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Abstract: Bacterial quorum sensing (QS) and the corresponding signals, acyl homoserine 

lactones (AHLs), were first described for a luminescent Vibrio species. Since then, detailed 

knowledge has been gained on the functional level of QS; however, the abundance of 

AHLs in the family of Vibrionaceae in the environment has remained unclear.  

Three hundred and one Vibrionaceae strains were collected on a global research cruise  

and the prevalence and profile of AHL signals in this global collection were determined. 

AHLs were detected in 32 of the 301 strains using Agrobacterium tumefaciens and 

Chromobacterium violaceum reporter strains. Ethyl acetate extracts of the cultures were 

analysed by ultra-high performance liquid chromatography-high resolution mass spectrometry 

(MS) with automated tandem MS confirmation for AHLs. N-(3-hydroxy-hexanoyl)  

(OH-C6) and N-(3-hydroxy-decanoyl) (OH-C10) homoserine lactones were the most 

common AHLs found in 17 and 12 strains, respectively. Several strains produced a diversity 

of different AHLs, including N-heptanoyl (C7) HL. AHL-producing Vibrionaceae were 
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found in polar, temperate and tropical waters. The AHL profiles correlated with strain 

phylogeny based on gene sequence homology, however not with geographical location.  

In conclusion, a wide range of AHL signals are produced by a number of clades in  

the Vibrionaceae family and these results will allow future investigations of inter- and  

intra-species interactions within this cosmopolitan family of marine bacteria. 

Keywords: quorum sensing; acyl homoserine lactones; Vibrionaceae; marine  

bacteria; diversity 

 

1. Introduction 

Quorum sensing (QS) is a process induced by cell population density and allows bacteria to sense 

and act on their local environment, as well as, communicate both within and between species [1]. The 

essence underlying the mechanism of QS is based on the production and accumulation of signalling 

molecules called autoinducers. When the threshold concentration of the signals is reached, they bind to 

receptor proteins that then act as either transcriptional activators or repressors [2]. The QS signals are 

small molecules such as acyl homoserine lactones (AHLs) produced by Gram-negative bacteria, 

autoinducer-2 (AI-2) used by Gram-negative and Gram-positive bacteria and oligopeptides which are 

utilized by Gram-positive bacteria [1,3]. QS systems are involved in the regulation of several different 

bacterial phenotypes such as biofilm formation, bioluminescence, virulence and production of 

bioactive compounds [1,4–6]. 

Vibrionaceae is a large family of Gram-negative marine, facultative anaerobic bacteria belonging to 

the Gammaproteobacteria. This family includes several genera of which the largest are Vibrio and 

Photobacterium that include human and fish pathogens such as Vibrio cholerae, V. anguillarum, and 

V. vulnificus. Also included are the algal and squid symbionts such as V. pomeroyi, V. aestuarianus, 

and Aliivibrio fischeri (formerly known as Vibrio fischeri) [6–9]. Quorum sensing was discovered by 

the Hastings lab working on luminescence of A. fischeri [10,11] and subsequently the genetic basis 

was unravelled leading to the characterization of the two major protein components AHL synthase 

(LuxI) and the AHL receptor (LuxR) [12,13]. 

Vibrionaceae are not only important as symbiotic or pathogenic bacteria, but have more recently 

also been hailed as a potential source of novel bioactive secondary metabolites [14–17] such as the 

antibiotic molecules andrimid and holomycin [18], the antifungal compound vibrindole A [19] and the 

anticancer-active pelagiomicin C [20]. Furthermore, Photobacterium halotolerans produces solonamides 

and ngercheumicins that interfere with quorum sensing and virulence in Staphylococcus aureus [21,22]. 

The QS-interfering Photobacterium sp. and the antibiotic producing Vibrio spp. were isolated during a 

screening of 500 bacterial strains collected on the global marine research cruise Galathea 3 [23]. Three 

hundred and one of the 500 strains were identified as Vibrionaceae by 16S rRNA gene analysis and are 

the subject of this study. 

QS molecules have been detected in several symbiotic and pathogenic Vibrionaceae species, 

including V. harveyi [24], V. cholerae [25], V. anguillarum [26,27], A. salmonicida [28], V. vulnificus [29] 

and Photobacterium phosphoreum [30]. In some species, the phenotypes regulated by QS have been 
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determined, e.g., in A. fischeri, QS controls approximately 25 genes, including those for light 

production [13,31]. Yang et al. surveyed a collection of Vibrio type strains, the nomenclatural 

representatives of a species, obtained from culture collections using biological AHL monitors [9]. 

They found that 20 of 24 different Vibrionaceae species produced compounds that elicited the AHL 

monitors. Based on the thin-layer chromatography profile and response to a biomonitor, they 

concluded that N-hexanoyl (C6), N-octanoyl (C8), N-(3-oxo-hexanoyl) (O-C6) and N-(3-oxo-octanoyl) 

(O-C8) homoserine lactones (HLs) were found, however, chemical confirmation was not included in 

the study [9]. García-Aljaro et al. developed a double-layer microplate high-throughput assay for 

testing 106 Vibrio spp. isolates [32]. Twenty of the 28 species were identified by 16S rRNA and were 

able to induce a response in the AHL biomonitors. Later, Purohit et al. detected AHLs in about half of 

the 57 strains from the genera Aliivibrio, Photobacterium and Vibrio that they screened for AHLs [33]. 

They searched for 15 different AHLs using HPLC-MS/MS finding N-hexanoyl (C6), N-octanoyl (C8), 

N-(3-hydroxy-decanoyl) (OH-C10) and N-(3-oxo-hexanoyl) (O-C6) homoserine lactones as the 

dominant AHLs. 

