
Quantifying Underspecification

in Machine Learning

with Explainable AI

James Hinns

Submitted to Swansea University in fulfilment
of the requirements for the Degree of Master of Science By Research

Department of Computer Science
Swansea University

June 2022

Copyright: The author, James Hinns, 2022.

A.A.ZASHEVA
New Stamp

Declaration
This work has not been previously accepted in substance for any degree and is not being
concurrently submitted in candidature for any degree.

Signed

Date 08/06/22

This thesis is the result of my own investigations, except where otherwise stated. Other
sources are acknowledged by footnotes giving explicit references. A bibliography is
appended.

Signed

Date 08/06/22

I hereby give my consent for my thesis, if accepted, to be available for photocopying and
for inter-library loan, and for the title and summary to be made available to outside
organisations.

Signed

Date 08/06/22

The University’s ethical procedures have been followed and, where appropriate, that
ethical approval has been granted.

Signed

Date 08/06/22

Abstract

To evaluate a trained machine learning (ML) model’s performance, it is general practice
to test its performance by predicting targets from a held-out testing set. For such a
dataset, various models can be constructed with different reasoning that produce near-
optimal test performance. However, due to this variance in reasoning some models can
generalise, whilst some perform unexpectedly on further unseen data. The existence of
multiple equally performing models exhibits underspecification of the ML pipeline used
for producing such models. Underspecification poses challenges towards the credibility
of such test performance evaluations and has been identified as a key reason why many
models that perform well in testing, exhibit poor performance in deployment.

In this work, we propose identifying underspecification by estimating the variance
of reasoning within a set of near-optimal models produced by a pipeline, also called a
Rashomon set. We iteratively train models using the same pipeline to produce an em-
pirical Rashomon set of a fixed size. In order to quantify the variation of models within
this Rashomon set, we measure the variation of SHapley Additive exPlanations that the
models produce using a variety of metrics. This provides us with an index representing
the variation of reasoning within this Rashomon set, and thus the pipeline. This index
therefore represents the extent of underspecification the pipeline exhibits.

We provide an implementation for this approach, and make it publicly available
on github. We validate that this implementation shows the trends we expect using
evaluation techniques previously used to prove the existence of underspecification. Fur-
thermore, we demonstrate our approach on multiple datasets drawn from the literature,
and in a COVID-19 virus transmission case study.

v

Acknowledgements

I would first like to thank both of my supervisors for their continued guidance and
patience throughout this project.

Without Dr. Fan Xiuyi I would not have undertaken a masters of this kind, and
possibly not at all. He has not only guided me through the technical aspects of my
first project in XAI, first publication, and first research role, but also provided a calm
stabilising figure throughout.

Additionally, I would like to thank my other supervisor, Prof. Markus Roggenbach,
who generously supported me throughout and after Fans move. His experience, pa-
tience and understanding helped me with the final push I needed to finish this thesis.

I have learnt a great deal from both of them, and I am incredibly thankful, to once
again, have such excellent guidance.

My thanks also extend to Orçun Yalçın and Raghav Kovvuri who helped me in
my introduction to XAI, and particularly helped me get up to speed whilst I worked
alongside them as a research assistant.

Finally, I would like to thank my mum. She helped to proofread and remove the
continual random commas I add to most sentences, and did everything she was able to,
so I could focus on getting this project finished.

vii

Table of Contents

1 Introduction 1
1.1 Underspecification . 2
1.2 Quantifying Underspecification with XAI 4
1.3 Aims and Contributions . 5
1.4 Presented Material . 6
1.5 Chapter Overview . 6

I Background Material 9

2 Supervised Machine Learning 11
2.1 Components of a Supervised Machine Learning System 11
2.2 Evaluation . 12
2.3 Optimisation . 18

3 Explainable Machine Learning 23
3.1 Introduction and Motivation . 23
3.2 Post-hoc Interpretability . 26
3.3 SHAP (SHapley Additive exPlanations) 28

4 Metrics 31
4.1 Distance, Similarity and Correlation Metrics 31
4.2 Euclidean Distance . 32
4.3 Pearson Correlation Coefficient . 34
4.4 Cosine Similarity . 35
4.5 Kendall Rank Correlation Coefficient . 37

5 Related Work 41
5.1 Stress Tests . 41
5.2 Explanation Quantification . 43
5.3 Explanation Influenced Optimisation . 44
5.4 The Rashomon Effect . 46
5.5 Prediction Variance . 47

ix

II Contributions 51

6 Measuring Underspecification with Underspecification Index 53
6.1 Quantifying Underspecification . 53
6.2 Method Definition . 57

7 Implementing Underspecification Index for Classification 61
7.1 Language and Library Considerations 61
7.2 Software Realisation . 63
7.3 Experimental Setup . 66
7.4 Experiment Results . 69

8 Implementing Underspecification Index for Regression 77
8.1 Software Realization . 77
8.2 Experimental Setup . 78
8.3 Experiment Results . 80

9 COVID-19 Case Study 85
9.1 Dataset Creation . 85
9.2 Experimentation . 88

IIIConclusions 93

10 Conclusions and Future Work 95
10.1 Quantifying Underspecification with XAI 95
10.2 Future Work . 98

Bibliography 101

A Classification Results 111

B Regression Results 119
B.1 Cosine Index Against Variance . 120
B.2 Underspecification Index Variations against Accuracy 122

Chapter 1

Introduction

Contents
1.1 Underspecification . 2
1.2 Quantifying Underspecification with XAI 4
1.3 Aims and Contributions . 5
1.4 Presented Material . 6
1.5 Chapter Overview . 6

Often machine learning practitioners notice systems that performed well during testing,
perform poorly when deployed in real world applications. There can be many reasons
why these performance differences exist [QCSSL09, GJM+20, DYT+20], however it is
generally suggested that having a sufficiently large training and testing set will mitigate
this [DYT+20]. Unfortunately this is not the case in many situations [Hea20].

Underspecification is a key reason why these performance differences exist [DHM+20].

Definition 1.0.1 An underspecified machine learning problem is where there can
exist multiple possible models that perform similarly well on the testing set.

Explanations can answer a why question about a single prediction given by a machine
learning model [Mil19]. By generating an explanation about a prediction one can eval-
uate whether its decision process was reasonable and thus whether the prediction can
be trusted [DVK17, Mol19]. An explanation with a reasonable decision process that
performs well on the testing set (presuming the testing set effectively models the dis-
tribution of the real world population) should provide a model which performs well in
the real world.

This thesis aims to establish areas in which underspecification exists, guided by
and building upon, examples from the underspecification paper [DHM+20]. We do

1

1. Introduction

this by computing the agreement of different possible explanations for a given machine
learning problem. By quantifying the agreement between these explanations, we are
able to quantitively evaluate how credible test performance evaluations are.

1.1 Underspecification

A supervised learning problem aims to produce a predictor f : X → Y that maps
input X to output Y . A model is specified by a model class F from which a predictor
f(x) is chosen [DHM+20]. A machine learning pipeline involves everything to create
a predictor, taking in data D from training distribution P and producing a predictor
f(x) ∈ F . The pipeline (generally) selects f(x) from F by maximising performance of
some metric on a test set. However, there can exist many different predictors f(x) ∈ F
that perform equally well on independent and identically distributed (i.i.d) evaluation,
but perform differently on data further to that used in training.

Example 1.1.1 Consider the binary classification of five-bit binary strings into two
classes; positive POS and negative NEG.

Consider the testing set Dtst such that each class has four examples:

POS : {01101, 11101, 11111, 01111}
NEG : {00000, 00010, 10010, 10000}

Consider three predictors Predictor1, Predictor2 and Predictor3 that classify
each example by examining only one-bit such that:

Predictor1(x) =

{
POS, if x2 = 1

NEG, otherwise

Predictor2(x) =

{
POS, if x3 = 1

NEG, otherwise

Predictor3(x) =

{
POS, if x5 = 1

NEG, otherwise

All three predictors perfectly classify the ten examples in Dtst.

As shown in example 1.1.1 pipelines can produce multiple equally evaluated predic-
tors with different internal methods. Pipelines such as these are called underspecified.
More specifically, “An ML pipeline is underspecified when it can return many predic-
tors with equivalently strong held-out performance in the training domain” [DHM+20].
Choosing between equivalently evaluated predictors of an underspecified pipeline such

2

1.1. Underspecification

as Predictor1 and Predictor2 are based on arbitrary factors. However, this same per-
formance on the test set doesn’t guarantee the same performance on further datasets.

As we will discuss in 2.3, the mapping learned by an ideal predictor should generalise
to all datasets from the same true distribution. That is, an ideal predictor trained to
classify cats and dogs should work on any picture of cats and dogs, not just those
included in the training dataset. An underspecified pipeline is problematic in that
equivalently evaluated predictors may perform differently on data further to the training
and testing set.

Example 1.1.2 Consider again the pipeline that produces Predictor1, Predictor2 and
Predictor3 from example 1.1.1.

Consider the testing set D̂tst which is drawn from the same distribution as Dtst.

D̂tst includes all examples from the previous testing set Dtst, and an additional
instance for each class, such that:

POS : {01101, 11101, 11111, 01111, 01001}
NEG : {00000, 00010, 10010, 10000, 00001}

Predictor1 maintains its perfect performance on this new testing set D̂tst.

However Predictor2 and Predictor3 misclassify the newly added instances.

Of similarly evaluated predictors, some may generalise well, whilst others may not.
This variation of supposedly well-behaving predictors presents challenges for credibility
of test performance evaluations.

Although underspecification is not directly looking at state-space, these equivalently
performing predictors can be seen as a state-space with many similarly valued minima.

Figure 1.1.1: The different trajectories produced by different equivalently evaluated
parameter sets using the SIR model as described in example 1.1.3 [DHM+20].

Example 1.1.3 The following example is summarised from [DHM+20]. Consider the
Susceptible-Infected-Recovered (SIR) model used for epidemiological forecasting. The
model enables the calculation of rates of susceptible (S), infected (I), and recovered (R)
people.

dS

dt
= −β

(
1

N

)
S,

dI

dt
= − I

D
+ β

(
1

N

)
S,

dR

dt
=

I

D
,

3

1. Introduction

where N is the population size, β the transmission rate and D the duration that some-
one remains infectious.

The specific machine learning problem is to learn the parameters β and D up to
some time Tobs using gradient descent (a similar local search technique to hill climb-
ing, discussed in chapter 2). With these learned parameters the full epidemiological
trajectory up to time T is predicted, such that Tobs < T . When Tobs is small, that is
the training data is small, the model is underspecified, as the number of susceptible is
around constant to the population size (N), and infections grow approximately expo-
nentially at the rate β − 1/D. There are many different parameter permutations of β
and D that model this exponential growth β − 1/D. Because each of these parameter
sets cannot be distinguished in this training setting, arbitrary choices determine which
of these equivalently evaluated parameters are returned. The first image in figure 1.1.1
shows two different parameter sets that equivalently fit the given data (and are there-
fore equivalently evaluated) with orders of magnitude apart. The second image in figure
1.1.1 shows how the distribution used to draw D0 (the point at which D is initialised)
influences the predicted trajectories. Finally, the third image in figure 1.1.1 shows how
changing D0 produces a wide range of trajectories.

1.2 Quantifying Underspecification with XAI

As discussed above, an ML pipeline is underspecified when it is able to produce many
different predictors with similar performance on the provided testing set. However, in
the paper presenting underspecification as an issue in machine learning, [DHM+20], no
formal definition is provided, and no way to quantify underspecification is presented.
We therefore extend this definition to say pipelines are underspecified when we see vari-
ation between well performing predictors. Furthermore, we say pipelines with greater
variation are more underspecified than those with less variation. Thus, we quantify
underspecification as the variation between well performing predictors.

This definition allows us to quantify underspecification by examining the variation
between well performing predictors produced by a pipeline. To do this, we use the
pipeline to iteratively train predictors adding them to our ensemble only if they exceed
a chosen performance threshold. If this value is chosen to be close to the optimal
achievable performance of predictors for this pipeline, it ensures all predictors in the
ensemble perform similarly well on available data. Comparing the variation of predictors
within this ensemble should quantify the extent of underspecification for the given
pipeline.

However, directly comparing predictors is not straightforward as they can contain a
vast amount of parameters and different architectures will have different internal struc-
tures. In order to simplify this comparison, and to provide a model-agnostic approach
for quantification, we compare explanations instead of predictors. As explanations
model predictors for a given prediction (we discuss this in more detail in section 3.1),
we can use a number of their produced explanations as a representation of the model
itself. Our major assumption here is that the methods we use to generate such expla-

4

1.3. Aims and Contributions

nations are consistent, that is, similar predictors should produce similar explanations.
Therefore, for each predictor in our similarly performing ensemble, we compute their

explanations for a number of data instances, and compare the agreement of these expla-
nations across predictors. The greater the agreement of these explanations, the more
similar the predictors and therefore the less underspecified the pipeline is. Additionally,
we say pipelines with little variation between explanations have more credibility in their
test performance evaluations. We call the value representing agreement between expla-
nations for a specific data instance a local underspecification index. We call the average
of all local indices for the provided test set the set underspecification index. This set
underspecification index is representative of the agreement of all similarly well perform-
ing predictors produced by our pipeline, and thus the extent of underspecification of
the given pipeline.

1.3 Aims and Contributions

The major aim of this thesis is to investigate the possibility of underspecification quan-
tification by quantifying explanation agreement. In order to investigate this, we aim
to provide a basic framework which given a dataset constructs a Rashomon set for it
and quantifies the agreement of explanations between each predictor in this Rashomon
set. Using this framework we aim to produce repeatable results to enable researchers to
continue our work, or utilise such evaluations to quantify if the quality of their dataset
is sufficient for providing credible test performance evaluations.
The main contributions of this thesis are as follows.

Underspecification Indexes as a Measure of Underspecification: We formu-
late underspecification quantification as a problem of measuring similarity between ex-
planations produced by predictors in a Rashomon set. We represent this similarity
using our proposed underspecification indices, which can be used for both local and
set-level evaluations.

Effect of Metric Choice on Underspecification Indexes: We quantify the simi-
larity of explanations using four well studied metrics, Euclidean distance, Pearson cor-
relation, Cosine similarity, and Kendall rank correlation. We discuss the implications
of using each of these metrics to produce underspecification indices.

Framework for Computing Underspecification Indexes: We provide a Numba-
optimised Python implementation of our proposed approach for both classification and
regression problems. This implementation is publicly available in our repository.

https://github.com/JamesHinns/Underspecification-Index.

Relationship Between Underspecification Indexes and Evaluation Metrics:
We demonstrate our approach for classification and regression on both existing datasets
in the literature and a real-world COVID-19 dataset. We compare our produced un-
derspecification indices to established performance and variation metrics for pipelines.

5

https://github.com/JamesHinns/Underspecification-Index

1. Introduction

1.4 Presented Material

The work within this thesis has led to the following publication:

An Initial Study of Machine Learning Underspecification using Feature At-
tribution Explainable AI Algorithms: a COVID-19 Virus Transmission Case
Study [HFL+21] (James Hinns, Xiuyi Fan, Siyuan Liu, Veera Raghava Reddy Kovvuri,
Mehmet Orcun Yalcin and Markus Roggenbach PRICAI 2021)
This paper (and corresponding poster) presents an initial study of investigating explana-
tion agreement as a form of underspecification quantification. Furthermore, it outlines
the use of Kendall rank correlation coefficient as a metric for predictor variance across
an ensemble. This paper only considers classification problems.

Additionally, the work within this thesis has been presented:

Quantifying Underspecification in Machine Learning using Explainable AI
(James Hinns BCTCS 2022)
This presentation provided an overview of the work conducted in this thesis. We
outlined our method of quantifying underspecification by explanation agreement. We
briefly discussed the trends we find between our underspecification indices, prediction
variance and prediction performance.

1.5 Chapter Overview

This dissertation is organised as follows:

We first introduce the background materials for this work:

• Chapter 2 introduces supervised learning problems. We give an overview of the
basic components of a supervised machine learning system and the interactions
between them. Particularly of focus in this chapter are the processes of evaluation
and optimisation, in order to build upon in further chapters. In doing so we discuss
a selection of convergence problems that may occur during optimisation, and how
such problems may affect produced predictors.

• Chapter 3 presents an overview of interpretability in machine learning. We focus
primarily on model-agnostic post-hoc interpretability methods as these are key
to our method for interpreting underspecification in a machine learning pipeline.
We discuss SHAP, the specific explanation method we use to model predictors
produced by pipelines.

• Chapter 4 details metrics of distance, similarity and correlation. Specifically,
we cover four metrics, Euclidean distance, Pearson correlation coefficient, Cosine
similarity, Kendall rank correlation coefficient. For each of these metrics, we
review definitions and provide examples calculating each.

6

1.5. Chapter Overview

• In chapter 5 we discuss some of the related work to our work. We examine the
small amount of work that has been proposed for identifying underspecification
directly. Additionally, we discuss methods that whilst not aimed at underspecifi-
cation, have a potential for identification, via predictor variation quantification.

We then present our contributions for this work:

• Chapter 6 provides an overview to our proposed method for quantifying under-
specification. We first review the definition of underspecification from this chapter,
and follow how we can quantify its extent by examining variation between pre-
dictors. We then provide our approach for such quantification, giving pseudocode
and component diagrams.

• Chapter 7 covers our implementation of the method proposed in chapter 6 for
classification problems. We provide a naive implementation, followed by our sub-
sequent optimisation of this implementation. We provide justifications for the
technology choices we use to realise this implementation. Using this implemen-
tation, we experiment on a number of datasets from the literature in order to
validate results shown the expected trends.

• Chapter 8 adapts the implementation provided in chapter 7 to work in both a
regression and classification setting. Once again we experiment on a number of
datasets from the literature to validate our approach.

• Chapter 9 presents a COVID-19 case study in both regression and classification
for quantifying underspecification. Presenting a dataset used for our publication
[HFL+21], we present a realistic version of the epidemiological example we show
in example 1.1.3.

Finally, we conclude our work:

• Chapter 10 concludes this thesis by summarising our proposed method for quan-
tification. Additionally, we present a selection of further research directions that
could build upon the work presented in this thesis.

7

Part I

Background Material

9

Chapter 2

Supervised Machine Learning

Contents
2.1 Components of a Supervised Machine Learning System 11
2.2 Evaluation . 12
2.3 Optimisation . 18

In this chapter we cover the basic components of a supervised machine learning system,
and the interactions between them. We focus on the processes of evaluation and opti-
misation as these are most relevant to our work. We consider the differences between
evaluating regression and classification problems together with some of the nuances
with such evaluations. Whilst discussing optimisation we briefly cover the basics of
local search algorithms and a selection of the convergence problems these can face. We
finally discuss the ramifications of these nuances and how selecting parameters based
on such evaluations can lead to some of the issues seen in underspecified pipelines.

2.1 Components of a Supervised Machine Learning
System

Traditionally, computers must receive explicit instructions in the form of an algorithm
to achieve some goal. An algorithm is “a sequence of computational steps that transform
a given input into the specified output” [CLRS09]. Machine learning differs from this
approach in that provided data, machine learning methods decide the steps to the
specified goal [Sam59].

Machine learning problems can be broadly split into four categories; supervised,
unsupervised, semi-supervised, reinforcement learning [Sal18]. As our method is only
aimed towards supervised learning problems we do not cover any other problem types.
Supervised learning “observes some example input–output pairs and learns a function
that maps from input to output” [RN09].

Following [RN09] recall that supervised learning problems can be generalised as:

11

2. Supervised Machine Learning

Definition 2.1.1

Using an input training dataset D of length n; D = {(x1, y1), · · · , (xn, yn)}
Predict output of prediction targets Y = {y1, · · · , yn}
by estimating a function f such that f(xi)→ yi, i ≤ n

Each pair (xi, yi) in the training set D = {(x1, y1), · · · , (xn, yn)} is called a
training example. Each training example contains a collection of features x and a
prediction target (label) y. Features are a measurable property of some phenomenon
[Bis06], such as in the prediction of house prices, the number of rooms or interior
volume. A prediction target is the feature that must be predicted by a given model.

Supervised learning algorithms can loosely be split into three sections[Tam21]:

Decision process: An algorithm that takes in training features x and returns
predictions y by forming a model f(x)→ y of the data it is given.

Model evaluation: A process measuring how effective the model produced by
the decision process is by testing it on examples for which we possess the true
outcome.

Model optimisation: Updating the decision process in such a way as to improve
the prediction accuracy found in evaluation.

Model evaluation and optimisation are discussed in further detail in Section 2.2 and
2.3 respectively. These three sections (decision process, evaluation, optimisation) are
repeated until the model reaches some evaluation optimum, at which point the training
is complete. The model produced at the end of training, that is, the model with the
final permutation of parameters, is called a predictor. This predictor, f , is chosen from
all possible permutations of parameters (the model class F) via training. The exact
way the decision process works varies dependent on the type of model architecture that
is used. Our method is model-agnostic (discussed in Section 3.2), treating all models as
black boxes, we do not discuss any details of the decision process, only its interactions
in the formation of the predictor.

2.2 Evaluation

Model evaluation should happen with respect to two independent and identically dis-
tributed (i.i.d) datasets; training and testing. During training models are evaluated us-
ing the training set that they learn from, whereas in testing they are evaluated against
an unseen i.i.d test set. To accomplish this, datasets D are often split into a training
Dtrn and testing Dtst set as shown in Figure 2.1.1. This i.i.d evaluation acts as valida-
tion or a ‘contract’ [JMMG20] that the predictor will behave the same on further data
from the same distribution as the given dataset. It also helps to diagnose issues such
as overfitting as we go on to discuss in 2.3.

12

2.2. Evaluation

Figure 2.1.1: Example process of dataset to predictor

Supervised learning problems can be split into two main categories; classification
and regression. The difference between classification and regression is the format of
the prediction target. If the prediction target is a continuous value it is a regression
problem. Whereas if the prediction target is discrete the problem is a classification
[RN09]. Both regression and classification models are evaluated slightly differently as
we go on to discuss.

