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Abstract: Background: The planetary rover is an essential platform for planetary exploration. Visual
semantic segmentation is significant in the localization, perception, and path planning of the rover
autonomy. Recent advances in computer vision and artificial intelligence brought about new oppor-
tunities. A systematic literature review (SLR) can help analyze existing solutions, discover available
data, and identify potential gaps. Methods: A rigorous SLR has been conducted, and papers are
selected from three databases (IEEE Xplore, Web of Science, and Scopus) from the start of records to
May 2022. The 320 candidate studies were found by searching with keywords and bool operators, and
they address the semantic terrain segmentation in the navigation vision of planetary rovers. Finally,
after four rounds of screening, 30 papers were included with robust inclusion and exclusion criteria
as well as quality assessment. Results: 30 studies were included for the review, and sub-research areas
include navigation (16 studies), geological analysis (7 studies), exploration efficiency (10 studies),
and others (3 studies) (overlaps exist). Five distributions are extendedly depicted (time, study type,
geographical location, publisher, and experimental setting), which analyzes the included study from
the view of community interests, development status, and reimplementation ability. One key research
question and six sub-research questions are discussed to evaluate the current achievements and
future gaps. Conclusions: Many promising achievements in accuracy, available data, and real-time
performance have been promoted by computer vision and artificial intelligence. However, a solution
that satisfies pixel-level segmentation, real-time inference time, and onboard hardware does not exist,
and an open, pixel-level annotated, and the real-world data-based dataset is not found. As planetary
exploration projects progress worldwide, more promising studies will be proposed, and deep learning
will bring more opportunities and contributions to future studies. Contributions: This SLR identifies
future gaps and challenges by proposing a methodical, replicable, and transparent survey, which
is the first review (also the first SLR) for semantic terrain segmentation in the navigation vision of
planetary rovers.

Keywords: rover autonomy; visual localization; open dataset; image processing; terrain annotation

1. Introduction

Recent planetary exploration accomplished encouraging achievements and keeps
attracting various community interests because of the promotions of advances in robotics,
artificial intelligence, computer vision, sensor, and space science. For example, the Zhurong
and Perseverance rovers landed on Mars in 2021 and carried out many scientific mis-
sions [1,2], while Canada, Japan, Saudi Arabia, and Russia announced their ambitious lunar
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(Moon) rover projects [3–5]. The planetary rover is an essential platform for planetary explo-
ration, widely involved in various scientific activities, including geological exploration [6],
planetary history investigation [7], extraterrestrial water resource exploration [8], unknown
environment perception [9], life exploration [10], and Mars sample return [11]. However,
terrains are significantly complicated and hazardous in these activities, possibly bringing
rovers into the “mission-ending scenario” [12]. For example, Spirit and Opportunity Mars
rovers are stuck with rugged terrains [13,14], the loose and granular terrains can cause
their wheels to slip and sink [15], and the large rocks can block their paths. Therefore, ter-
rain recognition is important for planetary exploration because terrains have considerable
differences in inaccessibility.

The planetary rover is a sophisticated research platform. The vision-based technology
in this review only limits the image or video signal captured by the pinhole camera, which
is the review scope of this study. The sensors used for the navigation of rover autonomy
can be classified into active and passive [16], and vision-based technology mainly refers
to passive sensors. Active sensors (such as radar, laser scanner [17], structured light [18],
time-of-flight (ToF) [19], etc.) are sensitive to environmental changes, heavy-weighted,
have high energy consumption, and large-sized [16,20,21]. Millimeter-wave radar relies
on the millimeter wave, which has a wavelength between 1 and 10 mm. The ejected
wave can be reflected back when the obstacle is approached, and the radar can use the
reflected signal to estimate the distance. However, the resolution of radar is relatively low.
Thus, this study only surveys passive sensors. Lidar (laser scanner) measures the distance
between the lidar sensor and the target to estimate the 3D structure of the target using
the energy magnitude, frequency, and phase of the reflected spectrum. Lidar can be used
in autonomous driving for distance estimation, 3D reconstruction for achieving accurate
point clouds, and information fusion to improve 3D estimations. Structured light displays
a pattern on the target surface and estimates the surface structure using the distortion of
the pattern. ToF has a similar principle to radar, while only the millimeter wave becomes
the light. The pinhole camera model is a typical example of passive sensors [22]. Compared
with active sensors, the pinhole camera is lightweight, has low energy consumption, and
small-size.

The vision-based navigation represented by the pinhole camera is important, which
can bring a superior solution with lightweight, low energy consumption, and small-size for
rover autonomy. The pinhole camera model can be divided into mono- and multi-camera
systems [23,24]. The mono-camera system acquires single images, while the multiple-
camera system is associated with image pairs. Furthermore, the visual signal (image, image-
pair, or video) is essential for planetary rover navigation. It is attractive and challenging to
extract, understand, and deliver the information from visual signals efficiently. Semantic
segmentation is essential in visual understanding [25], and vision-based rover autonomy
relies on semantic understanding [13]. Image is a digit matrix for machines, while visual
understanding segments the pixels into pixel clusters associated with categories. Therefore,
this study specifies the scope of the candidate studies to the camera system-based works,
corresponding to the data format of the image, image-pair, or video.

Terrain semantic segmentation is a highly interdisciplinary topic where recent de-
velopments have greatly influenced deep learning and computer vision. For example,
references [26–28] adopt the image processing-based method (superpixel and threshold),
references [29–31] apply the unsupervised clustering machine learning algorithms (K-
mean cluster or SVM), and references [11,13,32] adopt some advanced neural networks
(Deeplabv3, Mask-R-CNN, or U-Net). However, a comprehensive discussion is lacking,
challenging future studies on the choice of quantitative metric, available dataset, or qualita-
tive demonstration. This study reviews these studies with a methodical, replicable, and
transparent survey for future research and the corresponding community.

This study conducts a rigorous systematic literature review of semantic terrain segmen-
tation in the navigation vision of planetary rovers. The authors of [33,34] recommend the
systematic literature review as the approach for comprehensively implementing “Evidence-
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based Software Engineering” (EBSE). The EBSE emphasizes an evidence-based review
strategy to ensure methodological rigor [34]. The systematic literature review is a me-
thodical, replicable, and transparent survey that achieves robust and broad conclusions
and implications by summarizing, synthesizing, and evaluating individual studies [35].
The necessity of conducting this systematic literature review includes the following four
aspects: Firstly, the topic of this study is a specific application, while the narrative review
tends to survey a broad topic [36,37]. Secondly, the unified and precise criteria are the basis
for ensuring that study selection is comprehensive and fair, while the narrative review does
not require such criteria [36,37]. Thirdly, this study made a rigorous statistical analysis
of the Included Study, while a narrative review focuses on qualitative discussion [36,37].
Finally, it is essential to draw conclusions based on the statistical analysis to guide future re-
search, rather than relying on the authors’ subjective analysis and judgment in the narrative
review [36,37].

The contributions of this study can be summarized as below:

1. This study provides a methodical, replicable, and transparent survey for semantic ter-
rain segmentation in the navigation vision of planetary rovers. It provided robust and
broad conclusions and implications for communities by summarizing, synthesizing,
and evaluating individual studies.

2. This study discussed and summarized existing research results through a system-
atic literature review and accordingly proposed potential gaps and challenges for
future study.

3. As far as the authors are aware, this study is the first review and the first systematic
literature review on the topic of semantic terrain segmentation in the navigation vision
of planetary rovers.