In this study, we investigated the abundance and diversity of AHLs in 301 Vibrionaceae strains 

from a global collection [23]. The purpose of this survey was to determine how widespread AHL 

signalling is in environmental Vibrionaceae spanning most climate zones using biological monitors as 

well as LC-MS identification. The study is part of a larger work in which we aim to determine to what 

degree QS is involved in regulating production of bioactive secondary metabolites in Vibrionaceae. 

2. Results and Discussion 

2.1. Method Performance 

Typically, A. tumefaciens detects regular, 3-OH- and O-HLs and is especially sensitive to longer 

chain AHLs (>C4) [34], while C. violaceum specifically reacts to short chain AHLs (C4 to C8) [35]. 

To confirm as well as extend the current knowledge on the AHL detection ability of these strains in a 

standardized manner, pure standard solutions of C4, C6, C8, C10, C12, C14, C18, OH-C4, OH-C6, 

OH-C12, O-C4, O-C6, O-C8, O-C10, and O-C12 homoserine lactones were evaluated in both 

biomonitor assays in three 10-fold dilutions. All AHLs resulted in a response in at least one of the 

assays (Supplementary Table S1). For A. tumefaciens, the highest response was detected for O-C8,  

O-C10, O-C12, C6, C8, C10, OH-C6, and OH-C12. No response was detected with C4 (4089 µmol·L−1) 

(the highest dose tested is given in parentheses). C. violaceum responded to all AHLs, except C14 

(3211 µmol·L−1), C18 (2721 µmol·L−1) and O-C12 (336 µmol·L−1) homoserine lactone. However, 

except for C4, C6, and the highest concentrations of O-C4 (5400 µmol·L−1), O-C6 (47 µmol L−1) and  

O-C8 (41 µmol L−1) homoserine lactone, the responses of C. violaceum were rather weak. These 

results confirm that A. tumefaciens reacts to all types of AHLs, including four previously untested 

AHLs (O- and OH-C4, C14 and C18), but is generally more sensitive to AHLs longer than C4 up to 

C18. A response in C. violaceum is induced by all types of AHLs with a maximum chain length of 

C12, including the previously untested oxo-HLs (O-C4 to O-C12). 

Limit of detection (LOD, after re-extraction from growth media) for the different assays 

demonstrates that UHPLC-HRMS (most abundant ion ± m/z 0.01 [M + H]+ or [M + Na]+ with 
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signal/noise 1:10) was the most sensitive method for most compounds except for the long chained oxo 

AHLs (Table 1).  

Table 1. Limit of detection (nmol L−1) of a subset of acyl homoserine lactones (AHLs) 

using the three different assays. ND = not detected. 

Assay 
Limit of Detection (nmol L−1) 

C4 C6 C8 C10 O-C6 O-C8 O-C10 OH-C6 

UHPLC-HRMS a 40 25 30 70 25 150 125 14 

C. violaceum b 10,200 250 220 15,700 235 200 1850 230 

A. tumefaciens b ND 12,600 22 200 25 10 2 230 

a Concentration in spiked medium extracted by ethyl acetate as described in the text (using small molecule 

MS tuning); b From pure standard solutions recalculated to medium concentration assuming 100% recovery. 

Compared to Purohit et al. [33], the LC-MS LODs reported here are 3–70 times higher which is to 

be expected when comparing a Time of Flight MS against the more sensitive triple quadrupole MS. 

The method herein presented can identify unexpected AHLs, enable retrospective data-analysis, and 

tentatively identify AHLs. Furthermore, it is more specific due to more fragment ions being detected, 

high resolution determination of the fragment ions, and high resolution determination of several 

pseudomolecular ions ([M + H]+, [M + Na]+ and [M + NH4]+). 

At concentrations 2–3 above LOD (if only using one ion), qualifier ions could additionally be 

detected by giving increasing strength to the identification (Figure 1B–J). In Figure 1B–F,K, the 

default tuning was used, which results in [M + H]+ being less predominant than [M + Na]+ as [M + H]+ 

are lost due to fragmentation, while [M + Na]+ is more stable (and cannot be used for MS/MS 

experiments). In Figure 1G–J,L, the data from small molecule tuning is shown, providing much 

more [M + H]+, which can be MS/MS fragmented into a very specific fingerprint (Figure 1N) that is 

identical with the library spectrum seen (Figure 1M). Thus, it provides an additional identification 

method for the AHLs via their tandem HRMS spectra [36]. These MS/MS spectra are less noisy than 

full scan spectra, as all ions except the parent ion (±m/z 0.5) are filtered away; therefore, all fragment 

ions are generated from the parent ion. In this case, by using a QTOF MS, the fragment ions are 

additionally measured with high mass accuracy (MS/HRMS). Due to the losses during the MS/MS 

fragmentation and that the [M + H]+ and/or [M + NH4]+ needs to be auto-selected for MS/MS, (this 

analysis is not as sensitive as the full scan shown in Figure 1B–J). Nonetheless, the MS/HRMS 

sensitivity was in almost all cases sensitive enough for the detection of AHLs. 

More importantly, the MS/HRMS spectra of the reference standard AHLs showed the known 

fragment ions m/z 102.05495 (homoserine ring) and C3H5N, m/z 56.04948 (further loss of CH2O2 from 

the homoserine ring) as well as m/z 120.06552 derived from the open homoserine ring moiety. Thus, 

data files could be mined for open and closed form AHLs by extracted ion chromatograms of  

m/z 102.05495, 56.04948, 120.06552 (±m/z 0.01) from all MS/HRMS precursors. This is similar to 

parent ion scanning on triple quadruple instruments, and can identify unexpected AHLs as long as they 

contain the homoserine ring moiety. 
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Figure 1. Detection of OH-C6 in S0203 using two different methods: A–F (standard tune) 

and G–J (small molecule tune). (A) BPC chromatogram; (B–F) extracted ion 

chromatograms of [M + H]+ ±0.5, [M + H]+ ±0.01, [M + Na]+ ±0.01, 102.05495 ±0.01, and 

1 × 13C [M + Na]+ ±0.01; (G–I) extracted ion chromatograms of [M + H]+ ±0.5, [M + H]+ 

±0.01, 102.05495 ±0.01, and [M + Na]+; (J) MS/HRMS trace of 216.123. M: MS/HRMS 

Library spectrum of OH-C6 [M + H]+ at 10 eV, N: simultaneously acquired MS/HRMS 

spectrum at 10 eV; (L) full scan spectrum (small molecule tune); (K) full scan spectrum 

(normal tune). Samples were analysed with a time difference of two months and thus retention 

was altered, but constant in the sequence and identical (±0.02 min) to reference standard. 