2.2.1 Regression

Definition 2.2.1 Regression problems are supervised learning problems where the
prediction target is a continuous value [AR18]. More specifically, regression prob-
lems aim to choose some mapping f : X → Y from model class F that predicts the
continuous output prediction target Y ∈ R from input features X.

An example of a regression problem could be to predict what the temperature would
be on a given day. To calculate how effective a predictor is at a regression problem we
can use a number of different error metrics. Error metrics aim to give an indication of
how far away the predictions of a predictor are from ground truth results.

Example 2.2.1 One such error metric for regression is Mean Squared Error (MSE).
MSE is defined as:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (2.1)

where n is the number of values predicted, Yi the true value, and Ŷi the predicted
value.

13

2. Supervised Machine Learning

Let f be a predictor that estimates stock prices in £(GBP), which has its
performance evaluated using MSE.

Consider two sets such that

vt = {1.2, 1.75, 2.05} representing the price of three stocks at some time.

vp = {1.2, 1.8, 1.95} representing f ’s predicted price of the same three stocks.

The MSE of these predictions is calculated as:

MSE = 1
3 [(1.2− 1.2)2 + (1.75− 1.8)2 + (2.05− 1.95)2] ≈ 0.0042

2.2.2 Classification

Definition 2.2.2 Classification problems are supervised learning problems where
the prediction target is a discrete value [AR18]. More specifically, classification
problems aim to choose some mapping f : X → Y from model class F that predicts
the discrete prediction target Y ∈ {c1, · · · , cn}, n ∈ N from input features X.

The discrete outputs are called classes, where each possible unique discrete output
ci,∀i ∈ [1, n] is a class. If only two classes exist n = 2, that is, the prediction target
is a Boolean, the problem is called a binary classification. An example of a binary
classification problem could be to predict whether the temperature on a given day
would be above 0◦C or not.

Evaluating classification problems is different to regression, as the definition of er-
ror for regression problems is not directly translatable to classification. In regression
problems, error is the true value minus the predicted value, which is not possible in clas-
sification if there is no order to classes. If there is order between classes, the distance
between the classes may be uneven and make such an error unreliable. Classification
evaluation often utilises a confusion matrix as shown in table 2.2.1. This confusion
matrix shows evaluation results for a binary classification problem between two classes;
negative and positive. True values are those that are predicted correctly, whilst false
are those predicted incorrectly.

Table 2.2.1: A Binary Confusion Matrix, where TN is the number of True Negatives,
FN, the number of False Negatives, FP, the number of False Positives, and TP is the
number of True Positives.

Predicted Class
Negative Positive

Actual
Class

Negative TN FN
Positive FP TP

14

2.2. Evaluation

Definition 2.2.3 For binary classification, recall the definitions:

Precision =
True Positive

True Positive + False Positive

Recall =
True Positive

True Positive + False Negative

Accuracy =
True Positive + True Negative

Total Predictions

Using such a confusion matrix enables the calculation of further metrics such as preci-
sion, recall, and accuracy [Faw06], which are defined in Definition 2.2.3. Each of these
metrics paints a slightly different picture and as such all have slightly different use
cases. Accuracy is simply the ratio of correct predictions to total predictions. It gives
an overall view to the performance of the model, but can be misleading. Continuing
with our temperature example, if 9 of 10 examples are positive, that is above 0◦, even
a predictor that predicts positive regardless of input would have 90% accuracy.

Precision is the ratio of correct positive predictions to total positive predictions.
This can be a more insightful evaluation metric than accuracy if the avoiding false
positives is important.

Example 2.2.2 An example of this could be email spam detection, if a legitimate
email (negative) is predicted as spam (false positive) the user may lose the email,
so a precise spam detector is important. In this domain, consider two predictors A
and B, they each predict if an email is spam (positive) or is legitimate (positive).
They use a dataset of 100 emails, 40 of which are spam and 60 of which are legiti-
mate.

Predictor A correctly detects 30 emails as spam (True Positive) and lets 10
spam emails through (False Negative), whilst correctly predicting all 60 legitimate
emails (True negative). This gives an accuracy of 0.9 (or 90%) and a precision of 1.0.

Predictor B correctly detects all 40 spam emails (True Positive), and correctly
predicts 55 of the legitimate emails (True Negative), misclassifying 5 as spam (False
Negative). This gives an accuracy of 0.95 and a precision of 0.8̇.

Although B has a higher accuracy, in this domain A may be the better choice.
As B incorrectly classifies 10 emails as spam, the information on them may be lost.
This is likely of more importance than the 10 emails incorrectly shown to the user
as legitimate by predictor B, as the user can dismiss these emails as irrelevant.

Recall is the ratio of correct positive prediction to total positive examples. Recall is
effective when avoiding false negatives is important.

15

2. Supervised Machine Learning

Example 2.2.3 An example where avoiding false negatives is important, could
be infectious disease detection, where if a patient is falsely cleared they could face
severe consequences. Consider two predictors A and B that perform binary classi-
fication on a dataset of 100 examples, 30 of which are infected (positive) and 70 of
which are not (negative).

Predictor A correctly predicts 25 of the 30 ill patients (True Positive), with 5
incorrectly classified as not infected (False Negative). A correctly predicts all 70
non-infected patients. This gives an accuracy of 0.95 (95%) and a recall of 0.83̇.

Predictor B correctly predicts all 30 infected patients (True Positive), whilst
incorrectly predicting 10 non-infected as infected (False Positive). The other 60 non-
infected patients are all correct classified (True Negative). Predictor B therefore
has an accuracy of 0.9 (90%) and a recall of 1.0.

In this setting, B is likely the better choice. Regardless of the better accuracy
A exhibits, it incorrectly classifies 5 infected patients as non-infected. These 5
patients will likely go on to spread the disease to more people and intensify the
problem spreading the disease to more people. Minimising this risk is likely worth
the trade-off of incorrectly classifying 10 healthy patients as infected, as they can
then be manually cleared by medical professionals.

Example 2.2.4 Consider the binary classification problem of predicting whether
a stocks price will rise (positive) or not (negative).

vt = [POS, POS, POS, NEG] the true classes, where POS = rise, and NEG = fall

vp = [POS, POS, NEG, NEG] the predicted classes

This results in the confusion matrix:
Actual

NEG POS

Predicted NEG TN:1 FN:1
POS FP:0 TP:2

Thus, accuracy = 3
4 = 0.75, precision = 2

2 = 1, recall = 2
3

Example 2.2.5 Consider the multi-class classification of images of fruits. The
dataset contains images of apples (a), oranges (o), pears (p), and bananas (b).

vt = [a, o, b, b, p, a] representing the true classes of examples.

vp = [a, a, b, o, p, a] representing the predicted classes of examples.

Giving the multi-class confusion matrix:

16

2.2. Evaluation

Actual
a o p b

Predicted

a 2 1 0 0
o 0 0 0 1
p 0 0 1 0
b 0 0 0 1

In multi-class classification recall and precision are calculated per class.

Considering only those instances predicted as apples a, we can calculate the
recall and precision using the confusion matrix.

From the confusion matrix we can see both apple instances are correctly
classified as apples, and that one orange is falsely classified as an apple.

This means, for the apple class TP = 2, FP = 1, TN = 2, FN = 0.

Which in turn gives a precision of 2
2+1 = 2

3 and recall of 2
2+0 = 1.

Continuing this for all classes results in:
Class Name Precision Recall
apples (a) 2

3 1
oranges (o) 0 0
pears (p) 1 1
bananas (b) 1 1

2

Figure 2.2.1: An example ROC graph with 5 predictors [Faw06].

Receiver operating characteristics (ROC) graphs display similar information to that

17

2. Supervised Machine Learning

of a confusion matrix, with the distinct advantage of easily comparing many predictors
[Faw06]. ROC graphs plot the true positive rate (precision) against false positive rate,
where the false positive rate is the ratio of false positives to total negative class instances.
Figure 2.2.1 shows such a ROC graph with 5 predictors, which could be produced
by the same pipeline, simply changing parameters, or 5 completely different model
architectures. The dotted line shows where the true positive rate and false positive
rate are equal, and as such have a 50% accuracy. A predictor that randomly classified
between positive and negative would place on this line (if using a balanced dataset),
thus predictors such as E that fall below this line are worse than random. Generally
ROC graphs can be interpreted as the closer a point to the upper left point (D), the
better. Using this information, one can decide which models performance most fits the
task dependent on how many false positives are acceptable. Similar to ROC graphs,
Precision-Recall (PR) graphs replace the false positive rate with precision. Although
ROC and PR graphs use a different metric for the x axis, they show the same patterns
as each other, where a "curve only dominates in ROC space if and only if it dominates
in PR space" [DG06].

2.3 Optimisation

As mentioned in Section 2.1, a key part of the supervised learning process is optimisa-
tion. Optimisation is the process by which model parameters are changed in such a way
as to improve some objective function. An objective function is used to evaluate the
performance of a system towards its intended task [RN09]. In supervised learning these
objective functions most commonly come in the form of error metrics, such as those
previously discussed. Objective functions are commonly referred to as loss functions,
where a lower result (or loss) is preferred, or a reward function, where a higher result
(or reward) is the objective.

Figure 2.3.1 shows an example of the state-space landscape. Such a landscape has a
’location’ defined by the state (current choice of parameters), and an ’elevation’ defined
by the objective function. If using a reward function the aim of a supervised learning
problem is to maximise this, or in other words look for the global maximum of the state-
space. If using a loss function, the aim is to find the global minimum. To simplify this
terminology we use the term optimum in this work to refer to the relevant maximum
or minimum.

A simple example of a search algorithm used for such optimisation problems is hill-
climbing search. Hill climbing (also sometimes called greedy search) aims to find an
optimum by increasing its elevation. It simply loops until the next value is not higher
than previous, so hits a peak. "This resembles trying to find the top of Mount Everest
in a thick fog while suffering from amnesia" [RN09]. A downside to basic hill climbing
is that it will return the first optimum it hits, not necessarily the global optimum. If
we consider the state-space shown in figure 2.3.1, starting at the marked current stated
and travelling upwards in the direction of the arrow, we would reach a local maximum,
not the global maximum. Reaching a local optimum rather than the global optimum

18

2.3. Optimisation

Figure 2.3.1: Simple state-space landscape, x axis represents parameter change, and y
axis the result of a reward function [RN09].

means the optimal solution has not been found [GP71]. As the starting position of
hill climbing is random, the algorithm can be ran multiple times, returning different
optimum each time.

Many adaptions to basic greedy search exist that are more resistant to such problems
of returning a local optimum. The problem still remains, that there is no guarantee of
finding a global optimum without searching the entire state-space [RN09]. This is why
these search techniques are heuristics, the problem of finding a global optimum in a large
high-dimensional state space is intractable, as the only way to do this is to evaluate
every possible permutation of parameters. It should be noted that in a high dimensional
space, problems of running into local optimum are less common. Instead, convergence
issues such as saddle points are more common [DPG+14]. Saddle points seem similar to
local optimum, in that the gradient in all directions is close to 0 (stationary point), but
also they are a point of inflection. For this work, the effect these have can be seen as
the same as local optimum, in that they return a result other than the global optimum,
and are therefore sub-optimal.

Such search techniques are aiming for the global optimum as defined by the state-
space and loss function, neither of which necessarily truthfully represent the real func-
tion. This means a model can perfectly fit the function of the training data, but perform
poorly on test data, such a model is called overfitted. Figure 2.3.2c a simple example
of overfitting a model to a binary classification. Overfitting is more likely in complex
settings with more features, and is less likely with greater training instances [RN09].
Figure 2.3.2a shows underfitting, which is where the model fails to capture the rela-
tionship of the training data. This means, to find the optimal predictor balance must
be found between underfitting and overfitting. This general trade-off between bias and
variance can be summarised as: “The price to pay for achieving low bias is high variance”
[GBD92]. As graphically represented in Figure 2.3.3, variance describes the spread of

19

2. Supervised Machine Learning

(a) (b) (c)

Figure 2.3.2: A simplified example of underfitting and overfitting in binary classification
[Edu21]. One class is shown with purple stars and another shown by green dots, the
red line shows the decision boundary.

predictions, whereas bias describes inherent error in predictions.

Figure 2.3.3: Graphical representation of bias and variance [FR].

Generally, it is considered that overfitted models do not generalise well and so is
advantageous to avoid such situations. This view has recently become more challenged
with the usage of extremely accurate complex models that perform well on both training
and testing sets [BHMM19]. These models take advantage of large amounts of training
data (amongst other things) and so are less likely to overfit.

As with local optimum, the specifics of overfitting are not important to this work,

20

2.3. Optimisation

simply the acknowledgment of further challenges to finding a perfect answer in complex
settings.

21

Chapter 3

Explainable Machine Learning

Contents
3.1 Introduction and Motivation . 23

3.2 Post-hoc Interpretability . 26

3.3 SHAP (SHapley Additive exPlanations) 28

In the pursuit of greater performance, recent techniques such as Deep Neural Networks
have increased in complexity by orders of magnitudes [BMR+20, ADRDS+20]. A sim-
ple example of this can be seen in the parameter count of each generation of the GPT
model where the already complex Generative Pre-trained Transformer (GPT) model
with 1.3 billion parameters was eclipsed just 2 years later by GPT-3 with 175 billion
parameters. The downside of this increased complexity is generally the greater difficulty
in interpreting reasoning from these complex models’ predictions [RSG16]. As such, the
field of explainable machine learning has seen vastly increasing attention in recent years
[ADRDS+20]. In this chapter we aim to briefly overview the field of explainable ma-
chine learning, discussing motivations for the field and defining key aims of explainable
machine learning systems. We then focus on post-hoc interpretability methods, which
increase the interpretability of a predictor, as they are of greater relevance to our work.
Finally, we discuss SHAP, the specific interpretability method we utilise at the centre of
our work. This chapter was influenced throughout by the book interpretable machine
learning [Mol19].

3.1 Introduction and Motivation

As discussed in Chapter 2, machine learning models are standardly evaluated by assess-
ing their performance on a test set using some error metric. Additionally, as discussed
in section 1.1, standard test performance evaluations can provide misleading results.
“The problem is that a single metric, such as classification accuracy, is an incomplete
description of most real-world tasks” [DVK17]. In certain problems we wish not only to

23

3. Explainable Machine Learning

evaluate what predictions have been made, but to understand why certain predictions
have been made. Having the reason for a prediction can help to understand the prob-
lem, data and model and their interactions. Interpretability is "the degree to which
an observer can understand the cause of a decision." [Mil19]. This means the more
interpretable a model the easier it is for humans to interpret why a given prediction
by the model was made. As in [Mil19, Mol19], we use the terms interpretability and
explainability interchangeably.

There are many motivations for interpretable machine learning, of which we only
discuss a small selection. Works such as [Mil19, DVK17, Mol19] discuss these motiva-
tions in greater depth.

Explainability allows the evaluation of desirable properties of pipelines [DVK17]:

Fairness: How biased a prediction is against certain groups or where underrepresented
groups discriminated against [KMR16, WVP18]. When models are more interpretable,
it is easier to tell whether predictions are based on a learned bias.

Privacy: Sensitive information in the data is protected [Mol19]. Interpretability aids
in the transparency aspect of privacy, as interpretable models allow users to better
understand how their data is being used.

Robustness: Evaluates the variation of performance on input variation [AMJ18b].
Robust models should be able to deal with small unimportant changes in input without
vastly changing output. Adversarial examples (shown in figure 3.1.1) have shown the
lack of robustness in many highly accurate models, where tiny changes to inputs, almost
imperceivable yield vast differences in output

Figure 3.1.1: An adversarial example where adding a small amount of noise, vastly
changes prediction [GSS14]

Causality: Ensures relationship modelled will be reflected in the real system as well
as the testing environment [MSK+19]. Models should generalise to the true distribu-
tion, and not overfit to the training data. This ties into the concept of ‘right for the
right reasons’ where models that base their decisions on right reasons are more likely

24

3.1. Introduction and Motivation

to generalise than those that are right for the wrong reasons [RHDV17]. Greater inter-
pretability makes it easier to understand the reasoning behind a prediction and as such
whether the reason is right or wrong.

Trust: Trustworthy systems are those that humans are confident will not fail, such
as air traffic control systems. Interpretable systems are easier to personify and as such
have greater social acceptance [Mol19].

Interpretability can either be achieved intrinsically, where the model is interpretable
by design, or by using post-hoc methods, where models are explained by external meth-
ods after they have been trained [WL20].

When creating a machine learning system a trade off between accuracy and inter-
pretability must often be considered [CLG+15]. This is because as model complexity
increases, prediction performance tends to increases whilst interpretability tends to de-
creases. Figure 3.1.2 shows the accuracy-interpretability trade-off, with complex models
such as deep learning and ensembles boasting high accuracy whilst providing poor in-
terpretability, and simple models such as linear regression and decision trees providing
lower accuracy but higher interpretability.

Figure 3.1.2: Trade-off between model accuracy and interpretability [ADRDS+20].

“An explanation usually relates the feature values of an instance to its model pre-
diction in a humanly understandable way” [Mol19]. An explanation aims to answer
(explain) why a prediction had the result it did [Mil19], in other words explanations
are “the currency in which we exchanged beliefs” [Lom06]. Thus, explanations aim to
increase the interpretability of a model by explaining its predictions. An explanation of
a predictor’s prediction can itself be viewed as a model, and as such can be called an ex-

25

3. Explainable Machine Learning

planation model [LL17]. For models of low complexity (and thus high interpretability)
the model itself is the best explanation, as it is easy to understand and doesn’t omit any
information. Complex models are however, normally, poorly interpretable and as such
the explanation model must be a simpler approximation of the original model [LL17].

3.2 Post-hoc Interpretability

As discussed in Section 3.1, post-hoc interpretability methods explain predictors exter-
nally from the model architecture itself. Before going into further detail of post-hoc
interpretability, we take a high level view of the process. As shown in Figure 3.2.1,
many levels of abstraction occur before an explanation is shown to a human. The first
level is the world, or rather the ground truth. This is not necessarily the physical world
but could be an abstract environment, such as in a targeted advertising system and as
such we prefer the term ground truth to world. The second level is data, where we cap-
ture digital data from the ground truth. This data abstracts the world into a machine
understandable format. Next, the black box model learns from the data. As discussed
in Section 2.1 the model attempts to learn a mapping f(x) that maps input x to out-
put y. This process leaves us with a trained black box model (predictor) using which
predictions can be made. Once the model has been trained, post-hoc interpretability
methods can be used to explain the outputs of the predictor. These methods aim to
somehow explain why certain predictions have the results they do. Finally, these meth-
ods generally help humans to interpret the results given by a predictor. Of course this
is not always the case, sometimes humans are not involved in the process at all.

Post-hoc methods can either be model-specific, where they can only explain pre-
dictions from one model architecture, or model-agnostic, where they can explain any
model architecture [AB18].

Benefits of model-agnostic methods over intrinsically interpretable models include
[RSG16]:

Model Flexibility: Not held back to any singular architecture. In real-world applica-
tions, model architecture selection is often based on accuracy alone, without any consid-
eration of interpretability. Model agnostic interpretability methods can help mitigate
the effects of the complexity-interpretability trade-off [ADRDS+20]. These methods
don’t affect model accuracy, but do increase interpretability for complex models.

Explanation Flexibility: Not limited to any form of explanation. Explanations can
come in many forms, each that may be more or less suited to any given problem. Further
to this, different users have different thresholds for what they consider interpretable. A
computer scientist may consider a Bayesian model interpretable, whereas a lay person
may prefer simple decision trees. For example, a rule based system was considered
uninterpretable by one user as it contained 41 rules, whereas another user analysed a
rule based system containing 29,050 rules without issue [Fre14].

Representation Flexibility: Different feature representations can be used. Many
models learn from uninterpretable features such as word embeddings to make their

26

3.2. Post-hoc Interpretability

Figure 3.2.1: The ’big picture’ of post hoc interpretability methods [Mol19]. Many
levels of abstraction occur before an explanation is shown to a human.

predictions. Model agnostic methods allow for feature representations different to those
used within the model [Mol19]. In the context of learning from word embeddings,
a model agnostic method could use words rather than the vector embedding in the
explanation.

Lower cost to switch: Switching or updating model is trivial. The model architec-
ture used in a pipeline may need to be changed for a variety of reasons, for example a
more accurate model is developed. In these cases model-agnostic methods allow users
to understand the explanation of the new model without any further training.

Comparison of models with different architectures: As the same explanation
method can be used for multiple different model architectures, comparisons between
them are easier.

27

3. Explainable Machine Learning

Model-agnostic methods can be local, where individual predictions are explained,
or global, where the average affects of features on predictions are described [Mol19].

3.3 SHAP (SHapley Additive exPlanations)

Shapley Additive exPlanations (SHAP) is a feature attribution algorithm developed in
explainable AI. It is based on the cooperative game theory concept of Shapley values,
assigned to each feature of a data instance. Shapley values were introduced in the
1950s by Lloyd Shapley [Sha16] who later won a Nobel prize in economics [Rot88].
They are defined to answer the question: “What is the fairest way for a coalition to
divide its payout amongst the players”. Shapley values assume players should receive
payout proportional to their contribution.

A fair distribution of payout with Shapley values is defined as following three axioms,
Symmetry, Null Player, Additivity.

Symmetry: Players that make equal contributions should receive equal payouts.

Null Player: A player that does not contribute towards the payout should receive
0 contribution.

Additivity: If a game is split into sub-games, the sum of all sub-games valuation
should be the same as the original game.

