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Abstract

This paper proposes a distributed estimation algorithm that uses local information about the neighbors through sensing or
communication to design an estimation-based cooperative control of the stochastic multi-agent system (MAS). The proposed
distributed estimation algorithm solely relies on local sensing information rather than exchanging estimated state information
from other agents, as is commonly required in conventional distributed estimation methods, reducing communication overhead.
Furthermore, the proposed method allows interactions between all agents, including non-neighboring agents, by establishing a
virtual fully-connected network with the MAS state information independently estimated by each agent. The stability of the
proposed distributed estimation algorithm is theoretically verified. Numerical simulations demonstrate the enhanced performance
of the estimation-based linear and nonlinear control. In particular, using the virtual fully-connected network concept in the MAS
with the sensing/communication range, the flock configuration can be tightly controlled within the desired boundary, which cannot
be achieved through the conventional flocking methods.

Index Terms

Multi-agent systems, distributed state estimation, consensus, rendezvous control, flocking control.

I. INTRODUCTION

A
LONG with the increasing interest in autonomy, research on distributed estimation and control for a multi-agent system

(MAS) has been carried out in various fields [1], [2]. This is primarily thanks to its clear advantages over the centralized

approach in efficiency, robustness, flexibility, scalability, and reliability [3]. However, due to limited communication capability

and the lack of a central administrator, the cooperative operation of a distributed MAS can be difficult. The following summarizes

relevant research on the distributed estimation and control of the MAS.

A. Distributed estimation of MAS

Distributed estimation aims to estimate certain state information by sharing the estimated information among agents in the

MAS in a distributed manner. Most of the distributed estimation is performed in the distributed Kalman filter framework [4].

In particular, observations and consensus averaging algorithms were integrated to estimate a large-scale distributed system

in [5]. A robust unknown input observer for a linear MAS was applied to fault estimation in [6], and unknown inputs and

states were estimated through distributed cooperative filters in [7]. In [8], a distributed fuzzy state observer was proposed to

estimate the nonlinear function of dynamics. In addition, Kalman consensus filtering [9] and diffusion strategies for distributed

Kalman filtering [10] were introduced to estimate stochastic systems. However, there are still unresolved issues resulting from

a distributed framework approach, e.g., communication overhead [11].

B. Distributed control of MAS

Distributed control of the MAS is focused on achieving greater performance and efficiency during operations while addressing

the topological constraints of MAS network. As the limited communication among agents restricts the capabilities of the MAS,

some studies have focused on a distributed control protocol that can maximize or preserve the network connectivity [12],

[13]. Besides, various studies have considered the consensus control of the MAS under the given network constraints. The

fundamental idea of consensus is to reach a common agreement among agents by synthesizing the local control protocols with

the shared information of the neighboring agents. Recent related studies investigated a consensus protocol in the nonlinear

MAS [14], embedding distributed observers to follower agents [15], and convergence to consensus quickly in a different way

from the conventional Laplacian approach [16]. Several cooperation problems use consensus in the control protocol, including

rendezvous [17], formation [18], and flocking [19]. The stability of the consensus, as well as sufficient conditions for the
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existence of the desired consensus control protocol with noise and delay, have been verified using the Lyapunov theory [19]–

[21]. In [22], consensus conditions are established for a stochastic approximation type algorithm that reduces the consensus

gain in noisy measurement environments. Furthermore, distributed sliding mode control [23] and distributed PI control [24]

have been studied for accomplishing consensus in stochastic MAS. Nevertheless, these methods can only be applied under

certain conditions: [22] assumes that the consensus gain goes to zero as time goes to infinity; and [23] and [24] are working

under the bounded disturbance condition. Thus, further research needs to be conducted on consensus control for stochastic

systems.

Nomenclature
i Agent index
N Number of agents
Ni Neighbor set of agent i
L Laplacian matrix
xi State vector of agent i
zi Measurement vector
ui Control input vector
ωi Process noise vector
νi Measurement noise vector
A State transition matrix
B Control input matrix
Hi Measurement matrix
Q Covariance of process noise
R Covariance of measurement noise

X MAS state vector, [xT
1 · · ·xT

N ]T

Z MAS measurement vector, [zT1 · · · zTN ]T

U MAS control input vector, [uT
1 · · ·uT

N ]T

ω MAS process noise, [ωT
1 · · ·ωT

N ]T

F1 MAS state transition matrix
F2 MAS error input matrix
Q Covariance of MAS process noise, diag{Q, · · · , Q}

X̂−

i Prior estimation of X from the perspective of agent i, [x̂−T
i,1 · · · x̂−T

i,N ]T

e−i Prior estimation error

Σ−

i Covariance of e−i
X̂i Posterior estimation of X , [x̂T

i,1 · · · x̂
T
i,N ]T

ei Posterior estimation error
Σi Covariance of ei

Ûi Estimation of U
Si Residual covariance
Gi Kalman gain

X̂ Augmented estimation of X , [X̂T
1 · · · X̂T

N ]T

e Augmented estimation error, [eT1 · · · eTN ]T

Σ Covariance of e

Σ−

ij Prior cross covariance of e−i and e−j
Σij Posterior cross covariance of ei and ej

C. Distributed estimation of stochastic MAS for distributed control

For stochastic systems, a control strategy using the estimated information of the MAS state can improve the performance of

the consensus protocol [25]. However, during the process of distributed estimation like Kalman consensus filtering, problems

appear owing to a large amount of data to be transmitted among agents and the limited communication capability resulting

in packet loss, delay, and large energy consumption [26]. To address these issues, a gossip-based approach [27] is proposed,

in which a local information exchange occurs at random and an event-triggered consensus approach is proposed [28]. They

can, however, only reduce the frequency of communication and not the size of the packets. By contrast, a proposed method in

[29] for distributed estimation of the MAS state relies solely on neighbor information via local sensing and does not require

communication. According to [29], by capturing the mutual influence from inter-agent cooperation, each agent can estimate

the entire MAS state including non-neighboring agents (i.e., agents outside of the sensing range) by observing only the state

of the direct neighbors. Although this approach can estimate MAS state successfully, estimated information was not used in

the control protocol and thus could not contribute to the improvement of MAS coordination. Meanwhile, in [8], even though

agents estimate the state to be used for control without exchanging the estimated information of others, each agent estimates

its own state only (not the other agents’ or entire MAS state) in a deterministic system.

In the output consensus protocol in a stochastic system, fluctuations may occur in the state of agents due to sensor noise. In

addition, since the distributed system can only use limited information from neighboring agents through a network, distributed
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optimal control is intractable under topological network constraints [30]. Although the aforementioned methods [22]–[24] have

been proposed to deal with these issues, they can only be used in certain conditions. On the other hand, the consensus protocol

using the estimated state information can effectively deal with above issues, but these consensus-based estimation algorithms,

such as distributed Kalman filter method [4], require a frequent exchange of the estimated state information among neighbors,

which can cause large communication overhead.

D. Main contributions

Building upon the study described in [29], this study proposes a distributed control protocol by promoting a distributed

estimation algorithm to achieve effective cooperation in the stochastic MAS while addressing the aforementioned limitations.