The structure of this study is as follows: Section 2 describes the method of this
systematic literature review. Section 3 depicts the results of the review process. Section 4
discusses the research questions proposed in Section 2 and the limitations. The conclusion
is then presented in Section 5.

2. Method

This study adopts a rigorous systematic literature review following the guideline in
references [33,34] and uses references [34,38–41] as examples. This study has two objectives:
Firstly, to identify, classify, and summarize current studies. Secondly, to analyze and locate
the potential gaps and opportunities for future studies.

Figure 1 depicts the flow diagram for conducting this systematic literature review. The
search process is divided into three phases, the identification phase, the eligibility phase,
and the inclusion phase. Firstly, the identification phase identifies the candidate studies
from the three databases. Secondly, the eligibility phase applies the screening conditions
according to the inclusion and exclusion criteria. The quality assessment is conducted as
the last step of the eligibility phase. Finally, the inclusion phase classifies the Included Study
into three categories. The italic “Included Study” specifically represents the studies selected
after four screenings and one quality assessment.

This study defines three categories to classify the Included Study, and they are repre-
sented using the italic “Classical Image Processing-based study”, “Machine Learning-based
Study”, and “Deep Learning-based Study”. The classical image processing-based study
does not apply to the learning process. It is noteworthy that this study considers the
learning process to be the iteration to achieve a valid semantic segmentation. For example,
neural networks use iteration to update the computation graph [42], and SVMs apply
iteration to minimize loss [43]. Therefore, the classical image processing-based study refers
to the study whose semantic segmentation model does not require such iteration. The
machine learning-based study and deep learning-based study both require iteration in
the learning process. Although deep learning is generally considered a sub-discipline in
machine learning [44], this study separates the deep learning-based study into an indi-
vidual category using the iteration kernel. Deep learning has recently begun to dominate
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semantic visual segmentation [45,46], and Section 4.1.4 also indicates that the community’s
attention to the deep learning-based study increased significantly. Specifically, the deep
learning-based study refers to the study that uses the programmable iteration kernel, while
the machine learning-based study refers to the study that applies the unprogrammable
iteration kernel. For example, the neural network can be significantly different using differ-
ent layer combinations and structures [42], while the SVM can only choose a few options
(linear, polynomial, and sigmoid) [43].
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Figure 1. The flow diagram of this systematic literature review. The search process has been separated
into three phases, “Identification phase”, “Eligibility phase”, and “Inclusion phase”. The screening follows
the inclusion and exclusion criteria depicts in Section 2.3. The “n” in each frame refers to the number
of studies for the corresponding action or category.

2.1. Research Question

Table 1 describes the research questions (RQ) addressed by this study. The key re-
search question (KeyRQ) is divided into six sub-research questions (SubRQs), sub-research
question 1 (SubRQ1) to sub-research question 6 (SubRQ6). This study aims to determine
the current benefits and the future potential that computer vision and deep learning have
and can bring to semantic terrain segmentation. The KeyRQ is framed with the guideline
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of the PICOC criteria (population, intervention, comparison, outcome, and context) [33].
In the KeyRQ, The “navigation vision of the planetary rovers” refers to the population,
the “computer vision and artificial intelligence” refers to the intervention, the “What...?”
represents the comparison, the “achievements” stands for the outcome, and the “semantic
segmentation” refers to the context.

Table 1. The research questions addressed by this systematic literature review.

Index Content

KeyRQ What achievements do computer vision and artificial intelligence bring to
terrain segmentation in the navigation vision of planetary rovers?

SubRQ1 Why is terrain segmentation important for planetary explorations?

SubRQ2 What targets does current research pay attention to?

SubRQ3 What have visual sensors been applied to for obtaining data?

SubRQ4 What solution does current research have?

SubRQ5 What data have been used?

SubRQ6 What metrics have been utilized for evaluation?
The RQ, KeyRQ, and SubRQx refers to the research question(s), key research question, and sub-research question
x, and these terminologies are used throughout the entire study.

1) Sub-research question 1 (SubRQ1) addresses the importance of terrain segmentation
in planetary explorations from motivation and impact. This study addresses the
importance of terrain segmentation by summarizing the undergoing projects and
clarifying current research interests and motivations worldwide.

2) Sub-research question 2 (SubRQ2) then explores the targeting terrains in current
research and the corresponding reasons. It is important to locate the research targets
and corresponding reasons in current research because planetary exploration is a
highly unstructured environment.

3) Sub-research question 3 (SubRQ3) describes the data from the perspective of the sensor
and data format, which addresses the research scope from the aspect of hardware and
collected data.

4) Sub-research question 4 (SubRQ4) discusses the existing solutions and characteristics.
This study identifies the drawbacks of current research and achieves inspiration for
potential improvement.

5) Sub-research question 5 (SubRQ5) depicts the data availability from the perspective
of data science.

6) Sub-research question 6 (SubRQ6) addresses the evaluation metrics and corresponding
state-of-the-art performance.

2.2. Search Strategy

The identification phase includes the candidate studies into the scope of the systematic
literature review as comprehensively as possible. Three databases have been used, IEEE
Xplore [47], Web of Science [48], and Scopus [49], and the identification phase was com-
pleted in May 2022. There are two reasons for using these three databases: First, these three
databases cover most of the relevant literature. Second, these three databases all provide
advanced search functions based on logical operators, making retrieval comprehensive and
efficient. The specific search method is the keyword search in the advanced search function.

The search commands are designed the same in the three databases. The search
command consists of four parallel searching conditions using the “AND” logic operator,
and these four conditions correlate to the PICOC composition of the KQ (see Section 2.1). It
is noteworthy that “*” in the searching command refers to a wildcard. For example, search
command “terrain*” can refer to “terrain”, “terrains”, and “terrain”, plus other spellings.
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(i) The intervention, comparison, and outcome represent the specific details in studies,
which can only be achieved via full-text screening. Thus, this study left them to be
investigated in the full-text screening.

(ii) The context is divided and correlated into two conditions.

(ii-a) The first condition scopes the candidate study into terrain-targeted, correspond-
ing to the “terrain” in the context. It is noteworthy that rocks and sky are also
included in the terrain category because terrain is a vast concept. The authors
of [13,50] discuss the important semantic terrain in the navigation vision of
planetary rovers, claiming that various types of rocks play a critical role in
planetary exploration missions. Rock can be any concept related to rocks, such
as bedrock, rocks, etc. The sky also refers to the non-sky area (ground) and the
“skyline”. Skyline refers to the boundary between sky and non-sky regions.
Therefore, the first condition is searched for in the scope of the title, abstract,
and keywords, and the search command is “terrain* OR *rock* OR sky*”.

(ii-b) The second condition scopes the candidate study into segmentation-related,
corresponding to the “segmentation” in the context. Some studies only work
on terrain classification or path planning, which is not considered the proper
candidate study in the search strategy. The second condition is searched for
in the scope of the title, abstract, and keywords, and the searching command
is “segment*”.

(iii) The “Population” in KeyRQ is also divided and correlated into two conditions.

(ii-a) The third condition scopes the candidate study into planetary exploration-
related, corresponding to the “planetary rovers” in the population. Some
studies address autonomous car driving or moon detection, which is not
considered a valid candidate study in the search strategy. The third condition
is searched for in the scope of the title, abstract, and keywords, and the search
command is “planetary OR mars OR lunar OR Martian OR moon”.

(ii-b) The fourth condition scopes the candidate study into image or video data
format, corresponding to the “navigation vision” in the population. The fourth
condition is searched in the scope of the full-text, and the search command is
“image* OR vision OR visual”.

