denote a state vector whose j-th component is

given by min
(
i∗t−j − it−j, 0

)
for j = 1, ..., p, where p is the order of the VAR. Then, our IRFs

starting from period t up to the horizon h are given by:

IRFh,t

(
ς,Xt, X̂

∗

t

)
= E

(
Yt+h|ε2t = ς,Xt, X̂

∗

t

)
− E

(
Yt+h|ε2t = 0, Xt, X̂

∗

t

)
, (26)

where Xt consists of the lagged values of Yt−j for j = 1, ..., p, and X̂
∗

t is the smoothed

estimate of the state vector X
∗
t when it is unobserved.

5.2 The impact effects of UMP

As explained in Section 3, the IRFs are generally set-identified unless we assume there is no

contemporaneous effect of UMP on Y1t, which corresponds to setting ξ = 0 in the CKSVAR
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model. We will not be imposing such an assumption in our analysis. We proceed by first

obtaining the identified set for ξ, β and γ by solving equations (20) and (21) at the estimated

values of β̃ and Ω, as explained in Section 3 (see the discussion following equations (20) and

(21)), and then we simulate the paths of the empirical model at each of the values of the

structural parameters in the identified set.

The estimation results for the parameter ξ are as follows. Recall that the parameter

ξ determines the impact effect of UMP, where the two limiting cases of ξ = 0 and ξ = 1

correspond to UMP being completely ineffective on impact and as effective as conventional

policy in non-ELB regimes on impact, respectively. When we restrict the range of ξ to [0, 1]

and impose no further identifying restrictions, the identified set for ξ is [0, 0.75] for the U.S.

and [0, 0.34] for Japan.

We sharpen the identified sets by using sign restrictions. We follow Debortoli et al.

(2019) and impose the restrictions that a negative monetary policy shock should have a

nonnegative effect on inflation and output, and a nonpositive effect on interest rates at a

one-year horizon.13 These sign restrictions are consistent with the theoretical model studied

in Section 2 (see Figure 2). With these sign restrictions, the identified set for the parameter

ξ narrows down substantially for the U.S., from [0, 0.75] to [0.71, 0.73]. For Japan the impact

of the sign restrictions is more modest, from [0, 0.34] to [0, 0.26].

Appendix E compares our identification based on sign restrictions against the standard

Choleski identification that imposes restrictions on the impact response of the variables to

the monetary policy shock. Consistent with the results in Gertler and Karadi (2015) and

Kubota and Shintani (2022), we find that the Choleski identification presents several puzzling

responses.

5.3 The dynamic effects of UMP

Now we study the dynamic effects of UMP by examining the IRFs for the identified sets of

ξ for the U.S. and Japan. Figures 5 and 6 report the identified IRFs of inflation, the output

gap and the policy rate to a -25 basis points monetary policy shock. The figure also reports

asymptotic confidence intervals obtained using the method of Imbens and Manski (2004),

where we also impose the sign restrictions on the confidence bands, as in Granziera et al.

13Note that because IRFs are state-dependent, these sign restrictions need to be imposed for all values of
the initial states. In principle, this means working out the worst cases over the support of the distribution
of the variables. However, a very similar conservative estimate of the identified set can be obtained if we
simply impose the sign restrictions in every period.
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Figure 5: Impulse responses to a monetary policy shock in the U.S.

Note: Identified sets of IRFs in 1999q1 and 2009q1 to a -25bps monetary policy shock estimated from
CKSVAR(3) model in inflation, output gap, and the Federal Funds Rate for the U.S. over the period 1960q1-
2019q1, identified by the sign restrictions that the shock has nonnegative effects on inflation and output and
nonpositive effects on the short rate up to four quarters. Dotted lines give 67 percent error bands.

(2018). The IRFs are computed at two different dates: the left panels report IRFs at dates

when interest rates are well above the ELB (1999q1 for the U.S. and 1990q1 for Japan) so

that monetary policy is conventional; the right panels report IRFs at dates when interest

rates are at the ELB (2009q1 for the U.S. and 2010q1 for Japan) so that monetary policy

is unconventional. The policy effects differ across the two periods. For both countries, the

conventional monetary policy shock – the reduction in the short-term interest rate – has a

larger contemporaneous effect on all variables in the pre-ELB dates than the corresponding

unconventional policy shock – the reduction in the shadow rate – during the ELB dates,

and the difference is larger in Japan than in the U.S. This is because ξ is estimated lower

in Japan than in the U.S. However, in Japan the impulse responses to the unconventional

policy shock appear to be stronger a few quarters out.14

14The reason why the delayed effects of UMP can be stronger than conventional policy even though ξ < 1
is because in the empirical model the coefficients on the lags of the shadow rate are completely unrestricted.
This is more general than the theoretical model of Section 2 with the monetary policy rule (3), where
the coefficient on the lagged shadow rate was restricted to be a constant fraction λ∗ of the coefficient on

33



Figure 6: Impulse responses to a monetary policy shock in Japan

Note: Identified sets of IRFs in 1990q1 and 2010q1 to a -25bps point monetary policy shock estimated
using a CKSVAR(2) model in inflation, output gap, and the Call Rate for Japan over the period 1985q3-
2019q1, identified by the sign restrictions that the shock has nonnegative effects on inflation and output and
nonpositive effects on the short rate up to four quarters. Dotted lines give 67 percent error bands.

To shed further light on the differences in the responses over time, and in light of the fact

that the IRFs are time-varying, we look at the evolution of the impulse responses at given

horizons, 0, 4 and 8 quarters, over time. The results are reported in Figures 7 and 8 for the

U.S. and Japan, respectively. In each figure, the panels on the left column report the impact

effects of a -25 basis point monetary policy shock at each quarter from 1985q3 to the end of

our sample. The panels in the middle column show the cumulative impulse responses after

a year, while the panels on the right column give the corresponding cumulative responses

after two years. We discuss each country in turn.

In the U.S. (Figure 7), we see a drop in the impact effect of policy during the ELB period

relative to the pre-ELB period. The relative difference in the effectiveness of policy on both

inflation and output on impact is over 15 percent. For the output gap, this difference remains,

the lagged policy rate above the ELB. The result of that restriction was that λ∗ < 1 restricted UMP to
have a uniformly weaker effect than conventional policy over all horizons. We did not need to impose this
overidentifying restriction in the empirical analysis.
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Figure 7: Responses to monetary policy shock in the U.S. over time

Note: Identified sets of (cumulative) impulse responses to a negative -25bps monetary policy shock at three
different horizons, on impact, one year out and two years out, estimated using a CKSVAR(3) model in
inflation, output gap, and the Federal Funds Rate for the U.S. over the period 1960q1-2019q1, identified by
the sign restrictions that the shock has nonnegative effects on inflation and output and nonpositive effects
on the short rate up to four quarters.

and increases one and two years ahead. However, the effect on inflation is the reverse: the

cumulative effect of UMP on inflation is much stronger one and two years ahead. Therefore,

UMP in the U.S. seems to have had a delayed but strong effect on inflation, but has been

persistently less effective on output than conventional policy.

In Japan (Figure 8), there is a clear drop in the contemporaneous effect of policy on

inflation and output during the ELB periods. There are three distinguishable ELB periods,

1999q2-2000q2, 2001q2-2006q2, and 2009q1 to the end of the sample. The contemporaneous

policy effect on inflation is negligible, but the delayed effect one and two years later is stronger

during the ELB periods than outside them. Like for the U.S., there is a stronger delayed

effect of UMP on inflation in Japan. Turning to the policy effect on output, we see that

UMP is more than 50 percent weaker on impact, but catches up within one year, and stays

stronger two years out. So, unlike the U.S., where UMP has smaller effects on output at all

horizons, in Japan, this is not the case.15

15The estimation results for Japan are based on a second-order VAR selected by the AIC and the sequential
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Figure 8: Responses to monetary policy shock in Japan over time

Note: Identified sets of (cumulative) impulse responses to a -25bps monetary policy shock at three different
horizons, on impact, one year out and two years out, estimated using a CKSVAR(2) model in inflation,
output gap, and the Call Rate for Japan over the period 1985q3-2019q1, identified by the sign restrictions
that the shock has nonnegative effects on inflation and output and nonpositive effects on the short rate up
to four quarters.

In sum, in the U.S. the response of inflation to UMP has been stronger than to con-

ventional policy one or two years ahead, while it has been weaker for output over the same

horizon. In Japan, UMP has had weaker effects than conventional policy on inflation and

output on impact, but has had stronger delayed effects on these variables. In general, the

findings show that the effects of UMP have been different across time, lending further sup-

port to our earlier finding that the ELB has been empirically relevant in both countries over

that period.16

5.4 Discussion

Our analysis of the Japanese data draws heavily on the seminal contribution of Hayashi and

Koeda (2019). Specifically, the use of trend growth that they proposed to control for the

LR tests. Because these criteria are known to lead to overfitting and our sample for Japan is relatively small
(34 years), we investigated the robustness of the above results to a first-order VAR, and found that our
conclusions continue to hold. The results are available through our replication code.

16Appendix F reports estimates of the shadow rate for Japan and the U.S. that can be interpreted as
indicators of the desired monetary policy stance in terms of the short-term interest rate during ELB regimes.
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decline in the short rate over our sample is essential to get a VAR that satisfies the sign

restrictions on the IRFs. There are several apparent methodological differences between our

papers. Hayashi and Koeda (2019) use monthly data over a shorter period 1992-2012, while

we use quarterly data from 1985 to 2019. They model QE via excess reserves and FG via an

exit condition on inflation, while we rely on the shadow rate to capture both forms of UMP

and other forms of UMP such as the purchases of long-term government bonds, motivated

by the theoretical model of Section 2. They use recursive identification as well as exclusion

restrictions on the dynamics of the policy reaction function, assuming that inflation and out-

put are predetermined, while we do not, and rely instead on sign restrictions and the changes

in the dynamics and variances across regimes for identification. However, these differences

are not as large as they appear. For example, their results show that inflation and output

are not predetermined at quarterly frequency, which is consistent with our findings, since

the identified impact effect of monetary policy easing on inflation and output is positive

within the quarter. Both models have regime-dependent decision rules that are fairly similar

when translated to quarterly frequency. Finally, even though they provide convincing doc-

umentation that an inflation exit condition fits better the narrative of Japanese monetary

policy over their sample period, the use of a Reifschneider and Williams (2000) FG rule ap-

pears nearly observationally equivalent to an inflation exit condition because of the relative

scarcity of movements in and out of the ELB regime over the sample. This explains why our

conclusions are broadly consistent with theirs.17

Finally, our theoretical model abstracts from possible negative effects of UMP such as

those of ‘the reversal interest rate’ (Brunnermeier and Koby, 2019), and our empirical anal-

ysis excludes those effects through sign restrictions. If we remove the sign restrictions during

ELB regimes and maintain them during non-ELB regimes, we can allow ξ to be negative,

which can capture policy reversals on impact. It turns out that removing the sign restrictions

during the ELB periods does not affect the identified set for ξ for the impulse responses for

the U.S., while the effect for Japan is limited.18

17For example, the rejection of the irrelevance hypothesis (22) for Japan is due to both β̃ 6= 0 and C∗12 6= 0.
This accords with Hayashi and Koeda (2019), who report significant changes both in the constant term as
well as the coefficient on the lag of the policy variable across regimes.