 

2.2. AHL-Producing Vibrionaceae Strains 

Classification of the bacterial isolates as Vibrionaceae was confirmed by 16S rRNA gene sequencing 

(GenBank acc. no. in Table 2). Additionally, all strains grew well on TCBS-agar confirming their 

Vibrio-specific metabolism. Of the 301 strains, 32 (corresponding to 11%) induced a response in either 

A. tumefaciens or C. violaceum when Vibrio biomass from marine agar was spotted directly onto 

reporter plates (Table 3). Nine strains induced both monitors, while 15 induced only the A. tumefaciens 

and eight only the C. violaceum. 
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Table 2. 32 AHL-producing Vibrionaceae strains and their taxonomic identification by 

multilocus sequences analysis (MLSA) of the 16S rRNA, recA, toxR and rpoA gene 

sequences and geographic data of isolation site. 

Strain 
16S rRNA 

GenBank Acc. No. 

Closest Relative 

by MLSA 

fur Gene Analysis Isolation Site 

Species E Value Latitude Longitude 

S0188 FJ457302 V. lentus a V. splendidus 0 62.03815 −9.99592 

S0202 FJ457304 V. anguillarum a V. anguillarum b 0 62.03815 −9.99592 

S0203 FJ457305 V. lentus a V. splendidus 0 62.03815 −9.99592 

S0207 KM273118 V. anguillarum V. anguillarum b 0 62.16527 −16.5731 

S0209 FJ457309 Vibrio sp. V. splendidus 0 62.16527 −16.5731 

S0273 FJ457310 V. lentus a V. splendidus 0 62.2569 −20.8819 

S0344 FJ457313 V. pacinii a V. pacinii 0 66.7494 −53.8954 

S0787 FJ457334 V. mediterranei a V. shilonii 0 33.7571 −25.4239 

S0821 FJ457339 V. furnissii V. fluvialis 0 23.0918 −24.0417 

S0843 FJ457343 V. brasiliensis V. brasiliensis 0 12.20592 −21.0234 

S0845 FJ457345 V. brasiliensis V. brasiliensis 0 12.20592 −21.0234 

S1073 FJ457350 V. nigripulchritudo V. nigripulchritudo 0 1.6207 −10.5021 

S1089 FJ457355 V. campbellii V. campbelli 0 4.570467 −1.72975 

S1106 FJ457363 V. anguillarum V. anguillarum b 0 4.570467 −1.72975 

S1110 FJ457366 V. fluvialis V. fluvialis 0 4.570467 −1.72975 

S1137 FJ457371 V. chagasiia V. splendidus 9.32E−158 4.9119 −0.3376 

S1162 FJ457375 V. fluvialis V. fluvialis 0 4.570467 −1.72975 

S1192 KM273119 
Photobacterium 

angustum a 
ND  4.570467 −1.72975 

S1194 KM273120 V. campbellii V. campbelli 0 4.570467 −1.72975 

S1196 KM273121 V. campbellii V. campbelli 0 4.570467 −1.72975 

S1728 FJ457408 V. anguillarum V. anguillarum b 2.52E−170 −19.7461 114.8573 

S1729 FJ457409 V. anguillarum V. anguillarum b 0 −19.7461 114.8573 

S1730 FJ457410 V. anguillarum V. anguillarum b 0 −19.7461 114.8573 

S1732 FJ457411 V. anguillarum V. anguillarum b 0 −19.7461 114.8573 

S2605 FJ457458 V. brasiliensis a V. tubiashii 3.02E−144 −10.3454 157.7956 

S2606 FJ457459 V. brasiliensis a V. tubiashii 3.02E−144 −10.3454 157.7956 

S2719 FJ457471 Vibrio sp. V. brasiliensis 2.35E−154 −8.1005 156.8451 

S2757 FJ457478 Vibrio sp. V. tubiashii 2.88E−170 −15.2329 156.665 

S3857 FJ457565 Vibrio sp. V. rotiferianus 0 −14.159 −77.4004 

S4497 FJ457596 Vibrio sp. V. rotiferianus 0 24.9963 −67.0246 

S4634 FJ457597 V. splendidus V. splendidus 3.25E−116 43.0309 −66.2774 

S4738 FJ457608 Vibrio sp. V. splendidus b 0 58.8041 −3.0564 

a MLSA was uncertain; b sequenced contig BLASTed against NCBI, not the fur gene database; ND = not defined. 
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Table 3. AHLs in 32 Vibrionaceae strains tested against C. violaceum (Cv) and A. tumefaciens (At) using biomass or acidified EtOAc extracts 

and AHLs detected by UHPLC-DAD-QTOFMS; numbers demonstrate the peak area of the AHL in the chromatogram of the first run; 

numbers in brackets demonstrate the peak area of the AHL in the chromatogram of the second run; the total no. of occurrences/AHL does not 

include the reference strain V. anguillarum 90-11-287. 