Definition 3.3.1 Let N be a finite list of players indexed by i. Let v : 2N → R
be a utility function that associates each coalition S ⊆ N with a payout v(S). We
therefore represent a coalition game as the pair (N, v). The Shapley value ϕi(N, v)
of player i in a given coalition game (N, v) is calculated as [LL17]:

ϕi(N, v) =
1

|N |!
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)![v(S ∪ {i})− v(S)] (3.1)

Example 3.3.1 Consider two business people A and B who decide to form a
partnership. In order to calculate how their earnings should be divided between
them, they decide to use Shapley values. Whilst in business by themselves A
earnt £1000 per week, whereas B earnt £2000 per week. When they form their
partnership, the new venture earns £4000 per week.
They use their earnings as their utility function v such that: v(A) = 1000, v(B) =
2000, v(A,B) = 4000. If neither of them are in business their earning will be 0,
that is v(∅) = 0. As S ⊆ N = {A,B}, it can only be of length 0 (when S = ∅), or
1 (when S = A or S = B), |S|!(|N | − |S| − 1)! will always equal 1 and so we omit
it from the following calculations for the sake of readability.
Using equation 3.1 they calculate their Shapley values as:

28

3.3. SHAP (SHapley Additive exPlanations)

ϕA(N, v) =
1

|{A,B}|!
([v(∅ ∪ {A})− v(∅)] + [v({B ∪A})− v(B)])

=
1

2!
([v({A})− 0] + [v({A,B})− 2000])

=
1

2
([1000− 0] + [4000− 2000])

= 1500

ϕB(N, v) =
1

|{A,B}|!
([v(∅ ∪ {B})− v(∅)] + [v({A ∪B})− v(A)])

=
1

2!
([v({B})− 0] + [v({A,B})− 1000])

=
1

2
([2000− 0] + [4000− 1000])

= 2500

Meaning for a fair distribution based on Shapley values, of the £4000 earnt, A
should receive £1500, whilst B should receive £2500.

To use Shapley values in a machine learning context, SHAP considers features as players
and the prediction outcome as the total payout. This allows a Shapley value to be
assigned to each feature of a given prediction. In this setting, the Shapley value of a
feature represents its contribution towards the prediction output. This list of Shapley
values produced by SHAP explains an individual prediction, as such SHAP is considered
a local explanation method. If we relate this back to example 3.3.1, where person A and
B are feature values, and the prediction target is the earning of their combined venture.
If we assume the base value (which we define below) is 0, then the SHAP explanation
could be the list [1500, 2500]. This represents the contributions of A and B towards
the prediction of 4000. SHAP is also model-agnostic as it does not rely on any internal
mechanism of a model, treating them only as a black boxes, dealing with its inputs
and outputs. For a data instance x, SHAP computes the marginal contribution of each
feature xm to the prediction of x. SHAP is an additive feature attribution method, as
such the summation of a SHAP explanation model Π(x) attributions approximates the
output of the prediction it explains f(x).

Definition 3.3.2 Additive feature attribution methods can be generalised as an
explanation g model that is a linear function of binary variables z [LL17].

g(z) = ϕ0 +
M∑
j=1

ϕjzj (3.2)

where z ∈ {0, 1}M , M the number of features, and the attribution ϕi ∈ R.

29

3. Explainable Machine Learning

Example 3.3.2 Consider the prediction problem shown in figure 3.3.1. Based
on four features; Age=65, Sex=F, BP=180, and BMI=40 some black box model
predicts an output of 0.4. To explain this prediction, we use SHAP to explain how
each of these features contributes towards the prediction outcome. The base rate
(value) is the value that would be predicted if none of the prediction values were
known [LL17]. In other words, the base value is the mean prediction. Both BMI
and BP have a positive contribution of 0.1, meaning they cumulatively increase the
prediction by 0.2. Sex has a large negative contribution towards the prediction of
−0.3, decreasing our prediction output. Finally age has a large positive contribution
towards the prediction, giving our final prediction output of 0.4. SHAP shows us
both the magnitude of the contribution and whether it is a positive or negative.

Figure 3.3.1: Example of SHAP output, explaining the contributions of four features
towards a prediction [LL17].

SHAP itself can explain the output of any machine learning method, however dif-
ferent implementations of SHAP exist, some of which are model-specific to yield per-
formance benefits.

Kernel SHAP: A model-agnostic method that can estimate the SHAP values
of any model. As kernel SHAP is model agnostic it cannot leverage any model
architecture detail for performance and as such is slower than model specific im-
plementations.

Tree SHAP: An exact model-specific method that computes SHAP values for
tree-based models (trees or tree ensembles) [LEC+20]. Tree SHAP benefits over
model-agnostic implementations not only in that it is exact rather than an esti-
mation, but is also faster.

Deep SHAP: A model-specific implementation of SHAP that estimates SHAP
values for deep learning models. Its implementation is faster than model-agnostic
implementations.

30

Chapter 4

Metrics

Contents
4.1 Distance, Similarity and Correlation Metrics 31
4.2 Euclidean Distance . 32
4.3 Pearson Correlation Coefficient . 34
4.4 Cosine Similarity . 35
4.5 Kendall Rank Correlation Coefficient 37

This section will discuss different metrics of distance, similarity and correlation. Through-
out our work we use metrics to quantitatively evaluate the spread of a set of explana-
tions. We define our usage of the term metric, metric space and how we represent them
in our work. After this, we detail four metrics; Euclidean, Pearson, Cosine and Kendall.
We discuss the different relationships these metrics model, and give examples of each.

4.1 Distance, Similarity and Correlation Metrics

Generally a metric is “a standard of measurement“ [MW]. In this work the term metric
is used to represent some function that quantitatively describes a relationship between
vectors (which we generally represent as lists).

Definition 4.1.1 Let L be a given set. Let d be a finite function on the Cartesian
product d : L× L→ [0,∞) such that:

d(x, x) = 0;x ̸= y =⇒ d(x, y) > 0; (4.1)

d(x, y) = d(y, x); (4.2)

d(x, y) + d(y, z) ≥ d(x, z); (4.3)

We say that d is a distance function (metric) in metric space L. The elements
of a metric space are called points. These points can be of any dimensionality and
so can take many forms such as, vectors and lists. The distance between two points
a and b is d(a, b).

31

4. Metrics

These definitions are from [ČK69].
In this work the terms of distance and similarity are seen as opposites. Where a

distance metric increases as two points are further from each other in a metric space, a
similarity metric increases as two points are ‘closer’ in some way. If vectors are distant
from each other they are very different. If vectors have high similarity they are similar.

The final type of metric we cover in this chapter is correlation. Correlation metrics
do not have associated metric spaces as similarity and distance metrics do, as such
they do not follow the axioms in equations (4.1, 4.2, 4.3). The correlation between
two random variables “is a measure of the extent to which a change in one tends to
correspond to a change in the other” [CC09]. Broadly, this means correlation is a
measure of association or similarity between two variables. Generally in this work these
variables come in the form of lists or vectors. Correlations between random variables
are said to be stronger (or higher) when the variables are more associated, and weaker
(or lower) when they are less associated.

4.2 Euclidean Distance

A common way to find the shortest distance between a pair of two-dimensional Carte-
sian coordinates is to construct a right angle triangle such that the hypotenuse is the
distance. Solving for this distance is then just a matter of calculating the length of
the two other sides of this triangle, which are just the differences between the x and y
components of each point, and then applying the Pythagorean theorem.

Example 4.2.1 As shown in Figure 4.2.1, the Euclidean distance of two 2d points
can be found by constructing a right angle triangle where the distance is the hy-
potenuse. Finding the length of hypotenuse (distance) is then simply achieved using
the Pythagorean theorem.

Consider two points; p1 = (x1, y1) and p2 = (x2, y2).

The horizontal side is the difference between x values; x2 − x1.

The vertical side is the difference between y values; y2 − y1.

Using the Pythagorean theorem a2 + b2 = c2 we can substitute a and b as
the two calculated sides to solve for the hypotenuse (in this case distance) c.

∴ Let a = x2 − x1 , b = y2 − y1, and c = d(p1, p2)

Thus, d(p1, p2) =
√
(x2 − x1)2 + (y2 − y1)2

The Euclidean distance aims to find the distance between two objects in Euclidean
space. It is a generalised version of finding distance using Pythagorean theorem. This
means rather than points only in 2d, the distance between points of any dimensionality
can be found.

32

4.2. Euclidean Distance

Figure 4.2.1: Finding the distance between two points [Kha16].

Definition 4.2.1 Consider two vectors x and y, which we represent as two lists
such that x = [x1, · · · , xn] and y = [y1, · · · , yn]. The Euclidean distance d(x, y) ∈
[0,∞) between x and y can be expressed as:

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (4.4)

Euclidean distance is not scale-invariant, as the Pythagorean theorem itself is not scale-
invariant. This means that Euclidean distances are skewed if some vector components
are far larger in magnitude than others [WFHP16, p. 135-136]. To counteract this
effect, data can be normalised before calculating the metric.

The Euclidean distance also struggles more than other metrics in a setting of high
dimensionality. This is because high dimensional data tends to become more sparse
with a greater amount of data near the limits resulting in distances computed tending
towards a constant and as such are less meaningful [AHK01].

Example 4.2.2 Consider a professor aiming to assign students to groups based
upon similar module grades. From three students S1, S2, and S3, a professor aims
to pick the pair of students with the lowest Euclidean distance of module grades
from one another.

Consider three lists S1, S2, and S3 such that:

S1 = [72, 67, 75, 83, 81], S2 = [64, 61, 63, 72, 68], and S3 = [84, 71, 79, 81, 86]
are five module grades of the three students.

Three possible pairs exists between the three students, (S1, S2), (S1, S3), and
S2, S3.

33

4. Metrics

Using Equation 4.4, d(S1, S2) =
√∑n

i=1(S1i − S2i)
2

d(S1, S2) =
√
534 ≈ 23.1

d(S1, S3) =
√
205 ≈ 14.3

d(S2, S3) =
√
1161 ≈ 34.1

It therefore makes sense to pick the pair of students S1 and S3 together, as their
Euclidean distance is the smallest of the three possible pairs.

4.3 Pearson Correlation Coefficient

As mentioned in Section 4.1 the correlation between two random variables “is a mea-
sure of the extent to which a change in one tends to correspond to a change in the
other” [CC09]. In a general statistical sense correlation is often thought of as a lin-
ear relationship between variables, represented by a metric such a Pearson correlation
coefficient.

“Pearson’s correlation coefficient (r) is a measure of the linear association of two
variables” [Kir08]. It is defined as the ratio between the covariance of two variables
(lists) and the product of their standard deviations. The Pearson correlation coefficient
is bounded between -1 and 1. A value of 1 means a perfect positive linear correlation,
0 is no linear correlation, and -1 is a perfect negative correlation.

Definition 4.3.1 Consider two lists X and Y , such that X = [x1, · · · , xn] and
Y = [y1, · · · , yn]. The Pearson correlation coefficient rX,Y of X and Y is defined
as:

rX,Y =
cov(X,Y)

σXσY
(4.5)

Where cov(X,Y) is the covariance of lists X and Y , and σX , σY the standard
deviations of X and Y respectively. Thus, rX,Y ∈ [−1, 1] is defined as:

rX,Y =
1

n−1

∑n
i=1(Xi − X̄)(Yi − Ȳ)√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ)2
(4.6)

where n is the sample size, X̄, Ȳ are the mean of X and Y respectively.

Figure 4.3.1 shows examples of distributions with their Pearson correlation coefficient
above. These distributions are formed by projecting the two lists onto each axis, making
points P = p1, ..., pn where pi = (xi, yi) from lists x and y. The first row of the figure
shows how r increases in magnitude the tighter the linear grouping of a distribution.
As shown in the second row the magnitude (gradient in the image) of the values is not
relevant to r, only the grouping. The third row illustrates how Pearson correlation only

34

4.4. Cosine Similarity

Figure 4.3.1: Example distributions and their Pearson correlation coefficient above
[aEW07].

examines linear relationships. As such, non linear relationships that are clearly related
can give r = 0 as there is no linear correlation.

Example 4.3.1 Consider calculating the correlation between the height and weight
of three individuals.

Consider two lists H and M such that:

H = [190, 162, 152] , M = [90, 60, 45] as heights and masses respectively.

Giving H̄ = 168, σH ≈ 19.7 and M̄ = 65, σM ≈ 22.9.

We know cov(H,M) = 1
n−1

∑n
i=1(Hi − H̄)(Mi − M̄) from equation 4.6

So, cov(H,M) = 1
2(550 + 30 + 320) = 450

Thus rH,M ≈ 450
19.7×22.9 ≈ 0.997 using equation 4.5.

A Pearson coefficient of 0.997 suggests a strong positive linear correlation, so
as H tends to increase, so does M .

4.4 Cosine Similarity

Cosine similarity is the cosine of the angle between two vectors of inner product space
[HPK11]. Its values are bound by cosine; −1 ≤ cos(θ) ≤ 1. Two similar vectors with
θ = 0 give a cosine similarity of 1. Two opposite vectors with θ = 180 give a cosine
similarity of -1. Cosine similarity is also sometimes written as a percentage scale of
similarity −100% ≤ d(x, y) ≤ 100%.

35

4. Metrics

Similar Vectors
Small angle between
vectors

Orthogonal Vectors
Angle close to 90
degrees

Opposite Vectors
Angle close to 180
degrees

Figure 4.4.1: Example of how angle between vectors are the basis of cosine similarity,
figure based on [TPM17].

Definition 4.4.1 The cosine similarity d ∈ [−1, 1] of two vectors x and y at angle
θ from each other can be calculated as the ratio between the dot product of the
two vectors and the product of their magnitudes:

d(x, y) = cos(θ) =
x · y
||x|| ||y||

(4.7)

Or more specifically,

d(x, y) =

∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

(4.8)

where n is the cardinality of each vector, or in our representation of vectors as
lists, the number of elements in each list.

Example 4.4.1 As shown in Figure 4.4.1, cosine similarity doesn’t take the mag-
nitude of vectors into account, only the angle between them.

Consider two lists x and y such that:

x = [1, 2, 3] and y = [2, 4, 6]

Thus, x · y = (1× 2) + (2× 4) + (3× 6) = 28

and ||x|| =
√
12 + 22 + 32 =

√
14, ||y|| =

√
22 + 42 + 62 =

√
56

So d(x, y) = 28√
14×

√
56

= 1

These two vectors are seen as similar to cosine similarity, even though the
magnitude of y is twice that of x, as they are at the same angle in inner product
space.

36

4.5. Kendall Rank Correlation Coefficient

Example 4.4.2 Also shown in figure 4.4.1, vectors are orthogonal if their cosine
similarity is close to 0 (θ ≈ 90◦) and opposite if their cosine similarity is close to
−1 (θ ≈ 180◦).

Consider three lists X, Y and Z such that:

X = [4, 1, 3, 2, 3], Y = [−1,−2,−3, 0, 5] and Z = [2, 4, 6, 0,−10]
Thus, X · Y = 0, ||X|| =

√
39, ||Y || =

√
39

So, d(X,Y) = 0 meaning X and Y are orthogonal

X · Z = 0, ||X|| =
√
39, ||Z|| =

√
156

So, d(X,Z) = 0 meaning X and Z are also orthogonal

X · Z = −78, ||X|| =
√
39, ||Z|| =

√
156

So, d(X,Z) = −78√
39×

√
156

= −1 meaning Y and Z are opposite

From these cosine similarities we can deduce that X bisects the angle between
Y and Z, as Y and Z are both orthogonal to X whilst opposite to each other.

4.5 Kendall Rank Correlation Coefficient

Kendall rank correlation coefficient [Dod08] evaluates the degree of similarity between
two lists of ranks.

Definition 4.5.1 Let U = [u1, · · · , uk] be a collection of k objects ui, 1 ≤ i ≤
k, k ∈ N. Let r : U → O be a function that provides each object Ui ∈ U some value
in a totally ordered sequence O.
We order the objects ui = oi into O:

O = [o1, · · · , ok]
Such that oi ≥ oj for i < j.

Note there be many such sequences O that can be created from U .

We define the rank ri of an object ui to be the function that provides its index in
the totally ordered set O.

Example 4.5.1 Consider the list U = [10, 3, 8, 5] from which we wish to produce
the list of ranks R. To do so we first create the totally ordered sequence O =
[10, 8, 5, 3]. Thus R = [1, 4, 3, 2].

Kendall rank correlation coefficient, τ , considers how many inversions of pairs would
be needed to transform one list of ranks into the other. The coefficient τ ∈ [−1, 1]
can be interpreted in a similar manner to Pearson correlation; the greater the magni-
tude of the coefficient the greater the association between variables. The direction of

37

4. Metrics

the relationship is indicated by the sign of the coefficient; a value of -1 meaning the
two lists of ranks are perfectly inverted (discordant) and 1 meaning perfect agreement
(concordant).

Definition 4.5.2 Consider an ordered set O = [o1, · · · , on] of N objects. O can
be decomposed into the set δo containing 1

2N(N − 1) ordered pairs, such that:
δO = {[o1, o2], [o1, o3], · · · , [on−1, on]} (Assuming N ≥ 3)

Let P = [p1, · · · , pn] be a similarly ordered set to O such that P imposes a different
order onto the same objects as O. P can similarly be decomposed into a set of
ordered pairs, such that:

δP = {[p1, p2], [p1, p3], · · · , [pn−1, pn]} (Assuming N ≥ 3)
The symmetric difference distance is defined as the number of different pairs within
these decompositions [Abd07]. The symmetric rank distance d(O,P) of the sets O
and P is the symmetric rank difference of the decompositions δO and δP , thus
d(O,P) = |δO \ δP |.

Example 4.5.2 Let X = [a, b, c, d] and Y = [a, b, d, c].

To calculate the symmetric rank distance d(X,Y) we first create the decom-
positions δX and δY such that:

δX = {[a, b], [a, c], [a, d], [b, c], [b, d], [c, d]}

δY = {[a, b], [a, d], [a, c], [b, d], [b, c], [d, c]}

Thus, δX \ δY = {[c, d], [d, c]}

∴ d(X,Y) = |δX \ δY | = 2

Definition 4.5.3 Let X = [x1, · · · , xn] and Y = [y1, · · · , yn] be two lists of N
ranks. Let δX and δY be the ordered pair decompositions of X and Y as shown in
definition 4.5.2. The Kendall rank correlation coefficient, τ , is calculated as:

τ = d(X,Y) = 1− 2× d(δX , δY)

N(N − 1)
(4.9)

Example 4.5.3 Consider a competition where three dancers are ranked by two
judges. Organisers of the competition are concerned that the judges have given
conflicting ranks to contestants. To analyse these claims they employ Kendall rank
correlation to the ranks produced by the judges.

Let r1 and r2 be the rankings produced by the two judges such that:

r1 = [1, 2, 3] and r2 = [1, 3, 2]

38

4.5. Kendall Rank Correlation Coefficient

Therefore N = 3

To form δ1 and δ2 the respective rankings must be decomposed into ordered
pairs such that their length is 1

2N(N − 1) which in this case is 3.

δ1 = {[1, 2], [1, 3], [2, 3]}, δ2 = {[1, 3], [1, 2], [3, 2]}
The different pairs in δ1 and δ2 are δ1 \ δ2 = {[2, 3], [3, 2]}
So, |δ1 \ δ2| and ∴ d(δ1, δ2) = 2

Thus using equation 4.9 τ = 1− 2×2
6 ≈ 0.33.

A Kendall coefficient of 0.33 suggests a slight agreement between the two ranks.

As with all of these metrics, the context of use is important for Kendall. The degree
to which how similar lists should be (and therefore the threshold for an acceptable
coefficient) will depend on the use case. In the case of classifying the likelihood of
plagiarism (very naively), it may be the case that only lists that require very few in-
versions of pairs to translate to each other are considered. The lists would have a very
high Kendall correlation coefficient, such as 0.95. On the other hand, consider the case
of finding opposing judges for a competition. Here it may make sense to look for judges
that have very different rankings and as such have a negative Kendall correlation coef-
ficient. In this case, it may make sense to classify judges with a coefficient of less than
-0.2 to strongly disagree with one another.

In this regard, metrics such as Cosine, Kendall and Pearson can also perform sig-
nificance tests. These can help to show the statistical significance of the metric result,
that is to quantify the likelihood of chance effecting these values. We do not discuss
them within this chapter, as we aim only to compute metrics to quantify the differences
between explanations and do not explore the significance of these metrics. Additionally,
the sample size used for a significance test greatly effects the results [Ell10], generally
a greater sample size allows for more confidence in statistics computed from it. This
would mean each result of ours would need different analysis dependent on sample size,
which is something we aim to avoid in our general approach.

39

Chapter 5

Related Work

Contents
5.1 Stress Tests . 41
5.2 Explanation Quantification . 43
5.3 Explanation Influenced Optimisation 44
5.4 The Rashomon Effect . 46
5.5 Prediction Variance . 47

In this section we cover some of the related work to the problem of quantifying under-
specification. We begin this by discussing stress tests, the way in which the paper that
initially presents underspecification [DHM+20] proves that underspecification is preva-
lent within many machine learning settings. We follow this with methods to quantify
the quality of explanations against desiderata for a given problem. This is because our
method can be seen as another such technique that evaluates against underspecification,
rather than one of these desiderata groups. We then move into techniques which use
explanation correctness in the choosing of predictors f from model class F . Although
there is no mention of underspecification in this literature, optimising based on expla-
nation should, in theory, reduce the possible amount of similarly performing predictors
with different explanations. Under the same assumption as we make, that two predic-
tors give the similar explanations when they encode similar inductive biases, reducing
the number of differing explanations should reduce the likelihood of underspecification.
Following this, we discuss the Rashomon effect, as it is in line with the problem of
underspecification, specifying multiple similarly performing predictors that we cannot
effectively choose between. Finally, we discuss techniques that aim to quantify the
variance between possible well-performing predictors for a given problem.

5.1 Stress Tests

As briefly discussed in section 1.1, D’Amour [DHM+20] focuses on the problem of
underspecification affecting a predictors’ credibility. To show the prevalence of under-

41

5. Related Work

specification in machine learning, they attempt to disprove the expected behaviour of
predictors. To this end, stress tests, which are “evaluations that probe a predictor by
observing its outputs on specifically designed inputs” [DHM+20] are used. This section
follows [DHM+20] as the principal work in underspecification. As discussed in section
1.1 pipelines that evaluate their predictors based on test set performance can often fail
to identify underspecification. As such, stress tests probe a predictor in more ways than
simple test set performance evaluation.

By using stress tests to prove non expected behaviour of predictors, [DHM+20] shows
underspecification is prevalent in many state of the art applications of machine learning.
Below we cover the three classifications of stress tests utilised for their experiments.