18The identified set for ξ for Japan becomes [−0.08, 0.29], which includes negative responses of inflation
and output to a decrease in the shadow rate under the ELB (an expansionary UMP shock) on impact.
However, the delayed responses are not significantly affected, and thus any possible negative effects of UMP
are short-lived.
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6 Conclusion

The paper develops theoretical and empirical models to study the effectiveness of unconven-

tional monetary policy in the U.S. and Japan. The theoretical model allows the degree of

effectiveness of unconventional policy to range from being as effective as conventional policy

to being completely ineffective, and it provides theoretical underpinnings to the empirical

model and our approach to testing the ELB irrelevance hypothesis. The empirical analysis

is based on an agnostic structural VAR model that accounts for the ELB on the policy rate

and captures unconventional policy via the shadow rate. Our results provide strong evidence

against the hypothesis that the ELB is empirically irrelevant, and support the view that the

ELB has been an important constraint on monetary policy in both the U.S. and Japan.

However, our results also reveal strong delayed effects and country-specific differences in the

effect of unconventional policy relative to conventional policy.
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Appendix

A Theoretical Model

Appendix A presents a simple New Keynesian model with the ELB and UMP. The model is a version of a
preferred habitat model such as Chen et al. (2012), extended to incorporate two things: a rule for QE that is
operated using a shadow rate as policy guidance and FG in the spirit of Reifschneider and Williams (2000).
To keep the analysis focused on the salient features of the transmission mechanisms of UMP, the model
abstracts from capital accumulation and consumption habit formation. The model features two types of
unconventional monetary policies: QE – a central bank’s purchase of long-term government bonds, activated
when the economy hits the ELB; and FG. There are three shocks: a demand (preference) shock, a supply
(productivity) shock, and a monetary policy shock.

A.1 Model building blocks

A.1.1 Long-term bonds

There is a long-term government bond (consol bond). The long-term bond issued at time t yields µj−1

dollars at time t+ j over time. Let RL,t+1 denote the gross nominal rate from time t to t+ 1. The period-t
price of the bond issued at time t, PL,t, is defined as

PL,t = Et

(
1

RL,t+1
+

µ

RL,t+1RL,t+2
+

µ2

RL,t+1RL,t+2RL,t+3
+ ...

)
= Et

(
1

RL,t+1
+

µ

RL,t+1
PL,t+1

)
. (A.1)

The gross yield to maturity (or the long-term interest rate) at time t, R̄L,t is defined as

Et

(
1

R̄L,t
+

µ(
R̄L,t

)2 +
µ2(
R̄L,t

)3 + ...

)
= PL,t,

or

PL,t =
1

R̄L,t − µ
. (A.2)

Let BL,t|t−s denote period-t bond holdings issued at time t− s. Suppose that a household owns BL,t|t−s
for s = 1, 2, ... in the beginning of period t. The total amount of dividends the household receives in period
t is

∞∑
s=1

µs−1BL,t|t−s.

Note that having one unit of BL,t|t−s is equivalent to having µs−1 units of BL,t|t−1 because they both yield

µs−1 dollars. The total amount of dividends then can be expressed in terms of BL,t|t−1 as

∞∑
s=1

µs−1BL,t|t−s ≡ BL,t−1,

where BL,t−1 denotes the amount of bonds in units of the bonds issued at time t− 1, held by the household
in the beginning of period t. Let PL,t|t−s denote the time-t price of the bond issued at time t− s. Then, the
value of all the bonds at time t is

∞∑
s=1

PL,t|t−sBL,t|t−s

Each price satisfies

PL,t|t−s = Et

(
µs

RL,t+1
+

µs+1

RL,t+1RL,t+2
+

µs+2

RL,t+1RL,t+2RL,t+3
+ ...

)
= µsPL,t
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Then the value of all the bonds at time t is
∞∑
s=1

PL,t|t−sBL,t|t−s = PL,tµ

∞∑
s=1

µs−1BL,t|t−s = µPL,tBL,t−1.

So the return of holding BL,t−1 is given by the sum of dividends and the value of all the bonds as:

BL,t−1 + µPL,tBL,t−1 = (1 + µPL,t)BL,t−1 = PL,tR̄L,tBL,t−1 =
R̄L,t

R̄L,t − µ
BL,t−1.

A.1.2 Households

There are two types of households: unrestricted households (U-households) and restricted households (R-
households). U-households, with population ωu, can trade both short-term and long-term government bonds
subject to a transaction cost ζt per unit of long-term bonds purchased. R-households, with population
ωr = 1−ωu, can trade only long-term government bonds. For j = u, r, each household chooses consumption
cjt , hours worked hjt , the long-term government bond holdings BjL,t, and the short-term government bond

holdings BjS,t to maximize utility,

∞∑
t=0

βtjdt


(
cjt

)1−σ

1− σ
− ψ

(
hjt

)1+1/ν

1 + 1/ν

 ,
subject to: for a U-household,

Ptc
u
t +BuS,t + (1 + ζt)PL,tB

u
L,t = (1 + it−1)But−1 + PL,tR̄L,tB

u
L,t−1 +Wth

u
t − Tut + Πu

t ,

and for a R-household,

Ptc
r
t + PL,tB

r
L,t = PL,tR̄L,tB

r
L,t−1 +Wth

r
t − T rt + Πr

t ,

where Pt is the price level and it is the short-term interest rate. In addition R̄L,t denotes the gross yield to
maturity at time t on the long-term bond

R̄L,t =
1

PL,t
+ µ, 0 < µ ≤ 1.

The average duration of the bond is given by R̄L,t/
(
R̄L,t − µ

)
. There is a shock dt to the preference, and

it is given by:

dt =

{
ez
b
1ez

b
2 ...ez

b
t

1
for t ≥ 1
for t = 0

,

where zbt is a preference (demand) shock, which is assumed to follow an AR(1) process

zbt = ρbz
b
t−1 + εbt ,

with εbt ∼ i.i.d. N
(
0, σ2

b

)
.

We assume that the transaction cost of trading long-term bonds for the U-households is collected by
financial firms and redistributed as a lump-sum profits to the U-households. Under the assumption, the
transaction cost does not appear in the good market clearing condition, which is given by:

yt = ωuc
u
t + (1− ωu) crt . (A.3)

Arranging the first-order conditions of the U-household’s problem yields the following optimality condi-
tions:

wt = ψ (cut )
σ

(hut )
1/ν

, (A.4)

1 = Etβue
zbt+1

(
cut+1

cut

)−σ
1 + it
πt+1

, (A.5)

1 + ζt = Etβue
zbt+1

(
cut+1

cut

)−σ
RL,t+1

πt+1
, (A.6)
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where wt ≡ Wt/Pt denotes the real wage, πt ≡ Pt/Pt−1 denotes the inflation rate, and RL,t+1 denotes the
annual yield of the long-term bond between periods t and t+ 1, given by

RL,t+1 ≡
PL,t+1

PL,t
R̄L,t+1 =

PL,t+1

PL,t

(
1

PL,t+1
+ µ

)
=

1 + µPL,t+1

PL,t
.

Similarly, arranging the first-order conditions of the R-household’s problem yields

wt = ψ (crt )
σ

(hrt )
1/ν

, (A.7)

1 = Etβre
zbt+1

(
crt+1

crt

)−σ
RL,t+1

πt+1
, (A.8)

A.1.3 Firms

The firm sector consists of two types of firms: final good firms and intermediate goods firms. The problems
of these firms are standard except that the average discount rate between U-households and R-households
is used in discounting the profits of these firms. The profits need to be derived explicitly because one of the
two households’ budget constraints constitutes an equilibrium condition as well as a good market clearing
condition.

Competitive final good firms combine intermediate goods {yt (l)}1l=0 and produce the final good yt
according to

yt =

[∫ 1

0

yt (l)
1
λp dl

]λp
, λp > 1.

The demand function for the l-th intermediate good is given by

yt (l) =

(
Pt (l)

Pt

) λp
1−λp

yt.

Intermediate goods firms use labor and produce intermediate goods according to

yt (l) = ez
a
t ht (l)

θ
, 0 < θ ≤ 1.

where zat is a productivity shock, which is assumed to follow

zat = ρaz
a
t−1 + εat ,

with εat ∼ i.i.d. N
(
0, σ2

a

)
. Because there is no price dispersion in steady state, the aggregate output can be

expressed up to the first-order approximation as:

ŷt = zat + θĥt, (A.9)

where ŷt and ĥt denote the aggregate output and hours worked in terms of deviation from steady state. The
total cost of producing yt (l) is equal to

Wtht (l) = Wt

(
yt (l)

ez
a
t

) 1
θ

.

In each period, intermediate goods firms can change their price with probability ξ identically and inde-
pendently across firms and over time. For each l, the l-th intermediate good firm chooses the price, P̃t (l),
to maximize the discounted sum of profits,

max
P̃t(l)

Et

∞∑
s=0

(ξδ)
s

Λ̄t+s|t

[
Pt+s (l) yt+s (l)−Wt+s

(
yt+s (l)

ez
a
t+s

) 1
θ

]
,

subject to the demand curve,

yt+s(l) =

(
Pt+s (l)

Pt+s

) λp
1−λp

yt+s,
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where

δ = ωuβu + (1− ωu)βr,

Λ̄t+s|t ≡ dt+s|t
(
ωuΛut+s|t + (1− ωu) Λrt+s|t

)
,

Λjt+s|t =

(
cjt+s

cjt

)−σ
1

Pt+s
, dt+s|t =

{
1 if s = 0

ez
b
t+1ez

b
t+2 ...ez

b
t+s if s = 1, 2, ...

Pt+s (l) = P̃t(l)Π
p
t,t+s,

Πp
t+s|t =

{
1 if s = 0∏s
k=1(πt+k−1)ιp (π)

1−ιp if s = 1, 2, ...
.

Substituting the demand curve into the objective function yields

max
P̃t(l)

Et

∞∑
s=0

(ξδ)
s

Λ̄t+s|t

P̃t(l)Πp
t+s|t

(
P̃t(l)Π

p
t+s|t

Pt+s

) λp
1−λp

Yt+s −Wt+s

(
P̃t(l)Π

p
t+s|t

Pt+s

) λp

(1−λp)θ (
yt+s

ez
a
t+s

) 1
θ

 .
The first-order condition is

0 = Et

∞∑
s=0

(ξδ)
s

Λ̄t+s|t

[
1

1− λp
Πp
t+s|tyt+s (l)−Wt+s

λp
(1− λp) θ

(
yt+s (l)

ez
a
t+s

) 1
θ 1

P̃t(l)

]
.

Since P̃t (l) does not depend on l, index l is omitted hereafter. Define p̃t ≡ P̃t/Pt and

Π̃p
t+s|t =

{
1 if s = 0∏s
k=1

(πt+k−1)ιp (π)1−ιp

πt+k
if s = 1, 2, ...