Strain 

AHL Response in 
No of 

AHL/Strain 

Peak Area (1000 Counts) of AHL in Chromatogram 
Biomass Screen Extract Well Assay 

Cv At Cv At C4 C6 C7 C8 C12 OH-C4 OH-C6 OH-C4 OH-C6 

S0188 a − + + + 9 ND (114) ᶜ 178 ᵇ ND ND 32 b (161) b 880 b (4822) b 32 b (161) b 880 b (4822) b 

S0202 − + − + 5 ND ND ND ND ND ND 118 c (1659) b ND 118 c (1659) b 

S0203 a − + + + 7 ND ND ND ND ND 40 b (3709) b 964 b (6479) b 40 b (3709) b 964 b (6479) b 

S0207 + + − + 4 ND ND ND ND ND ND 167 c (1807) b ND 167 c (1807) b 

S0209 a + + + + 8 ND (116) ᵇ ND ND ND 17 c (342) b 627 b (4297) b 17ᶜ (342) b 627 b (4297) ᵇ 

S0273 a + + + + 7 ND ND ND ND ND 28 b (273) b 896 b (5918) b 28 b (273) b 896 b (5918) b 

S0344 + − − − 2 92 b (5352) b ND ND ND ND (50)ᵇ ND (50)ᵇ ND 

S0787 − + − + 0 ND ND ND ND ND ND ND ND ND 

S0821 + + + + 6 ND ND ND 57 b (6284) b ND ND ND ND ND 

S0843 a + − + + 2 317 b (11974) b ND ND ND ND (94)ᵇ ND (94)ᵇ ND 

S0845 + − − − 1 83 b (5009) b ND ND ND ND ND ND ND ND 

S1073 a − + − + 0 ND ND ND ND ND ND ND ND ND 

S1089 − + − + 4 ND ND ND ND (125322) b 310 b (2279) b (119) b 310 b (2279) b (119) b 

S1106 + + − + 4 ND ND ND ND ND ND 140 c (2050) b ND 140 c (2050) b 

S1110 + + − + 2 ND ND ND ND ND ND ND ND ND 

S1137 + + − + 2 ND ND ND ND ND ND 210 c (3154) b ND 210 c (3154) b 

S1162 − + − + 8 ND ND ND ND ND ND ND ND ND 

S1192 − + − + 1 ND ND ND ND ND ND ND ND ND 

S1194 − + − − 2 ND ND ND ND ND 61 b (491) b ND 61 b (491) b ND 

S1196 − + − + 2 ND ND ND ND ND 163 b (1425) b ND 163 b (1425) b ND 

S1728 − + − + 4 ND ND ND ND ND ND 61 c (617) b ND 61 c (617) b 

S1729 − + + + 7 ND ND ND 53 b (5170) b ND ND 268 c (2943) b ND 268 c (2943) b 

S1730 − + − + 5 ND ND ND ND ND ND 142 c (2643) b ND 142 c (2643) b 

S1732 − + − + 5 ND ND ND ND ND ND 201ᶜ (2201) ᵇ ND 201 c (2201) b 

S2605 + − − + 1 ND ND ND ND ND ND 33c (369) b ND 33 c (369) b 

S2606 a + − + + 6 ND (773) c 806 b ND ND (90)b 961b (6248) b (90)b 961 b (6248) b 

S2719 + − − + 2 77 b (4578) c (54) c ND ND ND ND ND ND ND 

S2757 + + + + 3 ND (69) c ND ND ND ND 364 c (5464) b ND 364c (5464) b 

S3857 + + + + 2 ND 52 c (5321) b ND (768) b ND ND ND ND ND 

S4497 a + − + + 3 19 b (917) b 286 b (12817) b 631 b ND ND ND ND ND ND 

S4634 + − − + 1 ND ND ND ND ND ND (148)b ND (148) b 

S4738 a − + − + 1 ND ND ND ND ND 219 b (2638) b ND 219 b (2638) b ND 

90-11-287 − + + + 3 ND ND ND ND ND ND 192 c (2162) b ND 192 c (2162) b 

No of occurrence/AHL 5 7 3 3 1 11 17 11 17 
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Table 3. Cont. 

Strain 
Peak Area (1000 Counts) of AHL in Chromatogram 

OH-C9 OH-C10 OH-C11 OH-C12 OH-C14 O-C4 O-C6 O-C8 O-C9 O-C10 O-C11 O-C12 

S0188 a ND 46 c (561) b ND 12 c (163) b (21313) b ND ND ND ND ND ND ND 

S0202 ND (112) b ND ND ND ND ND (182) b ND 90 c (3385) b ND (30) b 

S0203 a ND 58 c (412) b ND 16 c (256) b (94) b ND ND ND ND ND ND ND 

S0207 ND (70) b ND ND ND ND ND ND ND 96 c (3637) b ND (43) b 

S0209 a (30) b 28 c (452) b ND (64) b ND ND ND ND ND ND ND ND 

S0273 a ND 75 c (485) b ND 17 c (278) b (115) b ND ND ND ND ND ND ND 

S0344 ND ND ND ND ND ND ND ND ND ND ND ND 

S0787 ND ND ND ND ND ND ND ND ND ND ND ND 

S0821 ND ND ND ND ND ND ND (294) b 11 c (423) b (2991) b82 c 10 c (72) b 

S0843 a ND ND ND ND ND ND ND ND ND ND ND ND 

S0845 ND ND ND ND ND ND ND ND ND ND ND ND 

S1073 a ND ND ND ND ND ND ND ND ND ND ND ND 

S1089 ND ND ND 42 c (1313) b ND ND ND ND ND ND ND ND 

S1106 ND (93) c ND ND ND ND ND ND ND 86 c (3661) b ND (41) b 

S1110 ND ND ND ND ND ND ND ND ND 58 c (2770) b (305) b ND 

S1137 ND ND ND ND ND ND ND ND ND ND ND ND 

S1162 ND 239 c (134) b 59 b (503) b ND ND 30 b ND 12 c (273) b 31 c (620) b 241 c (5862) b 623 b (10784) b 12 c 