Individual agents in the proposed distributed estimation algorithm require only local observations on the state of neighboring

agents obtained through either sensing or communication in contrast to most existing distributed strategies. This paper deals

with two different MAS control problems: (i) linear rendezvous control and (ii) nonlinear flocking control, emphasizing that

the proposed algorithm can be applied to various MAS control problems. The main contributions of this study are as follows:

1) The distributed estimation algorithm is developed in which each agent can estimate the state of the entire MAS using

only local observations of the state of neighboring agents. The proposed approach has the advantage in that it is free

from the exchange of the estimated information (including mean and covariance of the entire MAS state which could

be a large amount of data) among agents which was required in the existing distributed estimation method; only local

observations (or communication if allowed) of the state of neighboring agents are sufficient, which can significantly reduce

the communication overhead;

2) The proposed estimation-based control protocol improves the coordination performance of the stochastic MAS for both

linear and nonlinear MAS coordination problems;

3) A virtual fully-connected network can be established through the distributed estimation of the entire MAS states by

using the same cooperative controller for all agents; this enables interactions even with non-neighboring agents, providing

enhanced MAS capabilities particularly for nonlinear flocking control; and

4) Stability analysis of the estimation-based control protocol is verified using the Lyapunov theory.

The rest of this paper is organized as follows. In Section II, we present the graph theory, a description of the dynamics and

sensor models of the MAS, and the linear rendezvous and nonlinear flocking problems. Section III presents the estimation-based

control protocol for rendezvous, flocking control, and a detailed derivation of the proposed distributed estimation. Section IV

analyzes the stability of the distributed estimation algorithm, followed by a numerical demonstration of the proposed distributed

estimation and control protocol in Section V. Finally, some concluding remarks and areas of future study are provided in Section

VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Graph theory

A proximity graph (network) among N agents is used to describe the interconnections of the agents. The graph G is formally

defined as a pair G = (V, E) with a set of nodes V = {1, · · · , N} and a set of edges E ⊆ V ×V . The edge in graph G, denoted

by a pair (i, j) ∈ E , indicates that the i-th agent can measure the state of the j-th agent. The set of neighbors Ni of the i-th
agent on this proximity graph at time step k is defined as:

Ni[k] = {j ∈ V\{i} : ∥pi[k]− pj [k]∥ < r},

where pi[k] ∈ R
n is the position vector of the i-th agent. If we suppose that all agents have the same sensing range r > 0, then

(i, j) ∈ E ⇔ (j, i) ∈ E , i.e., an undirected graph. The set of edges is defined as E [k] = {(i, j) : j ∈ Ni[k]}. The adjacency

matrix A ∈ R
N×N is defined in an element-wise manner as:

[A]ij =

{

1, if j ∈ Ni,
0, otherwise,

where ∀i, j ∈ V . The degree of nodes is a vector d = A× 1N ∈ R
N , where 1N ∈ R

N is a column vector with all elements

having a value of 1. The degree matrix is defined as D = diag{d} ∈ R
N×N , and the Laplacian matrix of the graph is defined

as L = D −A ∈ R
N×N , which is a symmetric matrix.

B. Dynamics and sensor model

This study focuses on the behavior of mobile MAS applications, where each agent’s state is a constituent of its position and

velocity. The dynamics of the i-th agent can be written as:

xi[k + 1] = Axi[k] +Bui[k] + ωi[k], (1)
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where the state vector is denoted by xi[k] = [pTi [k] v
T
i [k]]

T ∈ R
2n, vi[k] ∈ R

n is the velocity vector, ui[k] ∈ R
n is the control

input vector, and ωi[k] ∈ R
2n is the process noise vector. Hereafter, the time index is frequently omitted unless it is necessary.

The state transition matrix A and control input matrix B have the following form:

A =

[

In ∆tIn
0n In

]

, B =





∆t2

2
In

∆tIn



 ,

where In and 0n are the n-dimensional identity matrix and zero matrix, respectively and ∆t is the sampling time.

The i-th agent is assumed to be able to measure to obtain the states of its neighboring agents. The measurement of the i-th
agent including its own state is given by the following:

zi,xj
[k] = xj [k] + νij [k], j ∈ N i[k], (2)

where zi,xj
∈ R

2n is the j-th agent’s state measured by the i-th agent, νij ∈ R
2n is its noise, and N i = Ni ∪ {i}. The

measurement vector for the i-th agent is denoted as:

zi[k] = Hi[k](X[k] + νi[k]), (3)

where X = [xT
1 · · · xT

N ]T ∈ R
2nN is the state vector of the MAS, Hi ∈ R

2n|Ni|×2nN is the measurement matrix for the i-th
agent, |N i| is the cardinality of the set, and νi ∈ R

2nN is the measurement noise vector. The measurement matrix Hi is given

by the following:

Hi = [h]lm =

{

I2n, if m = N i,l,
02n, otherwise,

where ∀l ∈ {1, · · · , |N i|}, ∀m ∈ V, and N i,l is the l-th element of N i. This sensor model measures the neighbors and its

own state. Notably this sensor model can also be regarded as a single-hop communication model within the communication

range. The process noise ωi and measurement noise νi are assumed to be independent and identically distributed (i.i.d.) white

Gaussian random variables with ωi ∼ N2n(0, Q) and νi ∼ N2nN (0, R). The following information on the agent dynamics and

sensor model is assumed to implement the proposed distributed estimation.

Assumption 1. The MAS consists of homogeneous agents, representing that all agents have the common information about

agent dynamics, process and measurement noise covariance as prior knowledge, i.e., A,B,Q, and R [29].

The following subsections sequentially describe the rendezvous and flocking control protocols that the MAS is designed to

follow cooperatively.

C. Linear rendezvous control

The definition of the rendezvous in this study is that both position and velocity of all agents reach to a common value, i.e.,

lim
k→∞

||pi[k] − pj [k]|| = 0 and lim
k→∞

||vi[k] − vj [k]|| = 0, ∀i, j ∈ V . Second-order consensus control for rendezvous follows

[17], which is given as:

ui(X) = K
∑

j∈Ni

(xj − xi), (4)

K =
[

ρ1In ρ2In
]

,

where ρ1, ρ2 > 0 are the rendezvous control gains. A second-order consensus with agent dynamics (1) and the control protocol

(4) can be achieved if the network contains a spanning tree (connectivity condition).

It is difficult to use the agent’s exact state information for control because the model has uncertainty and the measurements

are normally noisy. Thus, while retaining the structure of Eq. (4), the control input uses measurements applying the sensor

model as:

ui(zi) = K
∑

j∈Ni

(zi,xj
− zi,xi

). (5)

D. Nonlinear flocking control

The definition of the flocking is based on the Reynolds rules [31] which agents fly densely without collision and velocity

reach to a common value. For flocking control, this study uses the augmented Cucker-Smale model to align the velocity and

achieve cohesion and separation [19], which are given as:

ui(X) = ρ3
∑

j∈Ni

φ1(pij)
(

vj − vi
)

+ ρ4
∑

j∈Ni

φ2(pij , vij)
(

pj − pi
)

,
(6)
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where ρ3 and ρ4 > 0 are the flocking control gains, the relative position pij = pi − pj , and the relative velocity vij = vi − vj .