The first-order condition can be transformed as

0 = Et

∞∑
s=0

(ξδ)
s

Λ̄t+sPt+s

[
1

1− λp

Πp
t+s|t

Pt+s

(
p̃tΠ̃

p
t+s|t

) λp
1−λp

yt+s

−Wt+s

Pt+s

λp
(1− λp) θ

(
p̃tΠ̃

p
t+s|t

) λp

(1−λp)θ
(
Yt+s

ez
a
t+s

) 1
θ 1

P̃t

]
,

The above equation can be written as:

p̃t =

(
λp
θ

ωuK
u
p,t + (1− ωu)Kr

p,t

ωuFup,t + (1− ωu)F rp,t

) (1−λp)θ
θ−λp

(A.10)

where for j = r and u

F jp,t = (cjt )
−σyt + ξδEte

zbt+1(Π̃p
t+1|t)

1
1−λp F jp,t+1, (A.11)

Kj
p,t = (cjt )

−σ
( yt
ez
a
t

) 1
θ

wt + ξδEte
zbt+1(Π̃p

t+1|t)
λp

(1−λp)θKj
p,t+1. (A.12)

The aggregate price level evolves following

Pt =

[
ξ[(πt−1)ιp (π)

1−ιp Pt−1]
1

1−λp + (1− ξ)P̃
1

1−λp
t

]1−λp
,

which can be written as

p̃t =

1− ξ(Π̃p
t|t−1)

1
1−λp

1− ξ

1−λp

. (A.13)
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The conditions, (A.10)-(A.13), summarize the price setting behavior of intermediate goods firms.
The aggregate nominal profits earned by intermediate goods firms are given by:

Πm
t =

∫ 1

0

(
Pt (l) yt (l)−Wt

(
yt (l)

ez
a
t

) 1
θ

)
dl = Ptyt −Wt

( yt
ez
a
t

) 1
θ

,

where the last equality holds up to the first-order approximation. Then, the aggregate real profits are given

by πmt = yt − wt
(
yt/e

zat
)1/θ

.

A.1.4 Government

The government flow budget constraint is

(1 + it−1)BS,t−1 + (1 + µPL,t)BL,t−1 = BS,t + PL,tBL,t + Tt,

where Tt = ωuT
u
t + (1− ωu)T rt . We assume that the lump-sum tax is imposed on households equally so

that Tut = T rt = Tt. To focus on the role of long-term government bonds, we assume that the amount of
short-term bonds issued is constant at bS,t ≡ BS,t/Pt = b̄S .

A.1.5 Central bank

The nominal interest rate it set by the central bank is bounded below by the ELB of zero,

it = max {i∗t , i} (A.14)

where i is the ELB and i∗t is a shadow rate – the short-term rate the central bank would set if there were no
ELB. The shadow rate i∗t is given by19

i∗t = iTaylor
t − α

(
it − iTaylor

t

)
. (A.15)

The shadow rate i∗t consists of two parts: iTaylor
t and α(it − iTaylor

t ). First, iTaylor
t is the Taylor-rule-based

rate that responds to inflation πt, output yt, and the lagged ‘effective’ interest rate (1− λ∗)it−1 + λ∗i∗t−1:

iTaylor
t − i = ρi

(
(1− λ∗)it−1 + λ∗i∗t−1 − i

)
+ (1− ρi) [rπ log (πt/π) + ry log (yt/y)] + εit, (A.16)

where εit is a monetary policy shock and variables without subscripts denote those in steady state. The

parameter λ∗ will be derived later in this appendix. Second, α(it − iTaylor
t ) in equation (2) encapsulates the

strength of FG. A positive value for α will maintain the target rate i∗t below the Taylor rate iTaylor
t . Under

the ELB of it = 0, the more the central bank has missed to set the interest rate at its Taylor rate, the lower
the central bank sets its target rate i∗t through equation (2) as long as ρiλ

∗ > 0 in equation (A.16).20

The central bank activates QE – long-term government bond purchases – once the economy hits the
ELB. The central bank continues using the shadow rate as policy guidance under the ELB as in the case of
positive interest rates. Specifically, the amount of long-term bond purchases depends on the shadow rate,
and as a result the amount of long-term government bonds, bL,t ≡ BL,t/Pt, held by the private agents is
given by:

b̂L,t =

{
0

γ
i∗t−i
1+i

if i∗t ≥ i
if i∗t < i

, (A.17)

where a variable with hat denotes a deviation from steady state. This QE rule implies that asset purchases
by the central bank is zero (relative to the steady state) when the ELB is not binding (i.e. it = i∗t ≥ i) and,

given γ > 0, such purchases are positive (i.e. b̂L,t < 0) when the shadow rate goes below zero (i.e. i∗t < i).

19Reifschneider and Williams (2000) employs the following rule: i∗t = iTaylor
t − αZt and Zt = ρZZt−1 +

(it − iTaylor
t ) with ρZ = 1.

20Debortoli et al. (2019) consider the case of α = 0 and λ∗ = 1 in equation (A.16) and interpret ρi – the
interest rate smoothing coefficient – as FG when i∗t is below the ELB.
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A.1.6 Market clearing and equilibrium

As well as the goods market clearing condition (A.3), there are market clearing conditions for labor, long-term
government bonds, and short-term government bonds:

ωuh
u
t + (1− ωu)hrt = ht, (A.18)

ωub
u
L,t + (1− ωu) brL,t = bL,t, (A.19)

ωub
u
S,t = bS,t (A.20)

Also, either the U-household’s budget constraint or the R-household’s budget constraint should be added as
an equilibrium condition. Here the latter budget constraint is added:

crt + PL,tb
r
L,t =

(
R̄L,t/πt

)
PL,tb

r
L,t−1 + wth

r
t − T rt /Pt + Πr

t/Pt, (A.21)

where

T rt
Pt

= − (bS,t + PL,tbL,t) +
1 + it−1

πt
bS,t−1 +

1 + µPL,t
πt

bL,t−1,

Πr
t

Pt
= yt − wtht.

The cost of trading long-term bonds, ζt, is specified as

ζt
ζ

=

(
bL,t
bL

)ρζ
, ρζ > 0. (A.22)

The trading cost is increasing in the amount of long-term bonds relative to its steady state value. The
trading cost is ζ in steady state.

The system of equations for the economy consists of 19 equations, (A.3)-(A.21), with the following
endogenous variables:

cut , c
r
t , h

u
t , h

r
t , ht, b

u
L,t, b

r
L,t, bL,t, b

u
t , yt, wt, it, i

∗
t , i

Taylor
t , RL,t, πt, p̃t, F

j
p,t,K

j
p,t.

A.2 Log-linearized equations

We log-linearize the equilibrium conditions of the theoretical model presented in Appendix A.1 around the
steady state in which inflation is equal to the target rate of inflation set by the central bank. By doing
so, we derive key equations in the system of equations (1)-(16) presented in Section 2. We also derive a
log-linearized equation for the long-term yield.

Euler equation Log-linearizing equations (A.3), (A.5), (A.6), (A.8), and (A.22), we obtain21

ŷt =
ωuc

u

y
ĉut +

(1− ωu) cr

y
ĉrt . (A.23)

0 = Et
[
−σ
(
ĉut+1 − ĉut

)
+ ı̂t − π̂t+1 + zbt+1

]
, (A.24)

ζ

1 + ζ
ζ̂t = Et

[
−σ
(
ĉut+1 − ĉut

)
+ R̂L,t+1 − π̂t+1 + zbt+1

]
, (A.25)

0 = Et

[
−σ
(
ĉrt+1 − ĉrt

)
+ R̂L,t+1 − π̂t+1 + zbt+1

]
, (A.26)

ζ̂t = ρζ b̂L,t (A.27)

Equation (A.23) can be written as:

ĉut =
y

ωucu

{
ŷt −

(1− ωu) cr

y
ĉrt

}
.

21The variable î represents the deviation of the gross interest rate from the steady state.
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Subtracting ĉut+1 from ĉut yields:

ĉut+1 − ĉut =
y

ωucu

{
ŷt+1 − ŷt −

(1− ωu) cr

y

(
ĉrt+1 − ĉrt

)}
,

=
y

ωucu

ŷt+1 − ŷt −
(1− ωu) cr

y

(
R̂L,t+1 − π̂t+1 + zbt+1

)
σ

 , (A.28)

where equation (A.26) was used in the second equality. Substituting equation (A.28) into equation (A.24)
yields:

0 = Et
[
−σ
(
ĉut+1 − ĉut

)
+ ı̂t − π̂t+1 + zbt+1

]
,

= Et

− σy

ωucu
(ŷt+1 − ŷt) +

σy

ωucu
(1− ωu) cr

y

(
R̂L,t+1 − π̂t+1 + zbt+1

)
σ

+ı̂t − π̂t+1 + zbt+1

]
,

or, by using equation (A.3) in steady state,

0 = Et

[
−σ (ŷt+1 − ŷt) +

(1− ωu) cr

y
R̂L,t+1 +

ωuc
u

y
ı̂t − π̂t+1 + zbt+1

]
. (A.29)

Equation (A.29) shows that the interest rate relevant to the aggregate variables such as output and inflation

is the weighted sum of the return of holding the long-term bonds R̂L,t+1 and the short-term interest rate ît.
Also, substituting equation (A.28) into equation (A.25) yields:

ζ

1 + ζ
ζ̂t = Et

[
−σ
(
ĉut+1 − ĉut

)
+ R̂L,t+1 − π̂t+1

]
= Et

−σ y

ωucu

ŷt+1 − ŷt −
(1− ωu) cr

y

(
R̂L,t+1 − π̂t+1 + zbt+1

)
σ


+R̂L,t+1 − π̂t+1 + zbt+1

]
,

= Et

[
− σy

ωucu
(ŷt+1 − ŷt) +

y

ωucu

(
R̂L,t+1 − π̂t+1 + zbt+1

)]
,

or, substituting out ζ̂t by using equation (A.27) yields

Et

(
R̂L,t+1 − π̂t+1

)
= σEt (ŷt+1 − ŷt)− Et

(
zbt+1

)
+
ωuc

u

y

ζ

1 + ζ
ρζ b̂L,t. (A.30)

Combining equations (A.29) and (A.30) yields:

0 = Et

[
−σ (ŷt+1 − ŷt) +

(1− ωu) cr

y
R̂L,t+1 +

ωuc
u

y
ı̂t − π̂t+1 + zbt+1

]
= Et

[
−σ (ŷt+1 − ŷt) +

(1− ωu) cr

y

(
σ (ŷt+1 − ŷt)− zbt+1 +

ωuc
u

y

ζ

1 + ζ
ρζ b̂L,t + π̂t+1

)
+
ωuc

u

y
ı̂t − π̂t+1 + zbt+1

]
= Et

[
−ωuc

uσ

y
(ŷt+1 − ŷt) +

ωuc
u

y
ı̂t −

ωuc
u

y

(
π̂t+1 − zbt+1

)
+

(1− ωu) cr

y

ωuc
u

y

ζ

1 + ζ
ρζ b̂L,t

]
,

or

0 = Et

[
−σ (ŷt+1 − ŷt) + ı̂t − π̂t+1 + zbt+1 +

(1− ωu) cr

y

ζ

1 + ζ
ρζ b̂

]
,
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or

ŷt = Etŷt+1 −
1

σ

(
ı̂t − Etπ̂t+1 + Etz

b
t+1

)
− 1

σ

(1− ωu) cr

y

ζ

1 + ζ
ρζ b̂L,t

= Etŷt+1 −
1

σ
(̂ıt − Etπ̂t+1)− 1

σ

(1− ωu) cr

y

ζ

1 + ζ
ρζ b̂L,t −

ρb
σ
zbt .