Stratified Performance Evaluations Stratified performance evaluations split data
into subgroups (strata) and then tests whether predictors perform similarly across all
strata. Different values for the feature are then chosen, compared against others via
their test performance. For example, facial analysis algorithms can be evaluated for
fairness across different races by splitting images into subgroups of skin types and
gender [BG18]. A fair predictor should perform equally well across all of these strata,
as such performance differences across strata suggest a lack of fairness in the predictor.

Shifted Performance Evaluations Shifted performance evaluations use a label pre-
serving function s(D) → D′ to create a new data distribution D′ from the original
distribution D, such that |D| = |D′| = N,L(Di) = L(D′

i),∀i ∈ [1, N] where L(Di) is
the label of data instance i of D. The shifting function s should only edit the dataset
such that no casual data is changed. An example of this is in the small noise added in
adversarial examples as shown in Figure 3.1.1. The performance of a given predictor
f is then tested on both D and D′, an ideal predictor should have a similar average
performance across both datasets. The larger the difference in performance, the less
the model generalises, and so has less credibility. These evaluations add different noise
to a dataset, meaning that predictors that memorise the training data perform more
poorly on D′ than D. Such dataset shifts are often used in data augmentation and is
common in complex machine learning pipelines [SK19], normally to improve the qual-
ity of the training dataset. For example, if we wanted to classify pictures of cats and
dogs, we may shift our dataset by increasing the exposure of some images, randomly
cropping some images, or adding noise. These changes are label preserving, that is,
they shouldn’t change whether any given image shows a cat or dog, so shouldn’t affect
the class (label). As such using a shifted test dataset, if a performance difference is
observed between this shifted dataset and the original, the model may be basing its
prediction on irrelevant details, thus may not effectively generalise. Evaluations of this
kind are a major component of evaluating machine learning in the literature [HD19].

Contrastive Evaluations As shifted evaluations focus on the distribution level they
can hide errors particularly in small groups of predictions. For example, if again we
consider the classification of images of dogs and cats, it may be the case all images of

42

5.2. Explanation Quantification

Chihuahuas are classified as cats. If only a few examples of Chihuahuas exist in a large
dataset, this effect is unlikely to be large enough to be noticed at a distribution level.
Contrastive evaluations support localised analysis meaning we can analyse inductive
biases (the set of assumptions the model uses to predict) for any data instance. Evalu-
ations of this type do not hide results of individual predictions as shifted performance
evaluations do, as they are editing individual or small sets of data instances rather than
the whole distribution. Contrastive evaluations aim to change an input observation and
then calculate the significance of this effect on the output of a predictor.

5.2 Explanation Quantification

As discussed in Chapter 3 explanations have no firm accepted definition. As such, there
is no accepted ‘correct’ explanation. Because of this lack of ground truth, we cannot
standardly evaluate the correctness of explanations. With no accepted standard, re-
searchers use a plethora of techniques to compare explanation methods, often reflecting
performance against some desiderata [HWB+22], such as robustness [MSM18, YHS+19,
AMJ18b] or faithfulness [BWM20, NM20, AMJ18a, BBM+15, RH20].

One such method to quantify the quality of explanations closely related to this work
is explanation continuity. Explanation continuity is high when similar data points yield
similar explanations [MSM18]. Explanation continuity can be seen as a measure of
predictor robustness (discussed in Section 3.1). The explanation continuity Φf of the
predictor f can be quantified by finding the largest variation between feature attribution
explanations E(f, x) and E(f, x′) for all data points x, x′ ∈ D in the input dataset D.

Specifically, Φf can be calculated as:

Φf = argmax
x ̸=x′

|E(f, x)− E(f, x′)|
|x− x′|

(5.1)

Another Explainable AI (XAI) quantification metric is faithfulness correlation, which
aims to quantify how faithful a predictor is by studying the correlation between expla-
nations and prediction differences after modifying input data [BWM20].

To achieve this a subset S of feature indices from the data instance x with d features
are taken such that S ⊆ {1, 2, · · · , d}, xS = {xi, i ∈ S} such that x is split into selected
features xS and non selected features xc, x = xS∪xc. x[xS=x̄s] denotes a data instance x
where each feature in xS is set to the reference value x̄S , while the non selected indices
xc are not changed.

The faithfulness correlation for a data instance x is the correlation (corr) between
the explanation model g and the difference in prediction output from f on x and the
baseline data instance x[xi=x̄i].

µF (f, g;x) = corr
S∈

(
[d]
|S|

)(∑
i∈S

g(f, x)i, f(x)− f(x[xs=x̄s])) (5.2)

However, as there is no accepted standard of these metrics, or a reliable way to
compare one to another, it is difficult to choose between them. For this reason, Quan-

43

5. Related Work

tus [HWB+22] bundles together many XAI quantification techniques organised by the
primary desiderata they represent. This enables researchers to holistically quantify ex-
planations against different desiderata using multiple techniques. An example of this
can be seen in Figure 5.2.1. Figure 5.2.1a shows a standard example of a qualitative re-
view, where a researcher must visually compare the images produced. Each highlighted
area shows where each respective method identifies important features. Figure 5.2.1b
shows a holistic evaluation in the form of a radar plot. Each of the five points repre-
sents how explanations perform to a respective desiderata group by aggregating many
quantification techniques. This allows researchers to move easily compare explanations
against different desiderata.

Figure 5.2.1: a) visual representations of gradient based methods, an example of a
qualitative comparison. b) radar plot of aggregate quantification techniques sorted into
their desiderata groups. [HWB+22]

5.3 Explanation Influenced Optimisation

“Right for the right reasons” [RHDV17] adds a component representing explanation
accuracy to the loss function used during training. This means that during optimisation
alongside consideration of test set performance, test set explanation performance is also
considered. The aim of this is to produce predictors that are “right for the right reasons”,

44

5.3. Explanation Influenced Optimisation

Table 5.3.1: Gradient vs LIME runtime per explanation [RHDV17].

Dataset LIME (s) Gradients (s) Dimension of x
Iris-Cancer 0.03 0.000019 34
Toy Colors 1.03 0.000013 75

Decoy MNIST 1.54 0.000045 784
20 Newsgroups 2.59 0.000520 5000

not just predictors that perform well on the test set. [RHDV17] uses input gradients as
a form of explanation. Input gradients “characterize how a data point has to be moved
to change its predicted label” [BSH+10]. This means, they can show how important
certain aspects of data are to a particular prediction, in a similar (but less interpretable)
fashion to feature attribution algorithms such as SHAP. This decreased interpretability
is a trade-off to far greater computational efficiency, as shown in Table 5.3.1.

The accuracy of these input gradient explanations is evaluated with respect to
human created annotations. These annotations are defined in an annotation matrix
A ∈ {0, 1}N×D, where binary masks indicate whether dimension D should be irrelevant
(1) or not (0) for the training instance N . These annotations are done at a per-instance
(local) basis as global feature importance can be misleading. In situations where input
features are less meaningful to users, such as word vector representation, A can be
difficult to create as input gradients do not have explanation flexibility (discussed in
Section 3.2).

The loss function shown in Equation 5.3 is the mechanism by which explanation
accuracy in included in the optimisation process. The right reasons section contains
a regularisation parameter λ1 which aims to ensure right answers and right reasons
have similar magnitudes, and so are similarly valued. As such, the optimisation process
sees mappings f(x) that provide gradients that disagree with A as less optimal. Thus,
models trained with such a loss function are biased towards predictors that are right
for the right reasons.

L(θ,X, y,A) =

Right Answers︷ ︸︸ ︷
N∑

n=1

K∑
k=1

−ynklog(ŷnk)

+ λ1

N∑
n=1

D∑
d=1

(
And

∂

∂xnd

K∑
k=1

log(ŷnk)

)2

︸ ︷︷ ︸
Right Reasons

+λ2

∑
i

θ2i︸ ︷︷ ︸
Regular

(5.3)

Annotations are not needed for each training instance, as in the case that An = 0, ∀d
the explanation reasoning has no effect on the loss function. This means the annotations
encourage small gradients where And = 1, discouraging mappings that disagree with A.
It is accepted A will be imprecise both by ambiguity of what the right answer is, and
the variation across accepted reasoning by the humans who create A. Because of this,

45

5. Related Work

the loss function makes predictors f that disagree with A less favourable rather than
removing them from the model class entirely.

Although not discussed in the work itself, such a method may reduce the under-
specification of a pipeline by reducing the variation of reasoning amongst produced
predictors.

By iteratively adapting A, the loss function can encourage the creation of predictions
with different reasoning. This means that in situations where A cannot be created easily,
an expert can then investigate the pool of different predictors created and decide which
has the best reasoning.

5.4 The Rashomon Effect

Similar to underspecification, the study of the Rashomon effect looks at different pre-
dictors that perform similarly well. The term “Rashomon effect” is based on a 1950
film of the same name in which four characters describe their different perspective of
the same crime, leaving the viewer to wonder which is true. The Rashomon effect is
when multiple different explanations exist for the same situation [SRP19], as in the film,
we cannot tell which explanations (if any) are true. In a machine learning sense, the
Rashomon effect applies to situations in which many models exist with near optimal
test performance [Bre01].

To quantify the Rashomon effect, [FRD19] considers the set of near optimally
performing predictors a given pipeline can create, which they call Rashomon sets.
As discussed in Section 1.1, a pipeline P specifies the model class F , which is the
set of all possible predictors produced by P. They define a slight alteration of the
Rashomon set, an ϵ-Rashomon set R(ϵ) both for populations and samples. However,
the concept is the same for both. An ϵ-Rashomon set R(ϵ) is defined such that,
R(ϵ) = {f1, . . . , fn} ⊆ F , n ∈ R, where each predictor fi ∈ R(ϵ) has at worst the
accuracy of ϵ below a given reference predictor fref. To quantify the size of a Rashomon
set, [FRD19] studies the range of variable importance within the set. They use their
own metric “model reliance” (MR) to represent the variable importance of a given pre-
dictor, and “model class reliance” (MCR) to represent the range of predictor variable
importance within a given model class. Figure 5.4.1 illustrates a Rashomon set, plotting
accuracy against reliance on some feature X1, bounded between the range of model class
reliance MCR−(ϵ) ≤ MR(fi)) ≤ MCR+(ϵ), ∀fi ∈ R(ϵ). It should be noted that the
computational process for MCR is specific for different model classes and loss functions,
as such this method is not model-agnostic.

[SRP19] quantifies the Rashomon effect by studying the Rashomon set, specifi-
cally via a metric they call Rashomon volume, from which they define further metrics.
[SRP19] defines the empirical Rashomon set similarly to Fisher, with the key difference
being, rather than using a reference predictor they use an empirical risk minimiser.
Empirical risk minimisers work under the knowledge that using only a sample of data
(a dataset) means we cannot calculate how well a predictor works in practice (its true

46

5.5. Prediction Variance

Figure 5.4.1: The empirical and population-level Rashomon sets (R(ϵ)) of model class
(F) [FRD19].

risk), but we can measure their performance on our training data (its empirical risk)
[SSBD14].

The Rashomon volume is a measure of the volume of the Rashomon set in state
space, defined specifically to a learning problem and state space. Using the same volume
measure, the volume of the state space can be calculated. The Rashomon ratio is the
ratio of the volume of predictors inside the Rashomon set (Rashomon volume) to the
volume of predictors in the state space (state volume). The value of the Rashomon
ratio is thus bounded between 0 and 1. As the volume of a Rashomon set relies on the
Rashomon parameter ϵ, the interpretation of Rashomon ratios also relies on this chosen
parameter. When ϵ is large enough, the Rashomon set R(ϵ) contains all models in the
model class F . When ϵ is small, a larger ratio means that more predictors perform near
optimally. Additionally, [SRP19] defines pattern Rashomon ratio, which considers the
volume of predictions rather than predictors.

5.5 Prediction Variance

As with underspecification, predictive multiplicity examines prediction problems where
multiple well performing predictors exist. As shown in figure 5.5.1, predictive multi-
plicity differs from the Rashomon effect in that similarly performing predictors must
provide conflicting results. In line with our work, [MCU20] aims to quantify the extent
to which predictive multiplicity affects a given problem, in the same way test perfor-
mance is treated, from which researchers can make more informed design choices.

In order to achieve this, [MCU20] introduces two formal measures of predictive
multiplicity, ambiguity and discrepancy. Ambiguity reflects the number of conflicting
results that predictors can produce, whilst discrepancy reflects the number of predictions
that change if a different well performing model f ∈ F was chosen.

47

5. Related Work

Figure 5.5.1: Examples of the Rashomon Effect and Predictive Multiplicity [MCU20].
Where two competing classifiers ha and hb classify two classes of + and −. The points
highlighted in red are those in conflict between the two classifiers.

[MCU20] produces an empirical Rashomon set (which they reference as an ϵ-level
set) Rϵ(f0) = {f1, · · · , fk} such that each predictor f ∈ Rϵ(f0) performs equivalently
or better than a given reference predictor f0 add a chosen error tolerance ϵ.

Ambiguity is defined as the proportion of training instances that any predictor
f ∈ Rϵ(f0) differs in prediction than the reference predictor f0.

αϵ(f0) :=
1

n

n∑
i=1

max
f∈Rϵ(f0)

1[f(xi) ̸= f0(xi)] (5.4)

Discrepancy is defined as the maximum proportion of different predictions between
some predictor f ∈ Rϵ(f0) and the reference predictor f0.

δϵ(f0) := max
f∈Rϵ(f0)

1

n

n∑
i=1

1[f(xi) ̸= f0(xi)] (5.5)

Where xi is a training instance such that the training dataset xtrn = {x1, · · · , xn}.

In order to quantify variance between possible predictors for a given problem, predic-
tion deviation can be used. Prediction deviation is a metric of uncertainty for predictors
produced for a given problem [LLRB16]. To accomplish this, J predictors are created
from which the empirical Rashomon set Rf∗ is defined as all predictors within the 95%
confidence interval from the best performing predictor f∗ on the available dataset D.
Within the Rashomon set Rf∗, the two predictors {f1, f2} ⊆ Rf∗ with the maximum
difference between predictions are selected. This difference (or deviation) between pre-
dictors f1 and f2 is the prediction deviation of the problem. If the prediction deviation
of a problem is high, it means predictors chosen from F can provide vastly different
prediction results whilst still fitting the data well [LLRB16].

[MAD19] aims to identify extrapolation by examining the variance of predictors
across a local ensemble. In this work, a prediction is underdetermined if there are many
predictions that are equally evaluated. This can mean predictors base their predictions
on arbitrary choices, as with underspecification.

48

5.5. Prediction Variance

Figure 5.5.2: a) Circles show the data points of a given dataset, the best-fit predictor
is shown in black and an alternative is shown in blue. b) Shows the same two models,
using a different dataset drawn from the same distribution as in (a), performing far
more differently. [LLRB16]

Given a predictor, they provide an extrapolation score which quantifies the extent
to which a prediction for a particular input is underdetermined. This score aims to
model the possible variance of predictions across a local ensemble, which is a set of
similarly performing predictors to the given predictor. They prove that the extrapola-
tion score correlates with the standard deviation of predictions on multiple datasets, as
shown in table 5.5.1. Instead of forming an actual local ensemble of similarly perform-
ing predictors to the given reference predictor, they search for eigenvectors that form
a Rashomon set around it. As eigenvectors with small eigenvalues represent directions
with little curvature, predictors formed on these eigenvectors should be similarly eval-
uated. This Rashomon set is referred to as a loss-preserving ensemble subspace and
is constructed as the orthogonal complement to the top m eigenvectors. To form the
extrapolation score they project the test input gradient to the ensemble subspace.

Table 5.5.1: Pearson correlation between prediction standard deviation and extrapola-
tion scores across four UCI datasets [MAD19].

Dataset Pearson
Boston 0.76
Diabetes 0.50
Abalone 0.76
Wine 0.87

We were not aware of this method until after our experimentation for this work had
completed, when in December of 2021 this paper was updated to reference underspec-
ification rather than underdetermination. Despite the similarities between underdeter-
mined and underspecified predictions; being published prior to the underspecification
paper we discuss [DHM+20]; and sharing an author, there is no mention of it within
the underspecification paper. This could be because of the pipeline focus of [DHM+20]
is in contrast with the individual predictor focus of this work.

We mention it here for the sake of completeness and discuss it in its original form

49

5. Related Work

as that was its state at the time of publication.

50

Part II

Contributions

51

Chapter 6

Measuring Underspecification with
Underspecification Index

Contents
6.1 Quantifying Underspecification . 53

6.2 Method Definition . 57

For a given machine learning problem, multiple predictors (trained models) may perform
similarly on a testing set, whilst exhibiting different generalisation behaviour. Machine
learning pipelines that can produce multiple different predictors that are similarly eval-
uated, exhibit underspecification. In this chapter we present our method for quantifying
underspecification, using feature attribution methods from explainable machine learn-
ing. We first outline our description of underspecification, building from section 1.1.
Presenting theoretical examples, we aim to illustrate how underspecification can affect
explanations, and thus how by studying these effects one can identify underspecifica-
tion. We conceptually present a method for such analysis, by generating a collection of
similarly performing predictors from a given pipeline and measuring variation between
explanations produced by these predictors.

6.1 Quantifying Underspecification

We consider underspecification in a supervised learning setting. A given ML pipeline P
produces a predictor f ∈ F where F is the model class. The model class F is the set of
all possible different predictors produced by the pipeline P. P uses the dataset D ⊂ C
drawn from the distribution C which is split into the i.i.d datasets, Dtrn the training
dataset, and Dtst the testing dataset. Regardless of the manner in which P specifies F , f
is normally chosen from F by optimising an evaluation metric reflecting the performance
of f at predicting the held-out dataset Dtst. An ML pipeline is underspecified if it can
return multiple different predictors such that they give similar test evaluations, while

53

6. Measuring Underspecification with Underspecification Index

encoding substantially different inductive biases. Different inductive biases can result in
different generalisation behaviours on further datasets drawn from the same distribution
D̂ ⊂ C. This variation of generalisation behaviour poses issues for the credibility of test
performance evaluations on underspecified pipelines. We see that predictors sometimes
exhibit unexpectedly poor performance when used in real-world applications when such
multi-predictor phenomenon occurs.

The first step of addressing underspecification is to identify it. As introduced in
Section 5.1, stress tests measuring prediction performances have been reported in the
literature [DHM+20]. Stress tests themselves need to be designed specifically for a given
problem, and analysed against expectations. However, general i.i.d test performance
evaluations often cannot fully identify underspecification, and as such the problem of
underspecification challenges the credibility of such evaluations.

In this work, we present an alternative approach: identifying underspecification with
explanations. In a nutshell, given a training dataset Dtrn and a testing dataset Dtst

we construct a set of well-performing predictors (similar to Rashomon sets discussed
in Section 5.4) and study SHAP explanations generated from these predictors. We
identify underspecification when observing “too many” different explanations from such
predictors on the dataset. We observe: if a dataset can be explained in multiple
ways, then an ML pipeline built from it is likely underspecified.

Since predictors can contain a vast amount of parameters and when generated with
different model architectures have different internal structures, it is not straightfor-
ward to directly compare two predictors and determine how similar they are. Thus, to
determine whether an ML pipeline is underspecified, we study explanations obtained
from predictors produced by the ML pipeline, and use those as a proxy to estimate
the differences between predictors. As discussed in section 3.1, explanations aim to
model a given prediction, meaning we compare the explanation models rather than the
predictors themselves.

To compare variation between a set of models, we could also study the variance of
predictions as in the literature presented in section 5.5. However, particularly for binary
classification, predictors can give the same output for some input, whilst having different
reasoning. We show this theoretically in examples such as 6.1.1 and experimentally in
chapter 7.
Our core assumption is that:

If two predictors give similar explanations to a prediction, then they encode
the similar inductive biases; hence they should be considered similar.

Example 6.1.1 Our core idea can be illustrated with the following example, ex-
tended from example 1.1.1. Consider the binary classification problem of predicting
whether binary strings belong the class POS or NEG. Let D1 and D2 be balanced
datasets containing eight and twelve 5-bit binary strings respectively, where each
bit is considered a feature.

54

6.1. Quantifying Underspecification

Table 6.1.1: Two simple string datasets, D1, and D2 for underspecification illustra-
tion.

Data POS Explanation

D1
POS: 01101, 11101, 11111, 01111 · 1 · · ·, · · 1 · ·, · · · · 1
NEG: 00000, 00010, 10010, 10000

D2
POS: 01101, 11101, 11111, 01111, 01001, 11100 · 1 · · ·
NEG: 00000, 00010, 10010, 10000, 00001, 10111

As shown in Table 6.1.1, D2 contains all strings of D1 and four additional
strings. It can be assumed D2 and D1 are both drawn from the same distribution
C. For the purpose of maintaining a simple example, we consider only predictors
that classify each example based on a single bit. With these restrictions in mind,
we can form three predictors that perfectly classifies D1. Let x be a binary string
made of 5 bits x = [x1, x2, x3, x4, x5].

Predictor1(x) =

{
POS, if x2 = 1

NEG, otherwise

Predictor2(x) =

{
POS, if x3 = 1

NEG, otherwise

Predictor3(x) =

{
POS, if x5 = 1

NEG, otherwise

As we are comparing explanations instead of predictors, we represent these three
predictors as the following ’1-bit explanations’:

- · 1 · · ·: a string is POS because its second bit is 1,

- · · 1 · ·: a string is POS because its third bit is 1, and

- · · · · 1: a string is POS because its fifth bit is 1.

Each of these explanations can belong to a predictor that has optimal perfor-
mance on D1, and so there is no reason to prefer any. However, with the four
additional strings introduced in D2, the latter two explanations no longer achieve
optimal performance. This is because the two final NEG strings in D2, 00001 and
10111, would be incorrectly classified as POS by the second and third explanation re-
spectively. There remains a single 1-bit explanation achieving optimal performance
on D2:

- · 1 · · ·: a string is POS because its second bit is 1,

We observe that D2 with more data yields fewer 1-bit explanations than D1 and
so specifies a more consistent model class. We say the model class is more consis-
tent as fewer explanations that perfect classify these datasets, means explanations

55

6. Measuring Underspecification with Underspecification Index

are more consistently evaluated, that is, fewer explanations that are equivalently
evaluated whilst performing differently on further data from the same distribution.
Thus, pipelines built from D2 are less likely to be underspecified than those built
using D1.