In Eq. (6), the first term achieves the velocity consensus, whereas the second term keeps the relative distance among the agents.

The φ functions are

φ1(pij) = 1/(1 + ∥pij∥
2
)β ,

φ2(pij , vij) =
ρ5

2 ∥pij∥
2 ⟨vij , pij⟩+

ρ6
2 ∥pij∥

(∥pij∥ −R),

where β ≥ 0, ρ5, ρ6 > 0 is the function gains, and ⟨·, ·⟩ is the inner product. In addition, R is the desired distance between

agents if N = 2, but if there are more than two agents, R is the upper bound of the agent’s position from the center of

all agents in a converged flock configuration [32]. It should be noted that this is only true if the network is fully-connected,

which means that all agents interact with one other; otherwise, the R boundedness of the converged flock configuration is no

longer guaranteed. However, in a general MAS operation, it is difficult for agents with limited sensing/communication range

to maintain a fully-connected network topology at all times; this is why we introduce the concept of a virtual fully-connected

network for tight flocking control by distributed estimation in Section III-B. The augmented Cucker-Smale model with agent

dynamics (1) and a control protocol (6) is stable when β < 1/2 and the connectivity condition is satisfied.

Similar to the description in Section II-C, flocking control using measurements can be presented as:

ui(zi) = ρ3
∑

j∈Ni

φ1(zi,pij
)
(

zi,vj
− zi,vi

)

+ ρ4
∑

j∈Ni

φ2(zi,pij
, zi,vij

)
(

zi,pj
− zi,pi

)

,
(7)

where zi,pj
and zi,vj

are the position and velocity of the j-th agent measured by the i-th agent, respectively, and zi,pij
and

zi,vij
are the relative position and velocity between the i-th and j-th agents as measured by the i-th agent.

III. DISTRIBUTED STATE ESTIMATION AND CONTROL PROTOCOL FOR COORDINATION OF STOCHASTIC MULTI-AGENT

SYSTEM

This section describes the development of a distributed estimation algorithm that can track the entire agent belonging to the

MAS and design a control protocol based on it. Here, the distributed estimation algorithm is developed for both linear and

nonlinear MAS control and improves the coordination performance of the MAS as exemplified by the rendezvous and flocking

problems, respectively.

A. Linear systems

This subsection presents a distributed estimation algorithm and estimation-based rendezvous control protocol in linear systems

while only states of neighboring agents through sensing or communication are processed as local information. It is assumed

that computation time for the estimation process is less than the data sampling time (i.e., sensing frequency).

1) Distributed state estimation: First, we derive a distributed estimation algorithm in a linear MAS that applies a collective

behavior using the state of the MAS. All agents follow the same feedback control strategy given as Eq. (5) to achieve consensus

through coordination. Concatenating the agent dynamics, the MAS dynamics is expressed as:

X[k + 1] = (IN ⊗A)X[k] + (IN ⊗B)U(Z[k]) + ω[k], (8)

where Z[k] = [zT1 [k] · · · z
T
N [k]]T is the vector of measurements of all agents at time step k, U(Z) = [uT

1 (z1) · · · uT
N (zN )]T ∈

R
nN is the control input of the MAS, ω = [ωT

1 · · · ωT
N ]T ∈ R

2nN , and ⊗ denotes the Kronecker product. Because the control

input of each agent is a linear function of X with noise, Eq. (5) can be decomposed using Eq. (2) as:

ui(zi) = K
∑

j∈Ni

(

(xj + νij)− (xi + νii)
)

= −K(Li ⊗ I2n)X −K(Li ⊗ I2n)νi,

(9)

where Li ∈ R
1×N is the i-th row of the Laplacian matrix. Then, using the Laplacian matrix L, the control input U(Z) of the

MAS can be rewritten in a compact matrix form as

U(Z) = −(L ⊗K)X − (IN ⊗K)ν̄, (10)

where ν̄ =
[(

(L1 ⊗ I2n)ν1
)T

· · ·
(

(LN ⊗ I2n)νN
)T ]T

∈ R
2nN . Substituting Eq. (10) into Eq. (8), the MAS dynamics takes

the state feedback as

X[k + 1] = (IN ⊗A)X[k]− (L[k]⊗BK)X[k]

− (IN ⊗BK)ν̄[k] + ω[k]

= F1[k]X[k]− (IN ⊗BK)ν̄[k] + ω[k],

(11)
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where F1 = (IN ⊗A)− (L ⊗BK) ∈ R
2nN×2nN .

The Kalman filter method is used to recursively estimate the total state of the MAS from the perspective of an individual

agent, using a Bayesian approach. Let z0:ki = {zi[0], · · · , zi[k]} denote the set of measurements collected by the i-th agent up

to time step k. Based on z0:ki , the updated state and covariance of the MAS, estimated by the i-th agent at time step k, are

defined as:

X̂i[k] := E[X[k]|z0:ki ],

Σi[k] := E[ei[k]e
T
i [k]],

where E[·|·] is the conditional expectation and ei = X − X̂i ∈ R
2nN . Suppose the state of the MAS is estimated using a

centralized approach. In this case, the exact control action for each agent can be calculated by synthesizing all of the agents’

measurements, resulting in concurred control actions from the entire MAS viewpoint. However, because each agent only knows

its own measurement in a distributed fashion in this paper, it is difficult for each agent to know precisely the control actions

exerted on the other agents. Accordingly, at best, each agent estimates the entire MAS control input, U(Z), based on its

estimated information of the MAS state. Using Eq. (10), the estimated control input of the MAS by the i-th agent is defined

as:

Ûi[k] := E[U(Z[k])|z0:ki ] = − (L[k]⊗K)X̂i[k]. (12)

Note that unlike in a centralized approach, Ûi, ∀i ∈ V, might be different concerning each agent’s specific viewpoint. Through

a comparison with Eq. (10), Eq. (12) can be represented as:

Ûi[k] = U(X̂i[k]). (13)

Then, from the MAS dynamics (8), the state of the MAS predicted by the i-th agent is defined as:

X̂−
i [k + 1] := E[X[k + 1]|z0:ki ]

= (IN ⊗A)X̂i[k] + (IN ⊗B)U(X̂i[k])

= F1[k]X̂i[k].

(14)

and the predicted error covariance is computed using Eqs. (11) and (14)

Σ−
i [k + 1] := E[e−i [k + 1]e−T

i [k + 1]]

= F1[k]Σi[k]F
T
1 [k] + (IN ⊗BK)

× E[ν̄[k]ν̄T [k]](IN ⊗BK)T +Q,

(15)

where e−i = X − X̂−
i ∈ R

2nN ,Q = diag{Q, · · · , Q} ∈ R
2nN×2nN and E[ν̄ν̄T ] = diag{(L1 ⊗ I2n)R(L1 ⊗ I2n)

T , · · · , (LN ⊗
I2n)R(LN ⊗ I2n)

T } ∈ R
2nN×2nN .