This equation shows that the central bank’s government bond purchase – a decrease in b̂L,t – stimulates

output, given Etŷt+1 and the real rate ît − Etπ̂t+1. Since b̂L,t follows the simple rule (A.17), the equation
can be written as equation (12), which is reproduced here for convenience:

ŷt = Etŷt+1 −
1

σ

(
(1− λ∗)̂it + λ∗î∗t − Etπ̂t+1

)
− χbzbt (A.31)

where

λ∗ =
(1− ωu) cr

y

ζ

1 + ζ
ρζγ

χb =
ρb
σ

(A.32)

The case of λ∗ = 1 (and α = 0) corresponds to the fully effective UMP, which makes the ELB irrelevant.
Such a case can be achieved, e.g. when the central bank responds to the shadow rate aggressively enough to
satisfy

γ =

[
(1− ωu) cr

y

ζ

1 + ζ
ρζ

]−1

.

Phillips curve The Phillips curve can be derived from equations (A.10)-(A.13). Log-linearizing equation
(A.13) yields: ̂̃pt = − ξ

1− ξ
̂̃Πp

t|t−1, (A.33)

where ̂̃Πp

t|t−1 = (1− νp) π̂t−1 − π̂t.

Loglinearizing equation (A.10) yields:

θ − λp
(1− λp) θ

̂̃pt =
ωuK

u
p

ωuKu
p + (1− ωu)Kr

p

K̂u
p,t +

(1− ωu)Kr
p

ωuKu
p + (1− ωu)Kr

p

K̂r
p,t

−
ωuF

u
p

ωuFup + (1− ωu)F rp
F̂up,t −

(1− ωu)F rp
ωuFup + (1− ωu)F rp

F̂ rp,t. (A.34)

Combining equations (A.33) and (A.34) leads to:

− ξ

1− ξ
θ − λp

(1− λp) θ
[(1− νp) π̂t−1 − π̂t] =

ωuK
u
p

ωuKu
p + (1− ωu)Kr

p

K̂u
p,t +

(1− ωu)Kr
p

ωuKu
p + (1− ωu)Kr

p

K̂r
p,t

−
ωuF

u
p

ωuFup + (1− ωu)F rp
F̂up,t −

(1− ωu)F rp
ωuFup + (1− ωu)F rp

F̂ rp,t. (A.35)

Log-linearizing equation (A.11) and (A.12) yields:

F̂ jp,t = (1− ξδ)
(
−σĉjt + ŷt

)
+ ξδEt

(
zbt+1 +

1

1− λp
̂̃Πp

t+1|t + F̂ jp,t+1

)
,

K̂j
p,t = (1− ξδ)

(
−σĉjt +

1

θ
ŷt −

1

θ
zat + ŵt

)
+ ξδEt

(
zbt+1 +

λp
(1− λp) θ

̂̃Πp

t+1|t + K̂j
p,t+1

)
,
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for j = r and u. The term involving F̂up,t and F̂ rp,t in equation (A.35) is calculated as follows.

ωuF
u
p

ωuFup + (1− ωu)F rp
F̂up,t +

(1− ωu)F rp
ωuFup + (1− ωu)F rp

F̂ rp,t

= (1− ξδ)
(
−σ

ωuF
u
p ĉ

u
t + (1− ωu)F rp ĉ

r
t

ωuFup + (1− ωu)F rp
+ ŷt

)
+ ξδEt

(
zbt+1 +

1

1− λp
̂̃Πp

t+1|t +
ωuF

u
p

ωuFup + (1− ωu)F rp
F̂up,t+1 +

(1− ωu)F rp
ωuFup + (1− ωu)F rp

F̂ rp,t+1

)
.

Similarly, the term involving K̂u
p,t and K̂r

p,t in equation (A.35) is calculated as:

ωuK
u
p

ωuKu
p + (1− ωu)Kr

p

K̂u
p,t +

(1− ωu)Kr
p

ωuKu
p + (1− ωu)Kr

p

K̂r
p,t

= (1− ξδ)
(
−σ

ωuK
u
p ĉ
u
t + (1− ωu)Kr

p ĉ
r
t

ωuKu
p + (1− ωu)Kr

p

+
1

θ
ŷt −

1

θ
zat + ŵt

)
+ ξδEt

(
zbt+1 +

λp
(1− λp) θ

̂̃Πp

t+1|t +
ωuK

u
p

ωuKu
p + (1− ωu)Kr

p

K̂u
p,t+1 +

(1− ωu)Kr
p

ωuKu
p + (1− ωu)Kr

p

K̂r
p,t+1

)
.

Let the right-hand-side of equation (A.35) denote as X̂t. Then, using the above relationships just derived,

X̂t can be written as:

X̂t = (1− ξδ)
[(

1

θ
− 1

)
ŷt −

1

θ
zat + ŵt

]
+ ξδEt

(
− λp − θ

(λp − 1) θ
̂̃Πp

t+1|t + X̂t+1

)
Because X̂t is the right-hand-side of equation (A.35), equation (A.35) can be written as:

− ξ

1− ξ
λp − θ

(λp − 1) θ
[(1− νp) π̂t−1 − π̂t] = (1− ξδ)

[(
1

θ
− 1

)
ŷt −

1

θ
zat + ŵt

]
+ ξδEt

(
− λp − θ

(λp − 1) θ
̂̃Πp

t+1|t −
ξ

1− ξ
λp − θ

(λp − 1) θ
[(1− νp) π̂t − π̂t+1]

)
,

or

π̂t =
ξ (1− νp)

(ξ + 1− νp)
π̂t−1 +

(1− ξδ) (1− ξ) (λp − 1) θ

(λp − θ) (ξ + 1− νp)

[(
1

θ
− 1

)
ŷt −

1

θ
zat + ŵt

]
+

ξδ

(ξ + 1− νp)
Etπ̂t+1.

From equations (A.4) and (A.7), the wage ŵt can be written as:

ŵt = ωu

(
σĉut +

1

ν
ĥut

)
+ (1− ωu)

(
σĉrt +

1

ν
ĥrt

)
,

= σŷt +
1

ν
ĥt =

(
σ +

1

νθ

)
ŷt −

1

νθ
zat ,

where the market clearing conditions (A.3) and (A.18) were used in the second equality and the production
function (A.9) was used in the third equality. Since cu = cr is assumed, the second equality holds. By using
the expression for ŵt, the Phillips curve can be written as

π̂t =
ξ (1− νp)

(ξ + 1− νp)
π̂t−1

+
(1− ξδ) (1− ξ) (λp − 1) θ

(λp − θ) (ξ + 1− νp)

[
ν + νθ (σ − 1) + 1

νθ
ŷt −

1 + ν

νθ
zat

]
+

ξδ

(ξ + 1− νp)
Etπ̂t+1.

In the case of no price indexation to the past inflation rate and a linear production function, that is, in the
case of νp = 1 and θ = 1, the Phillips curve is collapsed to the standard form:

π̂t =
(1− ξδ) (1− ξ)

ξ

(
σ +

1

ν

)
ŷt + δEtπ̂t+1 −

(1− ξδ) (1− ξ)
ξ

1 + ν

ν
zat .
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This completes the derivation of equation (16) where

κ =
(1− ξδ) (1− ξ)

ξ

(
σ +

1

ν

)
, (A.36)

χa =
(1− ξδ) (1− ξ)

ξ

1 + ν

ν
. (A.37)

Long-term yield From equations (A.29) and (A.31), the interest rate relevant to the aggregate variables
has the following equality:

(1− ωu)cr

y
EtR̂L,t+1 +

ωuc
u

y
ît = (1− λ∗)̂it + λ∗î∗t . (A.38)

This equation can be written as

EtR̂L,t+1 =

{
î∗t î∗t ≥ î

λ∗y
(1−ωu)cr î

∗
t + (1−λ∗)y−ωucu

(1−ωu)cr î î∗t < î
(A.39)

By using RL,t+1 = R̄L,t+1(R̄L,t−µ)/(R̄L,t+1−µ), which relates the return of holding long-term bonds R̂L,t+1

to the long-term yield ˆ̄RL,t, the long-term yield can be written as

ˆ̄RL,t =
R̄L − µ
R̄L

EtR̂L,t+1 +
µ

R̄L
Et

ˆ̄RL,t+1, (A.40)

where R̄L > µ in steady state. Substitution equation (A.39) into equation (A.40) yields

ˆ̄RL,t =


R̄L−µ
R̄L

î∗t + µ
R̄L
Et

ˆ̄RL,t+1 î∗t ≥ î
R̄L−µ
R̄L

[
yλ∗

(1−ωu)cr î
∗
t + (1−λ∗)y−ωucu

(1−ωu)cr î
]

+ µ
R̄L
Et

ˆ̄RL,t+1 î∗t < î
(A.41)

Equation (A.41) shows that the long-term yield is the discounted sum of the current and future short-term
returns, where the short-term return is given by the shadow rate in the non-ELB regime and it is given by
the first two terms in the square brackets in (A.41) in the ELB regime.

A.3 Parameterization of the model

Instead of parameterizing the model presented in Appendix A.1, we parameterize the system of log-linearized
equations (1)-(16). It is worth emphasizing that the parameterized model is used for illustrating the impli-
cations of the theoretical model, and not for deriving quantitative implications, which would require a more
complex system.

The relative risk aversion σ is set at σ = 2. The discount factor is set close to unity at δ = 0.997.
The slope of the Phillips curve κ is set at κ = 0.336 using equation (A.36) with the Calvo parameter of
ξ = 0.75 and the Frisch labor elasticity of ν = 0.5. In the monetary policy rule, the persistence parameter
is set at ρi = 0.7; the inflation coefficient is set at rπ = 1.5; the output coefficient is set at ry = 0.5. The
AR(1) coefficients for the supply and demand shocks are set at ρa = ρb = 0.9, and the coefficients χb and
χa are set according to equations (A.32) and (A.37), respectively. The term premium in steady state is set
at ζ = 0.01/4. We change UMP parameters, λ∗ and α, to numerically examine the effects of UMP.