S1192 ND ND ND (104) b ND ND ND ND ND ND ND ND 

S1194 ND ND ND (215) b ND ND ND ND ND ND ND ND 

S1196 ND ND ND ND (80) b ND ND ND ND ND ND ND ND 

S1728 ND (78) b ND ND ND ND ND ND ND 89 c (3069) b ND (106) b 

S1729 ND 17 b (124) b ND ND ND ND (303) b 11 c (293) b ND 171 c (6066) b ND 16 c (77) b 

S1730 ND (147) b ND ND ND ND ND (274) b ND 115 c (5836) b ND (52) b 

S1732 ND 12 c (100) b ND ND ND ND ND 10 c (233) b ND 149 c (5687) b ND (68) b 

S2605 ND ND ND ND ND ND ND ND ND ND ND ND 

S2606 a ND ND ND ND ND ND ND ND ND ND ND ND 

S2719 ND ND ND ND ND ND ND ND ND ND ND ND 

S2757 ND ND ND ND ND ND (220) b ND ND ND ND ND 

S3857 ND ND ND ND ND ND ND ND ND ND ND ND 

S4497 a ND ND ND ND ND ND ND ND ND ND ND ND 

S4634 ND ND ND ND ND ND ND ND ND ND ND ND 

S4738 a ND ND ND ND ND ND ND ND ND ND ND ND 

90-11-287 ND (46) c ND ND ND ND ND ND ND 111 c (3228) b ND ND 

No of occurrence/AHL 1 12 1 8 3 1 2 6 2 11 3 9 

a strains grown in LB20; b AHL was identified by multiple adduct ions; c AHL was identified only as [M + H]+ or [M + Na]+; ND = not detected. 
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Using five different reporter strains in a double-layer microplate high-throughput assay, 85% of 

Vibrionaceae isolates gave a positive response in a study by García-Aljaro et al. [32]. Without using a 

biomonitor prescreen, Purohit et al. [33] analysed 57 Vibrionaceae isolates for AHLs by HPLC-MS/MS 

and did not recover AHLs from nine of the strains, also demonstrating a hit rate of about 85% [33]. 

Our comparably low number of AHL-positive strains could be correlated with the lower number of 

biomonitor strains, our pre-screening method or the strain diversity. However, an increased number of 

biomonitor strains has not yielded an improved detection of AHLs in Vibrionaceae previously [32]. 

The media used in the bioassays have low salt concentrations, which could have caused stress to  

the spotted Vibrionaceae biomass and thus could lead to an underestimate of the total number of  

AHL-positive strains. Hence, the herein AHL-negative strains may still be AHL-producers in the 

environment or under different culturing conditions including variation in nutrients, temperature, 

salinity or pH. Also, they may require specific biological cues from other organisms to trigger the 

production of QS signals. These variations and optimizations might be included in future studies to 

gain more knowledge on the physiological background of AHL production in Vibrionaceae. The strain 

collections used in the two studies described above [32,33] were selected strains, namely fish-derived 

strains. Our strain collection represents a broader range of environmental strains and this difference in 

strain profile could also be the cause of the differences in AHL-positive strains. 

For extract preparation, the 32 AHL-positive strains were grown in LB10. Nine strains (S0188, 

S0203, S0209, S0273, S0843, S1073, S2606, S4497 and S4738) did not grow in LB10 and required 

higher salinity and thus, they were grown in LB20 (Table 3). All ethyl acetate extracts were re-tested 

for induction of the monitors A. tumefaciens and C. violaceum in a well assay. Extracts of 15 strains 

demonstrated a different response compared to the initial biomass screen, either by gaining or 

loosing activity for one of the biomonitors. This could be attributed to the change of bacterial growth 

condition (plate versus liquid medium) or the final concentration of AHLs in the extracts, which 

may or may not have crossed the limit of detection [34,35]. In V. anguillarum 90-11-287, a positive 

reaction for C6-AHL was observed in the biomonitor strain as evaluated with biomass, while  

LC-MS did not detect C6-AHL [26]. False positives might potentially occur when a strain is 

spotted too close to another strain on a plate. In this second screen, 10 extracts induced both 

monitors, while 18 induced only the A. tumefaciens and interestingly, none of the extracts induced  

C. violaceum alone. The higher hit rate for A. tumefaciens has been described before and is probably 

due to the wider range of response to various AHLs of this strain [32] (see Section 2.1). 

Three extracts (of strains S0344, S0845, S1194) were negative in the bioassays. However, in all 

three extracts, AHLs were detected by LC-MS, namely either N-butanoyl (C4), N-(3-hydroxy-butanoyl) 

(OH-C4) or N-(3-hydroxy-hexanoyl) (OH-C6) HL (Table 3). A. tumefaciens is not sensitive to these 

short chain AHLs, however C. violaceum does react at least to C4 homoserine lactone (see Section 2.1). 

Comparing the chemical analyses of all extracts in standard and small molecule tune, the sizes of the 

peak areas indicate that the concentration of AHL in these three samples might not have been 

sufficient for detection by the biomonitor. 
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2.3. Structural Abundance of AHLs in Vibrio Strains 

UHPLC-DAD-QTOFMS was performed on extracts of the 32 strains and control strain V. anguillarum 

90-11-287 to identify the AHL molecules produced. V. anguillarum 90-11-287 produced three AHLs, 

N-(3-hydroxy-hexanoyl) (OH-C6), N-(3-hydroxy-decanoyl) (OH-C10) and N-(3-oxo-decanoyl) (O-C10) 

homoserine lactone, agreeing with previous studies [26,33]. Across all strains, a total number of  

21 different AHLs was detected (Table 3) of the 33 closed ring forms searched for. A few open ring 

forms were also detected, however, only in very small amounts, since open ring forms are generally 

closed by the extraction procedure. The maximum number of nine different AHLs was found in  

V. splendidus S0188. It is known that several Vibrionaceae strains, e.g., V. anguillarum, produce a 

number of AHLs, however, production of nine AHLs appears to be unique for a single strain. 