2.3. Inclusion and Exclusion Criteria

The exclusion and inclusion criteria refer to the “Eligibility phase” screening conditions
in Figure 1. The eligibility phase uses five screenings to select the Included Study from the
candidate studies. There are 320 candidate studies in the identification phase, consisting of
73 from IEEE Xplore, 64 from Web of Science, and 183 from Scopus.

1) Language screening: exclude non-English documents.

Non-English documents are prone to errors in reading and comprehension. Eight
candidate studies were screened, and 312 eligible studies were left.

2) Duplication and document type screening: remove duplicated documents and keep
only conference or journal publications.

There were 95 candidate studies screened, and 217 eligible studies were left.

3) The abstract and title screening: only screened according to the abstract and title

a) The screened study is not in computer vision or image processing scope.
Computer vision is the “Intervention” in the PICOC criteria [33] for the KeyRQ.

b) The studied scenario is not planetary exploration. Planetary exploration is
related to the “Population” in the PICOC criteria [33] for the KeyRQ.

c) The target is not related to terrain. This abstract and title screening removed
125 studies, and 92 studies were left.

4) The full-text screening: screened according to the full-texts, and the following four
types of results are removed:
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a) The data format is neither image nor video. Image and video are two typical
data formats from the passive visual sensor, while other data formats are very
different from what this study addressed.

b) The image or video neither consisted of color nor grayscale format. Some
studies use disparity images or infrared images, which are not in line with the
objectives of this review.

c) The study is not semantic terrain segmentation. Terrain segmentation refers to
the “Context” in the PICOC criteria [33] for the KeyRQ.

d) The camera is not the navigation vision of the planetary rovers. Some studies
use satellite or telescope images. This step removed 58 results, and 33 results
were left.

5) The quality assessment screening: screened according to the quality assessment result.

Section 2.4 designed the quality assessment criteria.

2.4. Quality Assessment

This study conducted the quality assessment following the guidance in reference [51],
and the quality assessment criteria can be found in Appendix A of reference [51]. Five
elements are assessed, the “theory robustness”, the “implication for practice”, the “method-
ology, data supporting arguments”, “generalizability”, and the “contribution plus a short
statement summarizing the article’s contribution” [51]. There are five levels to indicate the
assessment results:

a. “0” level stands for “Absence”, which refers to “the article does not provide enough
information to assess this criterion”.

b. “1” level stands for “Low”.
c. “2” level stands for “Medium”.
d. “3” level stands for “High”.
e. “Not applicable” level stands for “This element does not apply to the document

or study”.

2.5. Data Collection

The following information was extracted from every study involved in the search
process. The records of the extracted information were described in brackets. The “or”,
“and”, and “others” refer to single choice, multiple-choice, and omitted details, respectively.

• The title
• Digital object identifier (DOI)
• The authors
• The country of the corresponding author
• The publication time by year
• Publication type (conference, journal, or book)
• The source databases (IEEE Xplore, Web of Science, and Scopus)
• Main research topics (computer vision, image processing, planetary exploration, se-

mantic segmentation)
• Studied targets (terrain, rock, soil, craters-related terrain, hazard/safe area, obstacle,

horizon/skyline, shadow, sample tube, sky/ground, slippage, wheel sinkage, unknow,
and others)

• Data format (color image, gray image, infra-red spectrum image, or depth image)
• The research data source (customized dataset, specific public dataset, or unknown)
• The number of images in the research data source
• Sensor type (whether it is the rover navigation camera)
• Camera model (stereo camera, mono camera, or unknown)
• Classification of the research method according to Figure 1 (classical image processing-

based study, machine learning-based study, or deep learning-based study)
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• The details of the corresponding solution (edge detection, Canny operator, Deepv3+
model, superpixel, support vector machine, and others)

• The applied metrics and corresponding quantitative results
• The qualitative results (yes or no)
• The summary of research questions (see Sections 2.1 and 4.1)

The data collection takes the suggestions from references [33,34] and used refer-
ences [34,38–41,52,53] as examples.

3. Results
3.1. Search Results

Thirty studies are identified from the database search to be included for analysis.
Table 2 summarizes the details of the Included Study, while the quantitative results are listed
in Table 3.

Table 2. The details of the Included Study.

Ref. Year Terrain Fdata Scate Algorithm Sdata Nimg Quali. Quanti.

[9] 1998 obstacles depth IP. curve-based
localization

customized
data 2 No Position accuracy,

orientation accuracy

[54] 1999 rock gray IP. Brodatz filter customized
data N/A Yes No

[55] 2000 obstacles gray IP. illumination and
pixel height NASA Mars 100 No

SAB (the intersection of
segmentations A and B
divided by the union of
the two segmentations)

[56] 2001 terrains gray IP.
Feature

extraction and
fuzzy logic

customized
data N/A Yes No

[57] 2005 rock RGB ML. K-mean cluster customized
data 30 No Precision, recall,

localization

[58] 2006 rock gray ML. SVM
NASA Mars
Exploration

Rover “Spirit”
1 Yes No

[59] 2007 rock gray ML. K-mean cluster
NASA Mars
Exploration

Rover “Spirit”
150 Yes

Accuracy, recall,
precession, and chamfer

distance

[30] 2008 rock RGB ML. K-mean cluster N/A N/A Yes No

[29] 2010 rock gray ML. K-mean cluster customized
data N/A No No

[14] 2010 rock gray ML. K-mean cluster customized
data N/A Yes No

[60] 2011 terrains N/A ML. auto-regressive
(AR) model

customized
data 300 No

Euclidean distance,
Martin’s distance, KDF
on the Stiefel manifold

[61] 2012 terrains N/A ML. auto-regressive
(AR) model

customized
data 300 No

Kullback–Leibler (K-L)
distance, cepstral

distance, the distance
based on the feature

vector

[26] 2012 rock gray ML. Superpixel and
K-mean cluster

NASA Moon
image set 40 Yes

Inference time, accuracy,
boundary error,

precision, and recall

[62] 2013 skyline gray ML. Canny, SIFT, and
SVM

customized
data 10 Yes Time and accuracy

[26] 2013 rock gray IP. OTSU algorithm,
Canny, and TDEL

customized
data 1 No No

[28] 2013 rock gray IP. Mean-shift
algorithm NASA Mars 10 Yes No
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Table 2. Cont.

Ref. Year Terrain Fdata Scate Algorithm Sdata Nimg Quali. Quanti.

[31] 2013 sky gray DL. K-mean cluster NASA Mars 1,482 Yes

True-positive rate (TPR),
false-positive rate (FPR),
and receiver operating

characteristic (ROC)

[63] 2016 rock gray DL. Canny operator
and regroup NASA Mars 14 Yes Time, memory footprint

[27] 2017 skyline gray ML.