A.4 Proof of Proposition 1

Part (i) Because of the equivalence established in Lemma 1, without loss of generality, consider the case of

λ∗ = 1 and α = 0 in the theoretical model. In this case, the variables ŷt, π̂t, and î∗t have a closed system of

equations, consisting of equation (12) with λ∗ = 1, equation (16), and î∗t = îTaylor
t , where îTaylor

t is given by
equation (3).
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In this case, the state of the economy in period t can be summarized by î∗t−1, εit, z
a
t , and zbt . Then

decision rules for ŷt and π̂t have the following form:

ŷt = dyi∗ î
∗
t−1 + dyiε

i
t + dyaz

a
t + dybz

b
t ,

π̂t = dπi∗ î
∗
t−1 + dπiε

i
t + dπaz

a
t + dπbz

b
t ,

with coefficients {dyi∗ , dyi, dya, dyb, dπi∗ , dπi, dπa, dπb} uniquely determined under standard assumptions of

the model (such as the Taylor principle). With these decision rules, the equation for î∗t can be written as

î∗t = [ρi + (1− ρi) (rπdπi∗ + rydyi∗)] î∗t−1 + [(1− ρi) (rπdπi + rydyi) + 1] εit

+(1− ρi) (rπdπa + rydya) zat + (1− ρi) (rπdπb + rydyb) z
b
t

=di∗i∗ î
∗
t−1 + di∗iε

i
t + di∗az

a
t + di∗bz

b
t . (A.42)

Let yt ≡ [ŷt, π̂t, î
∗
t ]
′ denote the vector of endogenous variables. The decision rule implies

yt =

dyi∗ dyi dya dyb
dπi∗ dπi dπa dπb
di∗i∗ di∗i di∗a di∗b


 i∗t−1

εit
ρaz

a
t−1 + εat

ρbz
b
t−1 + εbt


=

dyi∗ ρadya ρbdyb
dπi∗ ρadπa ρbdπb
di∗i∗ ρadi∗a ρbdi∗b

i∗t−1

zat−1

zbt−1

+

dyi dya dyb
dπi dπa dπb
di∗i di∗a di∗b

εitεat
εbt


=Cxt−1 + Dεt. (A.43)

The law of motion for xt ≡ [̂i∗t , z
a
t , z

b
t ]
′ is:

xt =

di∗i∗ ρadi∗a ρbdi∗b
0 ρa 0
0 0 ρb

xt−1 +

di∗i di∗a di∗b
0 1 0
0 0 1

 εt
=Axt−1 + Bεt. (A.44)

Solving equation (A.43) for εt, and substituting the outcome in equation (A.44) yields:

xt =
(
A−BD−1C

)
xt−1 + BD−1yt.

If A−BD−1C = 0, the vector of endogenous variables, yt, has a VAR(1) representation:

yt = CBD−1yt−1 + Dεt.

The rest of the proof shows A −BD−1C = 0. Substituting the matrices A and B in equation (A.44) into
this condition yields:

D−1C =

di∗i∗/di∗i 0 0
0 ρa 0
0 0 ρb

 .
Further substituting the matrices C and D in equation (A.43) into this condition leads to: A−BD−1C = 0
if and only if dyi∗ = dyi (di∗i∗/di∗i) and dπi∗ = dπi (di∗i∗/di∗i). Substituting the decision rules into equations
(12) yields:

ŷt =

(
dyi∗ −

1

σ
+
dπi
σ

)
di∗i∗ î

∗
t−1 +

(
dyi∗ −

1

σ
+
dπi
σ

)
di∗iε

i
t + ...,

where terms related to zat and zbt are omitted. Matching coefficients on î∗t−1 and εit of both sides of the
equation yields:

dyi∗ =

(
dyi∗ −

1

σ
+
dπi
σ

)
di∗i∗ ,

dyi =

(
dyi∗ −

1

σ
+
dπi
σ

)
di∗i.
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These two equations imply dyi∗ = dyi (di∗i∗/di∗i). Next, substituting the decision rules into equation (16)
yields:

π̂t = (δdπi∗ + κdyi∗) î∗t−1 + (δdπi∗di∗i + κdyi) ε
i
t + ...,

where terms related to zat and zbt are omitted. Matching coefficients on î∗t−1 and εit of both sides of the
equation yields:

dπi∗ =δdπi∗ + κdyi

(
di∗i∗

di∗i

)
,

dπi =δdπi∗di∗i + κdyi,

where dyi∗ = dyi (di∗i∗/di∗i) is used in the first equation. Solving these two equations for dπi∗ yields
dπi∗ = dπi (di∗i∗/di∗i).

Part (ii) Again, without loss of generality, consider the case of λ∗ = 1 and α = 0. Under Assumption 1 and
the irrelevance hypothesis, the long-term yield can be written as (15) with λ∗ = 1 as

ˆ̄RL =
R̄L − µ
R̄L

î∗t +
µ

R̄L
Et

ˆ̄RL,t+1.

Solving this equation forward yields

ˆ̄RL,t =

(
R̄L − µ
R̄L

)
Et

[
î∗t +

µ

R̄L
î∗t+1 +

(
µ

R̄L

)2

î∗t+2 + ...

]
.

Because the right-hand-side of the equation depends on information in period t, which consist of î∗t , z
a
t , and

zbt , the long-term interest rate can be written as:

ˆ̄RL,t = fi∗ î
∗
t + faz

a
t + fbz

b
t ,

where fi∗ , fa, and fb are coefficients derived by using equation (A.42) as

fi∗ =
R̄L − µ

R̄L − di∗i∗µ
,

fa =
(R̄L − µ)di∗aρaµ

(R̄L − ρaµ)(R̄L − di∗i∗µ)
,

fb =
(R̄L − µ)di∗bρbµ

(R̄L − ρbµ)(R̄L − di∗i∗µ)
.

Again by using equation (A.42) the equation for the long-term yield can be written as:

ˆ̄RL,t = fi∗di∗i∗ î
∗
t−1 + fi∗di∗iε

i
t + (fi∗di∗a + fa) zat + (fi∗di∗b + fb) z

b
t .

Define yt ≡ [ŷt, π̂t,
ˆ̄RL,t]

′, xt ≡ [̂i∗t−1, z
a
t , z

b
t ]
′, and εt = [εit, ε

a
t , ε

b
t ]
′. Then, the state space representation for y

is

yt =

 dyi∗ ρadya ρbdyb
dπi∗ ρadπa ρbdπb

fi∗di∗i∗ ρa(fi∗di∗a + fa) ρb(fi∗di∗b + fb)

xt +

 dyi dya dyb
dπi dπa dπb

fi∗di∗i fi∗di∗a + fa fi∗di∗b + fb

 εt
=Cxt−1 + Dεt.

and

xt =

di∗i∗ ρadi∗a ρbdi∗b
0 ρa 0
0 0 ρb

xt−1 +

di∗i di∗a di∗b
0 1 0
0 0 1

 εt
=Axt−1 + Bεt.

Similar to the part (i) in Proposition 1, a solution for yt can have a VAR(1) representation if and only if
A−BD−1C = 0. This condition holds if and only if dyi∗ = dyi(di∗i∗/di∗i) and dπi∗ = dπi(di∗i∗/di∗i). The
latter two conditions hold as shown in Part (i).
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A.5 Proof of Proposition 2

We show that equations (1), (2), (3), (12), and (16) can be written in the empirical structural form of
equations (17a), (17b), and (17c). This will prove the proposition since the structural form has a piecewise
linear representation, as explained in the main text. It is straightforward to see that equations (1), (2), and
(3) in the theoretical model can be written in the form of equations (17a) and (17b) in the empirical model.
Below, we are going to show that equations (12) and (16) can be represented by the structural form equation
(17c).

Without loss of generality, consider a case in which agents forming expectations assuming: λ∗ = 1
and α = 0. When forming expectations about variables in period t + 1, the initial condition is given by
x̃t ≡ [(1− λ∗)̂it + λ∗î∗t , z

a
t , z

b
t ]
′. Under Assumption 2, the decision rule used for forming expectations about

period t+1 variables is yt+1 = Cx̃t+Dεt+1, where C and D are those defined in equation (A.43). From period
t+ s onward, for s = 2, 3, ..., time t+ s variables are expected in period t to follow yt+s = Cxt+s−1 + Dεt+s,

where xt ≡ [̂i∗t , z
a
t , z

b
t ]
′. But, once the time proceeds and becomes period t+1, the initial condition is updated

to x̃t+1 and this is used for forming expectations about t+ 2 variables as Et+1yt+2 = Cx̃t+1. Hence, under
the assumption about expectations, the decision rule is given by yt+s = Cx̃t+s−1 + Dεt+s for s = 1, 2, ... In
this system, in every period information is updated and x̃t+s−1 is used as an initial condition. The interest

rate ît+s−1 in the initial condition is treated as if it were an exogenous variable.
By substituting the decision rule into the expected variables, equations (12) and (16) can be written as:

ŷt =

(
− 1

σ
+ dyi∗ +

dπi∗

σ

)(
(1− λ∗)̂it + λ∗î∗t

)
+

(
ρadya +

ρadπa
σ

)
zat +

(
ρbdyb +

ρbdπb
σ
− χz

)
zbt , (A.45)

− κyt + π̂t = δdπi∗
(

(1− λ∗)̂it + λ∗î∗t

)
+ (δρadπa − χa)zat + δρbdπbz

b
t . (A.46)

Since zat and zbt follow AR(1) processes, equations (A.45) and (A.46) can be written in a matrix form as:

H1

[
ŷt
π̂t

]
= H2

(
(1− λ∗)̂i+ λ∗î∗t

)
+ H3

[
zat−1

zbt−1

]
+ H4

[
εat
εbt

]
.

or [
ŷt
π̂t

]
= H−1

1 H2

(
(1− λ∗)̂i+ λ∗î∗t

)
+ H−1

1 H3

[
zat−1

zbt−1

]
+ H−1

1 H4

[
εat
εbt

]
. (A.47)

Also, under Assumption 2, the expected values can be written as: Etỹt+1 = Gỹt, where ỹt ≡ [ŷt, π̂t, (1 −
λ∗)̂it + λ∗î∗t ]

′ and G ≡ CBD−1, as derived in the proof of Proposition 1. By using this equation, equations
(12) and (16) can be written as:

χzz
b
t =

(
gyy +

gπy
σ
− 1
)
ŷt +

(
gyπ +

gππ
σ

)
π̂t +

(
gyi∗ +

gπi∗

σ
− 1

σ

)(
(1− λ∗)̂it + λ∗î∗t

)
,

χaz
a
t = (δgπy + κ) ŷt + (δgππ − 1) π̂t + δgπi∗

(
(1− λ∗)̂it + λ∗î∗t

)
,

where gij ’s correspond to elements in the matrix G. Then, the lagged shocks zbt−1 and zat−1 in equation

(A.47) can be represented by a function of ỹt−1 ≡ [ŷt−1, π̂t−1, (1 − λ∗)̂it−1 + λ∗î∗t−1]′. From this result,
equation (A.47) is in the same form of equation (17c) in the structural form.

A.6 Impulse responses to demand and supply shocks

We study impulse responses to a demand shock and a supply shock, respectively, under the ELB, using the
theoretical model presented in Section 2. We show that the responses differ significantly depending on the
effectiveness of UMP.

Figure 9 plots impulse responses of output and inflation in the theoretical model to the contractionary
demand shock of εbt = 0.25/400 under the ELB. The responses are calculated exactly in the same way as
those to a monetary policy shock, shown in Figure 2. In the case of no UMP (ξ = 0), a negative demand
shock causes the largest declines in output and inflation. As the effectiveness of UMP increases, i.e., as ξ
increases, the negative responses of output and inflation become smaller.
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Figure 9: Impulse responses to a demand shock at the ELB

Figure 10: Impulse responses to a supply shock at the ELB

Figure 10 plots impulse responses of output and inflation to the negative supply shock of εat = −0.25/100
under the ELB. In the case of fully effective UMP (ξ = 1), output decreases and inflation increases in response
to the negative supply shock, as in the responses in the non-ELB regime. However, as the effectiveness of
UMP decreases, the degree of a decrease in output shrinks, and output even increases on impact in response
to the negative supply shock in the case of no UMP (ξ = 0). This is driven by a stronger increase in inflation
under the ELB. Such an increase in inflation mitigates the negative impact of the ELB on output. This
effect dominates the direct effect of the negative supply shock, resulting in an increase in output on impact.