It is important to mention that we have used a very sensitive chemical detection procedure, thus this 

type of diversity might be found in other organisms, but goes currently undetected. The high number 

of AHLs might result from biochemical processes inside the cells and might not be genetically 

encoded or biologically relevant in environmental conditions. However, they could potentially be part 

of differentiated signaling at the species level. The genome of this strain will be subjected to sequence 

analysis in the future. Eighteen strains produced three AHLs or more, and in five strains only one type 

of AHL was identified. In two strains (S0787, 1073), no AHLs could be identified from the full scan 

MS data, nor from the MS/MS data (e.g., m/z 102 fragment), although for both, monitor response was 

observed. This might indicate that novel unknown AHLs (with modifications on the homoserine ring 

that would not create the m/z 102 fragment) might be produced by these strains or that other types of 

molecules, such as diketopiperazines, are being produced [37]. This will be studied in more detail in 

the future including accurate concentration measurements of the detected AHLs. 

The most abundant AHL was OH-C6 homoserine lactone, which was identified in 17 extracts, 

followed by OH-C10, OH-C4 and O-C10 homoserine lactone, which were identified in 12, 11 and 

10 extracts, respectively. Rare AHLs were C12, OH-C9, OH-C11 and O-C4. The Vibrionaceae 

extracts studied by Purohit et al. [33] were dominated by O-C6, OH-C10 and OH-C4, demonstrating a 

certain overlap. As indicated above, variations might be due to the different species composition in our 

strain collection. For the strains belonging to the Splendidus cluster, they detected C4, OH-C4, OH-C6,  

OH-C8 and O-C6, while we measured OH-C4, OH-C6, OH-C7, OH-C8, OH-C10 and OH-C12, a 

pattern conserved through four different isolates (Figure 2). Variations could be due to the differences 

in growth conditions or chemical analysis applied; also for example, Purohit et al. [33] did not scan for 

odd-numbered AHLs. Generally, AHLs with odd numbers of carbons are rare in nature [38], however, 

they are known to be produced by other gammaproteobacteria such as Pseudomonas aeruginosa [39], 

Yersinia ruckeri [40] or Edwardsiella tarda [41]. Furthermore, Aliivibrio fischeri has been to shown to 

be capable of detecting odd-numbered AHLs such as C5 [42]. To the authors’ knowledge, this is the 

first study demonstrating the production of odd-numbered AHLs by strains of the Vibrionaceae family. 
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Figure 2. Cluster analysis of AHL diversity per strain and phylogenetic affiliation using 

CIMminer [43]. Dark grey: AHL present; light grey: AHL absent; colours distinguish 

different clades, clusters marked in bold. 

 

2.4. MS/HRMS Screening of AHLs 

The upper base peak chromatogram (BPC, m/z 50–1700) (Figure 3A) of the ethyl acetate extract 

from strain S1162 demonstrates the complexity of the sample, with B–D showing the extracted ion 

chromatograms of the major AHL fragment ions (Figure 3); clearly indicating the presence of two 

unassigned peaks at 4.7 and 3.36 min. The first peak was also present in sample blanks, while the 

second peak corresponded to an open lactone AHL. The peaks at m/z 120 and 137 correspond to 

fragmentation between the homoserine and alkyl chains with the charge residing on one or the other 

side. With the fragment at m/z 137 containing a C=O group (where the charge is believed to reside), 

the accurate mass left exactly C6H5O2 requiring four unsaturations. This is most likely possible using 

an aromatic ring containing two presumed phenolic groups, although a larger ring with ketones cannot 

be excluded either. Nonetheless, this compound seems to be novel AHL, a finding that needs to be 

confirmed by preparative purification and NMR techniques or total synthesis. Bioinformatic analysis 

of the PKS genes in the AHL gene cluster may also aid in this tentative identification of the molecule 

and genome sequencing is in progress. 
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Figure 3. Chemical analysis of strain S1162. (A) base peak chromatogram; (B) m/z 

56.04948 ± 0.02; (C) m/z 102.05495 ± 0.02; and (D) m/z 120.06552 ± 0.02, showing the 

extracted ion chromatograms of the three major diagnostic fragment ions with labels of six 

known long chain AHLs. At 3.36 min a novel open chain AHL is eluting with its 

MS/HRSM spectrum at 10 eV showed in E with a tentatively identified compound. 

 

2.5. Phylogeny and Geographical Distribution of AHL-Producing Strains 

The 32 AHL-producing strains were identified using MLSA of the 16S rRNA, recA, toxR and rpoA 

genes in combination with a novel technique using the fur gene for species differentiation in the family 

of Vibrionaceae [44]. 16S rRNA gene sequences do not allow sufficient discrimination in the 

Vibrionaceae family due to the presence of multiple alleles and MLSA requires the amplification of several 

genes. Thus, Machado et al. [44] demonstrated that the fur gene, encoding a ferric uptake regulator, 

would have the power to replace the previously used techniques as efficient and accurate phylogenetic 

marker in this family. The neighbor joining tree of concatenated partial rpoA and recA gene sequences 
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reveals the grouping of the strains into eight Vibrionaceae clades as defined by Sawabe et al. [45]—namely 

Cholerae, Harveyi, Pacinii, Orientalis, Anguillarum, Splendidus and Nigripulchritudo—thereby covering 

half of the Vibrio clades (Figure 4). Additionally, we analysed one Photobacterium strain, P. angustum 

S1192. Within a clade, species tend to form certain phylogenetic pairs that are very difficult to 

distinguish, such as V. fluvialis and V. furnissii, V. brasiliensis and V. tubiashii and V. splendidus and 

V. lentus [46,47]. Those pairs could not be properly resolved by our MLSA analysis; however, the fur 

gene analysis was a very robust discriminator in these situations. For instance, S2719, S2757, S3857 

and S4497 could not be identified using MLSA of the four marker genes, however, the fur analysis 

revealed their association with the Orientalis and Harveyi clades (Figure 4). 