Sobel and a
multivariable
thresholding

method

NASA Mars
“Opportunity” 243 Yes Customized criteria:

Good, okay, or poor

[32] 2019 rock RGB DL. modified U-Net Devon dataset 400 Yes F-score and parameters

[10] 2019 rock gray DL.

gradient-region
constrained level

set method,
evolution

function, and
minimization of

the overall energy
functional using

the standard
gradient descent

method

NASA Mars N/A Yes No

[64] 2020 rock RGB DL. Deeplabv3+ ESA Katwijk 50 Yes Accuracy and IoU

[11] 2021 sample
tube RGB DL. Mask-R-CNN customized

data 824 Yes

Average precision (AP),
average recall (AR),
precision-recall (PR)

curves

[65] 2021 sky and
ground RGB DL. NI-U-Net ESA Katwijk 22,000 Yes

Accuracy, precision,
recall, dice score (F1),
misclassification rate

(MCR), root mean
squared error (RMSE),
and intersection over

union (IoU)

[13] 2021 terrains gray DL. Deeplabv3+ NASA Mars
rover images 35,000 No Accuracy

[66] 2021 obstacles RGB DL. Mask-R-CNN
NASA Mars

data and
OAISYS

generated data
many Yes IoU

[67] 2021 rock gray DL. NI-U-Net++ ESA Katwijk 14,000 Yes Accuracy, IoU, dice
score, RMSE

[68] 2021 terrains RGB DL. FCNN NASA
Curiosity 32,000 Yes Confusion matrix

[69] 2021 obstacles gray DL. Deeplabv3+ ESA Katwijk 22,000 Yes Accuracy and IoU

[70] 2022 terrains gray DL. modified
Deeplabv2

NASA Mars
data and
Mars-Seg
dataset

5000 Yes Mean Intersection over
Union (mIoU)

Regarding the first row, the “Ref.”, “Year”, “Fdata”, “Scate”, “Sdata”, “Nimg”, “Quali.”,
“Quanti.” refer to the reference index, publication time by year, data format, classification
of the research method according to Figure 1, research data source, number of images in
the research data source, qualitative results, as well as applied metrics and corresponding
quantitative results, respectively. Regarding the tabular content, the “IP.”, “ML.”, “DL.”,
and “N/A” refer to the classical image processing-based study, machine learning-based
study, deep learning-based study, and not-applicable.
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Table 3. The applied methods and quantitative results of the Included Study.

Ref. Method Quantitative Results

[29] K-mean cluster Not given

[26] Super-pixel with entropy rate-based
segmentation

(1) Speed = 12 s/image (5 super-pixels); (2) Accuracy = 81.95% (26 images
have accuracy more than 80%); (3) Average boundary error = 13.34 pixels

(29 images have error less than 15 pixels); (4) Precision = 0.25–1;
(5) Recall = 0.45–1.

[64] Deeplabv3+

Semantic terrain segmentation is only a part of the entire study. Some
indirect results in the eventual 3D semantic map: (1) Data01: Accuracy =

96% and IoU = 0.58; (2) Data02: Accuracy = 90% and IoU = 0.21;
(3) Data03: Accuracy = 95% and IoU = 0.36.

[59] SVM (1) Accuracy = 97.3%; (2) The standard deviation of Recall = 0.2–0.3;
(3) the standard deviation of Precision = 0.2–0.3.

[11] Mask-R-CNN (1) Average precision = 0.918; (2) Average recall [0.5:,0.05:,0.95] = 0.575.

[30] K-mean cluster and histogram Not given

[27] Sobel operator and gradient-based
multi-threshold horizontal detection (1) Default threshold: 88.9%; (2) Adjust threshold: 98.3%.

[56] Feature extraction and roughness
calculation Not given

[13] Deeplabv3+

(1) NavCam-Merged: Accuracy = 96.67%; Individual accuracy = Soil:
96.00%, Bedrock: 90.87%, Sand: 96.51%, Big rock: 82.83%.

(2) NavCam-Random: Accuracy = 94.97%. Soil: 99.10%, Bedrock: 94.90%,
Sand: 93.45%, Big rock: 93.24%.

[57] K-mean cluster and Beyers network (1) Precision = 0.65–0.87; (2) Recall = 0.05–0.72; (3) Localization = 0.17–0.42.

[9] Curve-based localization (1) Position accuracy = 5 and 20 cm; (2) Orientation accuracy = 5 degree.

[55] Altitude and brightness (1) SAB = (manual) 0.68; (2) SAB = (automatic) 0.34.

[54] Brodatz filter Not given

[28] Mean-shift algorithm Not given

[62] Canny, SIFT, and SVM

(1) Dynamic Programming (DP) and Canny: Time = 14.35–39.49 s;
Accuracy = (total error percentage) 0.07–72.50%; (2) DP and Maximally

Stable Extremal Edges (MSEE): Time = 22.96–43.87 s; (3) Accuracy = (total
error percentage) 0.07–51.16%.

[63] Canny operator (1) Time = 600–900s (image resolution is 1000 × 1000);
(2) Maximum memory footprint = 4 MB.

[31] K-mean cluster and neural networks (1) TPR (True-Positive rate) = 0.9886;
(2) FPR (False-Negative rate) = 4.0461 × 10−4.

[32] Modified U-Net F-score = 78.5% (1,939,170parameters).

[10]

Gradient-region constrained level set
method, evolution function, and

minimization of the overall energy
functional using the standard gradient

descent method

Not given

[65] Modified U-Net (NI-U-Net)

(1) Accuracy = 99.232%; (2) Precision = 99.211%; (3) Recall = 99.221%;
(4) Dice score (F1) = 99.104%; (5) Misclassification rate (MCR) = 0.0077;

(6) Root mean squared error (RMSE) = 0.0427; (7) Intersection over union
(IoU) = 0.98223.

[71] OTSU algorithm, Canny operator, and
template dilatation edge linking (TDEL) Not given

[61] Autoregressive (AR) model (1) Kullback–Leibler (K-L) dist.: 96.4%; (2) Cepstral dist.:94.6%;
(3) The dist. based on the feature vector: 93.5%.
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Table 3. Cont.

Ref. Method Quantitative Results

[60] Autoregressive (AR) model

(1) Dynamic texture: Euclidean dist. = 89.9–94.5%;
Martin’s dist. = 91.1–96.3%; KDF on the Stiefel manifold = 0.4–70.8%.

(2) Static texture: Euclidean dist. = 97.8–99.5%; Martin’s dist. = 99.3–99.9%;
KDF on the Stiefel manifold = 81.8–97.6%.

[14] K-mean cluster Not given

[58] K-mean cluster Not given

[66] Mask-R-CNN (1) IoU (sand) = 0.8139; (2) IoU (gravel) = 0.8138;
(3) IoU (Dried mud) = 0.4117; (4) IoU (sky) = 0.9066.

[70] Modified deeplabv2 mIoU (ISPRS dataset) = 54.34; mIoU (Aerial) = 48.25;
mIoU (Mars-Seg) = 64.76.

[67] Modify U-Net++ (NI-U-Net++) Katwijk dataset: (1) Accuracy = 99.58%; (2) IoU = 74.76; (3) Dice = 0.8556;
(4) RMSE = 0.0557.

[68] Fully convolutional neural networks
(FCNN)

(1) Confusion matrix; (2) Accuracy (loose sand) = 62.6%; (3) Accuracy
(small rocks) = 88.6%; (4) Accuracy (bedrock) = 68.1%; (5) Accuracy

(outcrop) = 56.4%; (6) Accuracy (large rocks) = 73.2%; (7) Accuracy (sand
dune) = 45.3%; (8) Accuracy (dense ridge) = 83.7%; (10) Accuracy

(background) = 94.8%.

[69] Deeplabv3 Accuracy = 98.7%; IoU = 0.282.

The “Ref.” refers to the reference index. The “Method” column describes the method used in the corresponding
study, and many deep learning methods are modified from recent studies. The following is the documen-
tation of these existing studies in favor of further exploration. The details of “Deeplabv2”, “Deeplabv3+”,
“Mask-R-CNN”, U-Net, U-Net++, and “Fully convolutional neural networks (FCNN)” can be found in
references [46,72–76], respectively.