While we exclusively focus on monetary policy shocks in this paper, the same comovement of the variables
in response to supply and demand shocks when the economy approaches the ELB would pose a challenge
for identifying the responses to demand and supply shocks.

B Derivation of the attenuation effect (24)

Start from the definition of the IRF to the monetary policy shock ε̄2t := A∗−1
22 ε2t.

22 This is a function of the
shock magnitude ς and horizon h:

IRFh,t (ς) = E (Y1t+h|ε̄2t = ς, xt)− E (Y1t+h|ε̄2t = 0, xt) , (B.1)

22Note that the derivation of (24) remains the same if we worked with perturbations to ε2t instead of ε̄2t,
but we choose the latter to avoid carrying A∗22 around in the derivations.
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where xt = (x′1t, x2t)
′
, xit := CiXt + C∗iX

∗
t embodies all the relevant history of Yt up to period t− 1.23 We

only need to discuss the impact effects, so we set h = 0 in (B.1) and write IRF0,t (ς) = g (ς;xt)− g (0;xt) ,
where

g (ς;xt) := E (Y1t|ε̄2t = ς, xt) . (B.2)

Note that, despite the kink in the model, the fact that we are taking expectations with respect to the
remaining shocks ε̄1t := A−1

11 ε1t implies that the function g is smooth in both arguments.So, we can consider

infinitesimal interventions by computing limς→0
g(ς;xt)−g(0;xt)

ς =: ∂g(ς;xt)
∂ς .

Let Dt = 1{i∗t<it} denote the indicator that interest rates are at the ELB. Then, using equation (19) we

obtain:

g (ς, xt) = C1Xt + C∗12X
∗
2t + E (u1t|ε̄2t = ς, xt)

− β̃E (Dt (C2Xt + C∗22X
∗
2t − it + u2t) |ε̄2t = ς, xt)

= x1t + (Ik−1 − βγ)
−1
βς − β̃E (Dt|ε̄2t = ς, xt)

(
x2t − it +

ς

1− γβ

)
− β̃E

(
γε̄1t

1− γβ
Dt

∣∣∣∣ ε̄2t = ς, xt

)
= x1t + (Ik−1 − βγ)

−1
βς − β̃Φ

(
it − x2t − ς

1−γβ

$

)(
x2t − it +

ς

1− γβ

)
+ β̃$φ

(
it − x2t − ς

1−γβ

$

)
. (B.3)

The second equality in equation (B.3) follows from the definitions of xit and the fact that:

u1t = (Ik−1 − βγ)
−1

(ε̄1t + βε̄2t) , and u2t :=
γε̄1t + ε̄2t

1− γβ
,

see (Mavroeidis, 2021, equations 32 and 33), and the third equality in equation (B.3) follows from:

E (Dt|ε̄2t = ς, xt) = Pr (u2t < it − x2t|ε̄2t = ς, xt)

= Pr

(
γε̄1t

1− γβ
< it − x2t −

ς

1− γβ

)
= Φ

(
b− x2t − ς

1−γβ

$

)
, $2 := var

(
γε̄1t

1− γβ

)
and

E

(
γε̄1t

1− γβ
Dt

∣∣∣∣ ε̄2t = ς, xt

)
= E

(
γε̄1t

1− γβ

∣∣∣∣ γε̄1t

1− γβ
< it − x2t −

ς

1− γβ
, ε̄2t = ς, xt

)
× Pr

(
γε̄1t

1− γβ
< it − x2t −

ς

1− γβ

∣∣∣∣ ε̄2t = ς, xt

)
= −$φ

(
it − x2t − ς

1−γβ

$

)
,

where the second equality in the last expression follows from the independence of ε̄1t from ε̄2t and xt, and
the properties of the truncated standard Normal distribution, i.e., E (z|z < a) = −φ (a) /Φ (a).

23xt is the sufficient statistic for the entire history of Yt in the conditional expectations, i.e.,
E (Yt+h|ε̄2t, Yt−1, Yt−2, ...) = E (Yt+h|ε̄2t, xt).
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Differentiating equation (B.3) with respect to ς yields:

∂g (ς, xt)

∂ς
= (Ik−1 − βγ)

−1
β − 1

1− γβ
β̃Φ

(
it − x2t − ς

1−γβ

$

)
+ β̃

1

1− γβ
φ

(
it − x2t − ς

1−γβ

$

)(
x2t − it + ς

1−γβ

$

)
+ β̃

1

1− γβ

(
it − x2t − ς

1−γβ

$

)
φ

(
it − x2t − ς

1−γβ

$

)
= (Ik−1 − βγ)

−1
β − 1

1− γβ
β̃Φ

(
it − x2t − ς

1−γβ

$

)
,

where the first equality follows from the fact that ∂φ (z) /∂z = −zφ (z) . Evaluating the above expression at
ς = 0 yields the impact effect of a small monetary policy shock on Y1t in period t, which is a k − 1 vector,
namely,

IRt :=
∂g (ς, xt)

∂ς

∣∣∣∣
ς=0

= (Ik−1 − βγ)
−1
β − 1

1− γβ
β̃Φ

(
it − x2t

$

)
.

If there is no attenuation effect, the impact effect of the monetary policy shock ε̄2t on Y1t is common
across regimes and is given by:

IRNA = (Ik−1 − βγ)
−1
β =

β

1− γβ
,

the second equality following from the fact that (Ik−1 − βγ)β = β (1− γβ). Therefore,

IRt = IRNA −
1

1− γβ
β̃Φ

(
it − x2t

$

)
.

The jth element of the k − 1 vector IRt above can be written as

IRj,t = IRj,NA −
1

1− γβ
β̃jΦ

(
it − x2t

$

)
=

βj
1− γβ

− βj
1− γβ

β̃j
βj

Φ

(
it − x2t

$

)
=

(
1− β̃j

βj
Φ

(
it − x2t

$

))
IRj,NA.

Renaming x2t = C2Xt+C
∗
22X

∗
2t, the one-step ahead forecast of the reduced-form shadow rate, as i∗t|t−1 yields

(24) as required.

C Data description

We construct our quarterly data by taking averages of monthly series. For the U.S., the inflation rate is
computed from the implicit price deflator (GDPDEF) as πt = 400 × log(Pt/Pt−1), where Pt is the GDP
deflator. The output gap is calculated as 100% × (GDPC1 − GDPPOT )/GDPPOT , where GDPC1 is
the series for the U.S. real GDP and GDPPOT is the U.S. real potential GDP. The long-term interest
rate is from the 10-year Treasury constant maturity rate (GS10). All these series are from the FRED
database.24 Money growth data for the U.S. are computed from 12 alternative indicators as listed in Table 6

24The data can be retrieved from the following websites: GDP deflator https://fred.stlouisfed.org/
series/GDPDEF; and series to construct the output gap: https://fred.stlouisfed.org/series/GDPC1

and https://fred.stlouisfed.org/series/GDPPOT; the Federal Funds Rate https://fred.stlouisfed.
org/series/FEDFUNDS; and the long yield https://fred.stlouisfed.org/series/GS10. The treatment
of the data is described in Appendix C. The data for the different monetary aggregates is available
at: https://fred.stlouisfed.org/categories/24 and http://www.centerforfinancialstability.

org/amfm_data.php.
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Table 6: Monetary Aggregates Data used in the Model

Monetary Aggregate (Mt) Mnemonics in the Corre-
sponding Database

Available Sample Periods

Monetary Base (MB) MBSL 1948Q1-2019Q1
M1 M1SL 1959Q2-2019Q1
M2 M2SL 1959Q2-2019Q1
M2M M2MSL 1959Q2-2019Q1
MZM MZMSL 1959Q2-2019Q1
Securities Held Outright WSECOUT 1989Q3-2019Q1
Divisia M1 (DIVM1) Divisia M1 1967Q2-2019Q1
Divisia M2 (DIVM2) Divisia M2 1967Q2-2019Q1
Divisia M2M (DIVM2M) Divisia M2M 1967Q2-2019Q1
Divisia MZM (DIVMZM) Divisia MZM 1967Q2-2019Q1
Divisia M4 (DIVM4) DM4 1967Q2-2019Q1

as mt = 400×log(Mt/Mt−1), where Mt is the particular money series considered. All Mt values are quarterly
and computed by taking averages of their corresponding monthly values. The traditional monetary aggregates
(MB, M1, M2, M2M, MZM), and securities held outright are from the FRED database. The Divisia monetary
aggregates (DIVM1, DIVM2, DIVM2M, DIVMZM, DIVM4) are from the Center for Financial Stability
Divisia database.

For Japan, the quarterly Call Rate, bond yields, and the core CPI are computed as the averages of their
monthly counterparts. The quarterly the inflation rate is computed from the core CPI (consumption tax
changes adjusted) as πt = 400 × (CPIt − CPIt−1)/CPIt−1. The GDP gap is that published by the Bank
of Japan. The trend growth is defined by the annualised growth rate of potential GDP from the previous
quarter, which comes from the estimates of the Cabinet Office. The interest on reserves (IOR) is constructed
from the interest rate that the BoJ applies to the Complementary Deposit Facility. 25

D Additional empirical results

Weaker version of IH1. Table 7 shows the results of the weaker version of IH1, i.e., C12 = C∗12 = β̃ = 0
for inflation and output equations only. As in the baseline CKSVAR specification reported in Table 1, 4 lags
are selected for the U.S. and 2 lags are selected for Japan. The p-vals reported in Table 7 show that the
weaker version of IH1 is firmly rejected for both countries.