We choose to use SHAP to produce our explanation models over other post-hoc in-
terpretability methods for a number of reasons. Firstly, SHAP has been shown to be
more consistent with human produced explanations than other methods such as LIME
and DeepLIFT [LL17]. Additionally SHAP offers globally consistent explanations while
methods such as LIME do not [Rat19, Mol19]. As SHAP fairly distributes the predic-
tion amongst input features, even if the contribution of each feature is the same amongst
two explanations, their explanations will be different if they have a different prediction
output. This allows us to model not only reasoning with SHAP explanations, but also
prediction variance. Compared to LIME, SHAP has been shown to produce a higher
explanation accuracy as well as correlating to classification performance better [YF21].
Initial investigations have also suggested SHAP values are simpler to cluster than LIME
[GG21]. As we aim to quantify differences within sets of explanations, having a more
distinguishable explanation space is advantageous.

Figure 6.1.1: An illustration of explanations from predictors trained with different sam-
ple sizes1. Predictors trained with more data - hence less underspecified ML pipelines
- produce more agreeable explanations. Red stars are placed closer to each other than
blue dots are. This work was completed by Dr. Fan Xiuyi, as a part of our published
work [HFL+21].

56

6.2. Method Definition

6.2 Method Definition

Consider an ML pipeline P with training dataset Dtrn and testing dataset Dtst. We
iteratively train predictors using Dtrn to produce a set of predictorsM = {f1, . . . , fK}
that perform similarly on Dtst. Note that the number of predictors inM, K, is a given
parameter where we repeatedly train until K predictors that exceed the performance
threshold θ have been produced. M can be interpreted as an empirical Rashomon set
(discussed in Section 5.4), where each predictor has performance better than θ, so could
equivalently be expressed as R(θ) = {f1, . . . , fK}. For each predictor f ∈ R(θ) we use
the SHAP explainer Π to calculate the local explanations Π(f,x) for each data instance
x ∈ Dtst.

For each test instance x ∈ Dtst we compute a local underspecification index Ux which
can be used for local analysis. This local index Ux provides a measure of agreement
between all predictor f ∈ R(θ) explanations for a test instance x. We experiment with
a number of metrics (discussed in chapter 4) to compare how similar the explanations
for a data instance x are for all predictors f ∈ R(θ). For the sake of simplicity we
use λ(x, y) to represent a metric between x and y, where λ is Euclidean distance,
Pearson correlation, Cosine similarity or Kendall Rank Correlation. To compute our
local underspecification index Ux, we compare each predictor f ∈ R(θ) to each other
predictor using some metric λ, such that:

Ux =
2

k(k − 1)

k∑
i=1

k∑
j>i

λ(Π(fi,x),Π(fj ,x)) (6.1)

where Π(fi,x) is the SHAP explanation of predictor fi for test instance x.

To compute our set underspecification index U we simply take the mean of all the local
underspecification indices calculated, such that:

U =
1

n

n∑
x=1

Ux (6.2)

where n = |Dtst|.

The component interactions of our method can be seen in Figure 6.2.1. In the
blue box, we represent the given ML pipeline P, that produces predictor f . Using the
same training Dtrn and testing datasets Dtst we repeat the training loop of P, k times
to produce the set of similarly-well performing predictors (the Rashomon set R(θ))
shown in green. For each model f in this set R(θ) we calculate its explanations for

1Blue dots and red stars represent explanations obtained from predictors trained with 100 and
1000 randomly selected samples in the COVID-19 dataset (introduced in chapter 9) respectively.
Within each set, the coordinates xi are computed with a stochastic hill climbing algorithm that solves
argminxi,xj

∑
|L2(xi,xj)−Dτ (x̂i, x̂j)|, where L2 is the L2 norm (the Euclidean distance to the origin),

Dτ is the Kendall distance of each pair of explanations (x̂i, x̂j).

57

6. Measuring Underspecification with Underspecification Index

Compute
Explanations

Calculate
Metrics λ

{ … Fk

{

Pk
Pk
F1

Pipeline P

Distribution C

Dataset
D

Training
Loop

Dtrn

Dtst

Predictor
F

U { … Un

{

Pk
Pk
U1

_

Figure 6.2.1: Simplistic component diagram of our method.

each instance x ∈ Dtst. We use the chosen metrics λ to calculate how similar these
computed explanations are to provide a local underspecification index for each data
instance in the testing set. Finally, we take the mean of all local indexes to provide our
set underspecification index Ū .

Algorithm 1 GenExplanations(Dtrn, Dtst,K, θ) return E

Input: The number of models K, Training Dataset Dtrn, Testing Dataset Dtst, Pre-
diction Performance Threshold θ
Output: E - Local explanations for each data instance x ∈ Dtst for K predictors
1: E = []
2: while |E| < K do
3: Train a predictor f with Dtrn

4: if the performance of f on Dtst > θ then
5: L = []
6: for each x ∈ Dtst do
7: Append Π(f,x) to L

8: Append the local explanations L of f to E

9: return E

58

6.2. Method Definition

Algorithm 1 shows how we form the explanation matrix E that we study in order
to quantify underspecification. First we must generate a set of well performing predic-
tors. To accomplish this we iteratively train predictors, and only study them if their
performance is better than a chosen threshold θ.

Once we have produced a predictor of sufficient performance, we compute its SHAP
explanation for each data point x ∈ Dtst, which we form into a list L, where each element
explains the predictor output for a matched data instance, such that |L| = |Dtst|.
Finally, we combine each predictor’s explanations L to E, such that |E| = K.

Algorithm 2 CalcLocalIndex(x,E,K) return Ux
Input: Index of test instance x, The matrix of explanations E, The number of models
K,
Output: Local underspecification index Ux of data instance x

1: Ux = 0
2: for i← 1 to K do
3: for j ← i to K do
4: Ux += 2

K(K−1)λ(Ei,x, Ej,x)

5: return Ux

Algorithm 2 depicts how we calculate the local underspecification index Ux of a
given test index x. As stated previously, this is calculated by pairwise computing λ
between each predictor to each other predictor. Each metric we calculate is transistive
in nature, such that λ(a, b) = λ(b, a). This means that we can save on computation
by calculating the distance between only half the matrix, as a triangular matrix. As
we are calculating only the inner triangular matrix values, we update the coefficient
for the average, as to make the underspecification index of the same magnitude as λ.
To calculate the set underspecification index Ū , we simply take the mean of all local
indexes Ux for each x ∈ Dtst for the set Dtst.

Overall, the proposed approach to identifying underspecification with explanations
has the following advantages:

1. It is model-agnostic and applicable to any data types and ML models as long as
such a model can be analysed with a model-agnostic explainer.

2. It is self-contained and does not require any additional information such as domain
knowledge or human expert inputs.

3. It is simple and does not require any special treatment to the dataset, e.g., strat-
ification or alteration, to estimate underspecification.

Over the next two chapters, we aim to investigate the following hypothesis by ex-
perimenting with our proposed approach:

Hypothesis 1 As more examples are added to a dataset, the performance and expla-
nation agreement should increase.

59

Chapter 7

Implementing Underspecification
Index for Classification

Contents
7.1 Language and Library Considerations 61
7.2 Software Realisation . 63
7.3 Experimental Setup . 66
7.4 Experiment Results . 69

In this section we cover our implementation of our method detailed in Chapter 6.
We first present our aims of this implementation and from this, justifications for our
technology choices to realise our proposed algorithms. Afterwards, we detail our initial
implementation and our successive optimisation, relating both back to our aims. In
order to evaluate our implementation we design tests based on stratified performance
evaluations and experiment these tests on multiple datasets from the literature. Finally,
we discuss the results of these experiments and interpret them in order to evaluate our
implementation.

7.1 Language and Library Considerations

Our method detailed in Chapter 6 could be implemented using a range of different
technologies. In this section we detail the language and library choices we have made
and present our reasoning for these decisions. Firstly, we will discuss our desirable aims
for this implementation which we then use to justify our choices against. This work
is aimed as an investigation of quantifying and identifying underspecification using
feature attribution explanations. As such, the primary aims of our implementation are
to verify the suitability of explanation analysis for underspecification quantification and
to provide repeatable and easy to follow experiments.

We chose to implement our method using Python, for a number of reasons we discuss
below.

61

7. Implementing Underspecification Index for Classification

Python has a large selection of relevant libraries for this project; by making use
of such packages we can cut down on the time spent developing the implementation
itself and focus on our experimentation. Of particular importance to us, the researchers
who presented SHAP, developed a number of well optimised implementations already
present in the literature [LL17, LEC+20, LNV+18]. Additionally, by using widely used
and trusted packages it reduces the amount of code which reviewers need to evaluate
for our project.

The second major reason we chose to implement using Python is readability both
within our research group and throughout the wider machine learning community. Al-
though this work itself is individually produced, there are collaborative aspects, such
as in our published work [HFL+21], and our COVID-19 case study. In both of these
aspects, work had been completed in Python before we started this project and to
keep continuity we began this project in Python. For the wider scope outside our
research group, Python is one of the most used programming languages in the world
[Jet21, Sta21] and some of its most common uses are in data analysis and machine learn-
ing [Jet21]. Papers With Code, a website that organises published papers along with
code that creates that papers findings, reported that in 2021 almost 60% of uploaded
repositories used the Python machine learning package PyTorch [Pap22]. Furthermore,
the usage of Python in data science has increased year-on-year as opposed to statisti-
cally focused languages such as R which has shown signs of decline [Gre17], or at least
slower growth than Python [TIO22].

An often reported weakness of Python is its poor performance compared to efficiently
optimised languages such as C++. Firstly, this is not a large concern in this project as
we are not aiming to provide performant production code, but easily understandable
repeatable experiments. Even with this considered, Python can be sped up by orders
of magnitude using Just-In-Time (JIT) compilers such as Numba [DGBM] which make
its performance comparable to languages such as C++. Furthermore, many of the
machine learning and data science packages we use, such as SciPy, NumPy and SHAP
use optimised code built on languages other than Python. With these packages being
used for many of the computationally intensive tasks within our implementation, they
dominate the total computation time more so than the less efficient code written in
Python.

Following our decision to use Python as the language of our implementation, we
must also decide which libraries we wish to use. The first and most obvious package
decision is SHAP [LL17], we explain our reasoning for using SHAP in Section 6.1.
For our experiments we use random forest models so that we can take advantage of
the fast implementation of tree SHAP [LEC+20]. Tree SHAP supports a number of
different random forest implementations, of which we decide to use SKLearn. One
reason we decide to use SKLearn is its comparative ease of installation compared to
XGBoost particularly on windows. Another is that we can use other components from
SKLearn throughout our implementation, cutting down on the number of dependencies
the implementation has. We can use SciPy and SKLearn (which is built on top of SciPy)
to calculate all of our metrics detailed in Chapter 4. We use NumPy and Pandas to
store and organise data throughout our implementation, as they are well-supported

62

7.2. Software Realisation

by all other libraries we use, leverage performance benefits, and again simplify our
codebase. Likewise, we use Numba to optimise our Python code, and drastically reduce
run time. As previously discussed, Numba translates Python to optimised machine code
and can easily be used to parallelise loops. Numba however, only supports a subset of
Python and NumPy types, and enforces stricter standards than Python generally does.

7.2 Software Realisation

In this section we aim to implement our method to calculate a set underspecification
index Ū as specified in Section 6.2. We first show an initial Naïve implementation,
which we compare against our optimised code we use for experimentation, a comparison
between the runtime of our naïve and optimised implementations can be seen in Table
7.2.1. All of our code can be found at:

https://github.com/JamesHinns/Underspecification-Index

Specifically to support this section we created the Software_Realisation.ipynb note-
book, which contains the code used for all figures within this section. Figures that
make use of Numba within this notebook take time to compile, and as such these re-
sults are taken off of the second run. Numba can cache the compiled object code which
saves compilation on the first time it is executed, we make use of this in our working im-
plementation, which is found with the underspecification_index folder of the directory.
To calculate the runtimes of the figures in this section we use the default_timer from
the Python package timeit. The runtimes displayed within this chapter and the next
are not deterministic due to the random nature of predictor training, as such they are
only used for approximate comparisons. The experiments that produce these runtimes
are calculated on an ubuntu machine with a 64-core AMD 3990x CPU, 250gb ram, and
an NVIDIA GeForce RTX 3080 GPU.

Task Naive Run Time (s) Optimised Run Time (s)
Explanation Matrix 33.97 21.40

Local Index 2.44 0.30
Set Index 244.00 2.05

Table 7.2.1: Run time (in seconds) of naïve and optimised implementations of the tasks
to produce Underspecification index Ū for the Abalone dataset. 80% of the dataset
randomly sampled as the training dataset, Rashomon performance threshold θ = 0.7
with 80% training dataset, θ = 0.7, and a fixed testing size of 100 randomly sampled
instances from the held-out 20% of data. The code and results can be found in the
Software_Realisation.ipynb example notebook.

We begin with our implementation of algorithm 1, which generates a 3-d ma-
trix of explanations. This matrix, E, contains a local explanation Lf,x = Π(f,x) =
{a0, · · · , ak−1} for each data instance in a testing dataset Dtst for each predictor f ∈
R(θ).

63

https://github.com/JamesHinns/Underspecification-Index

7. Implementing Underspecification Index for Classification

To accomplish this, our naïve implementation takes an OOP view, splitting this into
two functions, one to generate a Rashomon set R(θ), and another to generate the E
from this Rashomon set. As stated previously we use SKLearns random forest classifier
as our model for each predictor in the Rashomon set f ∈ R(θ), in our given examples
we use ten trees per forest. The function gen_rashomon_naive takes five parameters,
four representing the dataset split, and the accuracy threshold for the Rashomon set θ.
Throughout this work we split our datasets D into training Dtrn and Dtst, we then split
each of these into their respective training features x and prediction target y resulting
in the four arrays xtrn, ytrn, xtst, ytst. SKLearn’s model handles the training for us,
only requiring xtrn, ytrn to produce our predictor f . We then check if f belongs to
the Rashomon set R(θ) by having f predict ytst from xtst. We check the prediction
performance again using SKLearn’s accuracy metrics and if this at least matches θ, f
is added to R(θ). Furthermore, we repeat this process until the number of predictors in
R(θ) matches our chosen predictor count parameter, which is fixed at 100 throughout
our experiments.

We pass the test features xtst and produced Rashomon set R(θ) to
gen_exp_matrix_naive in order to produce E. For each f ∈ R(θ) we generate the
local SHAP explanation Π(fj ,xi) to create the list of all predictors explanations for a
data instance xi. We repeat this for each data instance xi ∈ xtst to create E.

Unfortunately, neither of these functions can make use of Numba for optimisation
because the data type of SKLearn’s random forest is not supported. For this reason,
we leverage the faster optimisation of tree SHAP, rather than looping through each
data instance and computing its explanation, we pass the whole testing dataset xtst
which returns an array of local explanations for a given predictor. We repeat for each
predictor f ∈ R(θ) setting each predictor fi’s local explanations to the ith index of an
array. We transpose this array, swapping the first and second dimensions to allow us
to pass a contiguous array for calculating each underspecification index. Furthermore,
we merge gen_rashomon_naive and gen_exp_matrix_naive, meaning we don’t save
the Rashomon set, simply calculate a predictors explanation only if it belongs to the
Rashomon set, that is, at least matches the performance on xtst of θ. As shown in Table
7.2.1, these improvements yield a noticeable performance increase.

Algorithm 2 aims to calculate a local index Ux for a data instance x given a set of
explanations for that instance Ex and the metrics Ux should be calculated with. To
naïvely implement this, we pairwise compare each predictor to each other predictor
via a nested loop, however to save on computation, we calculate this as a triangular
matrix. This calculation is equivalent to the full matrix calculation due to the transitive
nature of our metrics, λ(f1, f2) = λ(f2, f1). For each pair of predictors we compare,
we calculate each requested metric. In our Cosine, Pearson and Kendall Tau are all
calculated using SciPy’s metrics, Euclidean distance is calculated using the L-2 norm
implementation in NumPy. To save us from creating an array only to take the mean,
we multiply each metric result by a coefficient (2

n(n−1) instead of 1
n) to mitigate overflow

errors in this regard. Although not an issue with our experiment datasets, this could
be an issue for extremely large datasets, particularly when metrics can provide large
results, such as Euclidean distance.

64

7.2. Software Realisation

To optimise this, we employ Numba with the decorator njit, which allows no Python
code to be executed, only the optimised machine code. We also use the fastmath
tag, which if used with Intel SVML can provide significant performance benefits, and
is negligible if not installed. However, SciPys metrics aren’t able to be used with
Numba. For this reason, we implement these three metrics using NumPy. Cosine is
simply calculated as shown in equation 4.7 as the dot product of both inputs over
the product of the L-2 norm of each input. Both the dot product and L-2 norms
are calculated using inbuilt NumPy functions. We make use of the NumPy Pearson
correlation implementation which produces a correlation matrix, from which we can
select the coefficient. Consistent with our other results, we find that these NumPy
implementations outperform SciPy equivalents.

Metric SciPy Run Time (s) Optimised Run Time (s)
Pearson 0.628 0.156
Cosine 0.351 0.156

Table 7.2.2: Runtime (in seconds) of Numba optimised NumPy implementations vs
SciPy implementation for input lenghts of 1000, with 10,000 iterations

Figure 7.2.1: Implementation of naïveO(n2) Numba optimised implementation vs SciPy
O(n log n) implementation for 10,000 iterations, plotted on a logarithmic scale.

Kendall Tau however is slightly more complex to calculate. There exists anO(n log n)
implementation of Kendall Tau, such as that used in SciPy. It is however not a straight-
forward implementation, basing part of its implementation on merge sort. To stay true
to our objectives, providing relatively easy-to-follow implementations, we implement a

65

7. Implementing Underspecification Index for Classification

Table 7.2.3: The runtime (in seconds) of calculating the set index of the dataset used
in Table 7.2.1 for a Python and SciPy implementation, a Numba njit optimised imple-
mentation, and Numba njit using parallelisation.

Method Runtime (s)
Python 243.66
Njit 2.89
Parallel 2.05

O(n2) algorithm. We do however, take leverage performance benefits where we can
to still outperform the less complex algorithm in runtime, as shown in Figure 7.2.1.
Firstly, we use NumPy’s argsort to produce our rankings, which does not produce tied
rankings regardless of values. This means we can implement TauA as discussed in Sec-
tion 4.5, saving us from calculating further components of the denominator. We also
use Numba again with the decorator njit and tag fastmath. As shown in Figure 7.2.1
our ’naïve’ O(n2) implementation still outperforms SciPy’s O(n log n) on all our tests
of input lengths less than 1500. This could be an issue in complex domains with an ex-
tensive amount of features, however as all of our datasets have well below 100 features,
our ’naïve’ O(n2) implementation has orders of magnitude less runtime than SciPy’s
O(n log n) implementation.

To calculate the set index for xtst we compute the local index for each data instance
in xtst. We decide to return this array of local indices rather than the set index to
allow for local analysis. The set index can simply be calculated using NumPys mean
function for each metric. Alongside using the njit decorator here we use the parallel
tag, which allows us to calculate local indices in parallel. We find the Numba optimised
implementations are again orders of magnitude faster than our Python and SciPy based
implementation, as shown in Table 7.2.3.

7.3 Experimental Setup

We experiment with our implementation on six datasets, summarised in Table 7.3.1. To
investigate how underspecification changes with data set size we stratify each dataset
into subsets of various lengths. We compute our set underspecification indices Ux,
average test performance, and prediction variance for each strata. We use the four
metrics discussed in Chapter 4 to calculate Ux and compare their results.

For each strata we train 100 random forest classifiers each with 10 trees. Choosing
the number of predictors that the Rashomon set will contain is not straightforward. In
choosing this parameter, we must handle the trade-off between the reliability of our set
underspecification index and run-time. This is because a greater number of predictors
allows us to model the true (population-level) Rashomon set more accurately, and thus
place more credibility in our index which derived from this modelled Rashomon set. We
choose a fixed number of models of 100 for all our experiments, justifying this decision
experimentally in Section 7.4.

66

7.3. Experimental Setup

Table 7.3.1: Summary of datasets used for classification experiments, each available on
the UCI ML repository [DG17].

Dataset # of Samples # of Features Class Structure
Abalone [DG17] 4177 8 (2096,2081)
Adult [DG17] 48842 14 (37155,11687)

Bank [DG17, MCR14] 45211 16 (39922,5289)
Breast Cancer [DG17] 569 30 (212,357)

Mushroom [DG17] 8124 22 (4208,3916)
Wine Quality [DG17, CCA+09] 1599 11 (744,855)

In most of our experiments, increasing the length of training data increases test
performance. We are able to vary our performance threshold θ in accordance with the
expected test performance. To enable this, we create a utility function to estimate how
well our chosen model specification will perform on a given dataset. This utility function
simply trains n predictors for each given strata and returns the average performance of
each strata against a shared test set. We use these average performance accuracies as
θ so that each predictor f ∈ R(θ) matches or exceeds the average performance of the n
predictors generated.

As in our explanation matrix implementation (algorithm 1) we do not save the
predictors f ∈ R(θ) we must make edits to conduct these experiments. To do so, we
keep an array of the predictions and accuracy of each predictor we calculate explanations
for (R(θ)). Along with returning the explanation matrix, the implementation also saves
the variance of these predictions and the mean accuracy to a temporary file.

We also make a wrapper function to return a single csv for each dataset, recording
the local indices, training strata, prediction accuracy and prediction variance. Given
a set of training strata, a testing set, performance thresholds, and metrics to calculate
this wrapper function, compare_datasets calculates local underspecification indices for
each strata. For each strata this calls the functions to generate an explanation matrix,
and then to calculate underspecification indices from this, combining these with the
prediction variance and accuracy from the temporary file. This data is then saved as a
csv which we can use to analyse the effect of underspecification against training length
for each of our datasets.