The search results are depicted using five distributions. Section 3.1.1 uses the distribu-
tion by time (year) to indicate the trend of interest in history. Section 3.1.2 addresses the
distribution by type to evaluate the research progress of semantic terrain segmentation
because the conference and journal studies refer to different research statuses. Section 3.1.3
analyzes the distribution by geographical countries, considering that the planetary explo-
ration is usually supported by government projects. The distribution by the publisher
is addressed in Section 3.1.4 to identify the interest in different communities. Finally,
Section 3.1.5 discusses the distribution by the experimental setting, which is essential for
reimplementation for future studies.

3.1.1. Distribution by Time

The distribution by time (year) indicates the increasing trend of the new Included Study
per year, which shows that interests change in the community (see Figure 2). Figure 2a
shows the new studies per year, and the publication time can be found in Table 2. Figure 2b
presents the cumulative number of the Included Study. Firstly, there was an intensive
increase between 2010 and 2013, and nine studies were published. Chinese Moon landing
(Chang’E [77]) and lunar rover (Yutu [78]) projects contribute to the increase of studies
during this period. Five corresponding affiliations of the nine studies are from China
(refs. [14,26,28,29,71]) and two from Japan (refs. [60,61]). Secondly, the newly Included Study
attaches the maximum number compared throughout the period in 2021. The reason may
be related to the two successful Mars rovers from the United States of America (USA)
and China. The time distribution shows the incremental attention to the semantic terrain
segmentation, and planetary exploration projects closely influence the new studies.
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3.1.2. Distribution by Study Type

This section analyzes the distribution of the Included Study by type. The conference
usually presents the primary findings, and the journal addresses the systematic results.
The conference findings can be considered the previous step of journal achievements [79].
However, references [79,80] claim that conference findings in computer science tend to-
wards a rapid communication approach instead of only primary findings. The peer-review
process for conferences is usually faster than journals, which can flexibly respond to rapid
developments. As an interdisciplinary topic, many computer science techniques are widely
utilized in semantic terrain segmentation (for example, image processing, machine learning,
and deep learning). Figure 3 indicates the distribution by study type (conference findings
or journal achievements). The number of conference findings is double that of journal
achievements, indicating that semantic terrain segmentation in the navigation vision of
planetary rovers is constantly developing.
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3.1.3. Distribution by Geographical Location

Planetary exploration is an expensive activity usually sponsored by government
investment [81]. Table 4 depicts the distribution by geographical location, and location is
determined according to the affiliations of the corresponding author. The USA contributes
the most (more than 40%) to the Included Study, and China is second (about 30%). The
Included Study is only originated from three continents in the Northern Hemisphere (North
America, Europe, and Asia) with regards to the distribution by continent. Interestingly,
seventy percent of Asian studies were published between 2010 and 2013, which might
be influenced by the Moon landing activity [77,78]. Furthermore, although not many
studies are directly affiliated with Europe, they bring significant impacts considering their
extensive and international cooperation [82].
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Table 4. The geographical distribution by location (country and continent) in the Included Study.

Country USA Mexico UK Italy Germany France China Japan

The number of studies 13 1 2 2 1 1 8 2

Continent North America Europe Asia

The number of studies 14 6 10

3.1.4. Distribution by Publisher

Figure 4 illustrates the distribution by publisher. The publisher has its reader and
author groups—whom the studies are published by indicate the interests of the correlated
community. The IEEE aerospace conference archives contain the highest number (four
studies), while the Included Study is divided between approximately 27 publishers. Figure 4
indicates that the interested community is widely divided into various subjects, including,
but not limited to, robotics, artificial intelligence, computer vision, navigation, remote
sensing, environment, automation, mathematics sensor, and aerospace.
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3.1.5. Distribution by the Experimental Setting

Reimplementation is a common challenge for current research [83]. Reimplementation
consists of duplicating the proposed solution in the corresponding study, which is essential
for justifying the contribution and novelty in future studies. A common approach for
justifying the contribution and novelty is to compare the proposed results with existing so-
lutions in a comparable experimental setting. Furthermore, some studies may contribute to
transferring the existing solutions from one scenario to another. Providing the significantly
helpful experimental setting for reimplementation, which can also improve the reliability
by notifying readers of the preconditions of the results. This study takes the experimental
setting as either the hardware or the software conditions. Figure 5 indicates the ratio be-
tween experimental settings provided and not provided in the Included Study., and Table 5
depicts the reference list of the distribution in Figure 5. Notably, fifty percent of the Included
Study do not provide the experimental setting, which can cause significant difficulties in
reimplementing the corresponding solution and decrease the reliability of results.
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Table 5. The reference list of the distribution by the experimental setting.

The Condition of the Experimental Setting Ref.

Provided [13,14,26,29,32,55,59,62,63,65–68,70,71]

Not provided [9–11,27,28,30,31,54,57,58,60,61,64,69]
The “Ref.” column refers to the reference index of the study.

3.2. Quality Evaluation

The quality evaluation applies the quality assessment criteria in reference [51] (de-
picted in Section 2.4), and the quality assessment results are depicted in Table 6. The quality
evaluation only considers studies with the “Sum in points” of less than eight as the included
study. Therefore, the quality evaluation excludes the studies of references [77,84,85].
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Table 6. The results of the quality assessment in the Included Study.

Ref. Theory
Robustness

Implication for
Practice

Methodology,
Data Supporting

Arguments
Generalizability

Contribution Plus a
Short Statement

Summarizing the
Article’s Contribution

Sum in Points

[29] 2 2 2 1 1 8

[26] 2 2 3 3 3 13

[64] 2 2 2 2 2 10

[59] 3 3 3 3 3 15

[11] 3 3 3 3 1 13

[30] 2 3 3 3 1 12

[27] 2 2 3 2 1 10

[56] 2 2 2 2 1 9

[13] 3 3 3 3 3 15

[57] 1 2 3 2 1 9

[9] 2 2 2 2 1 9

[55] 1 2 2 2 1 8

[54] 3 2 2 2 1 10

[28] 3 2 2 2 2 11
[77] 1 2 1 1 1 6
[62] 3 2 2 2 1 10

[63] 2 3 3 3 1 12

[31] 2 2 2 2 1 9

[32] 2 3 2 3 1 11
[84] 1 1 2 1 1 6
[10] 3 3 2 2 1 11
[85] 0 2 2 2 1 7
[65] 3 2 3 2 3 13

[71] 3 2 2 2 2 11

[61] 2 2 2 1 1 8

[60] 2 2 2 1 1 8

[14] 2 2 2 1 1 8

[58] 2 2 2 2 1 9

[66] 3 3 3 3 3 15

[70] 3 3 3 3 3 15

[67] 3 3 3 2 3 14

[68] 3 3 3 3 3 15

[69] 3 2 3 2 3 13

The “Ref.” refers to the reference index. The “Theory robustness”, “Implication for practice”, “Methodology, data
supporting arguments”, “Generalizability”, and “Contribution plus a short statement summarizing the article’s
contribution” columns apply the quality assessment criteria in reference [51]. The “0”, “1”, “2”, “3”, and “Not
applicable” refer to the level of absence, low, medium, high, and not applicable, respectively. The “Sum in points”
column refers to the accumulated points of the five quality assessment items. The shading rows refer to the
excluded studies by the quality evaluation.

4. Discussion

This section describes the potential research gaps and challenges through the KeyRQ
and SubRQs. Firstly, Section 4.1 extensively discusses the six SubRQs. Then, Section 4.2
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depicts the answer to the KeyRQ. Finally, the limitations of this study are addressed in
Section 4.3.