The updated state is calculated from the predicted state and the new measurement at time step k + 1. Using Eq. (3), the

measurement residual, denoted by z̃i ∈ R
2n|Ni|, is represented as:

z̃i[k + 1] = zi[k + 1]−Hi[k + 1]X̂−
i [k + 1]

= Hi[k + 1]e−i [k + 1] +Hi[k + 1]νi[k + 1].
(16)

The residual covariance is defined as:

Si[k + 1] := E[z̃i[k + 1]z̃Ti [k + 1]]

= Hi[k + 1]Σ−
i [k + 1]HT

i [k + 1]

+Hi[k + 1]RHT
i [k + 1].

(17)

The updated estimation of X[k + 1] is given by the following:

X̂i[k + 1] = X̂−
i [k + 1] +Gi[k + 1]z̃i[k + 1], (18)

Gi[k + 1] = Σ−
i [k + 1]HT

i [k + 1](Si[k + 1])−1, (19)

where Gi is the Kalman gain. The update of the state estimation error covariance is the same as the conventional Kalman filter

method, which can be written compactly as

Σi[k + 1] =
(

I2nN −Gi[k + 1]Hi[k + 1]
)

Σ−
i [k + 1]. (20)

Remark 1. The above distributed estimation process can be considered an alternative derivation of the sensing-based distributed

estimation algorithm described in [29].
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Remark 2. The developed system is designed in discrete-time but can be readily extended to continuous-time considering a

difference in the state and covariance update between discrete-time and continuous-time systems in the Kalman filter [33].

Remark 3. Assumption 1 requires that the information on the MAS such as the dynamic model and process and measurement

noise characteristics (which is utilized in the prediction stage of the estimation) should be given as the prior knowledge. Such

knowledge is usually considered as the fundamental information for implementing general state estimators like the Kalman

filter. If the information on the heterogeneous MAS is given as a priori, the proposed estimation algorithm can be readily

extended for the heterogeneous MAS as well.

2) Distributed estimation-based rendezvous control: Next, we propose distributed estimation-based rendezvous control to

enhance the performance for a stochastic MAS. Notably, the estimation algorithm derived in the previous subsection (as well as

in [29]) only accounts for the distributed estimation side. When the estimation and control influence each other, i.e., a control

action is based on the estimated information, a re-derivation of the distributed estimation algorithm is needed to account for

the estimation-based control loop.

The estimation-based control input of the i-th agent is represented as

ui(X̂i) = K
∑

j∈Ni

(x̂i,j − x̂i,i), (21)

where x̂i,j is the j-th agent state estimated by the i-th agent. The MAS dynamics with the estimation-based control is then

given by

X[k + 1] = (IN ⊗A)X[k] + (IN ⊗B)U(X̂[k]) + ω[k], (22)

where X̂[k] = [X̂T
1 [k] · · · X̂

T
N [k]]T is the vector of the estimated state of the MAS at time step k and U(X̂) = [uT

1 (X̂1) · · · uT
N (X̂N )]T

is the control input of the MAS. Eq. (21) can be reformulated using a Laplacian matrix, and accordingly the control input of

the MAS can be expressed as:

ui(X̂i) =−K(Li ⊗ I2n)X̂i, (23)

U(X̂) = [uT
1 (X̂1) · · · uT

N (X̂N )]T = −(IN ⊗K)X̂L, (24)

where X̂L =
[(

(L1 ⊗ I2n)X̂1

)T
· · ·

(

(LN ⊗ I2n)X̂N

)T ]T
∈ R

2nN . By substituting Eq. (24) into Eq. (22), the MAS dynamics

with the distributed estimation-based rendezvous control becomes

X[k + 1] = (IN ⊗A)X[k]− (IN ⊗BK)X̂L[k] + ω[k], (25)

which can be rewritten using the estimation error as:

X[k + 1] = (IN ⊗A)X[k]− (L[k]⊗BK)X[k]

+ (IN ⊗BK)(L[k]⊗ I2n)X[k]

− (IN ⊗BK)X̂L[k] + ω[k]

= F1[k]X[k] + (IN ⊗BK)eL[k] + ω[k].

(26)

The eL in (26) is defined as:

eL =







(L1 ⊗ I2n)(X − X̂1)
...

(LN ⊗ I2n)(X − X̂N )






= L′e, (27)

where L′ = diag{L1 ⊗ I2n, · · · ,LN ⊗ I2n} ∈ R
2nN×2nN2

and the augmented estimation error e = [eT1 · · · eTN ]T ∈ R
2nN2

.

Substituting Eq. (27) into Eq. (26) with F2 = (IN ⊗BK)L′ ∈ R
2nN×2nN2

, Eq. (26) can be compactly expressed as

X[k + 1] = F1[k]X[k] + F2[k]e[k] + ω[k]. (28)

The estimation process addressed in Section III-A1 is modified to reflect the control schemes based on the estimated state

information, i.e., (21). Without sharing the estimated state information of the MAS, it is difficult for each agent to know the

conditional expectation of the control input of the MAS (i.e., E[U(X̂[k])|z0:ki ]) because it is subject to the estimated state of

the MAS perceived from the individual agent’s viewpoint. Thus, using the estimated information known by each agent, the

control input of the MAS estimated by the i-th agent is defined as Eq. (12), which results in the predicted state of the MAS

being equal to Eq. (14). Before deriving the estimation error covariance, the initial augmented estimation error covariance is

assumed to satisfy the following.

Assumption 2. The initial augmented estimation error covariance, E[e[0]eT [0]] ∈ R
2nN2×2nN2

, is identically set.
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Along with Assumption 2, the predicted error covariance is computed using Eqs. (28) and (14) as:

Σ−
i [k + 1] = E[e−i [k + 1]e−T

i [k + 1]]

= F1[k]Σi[k]F1
T [k] + F2[k]E[e[k]e

T [k]]FT
2 [k]

+ F1[k]E[ei[k]e
T [k]]FT

2 [k]

+ F2[k]E[e[k]e
T
i [k]]F1

T [k] +Q,

(29)

where E[eeT ] and E[eie
T ] are given as

E[eeT ] =











Σ1 Σ12 · · · Σ1N

Σ21 Σ2 · · · Σ2N

...
...

. . .
...

ΣN1 ΣN2 · · · ΣN











= Σ, (30)

E[eie
T ] =

[

Σi1 · · · Σi · · · ΣiN

]

, (31)

where Σij is the cross-covariance between the i-th agent and the j-th agent. Substituting Eq. (30) into Eq. (29),

Σ−
i [k + 1] = F1[k]Σi[k]F1

T [k] + F2[k]Σ[k]F
T
2 [k]

+ F1[k]E[ei[k]e
T [k]]FT

2 [k]

+ F2[k]E[e[k]e
T
i [k]]F1

T [k] +Q.

(32)

The updated state from the predicted state follows Eqs. (16)–(20).