This setup is similar to the stratified performance evaluations mentioned in Sec-
tion 5.1. However, rather comparing test performance only, we additionally compare
prediction variance and underspecification index.

An underspecified pipeline is one that can "return many predictors with equiva-
lently strong held-out performance in the training domain" [DHM+20]. As we use
SHAP explanations to model predictors, the greater variation between the explana-
tions, the greater the variation between predictors. By quantifying the variation of
these explanations we can quantify the extent of underspecification for a given pipeline.

We stratify each dataset to compare the relationship between dataset size, test ac-
curacy, test variation and underspecification indices (explanation variance). We expect

67

7. Implementing Underspecification Index for Classification

to see an approximately exponential relationship between dataset size and test perfor-
mance, plateauing towards the maximum achievable test performance [PKS15, SZ05,
AAAB+21, BAL+19]. This relationship depends upon the complexity of the prediction
problem, where more complex problems tend to take a greater number of samples to
perform similarly [DP06]. Additionally, we expect that prediction variation will decrease
as dataset size is increased [BW99], and that the variation of a predictors performance
indicates its generalisability [PSM+07].

As prediction variation is directly related to how constrained a prediction problem
is [LLRB16], and that this variance tends to decrease with dataset size, a problem is
more constrained, and therefore has less underspecification as dataset length increases.

These stratified evaluations aim to support that our underspecification index is in
agreement with these already identified relationships. By expanding on Hypothesis
1 (pg. 59) we propose the following Hypothesis for our classification experiments to
represent this aim:

Hypothesis 2 As more examples are added to a dataset, the classification accuracy and
explanation agreement should increase. Specifically, we expect that underspecification
indexes based on Pearson, Cosine, and Kendall should have a positive correlation with
accuracy as dataset length is increased, whereas Euclidean-based indexes should have a
negative correlation.

Each of the datasets used can be found within the datasets’ directory of the project
repository (https://github.com/JamesHinns/Underspecification-Index). Prior to
stratification we minimally process each dataset, removing rows with missing informa-
tion and converting any non-numeric features to a numeric format. The exact code
used to run each data experiment can be found with the relevant Python file in the
experiments’ directory.

Below we summarise the prediction problem we pose for each dataset:

Abalone: To create a binary classification problem from the Abalone dataset, we
create a new binary feature that is whether a given abalone has at least ten rings. We
chose this value as it makes the classes approximately even. To predict an Abalone’s
weight, predictors are provided eight features describing its physical measurements and
sex.

Adult: A number of features extracted from 1994 American census data, such as
education level, hours per week worked and occupation area are used to predict whether
a given person makes under $50,000 or not.

Bank: Input features such as job, education and the outcome of the previous market-
ing campaign are used to predict whether a person will subscribe to a term deposit or
not.

Breast Cancer: Ten continuous features describe an image of a breast mass, from
which we predict whether it is malignant or benign.

68

https://github.com/JamesHinns/Underspecification-Index

7.4. Experiment Results

Mushroom: From features describing the appearance of a mushroom and its sur-
roundings, we predict whether this mushroom is poisonous or not.

Wine Quality: The dataset has input variables that describe the chemical composi-
tions of various red wines, and a prediction target of quality out of 10. To make this a
binary classification problem we predict whether the quality of a given is greater than
5 or not, which creates to approximately balanced classes.

7.4 Experiment Results

For both regression and classification we compute the average prediction variance for
each strata. For classification problems, this prediction variance is less meaningful than
for regression. As we only experiment with binary classification problems the predictions
can only be 0 or 1, and therefore little variance between them can occur. For this reason
we don’t discuss this relationship in this section.

To produce all the figures within this section and the matching section in regression
(Section 8.3) we use altair to create graphing function, which take our saved underspec-
ification indices and predictor performances as inputs and output created charts. We
use these functions to produce and save a range of charts for each datasset. Further
to the figures within this section we include charts of results from these experiments
within the appendix Section A.

Table 7.4.1: The Pearson correlation between each different variation of set underspec-
ification index and average prediction accuracy of all strata for each dataset.

Dataset Euclidean
Distance

Cosine
Similarity

Pearson
Correlation

Kendall Rank
Correlation

Abalone -0.787 0.784 0.756 0.925
Adult -0.986 0.987 0.990 0.868
Bank -0.954 0.978 0.974 0.383

Breast Cancer -0.856 0.989 0.987 -0.972
Mushroom -0.895 0.960 0.951 -0.953

Wine Quality -0.983 0.946 0.944 0.938

In order to assess the effect of the number of predictors we study in our empirical
Rashomon set, we compare the Mushroom dataset experiment varying the number of
predictors. Instead of the constant 100 predictors, we run the experiment with 10,
100 and 1000 predictors. We show the approximate effect of the predictor count on
runtime in Table 7.4.2. The trade-off against this increasing runtime is the reliability
of the underspecification index computed. We show this in Figure 7.4.1, showing all
graphs display similar trends, but a decrease in variation can be seen with an increase
in predictor count. In Table 7.4.3 we numerically represent this.

We show that the variation of explanations, represented by our underspecification
indices, decreases as training dataset length and prediction accuracy increase. We

69

7. Implementing Underspecification Index for Classification

Table 7.4.2: Approximate runtime for the mushroom experiment, run with a different
number of predictors in the studied Rashomon set R(θ).

Model Count Runtime (s)
10 12.19

100 216.57
1000 17502.27

Figure 7.4.1: The Cosine-based set underspecification indices and prediction accuracy
for the mushroom dataset for different strata of experiments run varying predictors
studied. Left to right, the number of predictors studied is 10, 100, 1000.

Table 7.4.3: The sum of absolute differences between each of the 1625 local underspec-
ification indices for each of the 8 strata of the mushroom dataset between the most
reliable 1000 count experiment and the 10 (D10) and 100 (D100) experiments.

Metric D10 D100

Euclidean 127.35 48.13
Cosine 382.76 132.94
Pearson 450.43 162.49
Kendall 311.30 67.77

find that this relationship is consistent across all datasets we test in, as shown in Table
7.4.1. To produce this table, we take the average prediction accuracy, average prediction
variance, and set underspecification indices calculated by each of the metrics we use for
each strata. This gives us a representation of explanation variance and performance for
each strata of each dataset. Finally, we take the Pearson correlation between our set
underspecification indices and prediction accuracy. This Pearson correlation coefficient
gives us a simple singular value to evaluate against Hypothesis 2.

As expected in Hypothesis 2, we find that Cosine similarity and Pearson correlation
based indices correlate similarly with classification accuracy. These metrics show a
strong positive relationship between explanation agreement and prediction accuracy as
training dataset length increases.

Generally we see a similar linear correlation between accuracy and Euclidean dis-
tance between explanation, only a negative relationship rather than positive, as ex-
pected by Hypothesis 2. This is expected as when Euclidean distance between ex-
planations decreases, the explanations are more similar, as apposed to the opposite
relationship with Cosine similarity and Pearson correlation. The result for the breast
cancer dataset displayed in Table 7.4.1 is averaged from repeating the experiment 10

70

7.4. Experiment Results

times. Because of the small size of the dataset, the random splitting of training and
test sets can have larger effects on results than on larger sets. Equally, we see in Fig-
ure 7.4.2 that the dataset performs well even with the shortest dataset length selected,
alongside this, we see that the Euclidean distance between explanations begins low and
doesn’t change. This means these random effects can be more influential than on longer,
more difficult datasets, and so disrupts the trend of explanation constraint with dataset
length. We show this effect in Table 7.4.4, where we see a much higher correlation in
the average repeated results compared to an individual experiment.

Table 7.4.4: The correlation between each different variation of set underspecification
index and average prediction accuracy of all strata for the breast cancer dataset, with
a single experiment run vs the average from 10 experiments.

Repeats Euclidean
Distance

Cosine
Similarity

Pearson
Correlation

Kendall Rank
Correlation

1 -0.216 0.832 0.817 -0.798
10 -0.856 0.989 0.987 -0.972

Figure 7.4.2: The Cosine-based set underspecification indices and prediction accuracy
for the breast cancer dataset for different strata, produced by a single experiment run

We find far more mixed results from underspecification indices produced using
Kendall rank correlation. Some results are in agreement with Hypothesis 2, whereas
some did not. Demonstrated again by Table 7.4.1, we observe the expected strong posi-
tive linear relationship for the abalone, adult and wine quality datasets. We also observe
three datasets where Kendall based underspecification indices do not follow the hypoth-
esised trend, in the bank, breast cancer and mushroom datasets. Upon investigation,
we observe that these datasets for which Kendall rank correlation based underspecifica-

71

7. Implementing Underspecification Index for Classification

tion indices disagree with Hypothesis 2 have the greatest number of features, as shown
in Table 7.3.1. Taking the correlation between number of features and the correlation
between Kendall underspecification indices and prediction accuracy (from Table 7.4.1),
gives a Pearson coefficient of -0.92. This shows that for our experiments, datasets with
fewer features exhibit a relationship between Kendall underspecification indices and
prediction accuracy closer to our expectation. This is likely due to the loss of the mag-
nitude of contributions when converting explanations to rankings. Similar explanations
can produce rankings in disagreement and different explanations may produce similar
rankings. These interactions can have a greater effect if multiple features are assigned
similar attributions, where small variations can drastically change a produced ranking.
With a greater number of features, these small variations have a larger effect as they
change a greater number of features in the ranking. This observed effect suggests that
Kendall rank correlation based underspecification indices do not well represent agree-
ment between explanations.

As well as using the plots shown in appendix Section A which show the relationship
between prediction accuracy and underspecification indices against training length for
each metric individually, we can also plot them all as a single scatter chart for each
dataset. We show such plots in Figures 7.4.3 and 7.4.4 where we can see the expected
patterns of Cosine, Pearson and Euclidean based indices, and also see the weaknesses
of Kendall based indices.

Figure 7.4.3: Different variations of underspecification indices plotted against their
prediction accuracy, regression lines through each variation for all strata of the adult
dataset.

To visually reinforce these findings, we include charts below demonstrating the ex-
pected pattern of increasing explanation agreement (represented by our Cosine-based

72

7.4. Experiment Results

Figure 7.4.4: Different variations of underspecification indices plotted against their
prediction accuracy, regression lines through each variation for all strata of the breast
cancer dataset.

indices) and prediction accuracy with dataset length. In the mushroom dataset (shown
in Figure 7.4.9) we see explanation agreement continues to increase even once predic-
tion accuracy has reached 100%. This shows that our underspecification indices are able
to represent how well a dataset constrains predictors more so than directly analysing
predictor performance as all predictors in these cases perform equivalently.

73

7. Implementing Underspecification Index for Classification

Figure 7.4.5: The Cosine-based set underspecification indices and prediction accuracy
for the abalone dataset for different strata.

Figure 7.4.6: The Cosine-based set underspecification indices and prediction accuracy
for the adult dataset for different strata.

74

7.4. Experiment Results

Figure 7.4.7: The Cosine-based set underspecification indices and prediction accuracy
for the bank dataset for different strata.

Figure 7.4.8: The average Cosine-based set underspecification indices and prediction
accuracy for the breast cancer dataset for different strata, produced by repeating the
experiment 10 times.

75

7. Implementing Underspecification Index for Classification

Figure 7.4.9: The Cosine-based set underspecification indices and prediction accuracy
for the mushroom dataset for different strata.

Figure 7.4.10: The Cosine-based set underspecification indices and prediction accuracy
for the wine quality dataset for different strata.

76

Chapter 8

Implementing Underspecification
Index for Regression

Contents
8.1 Software Realization . 77

8.2 Experimental Setup . 78

8.3 Experiment Results . 80

This sections details implementing and testing our method for computing underspec-
ification indices for regression problems. We build upon the work from the previous
chapter, 7, to adjust the produced implementation to work in both classification and
regression problems. As in the previous chapter, we discuss how we realise these changes
in our python implementation. We then again test this implementation using stratified
performance evaluations on datasets from the literature and discuss our interpretation
of these results.

8.1 Software Realization

Our implementation for regression uses mostly the same code as for classification. Our
implementation for Algorithm 2, which calculates local underspecification indices Ux,
and the function that calculates the set underspecification index Ū see no change, as
they are just passed explanations, which do not change between classification and regres-
sion. The changes are seen within our implementation for Algorithm 1 which generates
explanation matrices. As multiple parts of this algorithm function differently for clas-
sification and regression, we create two sub-functions for classification and regression
respectively. These functions generate a predictor, if it outperforms the given threshold
θ it’s SHAP explanation Π(f,x) for each data instance x ∈ Dtst. The function that
calls both of these sub-functions iteratively calls the relevant sub-function until the re-
quested model count has been reached. The first difference between the regression and

77

8. Implementing Underspecification Index for Regression

classification sub-functions is simply in the model type of predictors. For classification,
we use SKLearn random forest classifiers as opposed to random forest regressors for
regression. Similarly, in both we train these models to produce predictors and then
predict the target variable from input variables, before evaluating performance.

As discussed in Section 2.2, different metrics are used for classification and regression
problems. Therefore, instead of maximising accuracy we minimise mean squared error
(MSE). For regression problems we look for predictors with an MSE lower than θ
whereas in classification problems we look for predictors with an accuracy greater than
theta. Finally, when used for classification the SHAP library produces explanations for
each class, where we only analyse the explanations for the first class. When used for
regression, the SHAP library only provides one explanation for one data instance, so
no filtering is needed.

The final difference for regression problems is that for each model we calculate the
squared error for each test instance, whereas in classification we calculate the accuracy
across the whole dataset. This is because classification can only be right or wrong, and
local evaluation in this context doesn’t provide meaningful results. By calculating the
error at each instance we are able to calculate a more meaningful prediction variance
across produced predictors in the Rashomon set. To calculate this squared error, we
implement a simple function using Numba and NumPy that returns an array of the
squared error for all test instances. In order to calculate the MSE, we simply take the
mean of the returned array.

8.2 Experimental Setup

As in chapter 7, we experiment our implementation using a number of datasets from
the literature. Other than passing an additional parameter to indicate we want to
calculate underspecification indices for regression, our experimental control functions see
no difference. We again stratify each dataset into a number of subsets of varying length,
train a number of predictors on these strata and compute their set underspecification
indices for a shared held-out testing dataset.

Within the project repository we include an example notebook,
Bikeshare_Example.ipynb, which shows an example of how we ran these experiments
in the regression setting using the Bike Share dataset [DG17, FTG13].

In agreement with our classification results and in line with the general Hypothesis
1 (pg. 59), we expect that prediction performance and explanation agreement should
increase with dataset length. As with the previous chapter we expand Hypothesis 1
for our experiments and setting, in this case, regression problems. In parallel with Hy-
pothesis 2 we give the following hypothesis relating performance (MSE) to explanation
agreement:

Hypothesis 3 As more examples are added to a dataset, the MSE and explanation
agreement should increase. Specifically, we expect that underspecification indexes based
on Pearson, Cosine, and Kendall should have a negative correlation with MSE as dataset

78

8.2. Experimental Setup

length is increased, whereas Euclidean-based indexes should have a positive correlation.

In this chapter, we additionally discuss the relationship of prediction variance across
strata as this is a meaningful reflection of performance variation in a regression setting.
We foresee that prediction variance should decrease with dataset length as predictors
are better constrained. We provide the following hypothesis to represent this expected
trend:

Hypothesis 4 As more examples are added to a dataset, the prediction variance should
decrease, whilst explanation agreement should increase. Specifically, we expect that un-
derspecification indexes based on Pearson, Cosine, and Kendall should have a negative
correlation with variance as dataset length is increased, whereas Euclidean-based indexes
should have a positive correlation.

Table 8.2.1: Summary of datasets used for regression experiments, all but the house
price dataset are available on the UCI ML repository [DG17].

Dataset [DG17] # of Samples # of Features
Auto MPG [DG17] 398 8

Bike Share [DG17, FTG13] 17379 16
House Price [Coc11] 1461 79

Student [DG17, CS08] 649 30
Wine Quality [DG17, CCA+09] 1599 11

We summarise the five datasets we use in Table 8.2.1 by the number of samples and
features. Below we summarise the prediction problem we pose for each dataset:

Auto MPG: Given 8 features that describe a given car such as number of cylinders,
horsepower and weight, we aim to predict the average miles-per-gallon (MPG).

Bike Share: Input features describing the date, weather and total users are used to
predict the amount of bikes rented for a given hour.

House Price: Input features characterise the location, size and amenities of a given
house, from which we predict the sale price.

Student: Input features describe student demographic, as well as social and school
background in secondary education of two Portuguese schools. We aim to predict a
given student’s final grade in Portuguese. It should be noted this dataset includes
intermediate test scores, which we exclude in order to make the prediction problem
more difficult.

Wine Quality: The dataset has input variables that describe the chemical compo-
sitions of various red wines with a prediction target of quality out of 10. Rather than
forming this as a binary classification as we did previously, or a multi-class classification,
we pose predicting quality as a regression problem.

79

8. Implementing Underspecification Index for Regression

8.3 Experiment Results

We measure Pearson correlation between average prediction mean squared error and
each of our underspecification indices produced by different metrics, as we did in the
previous chapter. We show these correlation results in Table 8.3.1. Furthermore, we
observe a strong positive correlation between error and Euclidean distance, following
Hypothesis 3. Once again Pearson correlation and Cosine similarity based indices show
an almost equivalent trend with test performance. We observe underspecification indices
based on these metrics produce a strong negative Pearson correlation with prediction
error, again supporting Hypothesis 3.

As in classification, we observe that Kendall rank correlation based underspecifi-
cation indices produce mixed results. We compute the Pearson correlation between
the results shown in Table 8.3.1 and the number of features shown in Table 8.2.1 and
find a coefficient of 0.96. This means in agreement with our classification results, the
greater number of features in a dataset the less Kendall based indices match the relevant
hypothesis, in this case that is Hypothesis 3.

Table 8.3.1: The correlation between each different variation of underspecification index
and prediction mean squared error of all strata for each dataset.

Dataset Euclidean
Distance

Cosine
Similarity

Pearson
Correlation

Kendall Rank
Correlation

Auto MPG 0.984 -0.943 -0.921 -0.890
Bike Share 0.899 -0.912 -0.919 -0.824
House Price 0.935 -0.973 -0.973 0.864

Student 0.968 -0.964 -0.965 -0.47
Wine Quality 0.893 -0.955 -0.955 -0.816

We find that the dataset with the fewest samples (data instances) we use, Auto
MPG, produces less consistent results than the datasets with a greater number of sam-
ples. As we do for smaller datasets that have similarly varying results for classification,
we repeat the experiment for this dataset ten times and report the average of these.
We display the comparison of the repeated experiment and a single run in table 8.3.2,
we use the repeated result in table 8.3.1 and 8.3.3. When repeating results and tak-
ing the average we observe greater correlation between our underspecification indices
and prediction mean squared error. This is because of the randomness involved in the
process, such as the random splitting of training and testing datasets. A dataset with
fewer samples sees greater effects from this as they are likely less representative of their
respective distribution.

As well as comparing the trend of underspecification indices to prediction accuracy
as length increases, we also compare prediction variance. We summarise this relation-
ship in Table 8.3.3, which is equivalent to Table 8.3.1 but replacing error with variance.
A noticeable outlier in this table can be seen in the Wine Quality dataset. We have
included this result still for the sake of completeness, however due to the nature of the
prediction problem the prediction variance is not as meaningful nor equivalent to the

80

8.3. Experiment Results

Table 8.3.2: The correlation between each different variation of underspecification index
and prediction mean squared error of all strata for the Auto MPG dataset, with a single
run compared to the average of ten repeated experiments.

Repeats Euclidean
Distance

Cosine
Similarity

Pearson
Correlation

Kendall Rank
Correlation

1 0.975 -0.692 -0.65 -0.683
10 0.984 -0.943 -0.921 -0.890

other datasets. This is because rather than a true continuous prediction target, we aim
to predict an integer quality score between 1 and 10. The dataset also does not cover
all values between 1 and 10, particularly on the lower end of scores. For this reason we
will not discuss the variance results from this dataset. We equally will not discuss the
Kendall based indices for the reasons detailed above and in the previous chapter.

We observe a strong positive correlation between Euclidean distance based indices
and prediction variance. This is possibly the most expected result from our experi-
ments, as SHAP explanations should model prediction variance. However, as SHAP
distributes the difference from base value to prediction output, rather than the actual
prediction output it is not a true measure of prediction variance. We see a strong nega-
tive correlation for both Pearson and Cosine-based indices with both indices producing
similar results once again. These results support Hypothesis 4 that explanation agree-
ment correlates strongly with prediction variance and as such is a good metric of how
much a given dataset constrains predictors produced from it.

Table 8.3.3: The correlation between each different variation of underspecification index
and prediction variance of all strata for each dataset.

Dataset Euclidean
Distance

Cosine
Similarity

Pearson
Correlation

Kendall Rank
Correlation

Auto MPG 0.977 -0.992 -0.985 -0.817
Bike Share 0.994 -0.933 -0.934 -0.783
House Price 0.894 -0.964 -0.963 0.896

Student 0.97 -0.95 -0.951 -0.548
Wine Quality 0.367 -0.0517 -0.0673 -0.46

As discussed above, we repeated the experiment for the Auto MPG dataset due to
the instability of results based on the random train-test split. As in all summary tables,
we include this repeated result for the prediction variance correlation table (table 8.3.3).
We show the difference of explanation variance from a single run to the averaged results
in table 8.3.4. In agreement with all other repeated experiments, we observe that the
repeated average results are closer to the expected trend than a single run. We discuss
reasoning for this above.

To further support these findings visually, we include the results of the cosine based
indices and prediction error for each dataset below. We show further charts of these

81

8. Implementing Underspecification Index for Regression

Repeats Euclidean
Distance

Cosine
Similarity

Pearson
Correlation

Kendall Rank
Correlation

1 0.975 -0.692 -0.650 -0.683
10 0.977 -0.992 -0.985 -0.817

Table 8.3.4: The correlation between each different variation of underspecification index
and prediction variance of all strata for the Auto MPG dataset, with a single run
compared to the average of ten repeated experiments.

results for each metric in Appendix B.