4.1. The Answer to the Sub-Research Questions
4.1.1. SubRQ1: Why Is Terrain Segmentation Important for Planetary Explorations?

Semantic terrain segmentation is a basic function for planetary exploration missions
that supports the building of many practical applications in practice. Table 7 divides
the field of application in the Included Study into four categories: navigation, geological
analysis, exploration efficiency, and other particular purposes (finding water or returning
Mars samples).

Table 7. The classification of the field of application in the Included Study.

The Field of Application Ref.

Navigation [9,13,14,26,29,31,55,60–62,65–69,71,85]

Geological analysis [10,26,28,30,32,58,70]

Exploration efficiency [13,27,54,55,57,59,63–65,67]

Other particular purposes [10,11,54]
The “Ref.” refers to the reference index.

More than half of the Included Study addressed navigation. Current planetary rovers
rely mostly on remote control from Earth bases, while an autonomous navigation system
only works under minimal conditions and periods [13]. As the mission distance increase,
the planetary rovers increasingly require safer, more real-time, and more accurate naviga-
tion systems [29,86,87]. However, according to the experience of Earth-based navigation,
intelligent navigation relies highly on semantic information [13]. Therefore, exploring se-
mantic segmentation technology for planetary rovers is essential. The navigation category
covers the broad scopes of regular rover navigation, path planning, obstacle avoidance,
and autonomous navigation.

Geological analysis is another critical mission for planetary exploration, and Table 7
indicates that about 20% of the Included Study focused on geological analysis. For exam-
ple, studying geographies from other planets can help us understand the history and
development of the Earth [28]. Some studies analyze geological information to trace the ex-
isting water on the planet [8]. However, most geological analyses are conducted manually
through remote communication [28]. The data acquisition speed has increased dramatically
and is faster than the manual analysis speed [28]. Some geological information is sequenced,
which might occur in different spots and timestamps within the rover missions [28]. Thus,
it is easy to miss important geological information during planetary rover operations [59].
One solution is to analyze the data automatically, and another is to select the important
data and filter the unimportant data for human researchers. Both of them rely strongly
on semantic information. The “important” should correspond to the specific mission, for
example, rocks for reference [30] and water for reference [8].

4.1.2. SubRQ2: What Targets Does Current Research Pay Attention To?

The studied targets in the Included Study involve the sample tube, terrains, obstacle,
skyline, sky (and ground), and rock (the sample tube is the target of reference [11] in
the Included Study). Figure 6 illustrates the ratio of these studied targets, and Table 8
depicts the reference list to corresponding targets in Figure 6. Terrains refer to studies
focusing on multiple instead of one terrain. Obstacles target obstacle avoidance, which
only concerns whether the path could pass the target. Skyline is a similar target to the sky
(and ground). Sky and ground are two common semantic labels in planetary exploration,
and the boundary between sky and ground refers to the skyline. The skyline can be used to
identify the rover’s location by matching the skylines and measuring the rover’s position.
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Sky and ground regions can also be used for further processes. Rock is a very common
target in the Included Study, and 54% of studied targets are rocks.
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Table 8. The reference list to corresponding targets in Figure 6.

Target Ref.

Sample tube [11]

Terrains (include craters) [13,56,60,61,68,70]

Obstacle [9,55,66,69]

Skyline [27,62]

Sky and ground [31,65]

Rock [10,14,26,28–31,54,57–59,63,64,67,71]
The “Ref.” column refers to the reference index of the study.

Although 54% of the Included Study targeted rock, rock segmentation is still challeng-
ing. Rocks have significantly different appearances, and it is challenging to use unified
properties to identify the background and rocks [59]. However, identifying the rocks in
the navigation vision is essential for path planning and geological analysis. The shape,
weathering, and location of rocks contain information on the environmental properties and
historical processes. Therefore, it is necessary to segment rocks to identify their geological
properties [59].

4.1.3. SubRQ3: What Have Visual Sensors Been Applied to for Obtaining Data?

Sensors can be classified into two categories, exteroceptive and proprioceptive sen-
sors [13,88]. The exteroceptive sensors conduct localization using the data from the sur-
rounding environment. The exteroceptive sensors are not suited for planetary rover auton-
omy, which includes global navigation satellites, range sensors, vision sensors, 3D to 2D
perspective projection, and vehicular network sensors. (1) Planetary rover exploration is
a global navigation satellite system-denied scenario [89]. (2) The range sensors (like laser
scanners and radar) are heavy in weight with high energy consumption, which can increase
the load of the planetary rover. (3) The 3D to 2D perspective projection relies on the knowl-
edge of the camera parameters and transformation matrix, which is only measurable when
the image is in focus. Planetary exploration is a complex environment with challenging
illumination, noise, and reflection conditions, which decreases the reliability of 3D to 2D
perspective projection. However, the vision sensor (like a camera system) is lightweight,
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has low energy consumption, and has robust working requirements, and this study only
addresses vision-based sensors (camera system).

The proprioceptive sensors rely on internal measurements (such as velocity and
steering angle). The proprioceptive sensors contain vehicle motion sensors and inertial
sensors. The proprioceptive sensors are used as a data fusion to support the localization
task. However, this review concentrates on the aspect of visual semantic segmentation,
while the proprioceptive sensors are not within the scope.

Therefore, the sensors are limited to the stereo camera and monocular camera, which
are passive optical camera systems. Figure 7a indicates the distribution of sensors in the
Included Study, and Table 9 depicts the study of the distribution by camera model as in
Figure 7a. The stereo image pairs refer to the data obtained from the stereo camera system,
while the monocular images refer to the data from the monocular camera. Furthermore,
80% of monocular images are utilized in the Included Study, and only 20% apply stereo
image pairs. The multi-camera system has higher power consumption and device weight,
and this distribution indicates that the navigation system of the planetary rovers would
most likely prefer a mono-camera system instead of a stereo.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 32 
 

 

 

Figure 7. The distribution by camera model and image format in the Included Study. (a) Refers to the 

ratio of the monocular camera model in the Included Study. (b) Refers to the distribution by image 

format in the Included Study. 

Table 9. The study of the distribution by camera model in Figure 7a. 

Camera model Ref. 

Stereo [9,14,29,55,64,69] 

Mono [10,11,13,26–28,30–32,54,56–63,65–68,70,71] 

Figure 7b and the “Fdata” column in Table 2 further analyze the distribution by the 

image type in the Included Study, and Table 10 indicates the study of the distribution by 

image format in Figure 7b. The grayscale image refers to only one channel image, while 

the color image refers to the three-channel image (red, green, and blue channels). Depth 

image comes from the stereo camera, which can be calculated from the disparity image. 

Sixty-three percent of the Included Study used the grayscale image because most infor-

mation of the visual signal can be well-contained using grayscales. Depth image usually 

requires considerable memory and computation power, and only 3% of the studies ap-

plied it. 

Table 10. The study of the distribution by image format in Figure 7b. 

Image Format Ref. 

Grayscale image [10,13,14,26–29,31,54–56,58,59,61–63,67,70,71] 

Color image [11,30,32,57,64–66,68] 

Depth image [9] 

Unknow [60,69] 

The “Ref.” column refers to the reference index of the study. 

4.1.4. SubRQ4: What Solution Does Current Research Have? 

This section further classifies the methods in the included study as the classical image 

processing-based study, machine learning-based study, and deep learning-based study. 