For a recursive iteration of the estimation process, each agent needs to update Σ[k] to Σ[k+1], representing the estimation

error covariance of all agents and its cross-covariance. This is required in the predicted error covariance of the next step, which

was not needed for the estimation process described in Section III-A1. As the reason for this, each agent uses its estimated

information for control, so the expected estimation error of other agents from the perspective of the i-th agent is considered

to the estimation of the MAS state. To this end, the cross-covariance is computed as:

Σij [k + 1] := E[ei[k + 1]eTj [k + 1]]

= −Gi[k + 1]Hi[k + 1]Σ−
ij [k + 1]

− Σ−
ij [k + 1]HT

j [k + 1]GT
j [k + 1]

+Gi[k + 1]Hi[k + 1]Σ−
ij [k + 1]

×HT
j [k + 1]GT

j [k + 1] + Σ−
ij [k + 1],

(33)

where the predicted cross-covariance is

Σ−
ij [k + 1] := E[e−i [k + 1]e−T

j [k + 1]]

= F1[k]Σij [k]F1
T [k] + F2[k]Σ[k]F

T
2 [k]

+ F1[k]E[ei[k]e
T [k]]FT

2 [k]

+ F2[k]E[e[k]e
T
j [k]]F1

T [k] +Q.

(34)

Remark 4. The updated Σ calculated by each agent is always the same insofar as it begins with same initial condition based

on Assumption 2.

Remark 5. As in [34], many studies are often carried out under the assumption that the initial covariance of each sensor

node is the same. Similarly, introducing Assumption 2 is merely motivated by the brevity of Eqs. (29)–(34), which can be

readily rederived with additional notations for different Σ of each agent. Note that the different initial setup does not affect

the stability guarantee of the proposed algorithm as will be discussed in Section IV.

Remark 6. In Eq. (21), the state estimates of direct neighbors and those outside the sensing range can be used for control

action, making interaction possible between all agents including non-neighboring agents.

B. Nonlinear systems

This subsection expands on a distributed estimation algorithm used for linear systems for application to nonlinear systems

and proposes an estimation-based nonlinear flocking control protocol. The system’s nonlinearity comes from the control input,

which is a nonlinear function of the state of the MAS.
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1) Distributed state estimation: The agent’s nonlinear control input using measurements is expressed as:

ui(zi) = fi(X, νi), (35)

where ∀i ∈ V , fi ∈ R
n is a nonlinear function. Thus, the dynamics of the MAS is the same as in Eq. (8) except that U(Z) is

the nonlinear feedback control input of the MAS, which is represented as:

X[k + 1] =(IN ⊗A)X[k] + (IN ⊗B)U(Z[k]) + ω[k]

=f(X[k], ν[k]) + ω[k],
(36)

where f(X, ν) = (IN ⊗A)X + (IN ⊗B)U(Z) ∈ R
2nN is a nonlinear function and ν[k] = [νT1 [k] · · · ν

T
N [k]]T .

Because noises are all assumed to be a zero mean Gaussian, the predicted state estimate is given from Eq. (36) as:

X̂−
i [k + 1] := f(X̂i[k], 0). (37)

Along with (37), the corresponding predicted error covariance needs to be computed for the estimation process. Because f
is a nonlinear function, the predicted error covariance is calculated through the linearization of f as in the extended Kalman

filter. The predicted error covariance Σ−
i is given by the following:

Σ−
i [k + 1] = Fi[k]Σi[k]F

T
i [k] +Q, (38)

where Fi =
∂f(X, ν)

∂X

∣

∣

∣

∣

(X̂i,0)

is the Jacobian matrix of f . Because the observation dynamics remains linear, the updated state

from the predicted state is the same as in Eqs. (16)–(20).

2) Distributed estimation-based flocking control with virtual fully-connected network: The main idea of this study, distributed

estimation-based nonlinear flocking control, is presented in this section. Regardless of the proximity network topology, the

proposed method allows each agent to interact with not only its direct neighbors but also non-neighbors. This can be

accomplished by introducing the concept of a virtual fully-connected network. With distributed estimation of the entire

MAS states, facilitated by using the same cooperative controller (i.e., the nonlinear flocking controller in Eq. (7)) for all

agents, each agent can utilize the state information of all other agents as if they are obtained through a fully-connected

network. Note that the proposed approach only utilizes the observation of neighbors like other conventional distributed systems.

However, the conventional distributed systems do not allow the interaction with non-neighboring agents due to the limited

sensing/communication range.

As a benefit of using the proposed virtual fully-connected interactions, the performance of the proposed flocking algorithm

in terms of the converged configuration is similar to the conventional flocking algorithm (Eq. (7)) with a fully-connected

network. Under a fully-connected network, the boundary of the flock configuration can be more tightly controlled, as described

in Section II-D. Figure 1 shows the concept of the proposed flocking algorithm using the virtual fully-connected network with

distributed estimation.

With the basic structure following the flocking model described in Section II-D, the distributed estimation-based flocking

control input with a virtual fully-connected network is represented as:

ui(X̂i) = ρ3

N
∑

j=1,j ̸=i

φ1(p̂i,ij)
(

v̂i,j − v̂i,i
)

+ ρ4

N
∑

j=1,j ̸=i

φ2(p̂i,ij , v̂i,ij)
(

p̂i,j − p̂i,i
)

,

(39)

where p̂i,j and v̂i,j are the position and velocity of the j-th agent estimated by the i-th agent, respectively, and p̂i,ij and v̂i,ij
are the relative position and velocity between the i-th and j-th agents estimated by the i-th agent. In Eq. (39), unlike with

the previous control protocol, the estimated state information of all agents are used for the control protocol regardless of the

proximity network topology, as mentioned in Remark 6. The MAS dynamics with the proposed control protocol is the same

as in Eq. (22) except that U(X̂) consists of Eq. (39).

The prediction process is expressed the same as in Eq. (14), i.e.,

X̂−
i [k + 1] := f ′(X̂i[k])

= (IN ⊗A)X̂i[k] + (IN ⊗B)U(X̂i[k]),
(40)

where f ′(X) = (IN ⊗ A)X + (IN ⊗ B)U(X) and U(X) = [uT
1 (X) · · ·uT

N (X)]T . By calculating the Jacobian matrix of f ′

in Eq. (40), the predicted error covariance can be calculated as Eq. (38), i.e., Fi =
∂f ′(X)

∂X

∣

∣

∣

∣

X̂i

. The update step is the same

as in Eqs. (16)–(20).
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Fig. 1. Concept of an estimation-based flocking algorithm.

IV. STABILITY ANALYSIS

In this section, a stability analysis of the proposed estimation algorithm in a linear system is described. The stability analysis

is conducted through a Lyapunov theory in discrete-time, and focuses on finding a suitable Lyapunov function candidate of the

state estimation error ei to be globally asymptotically stable in the sense of the Lyapunov. In the stochastic MAS considered

in this paper, the estimation error can be regarded as a super martingale of the Lyapunov functions [35], which should satisfy

the following conditions:






V (ei[k], k) = 0, iff ei[k] = 0
V (ei[k], k) > 0, iff ei[k] ̸= 0 ∀k
V (ei[k], k) → ∞, iff ei[k] → ∞

(41)

∆V (k + 1, k) < 0, ∀k (42)

where ∆V (k + 1, k) := V (E[ei[k + 1]|ei[k]], k + 1) − V (ei[k], k). Note that the augmented estimation error, e, in the MAS

dynamics (28) couples the estimation error dynamics of each agent, ei, with e. To verify the estimation stability of ei, let us

investigate the relationship between e in the error dynamics and ei. For the investigation, the proposition of the estimation

analysis in the linear cooperative MAS is first presented as

Proposition 1. The linear cooperative MAS distributed estimation error covariance Σi[k] is positive definite and bounded for

all k > N if the following system is observable [29]:

X[k + 1] = F1[k]X[k],

zi[k] = Hi[k]X[k].
(43)

Lemma 1. Suppose the system given in (43) is observable and Ci[0], ∀i ∈ V, exists. Then, given the agent dynamics (1) and

the control protocol (21), there exists a linear mapping between the estimation error of the i-th agent, ei, and the augmented

estimation error, e, as:

e[k + 1] = Ci[k + 1]ei[k + 1] + αi[k + 1], ∀i ∈ V, ∀k ≥ 0 (44)
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Ci[k + 1] = F [k + 1]Ci[k](Fi,2[k + 1]Fi,1[k])
−1,

αi[k + 1] = F [k + 1]αi[k] + γ[k + 1]− Ci[k + 1]

×
(

Fi,2[k + 1]F2[k]αi[k] + ζi[k + 1]
)

,

where Fi,1[k] = F1[k] + F2[k]Ci[k],

Fi,2[k + 1] = I2nN −Gi[k + 1]Hi[k + 1],

ζi[k + 1] = Fi,2[k + 1]ω[k]

−Gi[k + 1]Hi[k + 1]νi[k + 1],

and F [k + 1] = diag{F1,2[k + 1]F1,1[k],

· · · ,FN,2[k + 1]FN,1[k]},

γ[k + 1] =







F1,2[k + 1]F2[k]α1[k] + ζ1[k + 1)
...

FN,2[k + 1]F2[k]αN [k] + ζN [k + 1]






.

Here, Ci ∈ R
2nN2×2nN is a linear transformation matrix, αi ∈ R

2nN2

is a lumped noise that has the characteristics of a white

Gaussian distribution N2nN2(0, Pi), and the initial condition e[0] = Ci[0]ei[0].

Using Proposition 1 and Lemma 1, the stability of the proposed distributed estimation algorithm is shown below.

Theorem 1. Given the agent dynamics (1) and the control protocol (21), the equilibrium point ei = 0, ∀i ∈ V, in the proposed

distributed state estimation algorithm is globally asymptotically stable if the system (43) is observable.

Proof. The Lyapunov function V : R2nN × N → R is defined as:

V (ei[k], k) := eTi [k](Σi[k])
−1ei[k],

∆V (k + 1, k) = V (E[ei[k + 1]|ei[k]], k + 1)− V (ei[k], k).
(45)

Because Σi is positive definite and bounded from Proposition 1, the quadratic form V satisfies the conditions of Eq. (41).

To compute the conditional expectation of Eq. (45), we consider the estimation error dynamics. The error dynamics consist

of two phases: prediction and update. The prediction of the estimation error of the i-th agent is computed by subtracting the

predicted state of the i-th agent (14) from the MAS dynamics (28) with using Lemma 1 as:

e−i [k + 1] = X[k + 1]− X̂−
i [k + 1]

= F1[k]ei[k] + F2[k](Ci[k]ei[k] + αi[k]) + ω[k]

= Fi,1[k]ei[k] + F2[k]αi[k] + ω[k],

(46)

where Fi,1[k] ∈ R
2nN×2nN . The update step is done by subtracting the updated estimation (18) with Eq. (16) from X[k+ 1]

and substituting Eq. (46) for e−i [k + 1] followed as:

ei[k + 1] = X[k + 1]− X̂i[k + 1]

= e−i [k + 1]−Gi[k + 1]Hi[k + 1]e−i [k + 1]

−Gi[k + 1]Hi[k + 1]νi[k + 1]

= Fi,2[k + 1]Fi,1[k]ei[k]

+ Fi,2[k + 1]F2[k]αi[k] + ζi[k + 1],

(47)

where Fi,2[k + 1] ∈ R
2nN×2nN , and ζi[k + 1] ∈ R

2nN . From, using Eq. (47), the conditional expectation is obtained as:

E[ei[k + 1]|ei[k]] = Fi,2[k + 1]Fi,1[k]ei[k]. (48)

Then, ∆V (k + 1, k) can be written as:

∆V (k + 1, k) = E[ei[k + 1]|ei[k]]
T (Σi[k + 1])−1

× E[ei[k + 1]|ei[k]]− eTi [k](Σi[k])
−1ei[k]

= − eTi [k]Mi[k + 1]ei[k],

(49)

where Mi[k + 1] = (Σi[k])
−1 − FT

i,1[k]F
T
i,2[k + 1](Σi[k + 1])−1Fi,2[k + 1]Fi,1[k]. To assure ∆V (k + 1, k) < 0, Mi[k + 1]

should be a positive definite matrix. From Lemma 1, the updated estimation error covariance Σi originally related to e can be
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derived in terms of ei. The updated and predicted estimation error covariances of the i-th agent are derived using Eqs. (20)

and (46), respectively, as:

Σi[k + 1] = Fi,2[k + 1]Σ−
i [k + 1], (50)

Σ−
i [k + 1] = E[e−i [k + 1]e−T

i [k + 1]]

= Fi,1[k]Σi[k]F
T
i,1[k] + F2[k]Pi[k]F

T
2 [k] +Q.

(51)

The updated estimation error covariance can be rewritten using Eqs. (17), (19), and (20) as:

Σi[k + 1] = Σ−
i [k + 1]− Σ−

i [k + 1]HT
i [k + 1]

× (Hi[k + 1]Σ−
i [k + 1]HT

i [k + 1]

+Hi[k + 1]RHT
i [k + 1])−1Hi[k + 1]Σ−

i [k + 1].

(52)

Using the matrix inversion lemma [36], Eq. (52) can be rewritten as:

Σi[k + 1] =
(

(Σ−
i [k + 1])−1 +HT

i [k + 1]

× (Hi[k + 1]RHT
i [k + 1])−1Hi[k + 1]

)−1
.

(53)

After taking the inverse, multiplying Σi[k+1] to the left-hand and the right-hand sides of (Σi[k+1])−1 yields the following:

Σi[k + 1] = Σi[k + 1](Σ−
i [k + 1])−1Σi[k + 1]

+ Σi[k + 1]HT
i [k + 1](Hi[k + 1]R

×HT
i [k + 1])−1Hi[k + 1]Σi[k + 1].

(54)

Substituting Eq. (50) into the right-hand side of Eq. (54) yields

Σi[k + 1] = Fi,2[k + 1](Σ−
i [k + 1] +Wi[k + 1])FT

i,2[k + 1], (55)

where Wi[k+1] = Σ−
i [k+1]HT

i [k+1](Hi[k+1]RHT
i [k+1])−1Hi[k+1]Σ−

i [k+1], which is positive definite. In addition,

(Σi[k + 1])−1 can be expressed by the inverse of Eq. (55) after substituting Eq. (51) into Σ−
i [k + 1] as:

(Σi[k + 1])−1 = (FT
i,2[k + 1])−1(Fi,1[k]Σi[k]F

T
i,1[k]

+ F2[k]Pi[k]F
T
2 [k] +Q+Wi[k + 1])−1(Fi,2[k + 1])−1.