Figure 8.3.1: The Cosine-based set underspecification indices and prediction mean
squared error for the Auto MPG dataset for different strata. Data is taken from the
average of ten repeated experiments.

82

8.3. Experiment Results

Figure 8.3.2: The Cosine-based set underspecification indices and prediction mean
squared error for the bike share dataset for different strata.

Figure 8.3.3: The Cosine-based set underspecification indices and prediction mean
squared error for the house price dataset for different strata.

83

8. Implementing Underspecification Index for Regression

Figure 8.3.4: The Cosine-based set underspecification indices and prediction mean
squared error for the student dataset for different strata.

Figure 8.3.5: The Cosine-based set underspecification indices and prediction mean
squared error for the wine quality for different strata.

84

Chapter 9

COVID-19 Case Study

Contents
9.1 Dataset Creation . 85

9.2 Experimentation . 88

In this section we apply our approach to a coronavirus virus transmission case study.
This case study can be viewed as a realistic experiment modelled after the epidemiolog-
ical model that demonstrates underspecification in [DHM+20]. We discuss the stages
taken to create this dataset and it’s final format. Using this dataset, we pose multiple
prediction problems from which we undertake experiments. Finally, we detail the setup
and results of these experiments.

9.1 Dataset Creation

The COVID dataset we use in this section was made by Veera Raghava Reddy Kovvuri
and Dr. Xiuyi Fan and published in our work [HFL+21] and external work [KED+21].

In order to create the dataset, we collected data from multiple sources. From the
Public Health England website1, we collected daily cases and deaths reported across
12 regions in UK: East Midlands, East of England, London, North East, North West,
Northern Ireland, Scotland, South East, South West, Wales, West Midlands as well as
Yorkshire and The Humber.

Non-pharmaceutical control measure data was composed based on UK’s COVID
policies as summarised in Table 9.1.1. Data was collected from various sources including
Wikipedia and major news agencies. Control Measures were coded based on level of
severity (e.g., ’High’, ’Moderate’, ’Low’) for all control measures excluding non-essential
shops and school closures, which are coded as binary choices (“Open” and “Closed”). In
total 4,257 data instances were collected between February 2020 and February 2021.

1https://www.gov.uk/government/organisations/public-health-england

85

https://www.gov.uk/government/organisations/public-health-england

9. COVID-19 Case Study

Table 9.1.1: Non-pharmaceutical COVID Control Measures.

Meeting Friends / Family (Indoor) Meeting Friends/Family (Outdoor)
Domestic Travel Control International Travel Control

Cafes and Restaurants Control Pubs and Bars Control
Sports and Leisure Closure Hospitals / Care and Nursing Home Visits

Non-Essential Shops Closure School Closure

Figure 9.1.1: COVID control measures implemented in London from February 2020 to
February 2021. Control measures with ternary values, ’High’, ’Moderate’ and ’Low’ are
represented with 2, 1 and 0, respectively. For binary control values, ’Open’ and ’Closed’
are represented with 0 and 1, respectively.

From daily infection numbers, we estimate the reproduction number Rt using the
method reported in [FMG+20, WLB+20]. Rt is one of the most important quantities
used to measure the spread of an epidemic. If Rt > 1, then the epidemic is expanding
at time t, whereas if Rt < 1, then it is shrinking at time t. A serial interval distribution,
which is a Gamma distribution g(τ) with mean 7 and standard deviation 4.5, is used
to model the time between a person getting infected and then subsequently infecting
another person on day τ . The number of new infections ct on a day t is computed as:

ct = Rt

t−1∑
τ=0

cτgt−τ , (9.1)

where cτ is the number of new infections on day τ ,

g1 =

∫ 1.5

τ=0
g(τ)dτ,

and for s = 2, 3, . . .,

gs =

∫ s+0.5

τ=s−0.5
g(τ)dτ.

86

9.1. Dataset Creation

Figure 9.1.2: Daily Infection Cases vs Rt in UK.

From Equation 9.1, we have:

Rt =
ct∑t−1

τ=0 cτgt−τ

(9.2)

For x = t and τ , cx is the difference between the confirmed case on day x and the
confirmed case on day x− 1, which is available from the dataset directly.

Figure 9.1.2 illustrates the relation between Rt and daily infection cases. Through-
out, daily infection numbers are passed through a median filter with window size 7 to
smooth out noises.

To account for the fact that control measures take time to affect the reproduction
rate, we expand the dataset to include the duration of control measure implementation
for all control measures. For example, “Meeting Indoors (High) = 5” means that “it is
the 5th day that meeting indoors has been banned completely”. Similarly, International
Travel (Low) = 0 means that “there is no restriction implemented on international
travel”.

Additionally, we drop instances before the 15th of March 2020 across all 12 regions
in our dataset due to the low number of infections. As can be seen from Equation 9.2,
when cx is small, Rt can fluctuate in an unrealistically large range and generate noise
in the dataset.

Finally, we discretise the values of deaths and cases to simplify the prediction prob-
lem. We do this by selecting intervals, whereby each number is sorted to a class based
on these intervals. For example if the intervals we select for some feature were 0,10 and
100, a value of 0 will be assigned 0, all values between 0 and 10 would be assigned 1,
all values between 10 and 100 would be 2, and all values greater than 100 would be 3.
We use intervals of 0, 100, 250, 500, 750, 1000 and 2000 for cases and 0, 10, 20, 30, 40,
50, 60, 70 and 80 for deaths.

For a regression problem, we use these discretised features of deaths and cases,
as well as non-pharmaceutical control measures to predict the estimated reproduction
number Rt. Using this same data we also pose the classification problem of predicting
whether Rt ≥ 1. This trimmed dataset contains 3,948 instances between the 15th of
March 2020 and the 6th of February 2021, using 23 input features. The dataset contains
2,280 positive instances, that is, where Rt ≥ 1.

87

9. COVID-19 Case Study

Table 9.1.2: Top 10 attributed features from absolute global SHAP values, normalised
such that the sum of all attributions is 1.

Rank Feature Normalised
Shap Value

1 Cafes and Restaurants High 0.192
2 Pubs and Bars High 0.168
3 Cases 0.104
4 Cafes and Restaurants Moderate 0.095
5 Deaths 0.080
6 Domestic Travel Moderate 0.058
7 Sports and Leisure High 0.050
8 Sports and Leisure Moderate 0.040
9 Hospitals/ Care and Nursing Home Visits Moderate 0.034
10 School Closure 0.033

We show the normalised SHAP values of the ten features with the highest average
contribution in table 9.1.2.

9.2 Experimentation

For the experiments in this section we trim the data to only include instances prior
to November 2020. We trim this data just to the increasing prevalence of the B.1.1.7
variant from this point onwards. It was estimated that the B.1.1.7 had a reproduc-
tion number of 40 - 70% higher than other previously identified variants [VMC+21].
Furthermore, the first COVID vaccination in the UK was in December 2020 which
also increasingly effected the data. For these reasons we begin to observe dataset shift
throughout this period, and as such experimentation using this data does not provide
a fair representation of underspecification. This final trimmed dataset contains 2772
instances, with 1731 positive instances (where Rt ≥ 1).

As with the datasets in Chapters 7 and 8 we perform a stratified performance
evaluation on this dataset to examine the effects of training length on underspecification
indexes and prediction performance. As in all previous experiments we train 100 random
forests with 10 trees to establish the Rashomon set for each strata. From each Rashomon
set we record prediction performance and underspecification indexes and analyse their
relationships to increasing dataset length. We randomly split the data using an 80-20
training test split giving us 2217 training and 555 testing samples. We split this training
data into strata of size {10, 20, 50, 100, 1000, 2000, 2200} and evaluate them against the
same test set. Our performance threshold θ for the Rashomon set is set as the average
performance of 100 predictors on the test set trained on the respective strata.

Due to the random train and test split, we repeat each experiment 10 times and
report the average result of these. This enables our results to show clearer trends by
minimising the effects of this random sampling. We show how this effect is minimised

88

9.2. Experimentation

in Figure 9.2.1, where the repeated experiment shows a greater relationship between
explanation agreement and prediction performance.

Our classification results are in agreement with the results presented in Chapter 7
in fitting to our expected trend. As shown in Figure 9.2.1 and Table 9.2.1 we see that as
dataset length increases, prediction accuracy and explanation agreement increase and
prediction variance decreases.

Figure 9.2.1: The Cosine-based set underspecification indexes and prediction accuracy
for different strata of the COVID dataset predicting the binary classification Rt ≥ 1.
The top chart shows the result from a single experiment, the bottom shows the average
results from ten experiments.

89

9. COVID-19 Case Study

Table 9.2.1: The correlation between each different variation of set underspecification
index and prediction accuracy and variance of all strata for binary classification on the
COVID dataset. Data is taken from the average of ten repeated experiments.

Variable Euclidean
Distance

Cosine
Similarity

Pearson
Correlation

Kendall Rank
Correlation

Accuracy -0.993 0.987 0.990 0.709
Variance 0.950 -0.938 -0.943 -0.724

Our regression results on the COVID case study support our results presented in
Chapter 8. As shown in Figures 9.2.2 and 9.2.3, we observe decreasing prediction error
and variance along with increasing explanation agreement as we increase sample size.

Table 9.2.2: The correlation between each different variation of set underspecification
index and prediction accuracy and variance of all strata for regression on the COVID
dataset. Data is taken from the average of ten repeated experiments.

Variable Euclidean
Distance

Cosine
Similarity

Pearson
Correlation

Kendall Rank
Correlation

Accuracy 0.941 -0.982 -0.982 -0.926
Variance 0.992 -0.988 -0.986 -0.983

90

9.2. Experimentation

Figure 9.2.2: The Cosine-based set underspecification indexes and prediction accuracy
for different strata of the COVID dataset predicting the reproduction number Rt. The
top chart shows the result from a single experiment, the bottom shows the average
results from ten experiments.

91

9. COVID-19 Case Study

Figure 9.2.3: The Cosine-based set underspecification indexes and prediction variance
for different strata of the COVID dataset predicting the reproduction number Rt.

92

Part III

Conclusions

93

Chapter 10

Conclusions and Future Work

Contents
10.1 Quantifying Underspecification with XAI 95
10.2 Future Work . 98

In this final chapter, we present a summary of the work completed and review our
contributions to the literature from this thesis. We follow this by discussing some
limitations of our work, and how future research could address these.

10.1 Quantifying Underspecification with XAI

In this work, we presented a method for quantifying underspecification within a machine
learning pipeline by examining variation between predictors.

As discussed throughout this thesis, a machine learning pipeline is underspecified if
it can return many equally well performing predictors in the training domain.

As predictors are difficult to compare directly, we used SHAP explanations to model
them. We then simply compared variation amongst these explanations in order to
represent variation between predictors.

To quantify the likelihood that a pipeline is underspecified we repeatedly trained
models that outperform a given performance threshold θ until we produced a set of
similarly performing predictors of a desired size. For all predictors in this set R(θ) we
computed SHAP explanations for each data instance in the testing set. We then pair-
wise computed the variation between each explanation to each other explanation at a
particular data instance. Averaging this variation gives our local underspecification in-
dex, representing variation at that data instance. To compute our set underspecification
index we took the mean of all local indexes calculated.

We created a Numba optimised Python implementation of this approach in order
to run experiments to validate that these indexes behave as expectedly. This imple-
mentation was developed for both regression and classification settings. We populated
the Rashomon set R(θ) with random forests trained on a given training set xtrn, such

95

10. Conclusions and Future Work

that all predictors in R(θ) exceed the performance threshold θ on the testing set xtst.
We then computed an explanation matrix of explanations of each predictor for each
data instance in xtst. To quantify the similarity of explanations, we experimented with
four pairwise metrics: Euclidean distance, Pearson correlation, Cosine similarity, and
Kendall rank correlation. In our implementation we did not save the predictors them-
selves, only the test performance and explanation matrix produced by them. From this
explanation matrix we computed our local underspecification indexes by a triangular
matrix to save on computation. We calculated our set index by computing each local
index in parallel, producing an array of local indexes.

We proposed a number of hypotheses to represent our expectations, and supported
them via our experimentation.

Firstly, we proposed Hypothesis 1 on page 59, which expected:

As more examples are added to a dataset, the performance and explanation agreement
should increase.

This is supported by the evidence for its two sub-hypotheses; Hypothesis 2 and 3.

Next we presented Hypothesis 2 on page 68 for the classification setting. This
expected:

As more examples are added to a dataset, the classification accuracy and explanation
agreement should increase. Specifically, we expect that underspecification indexes based
on Pearson, Cosine, and Kendall should have a positive correlation with accuracy as
dataset length is increased, whereas Euclidean-based indexes should have a negative

correlation.

We found that this held true for indexes based on Pearson and Cosine, where, as we
increased dataset length, accuracy and the indexes increased, with a high positive cor-
relation across all datasets tested. We additionally saw this hypothesis was supported
for Euclidean-based indexes, with a strong negative correlation between indexes and ac-
curacy as dataset length was increased. However, we found that this hypothesis didn’t
hold for all cases with Kendall-based indexes. As we explained in section 7.4, this is due
to small variations in explanations causing differences in the rankings produced, which
in turn cause vastly different Kendall rank correlation coefficients. We found that the
Kendall-based indexes strayed further from the hypothesis with a greater number of
features in the dataset.

For the regression setting, we presented two hypotheses; Hypothesis 3 and Hypoth-
esis 4 on page 79. Hypothesis 3 expected:

As more examples are added to a dataset, the MSE and explanation agreement should
increase. Specifically, we expect that underspecification indexes based on Pearson,

Cosine, and Kendall should have a negative correlation with MSE as dataset length is
increased, whereas Euclidean-based indexes should have a positive correlation.

96

10.1. Quantifying Underspecification with XAI

Similarly to Hypothesis 2 we found Hypothesis 3 was supported for all indexes other
than those based on Kendall. Again for Kendall we saw the most similar results to the
expected trend were for datasets with few features, and the results furthest from the
expected trend had a greater number of features.

Hypothesis 4 does not include any mention of performance, and so is entirely sep-
arate to Hypothesis 1. It instead looks at the variation between predictions, and how
this correlates to our underspecification indexes, specifically, it proposed:

As more examples are added to a dataset, the prediction variance should decrease,
whilst explanation agreement should increase. Specifically, we expect that

underspecification indexes based on Pearson, Cosine, and Kendall should have a
negative correlation with variance as dataset length is increased, whereas

Euclidean-based indexes should have a positive correlation.

As with the previous hypotheses, Kendall does not support this hypothesis, for the same
reasoning. We do however, find that for all but one dataset our results strongly support
this hypothesis. Our results show that Euclidean-based indexes have a strong positive
correlation with prediction variance. Furthermore, our results support the prediction
that Cosine and Pearson based indexes would have a strong negative correlation with
prediction variance.

Further to these results, we experimented in both classification and regression with
a real COVID-19 case study. The results from this case study were in agreement with
our previously found results, with all indexes apart from Kendall supporting hypotheses
2, 3 and 4.

The main contributions of this thesis are as follows:

1. We formulated underspecification quantification as a problem of measuring simi-
larity between explanations produced by predictors in a Rashomon set.

2. We quantified the similarity of explanations using four well studied metrics, Eu-
clidean distance, Pearson correlation, Cosine similarity, and Kendall rank corre-
lation.

3. We provided a Numba optimised Python implementation of our proposed ap-
proach for both classification and regression problems. This implementation can
be found:

https://github.com/JamesHinns/Underspecification-Index.

4. We demonstrated our approach for classification and regression on both existing
datasets in the literature and a real-world COVID-19 dataset.

97

https://github.com/JamesHinns/Underspecification-Index

10. Conclusions and Future Work

10.2 Future Work

This work is an initial study into quantification of underspecification with explainable
AI. As such it raises a number of further questions to be answered by further research.
Below we outline some possible future research directions:

Consideration of other model architectures: All results within this work use
random forests with the same number of trees. Further credibility to the results within
this work could be added by considering further models. Particularly of interest would
be complex models such as deep neural networks which allow a wider range of functions
to be modelled, as such the potential for underspecification is greater.

Additional explanation generation techniques: In this work we only consider
SHAP explanations as an explanation model for our produced predictors. We justify
this decision theoretically in Chapter 7. However, we do not discuss further explanation
methods such as counterfactuals which should be investigated in this domain. Addition-
ally, although we avoided investigation of input gradients as explanations due to a lack
of model agnostic methods, they do have some advantages in this domain that warrant
further research. One such advantage we discuss within this work is computational
efficiency, where gradient based methods can produce explanations in far less time than
equivalent feature attribution methods. One downside of many explanation methods
is a lack of robustness [AMJ18b]. As we use explanations to model their respective
predictors, this lack of robustness means we cannot place complete confidence within
our results. Although our results suggest this effect is negligible, evaluations specifi-
cally examining this should be conducted to place more credibility in underspecification
indexes.

Consideration of other metrics: To produce the local underspecification indexes
we take the mean of pairwise metric results, equally to produce set underspecification
indexes from local indexes, we take the mean. By taking the mean, we see no notion of
distribution of variation throughout indexes, instead metrics such as Gini index could
be used to measure the distribution of variation across these sets of explanations and
indexes. Furthermore, due to the lack of robustness of explanations as discussed, a
more effective measure of underspecification may be achieved by analysing differences
between small clusters of explanations rather than individuals. Analysis of this type may
account for the slight variation of explanations between otherwise equivalent predictors.

Predictor-level credibility: Our method aims to quantify the extent to which a
pipeline is underspecified. We therefore may only provide our indexes as a measure of
credibility of test performance evaluations for predictor produced by the given pipeline.
Ideally we would be able to identify which predictors in our Rashomon set experience
the least underspecification and as such are the most credible.

More thorough definitions of underspecification: An issue within this work is
the fact we cannot categorically say a given pipeline is underspecified, only how likely
it is. This is due to the informal definition of underspecification, specifically that we
may interpret equivalence of predictors in a number of ways. We take the approach of

98

10.2. Future Work

equivalent predictors are those that produce equivalent explanation, however there is
no guarantee this is correct. Formalisation of the problem of underspecification would
allow us to draw more concrete conclusions.

99

Bibliography

[AAAB+21] Alhanoof Althnian, Duaa AlSaeed, Heyam Al-Baity, Amani Samha,
Alanoud Bin Dris, Najla Alzakari, Afnan Abou Elwafa, and Heba Kurdi.
Impact of dataset size on classification performance: an empirical evalu-
ation in the medical domain. Applied Sciences, 11(2):796, 2021.

[AB18] Amina Adadi and Mohammed Berrada. Peeking inside the black-box: a
survey on explainable artificial intelligence (xai). IEEE access, 6:52138–
52160, 2018.

[Abd07] Hervé Abdi. The kendall rank correlation coefficient. Encyclopedia of
Measurement and Statistics. Sage, Thousand Oaks, CA, pages 508–510,
2007.

[ADRDS+20] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser,
Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador García, Sergio
Gil-López, Daniel Molina, Richard Benjamins, et al. Explainable artificial
intelligence (xai): Concepts, taxonomies, opportunities and challenges
toward responsible ai. Information Fusion, 58:82–115, 2020.

[aEW07] Imagecreator at English Wikipedia. File:correlation exam-
ples.png. https://commons.wikimedia.org/wiki/File:Correlation_
examples.png, 2007. [Online; Accessed 01/12/2021].

[AHK01] Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. On the
surprising behavior of distance metrics in high dimensional space. In
International conference on database theory, pages 420–434. Springer,
2001.

[AMJ18a] David Alvarez Melis and Tommi Jaakkola. Towards robust interpretabil-
ity with self-explaining neural networks. Advances in neural information
processing systems, 31, 2018.

[AMJ18b] David Alvarez-Melis and Tommi S Jaakkola. On the robustness of inter-
pretability methods. arXiv preprint arXiv:1806.08049, 2018.

[AR18] Mehryar Mohri Afshin Rostamizadeh, Ameet Talwalkar. Foundations of
Machine Learning. The MIT Press, 2018.

101

https://commons.wikimedia.org/wiki/File:Correlation_examples.png
https://commons.wikimedia.org/wiki/File:Correlation_examples.png

Bibliography

[BAL+19] Indranil Balki, Afsaneh Amirabadi, Jacob Levman, Anne L Martel, Ziga
Emersic, Blaz Meden, Angel Garcia-Pedrero, Saul C Ramirez, Dehan
Kong, Alan R Moody, et al. Sample-size determination methodologies
for machine learning in medical imaging research: a systematic review.
Canadian Association of Radiologists Journal, 70(4):344–353, 2019.

[BBM+15] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick
Klauschen, Klaus-Robert Müller, and Wojciech Samek. On pixel-wise ex-
planations for non-linear classifier decisions by layer-wise relevance prop-
agation. PloS one, 10(7):e0130140, 2015.

[BG18] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional ac-
curacy disparities in commercial gender classification. In Conference on
fairness, accountability and transparency, pages 77–91. PMLR, 2018.

[BHMM19] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling
modern machine-learning practice and the classical bias–variance trade-
off. Proceedings of the National Academy of Sciences, 116(32):15849–
15854, 2019.

[Bis06] Christopher M Bishop. Pattern recognition. Machine Learning, 128(9),
2006.

[BMR+20] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

[Bre01] Leo Breiman. Statistical modeling: The two cultures (with comments
and a rejoinder by the author). Statistical science, 16(3):199–231, 2001.

[BSH+10] David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawan-
abe, Katja Hansen, and Klaus-Robert Müller. How to explain individ-
ual classification decisions. The Journal of Machine Learning Research,
11:1803–1831, 2010.

[BW99] Damien Brain and Geoffrey I Webb. On the effect of data set size on
bias and variance in classification learning. In Proceedings of the Fourth
Australian Knowledge Acquisition Workshop, University of New South
Wales, pages 117–128, 1999.

[BWM20] Umang Bhatt, Adrian Weller, and José MF Moura. Evaluating
and aggregating feature-based model explanations. arXiv preprint
arXiv:2005.00631, 2020.

[CC09] James Nicholson Christopher Clapham. The Concise Oxford Dictionary
of Mathematics, Fourth Edition (Oxford Paperback Reference). Oxford
Paperback Reference. Oxford University Press, USA, 4 edition, 2009.