Figure 4. Neighbor joining tree of concatenated partial rpoA and recA gene sequences of 

32 AHL-positive Vibrionaceae strains using the Jukes-Cantor method and Shewanella 

oneidensis MR-1 as outgroup. Bootstrap values are based on 100 replicates. Square 

brackets indicate clades [45,48]. 

 

The 32 strains did not cluster taxonomically according to their isolation sites (Supplementary  

Figure S1); e.g., the seven Anguillarum strains were isolated from opposite sides of the globe: the west 
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coast of Africa and the west coast of Australia. In addition, there is no tendency for strains to group 

together according to their climate zone; moreover, all Harveyi and all Splendidus clade strains were 

isolated from tropical waters. Finally, no correlation between isolation site and AHL profile, climate 

zone and abundance or diversity of AHLs was observed.  

When comparing phylogeny to the AHL profiles of the strains (Figure 2), two distinct clusters 

formed: as with the control strain V. anguillarum 90-11-287, most other Anguillarum clade isolates 

produced OH-C6, OH-C10 and O-C10 homoserine lactone, building a fingerprint for the Anguillarum 

clade. Four out of the six strains of the Splendidus clade produce OH-C4, OH-C6, OH-C7, OH-C8, 

OH-C10 and OH-C12. These results, where not every strain of the clade fell in one fingerprint, 

resemble the taxonomic pattern. This could mean that a fingerprint possibly represents a distinct 

subgroup of a clade rather than a complete clade (“subclade”). The Anguillarum and Splendidus strains 

were taxonomically very similar (Figure 4). 

However, the Anguillarum clade strains were isolated from four different isolation sites from both 

temperate and tropical climates. The Splendidus clade strains were isolated from the same climate 

zone, but different locations. This demonstrates the differences between the isolates making them to 

unique strains besides taxonomic similarity. Combining the individual AHLs produced by the 

individual strains of a clade as identified by previous studies build similar profile to the herein 

described complete AHL profiles for the Anguillarum and Splendidus clade [26,33]. 

Previous studies on AHLs in Vibrionaceae have either not addressed the chemistry of the signals or 

lacked a high throughput setup [9,32,33]. All demonstrated a limited phylogenetic analysis using only 

the 16S rRNA gene. Because they possess several alleles of the 16S rRNA gene, Vibrionaceae require 

a more stringent phylogenetic analysis [46,47]. This, however, might be greatly facilitated by 

utilization of the fur gene as marker in the future [44]. Our findings will add a crucial amount of 

information to the current knowledge on AHLs in the family of Vibrionaceae and hereby, we propose 

an AHL fingerprint correlated to specific phylogenetic subclades. 

3. Experimental Section 

3.1. Bacterial Strains and Growth Conditions  

Three hundred and one Vibrionaceae strains were isolated on the global Galathea 3 expedition [23] 

on the basis of their ability to inhibit Vibrio anguillarum 90-11-287 [49]. Vibrionaceae strains were 

grown on Marine Agar plates (MA; Difco 212185) for 1–3 days at 25 °C for the initial AHL screening 

based on biomonitors. For chemical analyses of AHLs, the Vibrionaceae strains (Table 2) were grown 

in Luria-Bertani broth (LB; Difco 244620) under aerated conditions (200 rpm) at 20 °C for one day 

assuming stationary phase, which has been demonstrated for a selected number of strains. Strains that 

did not grow in LB were grown in LB with extra NaCl (2% final concentration). Agrobacterium 

tumefaciens NT1 (pZLR4) [34] and Chromobacterium violaceum CV026 [35] were used as reporter 

strains in bioassays to detect AHLs. A. tumefaciens was grown on ABt agar or in LB broth with 0.5% 

NaCl (LB5) with 20 µg mL−1 gentamycin and 50 mg mL−1 X-Gal. C. violaceum was grown on LB5 

agar or in LB with 20 µg mL−1 kanamycin. V. anguillarum 90-11-287 was used as reference strain in 

the UHPLC-DAD-QTOFMS analysis [26]. All strains were stored at −80 °C in a freeze medium 
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(30.0 g tryptone soy broth (TSB; Oxoid CM129B), 5.0 g glucose, 20.0 g skim milk powder, 40.0 g 

glycerol, 1000 mL H2O) [50]. 

3.2. Phylogenetic Analysis of Strains 

The affiliation to Vibrionaceae was confirmed by 16S rRNA gene sequencing and streaking strains 

on Vibrio-selective medium, thiosulfate-citrate-bile salts-sucrose agar (TCBS; Oxoid CM0333) for  

1–2 days at 25 °C. Genomic DNA was purified using the NucleoSpin Tissue kit (Macherey-Nagel, 

Düren, Germany). The genes rpoB, recA, toxR [18,46,47] and fur [44] were amplified by PCR and 

sequenced (GATC Biotech, Cologne, Germany). The nucleotide sequences were edited, then alignments 

and neighbor joining phylogenetic trees were generated using CLC Main Workbench 7 (CLC bio, 

Aarhus, Denmark), and visually improved using MEGA5.2 [51]. Nucleotide sequences were subjected 

to BLASTn analysis against the NCBI nucleotide collection for multilocus sequence analysis [52]. 