Adding alternative measures of monetary policy. Table 8 shows the results of tests for exclusion
of the Federal Funds Rate from an SVAR that includes inflation, the output gap, the 10-year bond yield,
and various alternative measures of the growth of money outlined in column (1). Column (3) shows the
order of the VAR selected by the AIC, which varies between 3 and 4 lags, consistent with the benchmark
model in Table 1. Columns (4) and (6) report the likelihood ratio test statistics for the joint exclusion
hypothesis and the corresponding asymptotic p-values, respectively. These results show that the data strongly
and consistently reject the joint exclusion restrictions on the Federal Funds Rate across all the alternative

25The data can be retrieved from the following websites: Call Rate (Bank of Japan): http:

//www.stat-search.boj.or.jp/index_en.html; 9-year and 10-year government bond yields (Ministry
of Finance): https://www.mof.go.jp/jgbs/reference/interest_rate/data/jgbcm_all.csv; GDP gap
(Bank of Japan): https://www.boj.or.jp/en/research/research_data/index.htm/; core CPI infla-
tion (Statistics Bureau of Japan): https://www.e-stat.go.jp/stat-search/file-download?statInfId=
000031431696&fileKind=1; trend growth rate (Cabinet Office): https://www5.cao.go.jp/keizai3/

getsurei-e/index-e.html.
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Table 7: Test for excluding short rates from VAR that includes long rates

Panel A: KSVAR
United States Japan

p loglik pv-p AIC LR df p-val loglik pv-p AIC LR df p-val
5 -213.4 - 2.62 36.08 12 0.000 248.1 - -2.18 12.74 12 0.389
4 -221.5 0.446 2.55 33.42 10 0.000 239.9 0.425 -2.30 14.13 10 0.167
3 -234.4 0.112 2.53 27.12 8 0.001 232.2 0.471 -2.42 14.89 8 0.061
2 -266.0 0.000 2.66 28.29 6 0.000 223.8 0.445 -2.53 15.70 6 0.015
1 -296.7 0.000 2.78 24.62 4 0.000 184.8 0.000 -2.19 25.15 4 0.000

Panel B: CKSVAR
p loglik pv-p AIC LR df p-val loglik pv-p AIC LR df p-val
5 -191.3 - 2.60 52.08 22 0.000 284.7 - -2.42 48.79 22 0.001
4 -202.7 0.290 2.53 44.48 18 0.000 277.1 0.766 -2.61 52.42 18 0.000
3 -223.0 0.011 2.53 33.32 14 0.003 258.1 0.081 -2.62 42.61 14 0.000
2 -256.3 0.000 2.64 31.10 10 0.001 242.1 0.018 -2.68 28.23 10 0.002
1 -290.2 0.000 2.76 27.19 6 0.000 204.8 0.000 -2.43 43.99 6 0.000

Note: Panel A reports results for a KSVAR(p) with inflation, output gap, long rate, and policy rate. Panel
B reports corresponding results for a CKSVAR(p) that includes shadow rates. Estimation sample is 1960q1-
2019q1 for the U.S. and 1985q3-2019q1 for Japan. Long rates are 10-year government bond yields for the
U.S. and 9-year yields for Japan. Under the null hypothesis, the short rate is excluded from the equations
for inflation and output only. loglik is the value of the log-likelihood. pv-p is the p-value of the test for lag
reduction. AIC is the Akaike information criterion. LR test statistic for excluding short rates from equations
for inflation and output gap. df is number of restrictions. Asymptotic p-values reported.
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specifications for all measures of money supply, which corroborates the findings in the baseline 4-equation
model in Table 1.

Table 8: Test for excluding short rates from VARs that include long rates and money

Mon. Aggr. sample p LR df p-val
MB 1960q1–2019q1 3 55.05 16 0.0000
M1 1960q3-2019q1 3 55.50 16 0.0000
M2 1960q3-2019q1 3 54.77 16 0.0000
M2M 1960q3-2019q1 4 73.78 20 0.0000
MZM 1960q3-2019q1 4 79.65 20 0.0000
DIVM1 1968q3-2019q1 4 80.68 20 0.0000
DIVM2 1968q3-2019q1 4 111.50 20 0.0000
DIVM2M 1968q3-2019q1 4 110.88 20 0.0000
DIVMZM 1968q3-2019q1 4 107.10 20 0.0000
DIVM4 1968q3-2019q1 4 135.38 20 0.0000
SHO 1990q4-2019q1 3 94.38 16 0.0000

Note: The estimated model is a KSVAR(p) for the U.S. with inflation, output gap, the Federal Funds Rate,
the 10-year government bond yield, and a different measure of money growth in each row. Sample availability
varies for each monetary aggregate used. LR is the value of the LR test statistic for the testing that lags
of the Federal Funds Rate can be excluded from all other equations in the model, df is number of exclusion
restrictions, and p-value is the asymptotic χ2

df p-value of the test.

Robustness of test results for the U.S. to great moderation The test results of the IH over the
full sample are subject to a possible misspecification arising from the ‘Great Moderation’, a drop in U.S.
macroeconomic volatility in the mid-1980s. Therefore, we assess the robustness of our results by estimating
the model and performing the above tests of the IH over the sub-sample which starts in 1984q1. Tables 9
and 10 report the results over this subsample, which correspond to the results reported in Tables 1 and 3
for the full sample, respectively. The results of the tests of the IH remain the same: the hypothesis is firmly
rejected.

Table 9: Test for excluding short rates form VAR that includes long rates post-1984

KSVAR(p) CKSVAR(p)
p loglik pv-p AIC LR df p-val loglik pv-p AIC LR df p-val
5 97.92 - -0.01 25.63 18 0.11 122.37 - -0.07 61.65 33 0.002
4 92.83 0.857 -0.17 28.01 15 0.022 119.99 1.000 -0.33 70.78 27 0.000
3 85.07 0.776 -0.28 22.31 12 0.034 103.32 0.556 -0.37 48.44 21 0.001
2 66.06 0.064 -0.24 22.99 9 0.006 77.86 0.009 -0.30 40.06 15 0.000
1 14.30 0.000 0.27 5.33 6 0.502 19.29 0.000 0.25 13.59 9 0.138

Note: The estimated model is a (C)KSVAR(p) for the U.S. with inflation, output gap, Federal Funds Rate,
and the 10-year government bond yield. Estimation sample is 1984q1-2019q1. loglik is the value of the
log-likelihood. pv-p is the p-value of the test for lag reduction. AIC is the Akaike information criterion. LR
is the test statistic for excluding short rates from equations for inflation, output gap and long rates. df is
number of restrictions. Asymptotic p-values.
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Table 10: Testing CSVAR against CKSVAR post-1984

Country p LR df p-val
U.S. 3 31.17 15 0.008

Note: The unrestricted model is a CKSVAR(3) for the U.S. with inflation, output gap, 10-year government
bond yields, and the Federal Funds Rate. Sample: 1984q1-2019q1. LR is the test statistics of the restrictions
that the model reduces to CSVAR(3). Lag order is chosen by AIC. df is number of restrictions, asymptotic
p-value reported.

Robustness of results to the inclusion of credit spreads in the VAR For the U.S., we use Moody’s
Seasoned BAA Corporate Bond Yield Relative to 10-Year Treasury Yield as the credit spreads, and the
Excess Bond Premium in Gilchrist and Zakrajsek (2012) for Japan. The test results show that our baseline
results for IH1 (Tables 11-12) and IH2 (Table 13) are robust to the inclusion of credit spreads in the VAR.

Table 11: Test for excluding short rates from VAR that includes long rates and credit spreads

Panel A: KSVAR
United States Japan

p loglik pv-p AIC LR df p-val loglik pv-p AIC LR df p-val
5 298.6 - -2.34 40.59 24 0.018 391.8 - -3.52 45.64 24 0.005
4 286.3 0.486 -2.54 42.69 20 0.002 373.9 0.073 -3.63 38.10 20 0.009
3 266.5 0.086 -2.62 37.49 16 0.002 358.7 0.061 -3.77 34.18 16 0.005
2 232.1 0.000 -2.47 18.24 12 0.109 346.3 0.100 -3.96 31.84 12 0.001
1 178.4 0.000 -2.02 10.79 8 0.214 303.4 0.000 -3.69 44.30 8 0.000

Panel B: CKSVAR
p loglik pv-p AIC LR df p-val loglik pv-p AIC LR df p-val
5 328.6 - -2.42 87.26 44 0.000 441.6 - -3.89 131.19 44 0.000
4 309.9 0.167 -2.59 83.99 36 0.000 412.4 0.001 -3.90 100.99 36 0.000
3 288.0 0.035 -2.72 73.60 28 0.000 376.7 0.000 -3.82 62.78 28 0.000
2 243.0 0.000 -2.48 37.62 20 0.010 356.6 0.000 -3.97 47.15 20 0.001
1 183.5 0.000 -2.10 20.41 12 0.060 316.2 0.000 -3.81 62.95 12 0.000

Note: Panel A reports results for a KSVAR(p) with inflation, output gap, long rate, credit spread, and
policy rate. Panel B reports corresponding results for a CKSVAR(p) that includes shadow rates. Estimation
sample is 1987q2-2019q1 for the U.S. and 1985q3-2019q1 for Japan. Long rates are 10-year government bond
yields for the U.S. and 9-year yields for Japan. The credit spreads are Moody’s Seasoned BAA Corporate
Bond Yield Relative to 10-Year Treasury Yield for the U.S., and the Excess Bond Premium introduced by
Gilchrist and Zakrajsek (2012) for Japan. loglik is the value of the log-likelihood. pv-p is the p-value of the
test for lag reduction. AIC is the Akaike information criterion. LR is the test statistic for excluding short
rates from equations for inflation, output gap, credit spread, and long rates. df is number of restrictions.
Asymptotic p-values reported.
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Table 12: Test for excluding short rates from VAR that includes long rates and credit spreads

United States, with Excess Bond Premium
Panel A: KSVAR Panel B: CKSVAR

p loglik pv-p AIC LR df p-val loglik pv-p AIC LR df p-val
5 60.9 - 0.979 73.83 24 0.000 86.7 - 0.970 113.92 44 0.000
4 47.4 0.359 0.851 70.02 20 0.000 70.4 0.332 0.818 100.20 36 0.000
3 22.6 0.009 0.849 54.65 16 0.000 36.7 0.001 0.859 69.35 28 0.000
2 -13.8 0.000 0.975 33.35 12 0.001 0.4 0.000 0.929 49.91 20 0.000
1 -49.3 0.000 1.092 20.91 8 0.007 -36.6 0.000 1.006 37.12 12 0.000

Note: Panel A reports results for a KSVAR(p) with inflation, output gap, long rate, credit spread, and policy
rate. Panel B reports corresponding results for a CKSVAR(p) that includes shadow rates. Estimation sample
is 1974q2-2019q1. Credit spreads are excess bond premium in Gilchrist and Zakrajsek (2012). loglik is the
value of the log-likelihood. pv-p is the p-value of the test for lag reduction. AIC is the Akaike information
criterion. LR is the test statistic for excluding short rates from equations for inflation, output gap, credit
spread, and long rates. df is number of restrictions. Asymptotic p-values reported.

Table 13: Testing CSVAR against CKSVAR with credit spreads

Country p LR df p-val
U.S.(BAA) 3 49.58 19 0.000
U.S.(EBP) 4 53.56 24 0.000
Japan 2 40.62 14 0.000

Note: The unrestricted model is a CKSVAR(p) in inflation, output gap, long rate, credit spread, and policy
rate. Long rate: 10-year government bond yield (U.S.), 9-year government bond yield (Japan). Policy rate:
Federal Funds Rate (U.S.), Call Rate (Japan). Credit spread: Moody’s Seasoned BAA Corporate Bond
Yield Relative to 10-Year Treasury Yield (U.S.), the Excess Bond Premium (U.S. and Japan). Sample:
1987q2-2019q1 (U.S. with BAA spread), 1974q2-2019q1 (U.S. with EBP), 1985q3-2019q1 (Japan). p chosen
by AIC. LR is the test statistics of the restrictions that the model reduces to CSVAR(p). df is number of
restrictions, asymptotic p-values reported.