(56)

From this, Mi[k + 1] can be rewritten by substituting Eq. (56) into (Σi[k + 1])−1 as:

Mi[k + 1] = (Σi[k])
−1 −FT

i,1[k](Fi,1[k]Σi[k]F
T
i,1[k]

+ F2[k]Pi[k]F
T
2 [k] +Q+Wi[k + 1])−1Fi,1[k].

(57)

Multiplying Σi[k] with the left-hand and the right-hand sides of Eq. (57) and then applying the matrix inversion lemma gives

the following:

Σi[k]Mi[k + 1]Σi[k] =
(

(Σi[k])
−1 + FT

i,1[k]

× (F2[k]Pi[k]F
T
2 [k] +Q+Wi[k + 1])−1Fi,1[k]

)−1
.

(58)

Multiplying (Σi[k])
−1 to both sides of Eq. (58) gives the following:

Mi[k + 1] = (Σi[k])
−1

(

(Σi[k])
−1 + FT

i,1[k](F2[k]Pi[k]

× FT
2 [k] +Q+Wi[k + 1])−1Fi,1[k]

)−1
(Σi[k])

−1.
(59)

Because (Σi[k])
−1 ≻ 0 and F2[k]Pi[k]F

T
2 [k] + Q + Wi[k + 1] ≻ 0, Mi[k + 1] should be positive definite. Therefore, the

Lyapunov function satisfies Eqs. (41) and (42), meaning that the estimation error is globally asymptotically stable. ■

Remark 7. It is worth noting the proof of Theorem 1 requires that the entire MAS network topology is fixed and is

known to individual agents. This is to show that the estimation error is theoretically asymptotically stable under the system

satisfying the observability condition. In practice, however, the sensing-based estimation may not be able to access the network

topology information, which is problematic especially for the time-varying network case. One way to circumvent this difficulty

is employing the virtual fully-connected network topology in the estimation process. Then, although the estimation accuracy

degrades due to the discrepancy between true network and virtual network, the estimation error covariance is still bounded

and thus guaranteeing the estimation stability in stochastic sense as long as the observability condition is satisfied. A rigorous

proof and analysis on this remain as future work. Furthermore, when communication is available, agents can exchange their

local network information with neighbors, thereby estimating the true network topology in a distributed manner as in [37]. The

proposed method can exploit this while retaining the advantage in communication overhead, i.e., estimating the other agents’

state based on local observation and only communicating the network topology information.
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Remark 8. For the distributed control side, even if the true network topology is unavailable, we could adopt the state estimate

information based on the virtual fully-connected network. This is well demonstrated in the nonlinear flocking control scenario,

where the individual agents only process the local observation as in Eqs. (16)–(20) without needing true network topology

information, which is indeed time-varying.

Remark 9. Subject to nonlinear system dynamics, the stability analysis of the discrete-time extended Kalman filter (EKF) was

carried out in [38]. In Theorem 3.1 of [38], the estimation error of a nonlinear system is exponentially bounded in mean square

almost surely if the initial estimation error and noise terms are small enough. In this theorem, there are three assumptions: (i)

the linearization matrix is bounded and nonsingular; (ii) the Riccati difference equation (which is the error covariance in the

linear case) remains positive definite and bounded; and (iii) the high order term from the linearization is bounded. We argue

that the stability of the proposed distributed estimator for the nonlinear MAS can be sketched in the similar fashion as the

EKF case. First, by linearizing ei (which is nonlinear function of the state) with respect to the estimated state, we can have a

similar expression to Eq. (46) except that there is additional high-order terms from linearization. Then, the relationship between

ei and e can be expressed similarly as Eq. (44) where αi now includes both the lumped noise and high-order terms. If the

individual estimation error ei is stable (which can be easily shown by Theorem 3.1 of [38]), there is a need that Ci[k] of Eq.

(44) is bounded for the augmented estimation error e to be bounded. This assumption can be satisfied if Ci[0] is bounded. As

a result, the distributed estimation error of the nonlinear system in which the estimated information is utilized in the control

protocol (Eq. (39)) is exponentially bounded in mean square almost surely if the aforementioned assumptions hold. More

rigorous stability analysis of the proposed distributed estimation for nonlinear systems remains as future study.

V. NUMERICAL SIMULATION

In this section, the numerical simulation results of the proposed estimation-based distributed control are presented. The

parameters used in the simulations are listed in Table I.

TABLE I. Simulation parameters

Parameter Value unit

Number of agents, N 8
Dimension, n 2

Sampling time, ∆t 0.1 s
Sensing/Comm range, r 150 m

Rendezvous gains, (ρ1, ρ2) (0.5, 1.5)
Flocking gains, (ρ3, ρ4) (3, 1)
Function gains, (ρ5, ρ6) (2, 1)

Communication decay rate, β 0.33
Desired boundary, R 120 m

In general, although the larger rendezvous control gains (ρ1 and ρ2) achieve faster convergence to consensus, it must be set

sensitively in consideration of the system’s stability and other conditions. If the position feedback gain ρ1 is too large compared

to the velocity feedback gain ρ2, for example, unnecessary fluctuations in the agent’s movement may occur, resulting in poor

control performance. Similarly, for stable flocking convergence, the gains ρ3 for velocity consensus and ρ4 for distance control

should be appropriately set, and the gain ρ5 should be greater than ρ6 [19].

Besides, the performance of the proposed estimation-based control protocol highly depends on the estimation accuracy. In

particular, as the improper setting of the initial state estimate and error covariance can cause disconnection of the network in

the early configuration of the MAS, the initial state estimate and error covariance should be carefully selected.

A. Rendezvous control

Figure 2 shows the estimation errors and trajectories of the MAS with the proposed rendezvous control algorithm under

the process noise covariance of I2n and the measurement noise covariance of I2nN . Considering the nature of a rendezvous,

it is difficult to confirm the estimation performance of non-neighbors because all agents become neighbors of each other as

they get closer. Thus, in this simulation, an estimation-based rendezvous control is conducted using a fixed network topology

that is initially set. The color dots represent the individual agents in the subfigures. For example, the orange dot in Fig. 2(a)

corresponds to the agent in Fig. 2(b), which has an orange-colored trajectory. Figure 2(a) depicts the MAS network topology

with a circle representing each agent’s sensing/communication range and solid lines connecting the neighbors. The initial

positions of the agents are chosen to meet the connectivity and observability requirements. The trajectory of the agents when

using the proposed rendezvous algorithm is depicted in Fig 2(b). Because rendezvous control aims to ensure that all agents

have the same position and velocity, the MAS achieves the desired configuration, as shown in Fig. 2(b). Figure 2(c) shows

the position estimation error of the MAS computed by each agent. It is clear that the estimation errors decrease initially and

converge to certain bouded values. Figure 2(d) shows the statistical position estimation error which is the square root of the

trace of the estimation error covariance. Figures 2 (c) and (d) show that the estimation error and the statistical estimation error

are similar.
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(a) Network (b) Trajectory

(c) Position estimation error (d) Statistical position estimation error

Fig. 2. Performance of rendezvous control with the distributed estimation under a fixed network topology.