3.3. Detection of AHL Compounds 

Reporter plates were prepared as described previously [53,54]. The Vibrionaceae strains were 

grown on MA and a loop of bacterial biomass was placed on bioassay plates embedded with reporter 

strain. 3 µL 1 µM OHHL (OH-C6) was spotted on the A. tumefaciens plates as a control and 3 µL  

1 mM BHL (C4) was spotted on the C. violaceum plates. After 1 day at 25 °C, C. violaceum plates 

were inspected for purple zones due to AHL-induced violacein production. After 2 days at 25 °C,  

A. tumefaciens plates were inspected for formation of blue colour due to AHL-induced β-galactosidase 

activity. Extracts were prepared for all strains being positive in the pre-screen. To evaluate the extracts 

for AHL activity, 6 mm wells were punched in the solid bioassay plates and 30 µL extract were 

pipetted into the wells. Plates were read as described above. 

To confirm the AHL detection range of each biomonitor, 16 AHL standards (Supplementary 

Table S1) were tested against C. violaceum and A. tumefaciens in a well assay, using three tenfold 

diluted concentrations in acetonitrile. Plates were read as described above. 

3.4. Extracts for Bioassays and UHPLC-DAD-QTOFMS 

Ten mL of liquid LB10 or LB20 culture was mixed with 10 mL ethyl acetate (EtOAc) containing 

0.5% formic acid (FA), and incubated at 20 °C and 200 rpm for 30 min. The upper EtOAc phase was 

collected, and evaporated to dryness under nitrogen. Samples were resuspended in 0.5 mL EtOAc with 

0.5% formic acid and stored at −20 °C until use. 30 µL of extracts (i.e., corresponding to 1.6 mL of 

original culture) were re-tested for AHL activity as described above. 

3.5. AHL Detection via UHPLC-DAD-QTOFMS 

200 µL of the ethylacetate extracts were evaporated to dryness under an N2 atmosphere and 

resuspended in 200 µL 50:50 (vol/vol) Acetonitrile (ACN)-MilliQ water buffered with 20 mM FA 

50:50 (vol/vol). Ultra-high performance liquid chromatography-diode array detection-quadrupole time 

of flight mass spectrometry (UHPLC-DAD-QTOFMS) was performed on an Agilent Infinity 1290 

UHPLC system (Agilent Technologies, Santa Clara, CA, USA) with a diode array detector. An Agilent 
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Poroshell 120 phenyl-hexyl column (2.1 × 150 mm, 2.7 µm) was used for separation with a linear 

gradient consisting of water and ACN both buffered with 20 mM FA and 10 mM ammonium formate, 

starting at 5% ACN and increased to 85% in 14, and then to 100% in 1 min where it was held for  

2 min, then returned to 10% in 0.1 min and keeping it for 3 min (0.35 mL/min, 60 °C). Subsamples of 

0.6 µL were injected. High resolution MS and MS/MS detection was done on an Agilent 6550 iFunnel 

QTOF MS [36]. MS/MS was done at 10 and 20 eV with a max of 3 parent ions and in the range  

m/z 170–460 only selecting singly charged ions, and using and ion-exclusion time of 0.04 min. 

Samples were analysed twice one time using the default tuning parameters and the small molecule 

tuning (Agilent Tune manual B6.00). 

Reference standards co-analysed in each sequence were: N-butanoyl homoserine lactone (BHL, 

C4), N-hexanoyl homoserine lactone (HHL, C6), N-octanoyl homoserine lactone (OHL, C8),  

N-decanoyl homoserine lactone (DHL, C10), N-dodecanoyl homoserine lactone (dDHL, C12),  

N-tetradecanoyl homoserine lactone (tDHL, C14), N-(3-oxo-hexanoyl) homoserine lactone (OHHL,  

O-C6), N-(3-oxo-octanoyl) homoserine lactone (OOHL, O-C8), N-(3-oxo-decanoyl)-homoserine 

lactone (ODHL, O-C10), N-(3-oxo-dodecanoyl)-homoserine lactone (OdDHL, O-C12),  

N-(3-hydroxy-hexanoyl) homoserine lactone (OH-C6), N-(3-Hydroxy-decanoyl)-homoserine lactone 

(OH-C10), and N-(3-hydroxy-dodecanoyl)-homoserine lactone (OH-C10). Extracts with uneven chain 

length, oxo homoserine lactones, were available from a previous study [40]. 

Data processing was performed using MassHunter (Agilent Technologies), where MS/MS data was 

processed in Qualitative Analysis version B.06.00 (Agilent Technologies) while HRMS data was 

processed in Quantative Analysis version B.06.00 searching, using mass extraction window of  

m/z ± 0.01 of [M + H]+, [M + Na]+, [M + NH4]+, m/z 102.05495 (homoserine ring), m/z 56.04948 

(homoserine ring with of CO and H2O or HCOOH loss), and m/z 120.06552 (open homoserine ring). 

Peaks with an s/n below 1:10 were not integrated. For evaluation of MS/HRMS data extracted ion 

chromatograms of the 3 fragment ions were plotted and parent ions determined manually, with a focus 

on scans where at least 2 of the 3 ions were detected. 

4. Conclusions 

In summary, we demonstrated that in a number of clades in the family of Vibrionaceae, a greater 

range of the QS signals, acyl homoserine lactones, including AHLs with odd numbers of carbon, is 

produced than has been previously shown. In addition to this, we have shown that these AHLs are very 

diverse. Our results indicate that there appears to be an AHL fingerprint for at least some of the 

Vibrionaceae clades. Besides the correlation of AHL profile to phylogeny, no pattern for geographic 

distribution was identified. This demonstrates that the genetic basis of AHLs was globally distributed 

during evolution, as no niche-specific AHLs were observed. This new knowledge on AHLs in 

Vibrionaceae will be utilized in future studies on inter- and intra-species communication. 
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