102

Bibliography

[CCA+09] Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and
José Reis. Modeling wine preferences by data mining from physicochem-
ical properties. Decision support systems, 47(4):547–553, 2009.

[ČK69] Eduard Čech and M Katětov. Point sets. Academia, Publishing House
of the Czechoslovak Academy of Sciences (Praha), 1969.

[CLG+15] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and
Noemie Elhadad. Intelligible models for healthcare: Predicting pneu-
monia risk and hospital 30-day readmission. In Proceedings of the 21th
ACM SIGKDD international conference on knowledge discovery and data
mining, pages 1721–1730, 2015.

[CLRS09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to algorithms. MIT press, 2009.

[Coc11] Dean De Cock. Ames, iowa: Alternative to the boston housing data as
an end of semester regression project. Journal of Statistics Education,
19(3), 2011.

[CS08] Paulo Cortez and Alice Maria Gonçalves Silva. Using data mining to
predict secondary school student performance. Proceedings of 5th Annual
Future Business Technology Conference, 2008.

[DG06] Jesse Davis and Mark Goadrich. The relationship between precision-
recall and roc curves. In Proceedings of the 23rd international conference
on Machine learning, pages 233–240, 2006.

[DG17] Dheeru Dua and Casey Graff. UCI machine learning repository.
http://archive.ics.uci.edu/ml, 2017. University of California, Irvine,
School of Information and Computer Sciences.

[DGBM] Butts David, Dharuman Gautham, Punch Bill, and Murillo Micheal.
Numba versus c++. https://murillogroupmsu.com/numba-versus-c/.
[Online; Accessed 21/02/22].

[DHM+20] Alexander D’Amour, Katherine Heller, Dan Moldovan, Ben Adlam,
Babak Alipanahi, Alex Beutel, Christina Chen, Jonathan Deaton, Ja-
cob Eisenstein, Matthew D Hoffman, et al. Underspecification presents
challenges for credibility in modern machine learning. arXiv preprint
arXiv:2011.03395, 2020.

[Dod08] Yadolah Dodge. Kendall Rank Correlation Coefficient, pages 278–281.
Springer New York, New York, NY, 2008.

[DP06] Robert PW Duin and Elżzbieta Pękalska. Object representation, sample
size, and data set complexity. In Data complexity in pattern recognition,
pages 25–58. Springer, 2006.

103

Bibliography

[DPG+14] Yann Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho,
Surya Ganguli, and Yoshua Bengio. Identifying and attacking the sad-
dle point problem in high-dimensional non-convex optimization. arXiv
preprint arXiv:1406.2572, 2014.

[DVK17] Finale Doshi-Velez and Been Kim. Towards a rigorous science of inter-
pretable machine learning. arXiv preprint arXiv:1702.08608, 2017.

[DYT+20] Josip Djolonga, Jessica Yung, Michael Tschannen, Rob Romijnders,
Lucas Beyer, Alexander Kolesnikov, Joan Puigcerver, Matthias Min-
derer, Alexander D’Amour, Dan Moldovan, et al. On robustness
and transferability of convolutional neural networks. arXiv preprint
arXiv:2007.08558, 2020.

[Edu21] IBM Cloud Education. Overfitting. https://www.ibm.com/cloud/
learn/overfitting, 2021.

[Ell10] Paul D Ellis. The essential guide to effect sizes: Statistical power, meta-
analysis, and the interpretation of research results. Cambridge university
press, 2010.

[Faw06] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters,
27(8):861–874, 2006.

[FMG+20] Seth Flaxman, Swapnil Mishra, Axel Gandy, H Unwin, H Coupland,
T Mellan, H Zhu, T Berah, J Eaton, P Perez Guzman, et al. Re-
port 13: Estimating the number of infections and the impact of non-
pharmaceutical interventions on covid-19 in 11 european countries. Tech-
nical report, Imperial College London, 2020.

[FR] Scott Fortmann-Roe. Bias and variance. http://scott.fortmann-roe.
com/docs/BiasVariance.html. [Online; Accessed 17/10/2021].

[FRD19] Aaron Fisher, Cynthia Rudin, and Francesca Dominici. All models are
wrong, but many are useful: Learning a variable’s importance by studying
an entire class of prediction models simultaneously. Journal of Machine
Learning Research, 20(177):1–81, 2019.

[Fre14] Alex A Freitas. Comprehensible classification models: a position paper.
ACM SIGKDD explorations newsletter, 15(1):1–10, 2014.

[FTG13] Hadi Fanaee-T and Joao Gama. Event labeling combining ensemble de-
tectors and background knowledge. Progress in Artificial Intelligence,
pages 1–15, 2013.

[GBD92] Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks
and the bias/variance dilemma. Neural computation, 4(1):1–58, 1992.

104

https://www.ibm.com/cloud/learn/overfitting
https://www.ibm.com/cloud/learn/overfitting
http://scott.fortmann-roe.com/docs/BiasVariance.html
http://scott.fortmann-roe.com/docs/BiasVariance.html

Bibliography

[GG21] Alex Gramegna and Paolo Giudici. Shap and lime: An evaluation of
discriminative power in credit risk. Frontiers in Artificial Intelligence,
page 140, 2021.

[GJM+20] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard
Zemel, Wieland Brendel, Matthias Bethge, and Felix A Wich-
mann. Shortcut learning in deep neural networks. arXiv preprint
arXiv:2004.07780, 2020.

[GP71] AA Goldstein and JF Price. On descent from local minima. Mathematics
of Computation, 25(115):569–574, 1971.

[Gre17] Gregory Piatetsky. Python overtakes R, becomes the leader in Data Sci-
ence, Machine Learning platforms. https://www.kdnuggets.com/2017/
08/python-overtakes-r-leader-analytics-data-science.html,
2017. [Online; Accessed 21/02/22].

[GSS14] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[HD19] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network
robustness to common corruptions and perturbations. arXiv preprint
arXiv:1903.12261, 2019.

[Hea20] Will Douglas Heaven. Google’s medical ai was su-
per accurate in a lab. real life was a different story.
https://www.technologyreview.com/2020/04/27/1000658/
google-medical-ai-accurate-lab-real-life-clinic-covid-diabetes-retina-disease/,
Dec 2020. [Online; Accessed 11/10/2021].

[HFL+21] James Hinns, Xiuyi Fan, Siyuan Liu, Veera Raghava Reddy Kovvuri,
Mehmet Orcun Yalcin, and Markus Roggenbach. An initial study of ma-
chine learning underspecification using feature attribution explainable ai
algorithms: A covid-19 virus transmission case study. In Pacific Rim In-
ternational Conference on Artificial Intelligence, pages 323–335. Springer,
2021.

[HPK11] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and
techniques. Elsevier, 2011.

[HWB+22] Anna Hedström, Leander Weber, Dilyara Bareeva, Franz Motzkus, Woj-
ciech Samek, Sebastian Lapuschkin, and Marina M.-C. Höhne. Quantus:
An explainable ai toolkit for responsible evaluation of neural network
explanations. 2022.

105

https://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-science.html
https://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-science.html
https://www.technologyreview.com/2020/04/27/1000658/google-medical-ai-accurate-lab-real-life-clinic-covid-diabetes-retina-disease/
https://www.technologyreview.com/2020/04/27/1000658/google-medical-ai-accurate-lab-real-life-clinic-covid-diabetes-retina-disease/

Bibliography

[Jet21] Jet Brains. The State of Developer Ecosystem 2021. https://
www.jetbrains.com/lp/devecosystem-2021/, 2021. [Online; Accessed
21/02/22].

[JMMG20] Alon Jacovi, Ana Marasović, Tim Miller, and Yoav Goldberg. Formal-
izing trust in artificial intelligence: Prerequisites, causes and goals of
human trust in ai. arXiv preprint arXiv:2010.07487, 2020.

[KED+21] Marcin Kapcia, Hassan Eshkiki, Jamie Duell, Xiuyi Fan, Shangming
Zhou, and Benjamin Mora. Exmed: An ai tool for experimenting ex-
plainable ai techniques on medical data analytics. In 2021 IEEE 33rd
International Conference on Tools with Artificial Intelligence (ICTAI),
pages 841–845. IEEE, 2021.

[Kha16] KhanAcademy. Distance formula. https://www.
khanacademy.org/math/geometry/hs-geo-analytic-geometry/
hs-geo-distance-and-midpoints/a/distance-formula, 2016. Online;
Accessed: 01/12/2021.

[Kir08] Wilhelm Kirch, editor. Pearson’s Correlation Coefficient, pages 1090–
1091. Springer Netherlands, Dordrecht, 2008.

[KMR16] Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inher-
ent trade-offs in the fair determination of risk scores. arXiv preprint
arXiv:1609.05807, 2016.

[LEC+20] Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M
Prutkin, Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal,
and Su-In Lee. From local explanations to global understanding with
explainable ai for trees. Nature machine intelligence, 2(1):56–67, 2020.

[LL17] Scott M Lundberg and Su-In Lee. A unified approach to interpreting
model predictions. In Advances in neural information processing systems,
pages 4765–4774, 2017.

[LLRB16] Benjamin Letham, Portia A Letham, Cynthia Rudin, and Edward P
Browne. Prediction uncertainty and optimal experimental design for
learning dynamical systems. Chaos: An Interdisciplinary Journal of Non-
linear Science, 26(6):063110, 2016.

[LNV+18] Scott M Lundberg, Bala Nair, Monica S Vavilala, Mayumi Horibe,
Michael J Eisses, Trevor Adams, David E Liston, Daniel King-Wai Low,
Shu-Fang Newman, Jerry Kim, et al. Explainable machine-learning pre-
dictions for the prevention of hypoxaemia during surgery. Nature Biomed-
ical Engineering, 2(10):749, 2018.

[Lom06] Tania Lombrozo. The structure and function of explanations. Trends in
cognitive sciences, 10(10):464–470, 2006.

106

https://www.jetbrains.com/lp/devecosystem-2021/
https://www.jetbrains.com/lp/devecosystem-2021/
https://www.khanacademy.org/math/geometry/hs-geo-analytic-geometry/hs-geo-distance-and-midpoints/a/distance-formula
https://www.khanacademy.org/math/geometry/hs-geo-analytic-geometry/hs-geo-distance-and-midpoints/a/distance-formula
https://www.khanacademy.org/math/geometry/hs-geo-analytic-geometry/hs-geo-distance-and-midpoints/a/distance-formula

Bibliography

[MAD19] David Madras, James Atwood, and Alex D’Amour. Detecting extrapo-
lation with local ensembles. arXiv preprint arXiv:1910.09573, 2019.

[MCR14] Sérgio Moro, Paulo Cortez, and Paulo Rita. A data-driven approach to
predict the success of bank telemarketing. Decision Support Systems,
62:22–31, 2014.

[MCU20] Charles Marx, Flavio Calmon, and Berk Ustun. Predictive multiplicity
in classification. In International Conference on Machine Learning, pages
6765–6774. PMLR, 2020.

[Mil19] Tim Miller. Explanation in artificial intelligence: Insights from the social
sciences. Artificial Intelligence, 267:1–38, 2019.

[Mol19] Christoph Molnar. Interpretable Machine Learning. self-published, 2019.
https://christophm.github.io/interpretable-ml-book/.

[MSK+19] W James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl,
and Bin Yu. Interpretable machine learning: definitions, methods, and
applications. arXiv preprint arXiv:1901.04592, 2019.

[MSM18] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods
for interpreting and understanding deep neural networks. Digital Signal
Processing, 73:1–15, 2018.

[MW] Merriam-Webster. Metric. https://www.merriam-webster.com/
dictionary/metric. [Online; Accessed: 12/09/2021].

[NM20] An-phi Nguyen and María Rodríguez Martínez. On quantitative aspects
of model interpretability. arXiv preprint arXiv:2007.07584, 2020.

[Pap22] Papers With Code. Trends. https://paperswithcode.com/trends,
2022. [Online; Accessed 21/02/22].

[PKS15] Joseph Prusa, Taghi M Khoshgoftaar, and Naeem Seliya. The effect of
dataset size on training tweet sentiment classifiers. In 2015 IEEE 14th In-
ternational Conference on Machine Learning and Applications (ICMLA),
pages 96–102. IEEE, 2015.

[PSM+07] Sang Cheol Park, Rahul Sukthankar, Lily Mummert, Mahadev Satya-
narayanan, and Bin Zheng. Optimization of reference library used
in content-based medical image retrieval scheme. Medical Physics,
34(11):4331–4339, 2007.

[QCSSL09] Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and
Neil D Lawrence. Dataset shift in machine learning. The MIT Press,
2009.

107

https://christophm.github.io/interpretable-ml-book/
https://www.merriam-webster.com/dictionary/metric
https://www.merriam-webster.com/dictionary/metric
https://paperswithcode.com/trends

Bibliography

[Rat19] Shubham Rathi. Generating counterfactual and contrastive explanations
using shap. arXiv preprint arXiv:1906.09293, 2019.

[RH20] Laura Rieger and Lars Kai Hansen. Irof: a low resource evaluation metric
for explanation methods. arXiv preprint arXiv:2003.08747, 2020.

[RHDV17] Andrew Slavin Ross, Michael C Hughes, and Finale Doshi-Velez. Right
for the right reasons: Training differentiable models by constraining their
explanations. arXiv preprint arXiv:1703.03717, 2017.

[RN09] Stuart Russell and Peter Norvig. Artificial intelligence: a modern ap-
proach. Prentice Hall, 2009.

[Rot88] Alvin E Roth. The Shapley value: essays in honor of Lloyd S. Shapley.
Cambridge University Press, 1988.

[RSG16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Model-agnostic
interpretability of machine learning. arXiv preprint arXiv:1606.05386,
2016.

[Sal18] Isha Salian. Supervize me: What’s the difference between
supervised, unsupervised, semi-supervised and reinforcement
learning? https://blogs.nvidia.com/blog/2018/08/02/
supervised-unsupervised-learning/, 2018.

[Sam59] Arthur L Samuel. Some studies in machine learning using the game of
checkers. IBM Journal of research and development, 3(3), 1959.

[Sha16] Lloyd S Shapley. A value for n-person games. Princeton University Press,
2016.

[SK19] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data
augmentation for deep learning. Journal of Big Data, 6(1):1–48, 2019.

[SRP19] Lesia Semenova, Cynthia Rudin, and Ronald Parr. A study in rashomon
curves and volumes: A new perspective on generalization and model
simplicity in machine learning. arXiv preprint arXiv:1908.01755, 2019.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learn-
ing: From theory to algorithms. Cambridge University Press, 2014.

[Sta21] Stack Overflow. Stack Overflow Developer Survey 2021, 2021.

[SZ05] Margarita Sordo and Qing Zeng. On sample size and classification accu-
racy: A performance comparison. In International Symposium on Bio-
logical and Medical Data Analysis, pages 193–201. Springer, 2005.

[Tam21] Michael Tamir. What is machine learning? https://ischoolonline.
berkeley.edu/blog/what-is-machine-learning/, Accessed: 2021.

108

https://blogs.nvidia.com/blog/2018/08/02/supervised-unsupervised-learning/
https://blogs.nvidia.com/blog/2018/08/02/supervised-unsupervised-learning/
https://ischoolonline.berkeley.edu/blog/what-is-machine-learning/
https://ischoolonline.berkeley.edu/blog/what-is-machine-learning/

Bibliography

[TIO22] TIOBE. TIOBE Index for March 2022. https://www.tiobe.com/
tiobe-index/, 2022. [Online; Accessed 15/03/22].

[TPM17] Alex Tellez, Max Pumperla, and Michal Malohlava. Mastering Machine
Learning with Spark 2.x. O’Reilly, 2017.

[VMC+21] Erik Volz, Swapnil Mishra, Meera Chand, Jeffrey C Barrett, Robert John-
son, Lily Geidelberg, Wes R Hinsley, Daniel J Laydon, Gavin Dabrera,
Áine O’Toole, et al. Transmission of sars-cov-2 lineage b. 1.1. 7 in eng-
land: Insights from linking epidemiological and genetic data. MedRxiv,
pages 2020–12, 2021.

[WFHP16] Ian Witten, Eibe Frank, Mark Hall, and Christopher Pal. Data Mining:
Practical Machine Learning Tools and Techniques. Morgan Kaufmann
Publishers, 4th edition, 2016.

[WL20] Wei Wei and James Landay. Ml interpretability and intrinsic models.
https://hci.stanford.edu/courses/cs335/2020/sp/lec3.pdf, 2020.

[WLB+20] Joseph T Wu, Kathy Leung, Mary Bushman, Nishant Kishore, Rene
Niehus, Pablo M de Salazar, Benjamin J Cowling, Marc Lipsitch, and
Gabriel M Leung. Estimating clinical severity of covid-19 from the trans-
mission dynamics in wuhan, china. Nature Medicine, pages 1–5, 2020.

[WVP18] Christina Wadsworth, Francesca Vera, and Chris Piech. Achieving fair-
ness through adversarial learning: an application to recidivism prediction.
arXiv preprint arXiv:1807.00199, 2018.

[YF21] Mehmet Orcun Yalcin and Xiuyi Fan. On Evaluating Correctness of
Explainable AI Algorithms: an Empirical Study on Local Explanations
for Classification. 2021.

[YHS+19] Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Suggala, David I Inouye, and
Pradeep K Ravikumar. On the (in) fidelity and sensitivity of explana-
tions. Advances in Neural Information Processing Systems, 32, 2019.

109

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://hci.stanford.edu/courses/cs335/2020/sp/lec3.pdf

Appendix A

Classification Results

In this chapter we include further charts from our classification results presented in
section 7.4.

These figures include a chart representing the variation of underspecification indexes
generated from each of the four metrics we experiment with (as outlined in Chapter 4
and 6) against prediction accuracy for different lengths of their respective dataset.

Each result shown within this chapter is generated from a single experiment and so
is susceptible to the random variation highlighted in Chapter 7.

Figures continue on the next page. . .

111

A. Classification Results

Figure A.0.1: Each variation of underspecification index against prediction accuracy for
different strata of the Abalone dataset.

112

Figure A.0.2: Each variation of underspecification index against prediction accuracy for
different strata of the Adult dataset.

113

A. Classification Results

Figure A.0.3: Each variation of underspecification index against prediction accuracy for
different strata of the Bank dataset.

114

Figure A.0.4: Each variation of underspecification index against prediction accuracy for
different strata of the Breast Cancer dataset.

115

A. Classification Results

Figure A.0.5: Each variation of underspecification index against prediction accuracy for
different strata of the Mushroom dataset.

116

Figure A.0.6: Each variation of underspecification index against prediction accuracy for
different strata of the Wine Quality dataset.

117

Appendix B

Regression Results

In this chapter we include further charts from our regression results presented in section
8.3.

We show two types of charts, the first, presented in section B.1, shows the relation-
ship between the cosine based underspecification index and prediction variance for each
strata of dataset length for each dataset.

The second, presented in section B.2, shows the relationship between prediction
accuracy and each variation of underspecification index calculated using a different
metric (as outlined in Chapter 4 and 6) for varying length of the respective dataset.

Each result shown within this chapter is generated from a single experiment and so
is susceptible to the random variation highlighted in Chapter 8.

Figures continue on the next page. . .

119

B. Regression Results

B.1 Cosine Index Against Variance

Figure B.1.1: The Cosine based set underspecification index and prediction variance
for the Auto MPG dataset for different strata.

Figure B.1.2: The Cosine based set underspecification index and prediction variance
for the Bike Share dataset for different strata.

120

B.1. Cosine Index Against Variance

Figure B.1.3: The Cosine based set underspecification index and prediction variance
for the House Price dataset for different strata.

Figure B.1.4: The Cosine based set underspecification index and prediction variance
for the Student dataset for different strata.

121

B. Regression Results

Figure B.1.5: The Cosine based set underspecification index and prediction variance
for the Wine Quality dataset for different strata.

B.2 Underspecification Index Variations against Accuracy

Figures continue on the next page. . .

122

B.2. Underspecification Index Variations against Accuracy

Figure B.2.1: Each variation of underspecification index against prediction mean
squared error for different strata of the Auto MPG dataset.

123

B. Regression Results

Figure B.2.2: Each variation of underspecification index against prediction mean
squared error for different strata of the Bike Share dataset.

124

B.2. Underspecification Index Variations against Accuracy

Figure B.2.3: Each variation of underspecification index against prediction mean
squared error for different strata of the House Price dataset.

125

B. Regression Results

Figure B.2.4: Each variation of underspecification index against prediction mean
squared error for different strata of the Student dataset.

126

B.2. Underspecification Index Variations against Accuracy

Figure B.2.5: Each variation of underspecification index against prediction mean
squared error for different strata of the Wine Quality dataset.

127

	Introduction
	Underspecification
	Quantifying Underspecification with XAI
	Aims and Contributions
	Presented Material
	Chapter Overview

	Background Material
	Supervised Machine Learning
	Components of a Supervised Machine Learning System
	Evaluation
	Optimisation

	Explainable Machine Learning
	Introduction and Motivation
	Post-hoc Interpretability
	SHAP (SHapley Additive exPlanations)

	Metrics
	Distance, Similarity and Correlation Metrics
	Euclidean Distance
	Pearson Correlation Coefficient
	Cosine Similarity
	Kendall Rank Correlation Coefficient

	Related Work
	Stress Tests
	Explanation Quantification
	Explanation Influenced Optimisation
	The Rashomon Effect
	Prediction Variance

	Contributions
	Measuring Underspecification with Underspecification Index
	Quantifying Underspecification
	Method Definition

	Implementing Underspecification Index for Classification
	Language and Library Considerations
	Software Realisation
	Experimental Setup
	Experiment Results

	Implementing Underspecification Index for Regression
	Software Realization
	Experimental Setup
	Experiment Results

	COVID-19 Case Study
	Dataset Creation
	Experimentation

	Conclusions
	Conclusions and Future Work
	Quantifying Underspecification with XAI
	Future Work

	Bibliography
	Classification Results
	Regression Results
	Cosine Index Against Variance
	Underspecification Index Variations against Accuracy