Robustness of Japanese results to 10-year rates Similarly, we test the robustness of our results for
the Japanese data by using the 10-year yields in the model instead. This shortens the available sample for
estimation to 1987q4 to 2019q1. Tables 14 - 15 report test statistics for the 2 types of tests for the IH. From
Tables 14 and 15, the IH is rejected across all lags. For the CKSVAR alternative, we select 2 lags based in
the Akaike criterion. Then Table 15 also suggests the rejection of the IH.
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Table 14: Test for excluding short rates from VAR for Japan using 10-year bond yields

KSVAR(p) CKSVAR(p)
p loglik pv-p AIC LR df p-val loglik pv-p AIC LR df p-val
5 285.1 - -2.92 37.43 18 0.005 320.5 - -3.17 99.85 33 0.000
4 275.1 0.217 -3.02 31.62 15 0.007 307.4 0.159 -3.28 86.95 27 0.000
3 270.5 0.605 -3.20 32.05 12 0.001 290.6 0.023 -3.33 62.07 21 0.000
2 256.2 0.155 -3.23 24.60 9 0.003 274.3 0.004 -3.39 50.90 15 0.000
1 196.4 0.000 -2.53 22.84 6 0.001 212.8 0.000 -2.73 38.81 9 0.000

Note: The estimated model is a (C)KSVAR(p) for Japan with inflation, output gap, 10-year government
bond yields, and the Call Rate. Estimation sample is 1987q4-2019q1. loglik is the value of the log-likelihood.
pv-p is the p-value of the test for lag reduction. AIC is the Akaike information criterion. LR is the test
statistic for excluding short rates from equations for inflation, output gap and long rates. df is number of
restrictions. Asymptotic p-values reported.

Table 15: Testing CSVAR against CKSVAR for Japan using 10-year bond yields

Country p LR df p-val
Japan 2 47.54 11 0.000

Note: The unrestricted model is a CKSVAR(2) for Japan with inflation, output gap, 10-year government
bond yields, and the BoJ Call Rate. Estimation sample: 1987q4-2019q1. LR is the test statistics of the
restrictions that the model reduces to CSVAR(2). Lag order chosen by AIC. df is number of restrictions,
asymptotic p-value reported.

Power of the irrelevance tests IH1 and IH2 We use the theoretical model to generate 100 artificial
time series under values for the parameter ξ in the range [0.7, 0.99]. Table 16 and 17 reports the number of
rejections for the tests of our irrelevance hypotheses IH1 and IH2, respectively. If our tests are powerful, we
would expect the number of rejections to decline with ξ approaching the value of 1 for which the irrelevance
hypothesis holds true in the simulated data.

The tables show that the irrelevance tests are powerful. For instance, in the case of the KSVAR as the
unrestricted model, the test rejects IH1 at a 1 percent significance level with the rejection rate (frequency)
of 99 percent when ξ = 0.7, while the rejection rate is 1 percent when ξ = 0.99 at the same significance
level. Similar results hold for alternative significance levels (columns 2, 3), the CKSVAR as the unrestricted
empirical model (Table 16, Panel B), and the test for IH2 (Table 17).
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Table 16: Test for excluding short rates from VAR that includes long rates, with simulated
data

Panel A: KSVAR
(1) (2) (3)

ξ p ≤ 0.01 p ≤ 0.05 p ≤ 0.1
0.7 99 100 100
0.75 90 98 99
0.8 76 92 94
0.85 58 73 81
0.9 25 48 60
0.95 7 19 31
0.99 1 11 18

Panel B: CKSVAR
(1) (2) (3)

ξ p ≤ 0.01 p ≤ 0.05 p ≤ 0.1
0.7 99 100 100
0.75 93 99 100
0.8 85 92 94
0.85 69 84 88
0.9 42 62 71
0.95 20 33 45
0.99 13 25 32

Note: Panel A reports results for a KSVAR(1) with inflation, output gap, long rate, and policy rate. Panel
B reports corresponding results for a CKSVAR(1) that includes shadow rates. Estimation sample is data
simulated by the calibrated DSGE model for 237 quarters, which equals the length of the U.S. sample in
section 4.2. For each value of ξ, we run 100 simulations. Column 2-4 report how many times the irrelevant
hypothesis is rejected with 1 percent, 5 percent, and 10 percent significance level respectively.
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Table 17: Test CSVAR against CKSVAR, with simulated data

(1) (2) (3)
ξ p ≤ 0.01 p ≤ 0.05 p ≤ 0.1

0.7 100 100 100
0.75 100 100 100
0.8 99 100 100
0.85 91 97 97
0.9 58 81 85
0.95 13 20 34
0.99 3 6 14

Note: This table reports results for a CKSVAR(1) with inflation, output gap, long rate, and policy rate.
Estimation sample is data simulated by the calibrated DSGE model for 237 quarters, which equals the
length of the U.S. sample in section 4.2. For each value of ξ, we run 100 simulations. Column 2-4 report
how many times the irrelevant hypothesis is rejected with 1 percent, 5 percent, and 10 percent significance
level respectively.

Testing no attenuation effect. We repeat our test of no attenuation in the response of long rates
to monetary policy shocks for different sample periods for the U.S. Table 18 shows that no attenuation
hypothesis is not rejected if the same sample period of 1990q1–2012q4 is adopted as in Swanson and Williams
(2014). If the sample period is extended backwards (starting from 1960q1), the null is rejected at a 5 percent
significance level. These results suggest that the responses of the long rate to a monetary policy shock may
differ between non-ELB and ELB regimes, depending on the sample period.

Table 18: Test for no attenuation, various sample

sample p LR p-val
1990q1–2012q4 3 0.03 0.872
1960q1–2012q4 3 4.08 0.043

Note: The estimated model is a CKSVAR(p) for the U.S. with inflation, output gap, long-term rate, and
policy rate. The long rate is the 10-year government bond yields. The hypothesis is tested with different
samples, with the first one being consistent with Swanson and Williams. LR is the value of the likelihood
ratio test statistic and asymptotic p-values are reported.

E Choleski identification

In our benchmark analysis we use the combination of the ELB identification developed by Mavroeidis (2021)
and the sign restrictions similar to those employed by Debortoli et al. (2019) to estimate the UMP parameter
ξ. This appendix shows the results from using the standard Choleski identification. Figures 11 and 12 reports
results for the U.S. and Japan, respectively. They show that the Choleski identification generates several
puzzling responses such as the instantaneous decreases in output and inflation in reaction to a negative
monetary policy shock. These responses are consistent with the findings in Gertler and Karadi (2015)
for the U.S. and Kubota and Shintani (2022) for Japan, who also show similar responses when using the
Choleski identification. Thus, our analysis corroborates the results on the empirically-incongruous responses
from the Choleski identification, while showing that the identification based on the combination of the ELB
identification and sign restrictions provides plausible responses to monetary policy shocks for the U.S. and
Japan when the economy is at the ELB. See Gortz et al. (2022) for a discussion of the issue and some
additional corroborative evidence on U.K data.
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Figure 11: Choleski identification: Impulse responses to a monetary policy shock in the U.S.
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Note: Identified sets of IRFs in 1999q1 and 2009q1 to a -25bps monetary policy shock estimated from
CKSVAR(4) model in inflation, output gap, long rate, and the Federal Funds Rate for the U.S. over the
period 1960q1-2019q1, identified by the Choleski restrictions that the shock to monetary policy has no
contemporaneous effects on inflation, output, and the long rate. Dotted lines give 67 percent asymptotic
error bands.
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Figure 12: Choleski identification: Impulse responses to a monetary policy shock in Japan
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Note: Identified sets of IRFs in 1990q1 and 2010q1 to a -25bps point monetary policy shock estimated using
a CKSVAR(2) model in inflation, output gap, long rate, and the Call Rate for Japan over the period 1985q3-
2019q1, identified by the Choleski restrictions that the shock to monetary policy has no contemporaneous
effects on inflation, output, and the long rate. Dotted lines show 67 percent asymptotic error bands.

F Shadow rates

We report our models’ estimates of the shadow rates for Japan and the U.S. Our analysis defines the shadow
rate as the short-term interest rate that the central bank would set if there were no ELB. Thus defined,
the shadow rate can be interpreted as an indicator of the desired monetary policy stance and we provide
estimates of it for Japan and the U.S. Our estimates of the shadow rate do not impose the assumption
that the model used to obtain them is constant across regimes, and therefore they explicitly account for the
empirical relevance of the ELB over the estimation periods.

The important caveat that needs to be borne in mind in interpreting those figures is that the shadow
rates are not identified under our present assumptions. As explained in Mavroeidis (2021), identifying the
shadow rate i∗t in the empirical model (17a)-(17c) requires knowledge of the parameter α, which scales
the reaction function coefficients and policy shocks during the ELB regimes and is not identified without
additional information. This parameter is needed in addition to the parameter ξ that measures the overall
impact effect of UMP. In other words, to properly identify the shadow rate and interpret it as a measure
of desired policy stance, we need to be able to isolate the effect of FG encapsulated by α. This exercise is
beyond the scope of the present paper.
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Figure 13: Shadow policy rate for the U.S.

Note: Estimated using a CKSVAR(4) model in inflation, output gap, long rate, and the Federal Funds Rate
for the U.S. over the period 1960q1-2019q1 (plotted over the sub-sample 1985q3-2019q1), identified by the
sign restrictions that a -25bp monetary policy shock has nonnegative effects on inflation and output and
nonpositive effects on the short rate up to four quarters, as well as nonpositive effects on the long rate on
impact.

Figure 14: Shadow policy rate for Japan

Note: Estimated using a CKSVAR(2) model in inflation, output gap, long rate, and the Call Rate for Japan
over the period 1985q3-2019q1, identified by the sign restrictions that a -25bp monetary policy shock has
nonnegative effects on inflation and output and nonpositive effects on the short rate up to four quarters, as
well as nonpositive effects on the long rate on impact.
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With the above caveat in mind, we report identified shadow rates under the assumption of α = 0. The
shadow rates are given in Figures 13 and 14 for the U.S. and Japan, respectively. Different values of α would
scale those estimates by a factor 1 + α.26 Note that, even with α = 0, the shadow rate is only partially
identified because it also depends on the parameter ξ that is partially identified. This uncertainty due to
ξ is reflected in the shaded areas below the ELB in the figures.27 In the case of the U.S., the shadow rate
dropped sharply soon after the onset of the great financial crisis of 2008. It reached its smallest value at the
beginning of 2010 and gradually recovered until the exit from the ELB in 2016. In Japan, the behaviour of
the shadow rate is different during the three ELB episodes. During the first episode, the shadow rate fell
modestly. In the second episode, it exhibited a persistent decline until the beginning of 2005, followed by
a quick reversal. In the third episode, which coincided with the ELB in the U.S., the decline was sharp,
and followed by a second wave of declines that lasted until mid 2012. From that point on, the shadow rate
exhibited a steady rise, but stayed far from zero even at the end of the sample, and remained near its trough
in the second episode.

26Results are available on request.
27The shadow rate is equal to the observed policy rate above the ELB, see eq. (17a). Below the ELB,

it is given by the equation Y ∗2t = κY 2t + (1 − κ)bt, where κ = (1 + α)(1 − γβ)/(1 − ξγβ) and Y 2t is a
“reduced-form” shadow rate that can be filtered from the data using the likelihood, see Mavroeidis (2021).
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