The classical image processing-based study refers to the traditional methods. This review 

classifies any study without applying machine learning or deep learning method as the 

classical image processing-based study. The attribute for machine learning and deep 

learning is learning, which corresponds to the iteration process. In other words, the image 

processing method has no iteration for the purpose of segmentation. Deep learning is usu-

ally considered a subject of machine learning. However, since Hinton proposed the deep 

belief networks (DBN) in 2006 [90], the deep network-based method has accomplished 

significant achievements in various sectors [91–94]. Therefore, this review separates the 
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Table 9. The study of the distribution by camera model in Figure 7a.

Camera Model Ref.

Stereo [9,14,29,55,64,69]

Mono [10,11,13,26–28,30–32,54,56–63,65–68,70,71]

Figure 7b and the “Fdata” column in Table 2 further analyze the distribution by the
image type in the Included Study, and Table 10 indicates the study of the distribution by
image format in Figure 7b. The grayscale image refers to only one channel image, while
the color image refers to the three-channel image (red, green, and blue channels). Depth
image comes from the stereo camera, which can be calculated from the disparity image.
Sixty-three percent of the Included Study used the grayscale image because most information
of the visual signal can be well-contained using grayscales. Depth image usually requires
considerable memory and computation power, and only 3% of the studies applied it.
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Table 10. The study of the distribution by image format in Figure 7b.

Image Format Ref.

Grayscale image [10,13,14,26–29,31,54–56,58,59,61–63,67,70,71]

Color image [11,30,32,57,64–66,68]

Depth image [9]

Unknow [60,69]
The “Ref.” column refers to the reference index of the study.

4.1.4. SubRQ4: What Solution Does Current Research Have?

This section further classifies the methods in the included study as the classical image
processing-based study, machine learning-based study, and deep learning-based study.
The classical image processing-based study refers to the traditional methods. This review
classifies any study without applying machine learning or deep learning method as the
classical image processing-based study. The attribute for machine learning and deep
learning is learning, which corresponds to the iteration process. In other words, the image
processing method has no iteration for the purpose of segmentation. Deep learning is
usually considered a subject of machine learning. However, since Hinton proposed the
deep belief networks (DBN) in 2006 [90], the deep network-based method has accomplished
significant achievements in various sectors [91–94]. Therefore, this review separates the
deep learning-based study as an individual category. This review distinguishes the machine
learning-based study or deep learning-based study through the operation kernel of the
solution. If the kernel is requires programming, then the study belongs to the deep learning-
based study. Otherwise, it belongs to the machine learning-based study.

The “Scate” and “Algorithm” columns in Table 2 list the statistical results of the method
classification and the specific algorithm used in the corresponding Included Study. The “ip”,
“ml”, and “dl” in the “Solution category” column refer to the Classical Image Processing-
based Study, Machine Learning-based Study, and Deep Learning-based Study, respectively. It is
noteworthy that the “SIFT”, “SVM”, “TDEL”, and “UNet” in the “Algorithm” column refer
to the spatial invariant feature transform, support vector machine, template dilatation edge
linking [71], and U-shaped network [74], respectively.

Figure 8 illustrates the relationships and classification rules among the three proposed
categories for the Included Study in Section 2. Thus, Figure 8 firstly applies the discriminant
condition of “whether the Included Study applied the iteration process for the terrain
segmentation purpose?” The “No” studies go to the “Classical Image Processing-based Study”,
and the “Yes” studies introduce the second discriminant condition. The second discriminant
condition is “whether the iteration kernel of the Included Study is programable?” The “No”
studies go to the “Machine Learning-based Study”, and the “Yes” studies go to the “Deep
Learning-based Study”. It is noteworthy that the classification rules for the proposed three
categories in Figures 1 and 8 are only valid under the conditions of this review.
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Figure 9 illustrates the accumulation trend of Classical Image Processing-based Study,
Machine Learning-based Study, and Deep Learning-based Study in the Included Study. The
specific publication date can be found in Table 2. The number of Classical Image Processing-
based Studies increased in 1998, 1999, 2000, 2011, 2012, 2015, and 2016, while the slopes
are slight. The number of Machine Learning-based Studies increased from 2004 to 2013, and
the slopes are more significant. The number of Deep Learning-based Studies has rapidly
increased since 2018. Figure 9 indicates that extending the machine learning and deep
learning technologies to planetary exploration is delayed. The DBN was proposed in 2006,
while the rapid related study attempted deep learning 11 years later (in 2018). Although
the accumulated studies using deep learning are lower than for the Machine Learning-
based Study, their increasing slope is significantly high. Deep Learning-based Studies caught
up with the number of Classical Image Processing-based Studies in only four years. It is
reasonable to expect that the Deep Learning-based Study can contribute further semantic
terrain segmentation contributions.
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The learning-based studies can be divided into supervised and unsupervised learn-
ing [95]. The training process of supervised learning depends on the difference between
the prediction and ground-truth label, and the loss function measures their difference. In
contrast, unsupervised learning is usually used in difficult-to-label cases. The unstruc-
tured environment in planetary exploration is difficult to label, which seems to be suited
for unsupervised learning. Twenty-six percent of the Included Study used unsupervised
learning (K-mean cluster and SVM), while their performance is not compatible enough
with supervised learning (see Table 3 for the method of the Included Study). For example,
the precision in reference [59] is only about 65%, while reference [65] achieved precision of
more than 99% (see Table 3 for the quantitative results). Rock-based terrain segmentation is
a typical difficult and unstructured environment, highly influenced by irregular and chang-
ing rock texture, size, and outline. Supervised learning requires many pixel-level labels,
and manual annotation efficiency is low and human error is easily introduced. Therefore, it
is promising to utilize transfer learning and weak supervision. For example, the transfer
learning in reference [65] applied synthetic data to achieve prior knowledge, and then only
little labeling is required to fine-tune the prior knowledge. Moreover, reference [67] utilized
weak supervision to significantly decrease human error and labeling difficulty by using the
proposed “conservative annotation method”, and cooperating with transfer learning.

4.1.5. SubRQ5: What Data Have Been Used?

Data are one of the essential driving powers for artificial intelligence technologies [96].
Data are also an essential factor for research reimplementation. The “Sdata” and “Nimg”
columns in Table 2 list the source data used and the number of images, respectively.
Figure 10a uses a pie chart to classify the used dataset as the open dataset, private data,
and unknown, and Table 11 indicates the study of the distributions by dataset types as
in Figure 10a. The open dataset refers to the data available online, while the private data
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refers to the source data that are not available to the public. Sixty percent of data utilized
in the Included Study were open-source data, or their source data are open. Figure 10b
further analyzed the distribution by the number of images in the source data. Table 12
shows the distributions’ study by the number of images in Figure 10b. Fifty-three percent
of open-source datasets have less than 1000 images, indicating that the available data for
planetary exploration research is not much. Although past planetary rovers provided many
images or videos, they are unlabeled raw data, which are difficult to use directly.
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Figure 10. The distributions by dataset types and the number of images in the Included Study.
(a) Refers to the distribution by dataset type, and (b) refers to the distribution by the number of
images in the source data.

Table 11. The study of the distributions by dataset types in Figure 10a.

Dataset Type Ref.

Open dataset [13,26–28,31,32,55,58,63–70]

Private data [9,11,14,29,54,56,57,60–62,71]

Unknown [30]
The “Ref.” column refers to the reference index of the study.

Table 12. The study of the distributions by the number of images in Figure 10b.