Figure 3 shows the root mean square standard deviation (STD) of the position and velocity of the MAS to verify the

performance of the proposed rendezvous algorithm. The STD is averaged from Monte Carlo simulations of 50 runs with

random initial positions. For comparing the conventional rendezvous algorithm using the measurement (i.e., Eq. (5)) and the

proposed estimation-based rendezvous algorithm, process noise covariance is set to I2n and the measurement noise covariance

is set to 100I2nN . As shown in Fig. 3, the STD of the position and velocity of the estimation-based rendezvous control is

smaller than that of the conventional method at the converged state. This result shows a clear advantage of using the proposed

method to reach a second-order consensus for stochastic systems.

B. Flocking control

Next, the performance of the proposed estimation-based control algorithm is validated by applying it to the nonlinear flocking

problem. The noise levels are the same as in the previous rendezvous problem. Figure 4(a) shows the initial network of agents

and Fig. 4(b) shows the network of agents after applying the proposed flocking algorithm for a certain time. It is worth noting

that the final network is not a fully-connected graph. Figure 4(c) shows the trajectory of agents using the proposed flocking

algorithm. Figure 4(d) is the trajectory of all agents estimated by agent 1 (△ symbol). The agents marked with a ★ symbol

indicate the neighbors of agent 1, and the □ agents indicate non-neighbors. This shows that the estimated trajectories of both

neighboring and non-neighboring agents in Fig. 4(d) are close to the true trajectories in Fig. 4(c). The position estimation errors

of the other agents from agent 1 are shown in Fig. 4(e). The estimation errors of agent 1’s non-neighboring agents (i.e., agents

2 and 4) are greater than the neighboring agents, but they remain within a specific bound. Figure 4(f) depicts the statistical

position estimation errors of the other agents from the perspective of agent 1. The error covariance of agents 2 and 4 are
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(a) Position standard deviation (b) Velocity standard deviation

Fig. 3. Rendezvous control performance comparison.

greater than those of the neighboring agents; however, when agents 2 and 4 temporarily come into the sensing/communication

range of agent 1, the error covariances decrease sharply.

Figure 5 shows the root mean square STD of the position and velocity based on Monte Carlo simulations with 50 runs.

The process noise covariance is set to I2n and the measurement noise covariance is set to 10I2nN . The STD of the position

and velocity are shown in Figs. 5(a) and (b), respectively, when comparing three cases: (i) a conventional flocking algorithm

(i.e., Eq. (7)), (ii) a conventional flocking algorithm with a fixed fully-connected network topology at all times, and (iii) the

proposed estimation-based flocking algorithm through a virtual fully-connected network. For cases (i) and (iii), the agent’s

neighbors are changed (i.e., a time-varying topology). From Figs. 5(a) and (b), one can easily see that agents are densely

converged with smaller converged velocity STD using case (ii) as compared to case (i). Notably, the position and velocity of

case (iii) STDs are similar to those from the ideal fully-connected case (ii), as shown in Fig. 5.

Figures 6(a) and (b) show the converged configuration reached by the conventional flocking algorithm and the proposed

estimation-based flocking control with a virtual fully-connected network, respectively. As mentioned in Section II-D, at the

converged configuration with the fully-connected network topology, the agent can be located within the radius of R from the

center of all agent positions (i.e., the center of mass (CoM)). However, if the fully-connected network condition is not satisfied,

the conventional flocking algorithm cannot achieve the desired flock configuration at a converged state, as shown in Fig. 6(a).

In contrast, by the virtual fully-connected network, the proposed estimation-based flocking algorithm can form the desired

configuration even within a limited sensing/communication range (i.e., not a fully-connected network topology), as shown in

Fig. 6(b). From the results of Figs. 5 and 6, the proposed estimation-based flocking algorithm achieves a similar performance as

a conventional flocking algorithm with a fully-connected network topology while overcoming the network topology constraints

by creating a virtual network.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, an estimation-based distributed control protocol was proposed to improve the performance of the stochastic

MAS. A distributed estimation algorithm was proposed to reduce communication overhead between inter-agents by using

only local sensing information while estimating the states of other agents beyond the sensing range. Furthermore, the proposed

distributed estimation algorithm allows for virtual interactions between non-neighbors as if all agents were fully-connected via a

virtual network. The stability of the proposed distributed estimation algorithm is proved theoretically, and numerical simulations

demonstrate that the estimation-based control protocol can significantly improve the performance of the cooperative control

of the stochastic MAS. It is shown, in particular, that the estimation-based flocking control protocol with a virtual fully-

connected network can achieve the desired flock configuration despite the limited sensing/communication range, which is not

the case with a conventional flocking approach. This demonstrates the algorithm’s utility, especially in communication-limited

environments. Future studies will include a stability analysis of the proposed distributed estimation of the nonlinear system.

In addition, since this study incorporates independent and identically distributed (i.i.d) white Gaussian random noise into the

system dynamics as stochastic uncertainty, further stochastic peculiarity will be considered as future work. Besides, network

connectivity preservation and obstacle avoidance will be considered for the rendezvous or flocking algorithm for obstacle-rich

environments.
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(a) Initial network (b) Final network

(c) True trajectory (d) Estimated trajectory

(e) Position estimation error for each agent from the first agent’s
perspective.

(f) Statistical position estimation error for each agent from the first
agent’s perspective.

Fig. 4. Performance of flocking control with the distributed estimation under a time-varying network topology.

APPENDIX

Proof of Lemma 1. It can be shown through mathematical induction. Suppose the estimation error at time step k satisfies

Eq. (44). To show Eq. (44) satisfied at time step k + 1 with the definitions of Ci[k + 1] and αi[k + 1], augmented estimation
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(a) Position standard deviation (b) Velocity standard deviation

Fig. 5. Flocking control performance comparison.

(a) Conventional flocking algorithm (b) Proposed flocking algorithm

Fig. 6. Converged flock configuration.

error, e, which concatenate Eq. (47) for all agents i ∈ V together can be represented using Eqs. (44) and ei[k] of (47) as:

e[k + 1] = F [k + 1]e[k] + γ[k + 1]

= F [k + 1]Ci[k]ei[k] + F [k + 1]αi[k] + γ[k + 1]

= Ci[k + 1]ei[k + 1] + αi[k + 1],

(60)

where F [k + 1] ∈ R
2nN2×2nN2

, γ[k + 1] ∈ R
2nN2

. Note that F−1
i,2 exists by virtue of Σi ≻ 0. Furthermore, considering

lim∆t→0 Fi,1 = I2nN , there exists F−1
i,1 in general. Therefore, if the initial linear transformation matrix Ci[0] for any i ∈ V

exists, Lemma 1 holds. ■

It is worth noting that there exist Ci[0] for all i ∈ V that satisfies Σ[0] = Ci[0]Σi[0]C
T
i [0]. In addition, since the lumped

noise αi in Eq. (44) is the weighted sum of the process and measurement noises, Pi[k] with the initial Pi[0] = 02nN2 can be

updated using the following relationship:

E[ζi[k]ζ
T
j [k]] =







Gi[k]Hi[k]RHT
i [k]G

T
i [k]

+Fi,2[k]QFT
i,2[k], if i = j,

Fi,2[k]QFT
j,2[k], otherwise,

E[ζi[k + 1]ζTj [k]] = 0,

E[ζi[k + 1]αT
j [k]] = 0,
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where ∀i, j ∈ V and ∀k.
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