The Number of Images Ref.

unknown [10,14,29,30,54,56]

≤100 [9,26,28,55,57,58,63,64,71]

100–1000 [11,27,32,59–61]

1000–10,000 [31,70]

>10,000 [13,65–69]
The “Ref.” column refers to the reference index of the study.

Figure 11 illustrates the usage of the open datasets in the Included Study, and Table 13
depicts the study of the open datasets in Figure 11. The NASA image set [97] is the most
popular dataset, while the European Space Agency (ESA) Katwijk beach planetary rover
navigation dataset [98] is second. The data in the NASA image set are individual images,
while the ESA Katwijk dataset provided the navigation video.
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Figure 11. The number of open datasets in the Included Study. The “NASA”, “Katwijk”, and “Devon”
refer to the NASA image set of Mars Exploration Rovers, the Katwijk beach planetary rover dataset,
and the Devon Island rover navigation dataset, respectively.

Table 13. The study of the open datasets in Figure 11.

Open Dataset Ref.

NASA [10,13,26–28,31,55,58,59,63,66,68,70]

Katwijk [64,65,67,69]

Devon [32]
The “Ref.” column refers to the reference index of the study.

4.1.6. SubRQ6: What Metrics Have Been Utilized for Evaluation?

The “Quanti.” column in Table 2 lists the evaluation metrics in the Included Study,
including accuracy, precision, recall, Dice score (F1), IoU, and inference time. The qualitative
results refer to the visualization, providing intuitive sense to readers. The “Quali.” column
in Table 2 lists the situation of the qualitative results. The “Yes” and “No” refer to the
qualitative results that are provided and not provided, respectively. Table 3 depicts the
numerical results of the “Quanti” column in Table 2. It is noteworthy that the absolute
values of these quantitative results are not comparable because they are achieved from
different environments, source data, and experimental settings.

Equations (1)–(5) refer to accuracy, precision, recall, Dice score (F1), and IoU, re-
spectively [95]. The character “N” refers to the number of samples in the corresponding
category. The subscripts “TP”, “TN”, “FP”, and “FN” refer to true-positive, true-negative,
false-positive, and false-negative categories, respectively. The “T” and “F” stand for “true”
and “false” in the predictions, while “P” and “N” stand for “positive” and “negative”
in the ground-truth labels. The accuracy represents the rate of correct predictions in all
samples. The precision refers to the rate of correct true-predictions in the positive samples.
The recall is the rate of correct (true and false) predictions in the positive samples. The IoU
is a popular metric in image segmentation research.

Accuracy =
NTP + NTN

NTP + NTN + NFP + NFN
(1)

Precision =
NTP

NTP + NFP
(2)

Recall =
NTP

NTP + NFN
(3)
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ice score = 2 × Precision × Recall
Precision + Recall

=
2 × NTP

NTP + NFP + NTP + NFN
(4)

Intersection over Union (IoU) =
NTP

NTP + NFP + NFN
(5)

Accuracy (Equation (1)) indicates correct prediction among all pixels, an overall
indicator for terrain and background predictions. Precision (Equation (2)) indicates the
correct ratio within the predicted terrain pixels, and recall (Equation (3)) indicates the
correct ratio within terrain pixels in the ground truth. The Dice score (Equation (4)) uses
one value to cover both recall and precision. Any small recall or precision can cause the
Dice score to result in a large value. IoU (Equation (5)) can prevent a skew prediction that
all predictions are terrain pixels to achieve high precision.

4.2. The Answer to the KeyRQ: What Achievements Do Computer Vision and Artificial Intelligence
Bring to the Terrain Segmentation in the Navigation Vision of Planetary Rovers?

This study summarizes the answer to the KeyRQ into the following four attributes
consisting of data, solution, application, and performance.

1) Three prior open datasets and four new datasets are found in the Included Study
because of the promotion of computer vision and artificial intelligence, and the
new datasets brought more inspiration and possibility to future studies. The prior
datasets are the NASA image album [99], the ESA Katwijk beach planetary rover
navigation dataset [98], and the Devon Island rover navigation dataset [100]. The
newly proposed datasets refer to the conservative annotation dataset [65], the synthetic
rock segmentation dataset [67], the generated OAISYS dataset [66], and the Mars-Seg
dataset [70]. It is noteworthy that the newly proposed datasets all applied the prior
datasets as sources to create new data.

2) The computer vision and artificial intelligence findings are widely utilized in the In-
cluded Study (see Table 3 for details). The K-mean cluster, Deeplab family, U-Net family,
Mask-R-CNN family, and classical image processing algorithms made considerable
contributions to the semantic terrain segmentation topic.

3) The Included Study is used for many practical applications. For example, reference [29]
applied the K-mean cluster to ensure safe wandering for the planetary rover; ref-
erence [11] utilized Mask-R-CNN to support the Mars sample return mission; and
reference [28] used the mean-shift algorithm for geological analysis.

4) The Included Study claimed that they achieved superior performance by applying
different computer vision and artificial intelligence technologies. Table 3 describes
the details from the perspective of metrics, while accuracy and IoU are the most used
criteria for performance. For example, reference [67] achieved accuracy of 99.58%
by applying the modified U-Net++; and reference [66] accomplished IoU for the sky
region of 0.9066.

4.3. Challenges and Corresponding Research Gaps

The challenges for semantic segmentation in the navigation vision of planetary rovers
are mainly located in the following three aspects.

1) Data with pixel-level annotation are insufficient. Although much data on planetary
rover navigation vision exist, most are not annotated raw images or videos. It is
difficult to use these images and videos effectively, considering the unsatisfactory
performance of unsupervised and self-supervised solutions.

2) The pixel-level accuracy of semantic segmentation needs to be improved. The pixel-
level accuracy refers to a broad idea, and there is no unified metric existent in current
studies for evaluation. However, the pixel-level accuracy in most studies is not ideal,
while pixel-level accuracy is significantly important for further functionalities based
on semantic segmentation. For example, errors in obstacle contours can greatly affect
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the safety of path planning, and errors in rock detection may misjudge their hazards
to wheels.

3) Third, existing methods lack discussion of real-time performance regarding onboard
hardware. Some studies have obtained excellent segmentation accuracy, but they are
all tested on offline hardware. The results of existing studies are still far from practical
rover applications.

Therefore, the research gaps can come from the corresponding challenges:

1) An open, pixel-level annotated, and real-world image-based dataset is highly required,
which may involve numerous efforts and time in data annotation.

2) Based on the open dataset, a unified metric for the evaluation benchmark is demanded,
which can form a standard for comparison with related studies.

3) The onboard hardware test is essential for evaluating the practical performance of the
corresponding solution.

4.4. Limitations of This Study?

The limitations of this systematic literature review came from the following three
points from the guideline in references [33,34]:

1) The manual identification step is conducted in the identification step of the search
process, which is recommended for software technology evaluation.

2) The candidate studies are identified by a single researcher, while the research ques-
tions, search strategy, exclusion criteria, and quality assessment are reviewed by
other researchers.

3) The definitions of the “Classical Image Processing-based Study”, “Machine Learning-based
Study”, and “Deep Learning-based Study” are only proposed in this study, which do
not belong to common practice while highlighting the impact of technologies on
terrain segmentation.

The first point indicates that some relevant research might not be identified by the
search strategy. Especially, the studies are archived in national journals or conferences, and
the studies are not written in English. Therefore, this study should be stick to a systematic
literature review in the English-written major international journals and conferences.

The second point is implicit that the search field for different keywords might contain
some bias. For example, regarding the keywords “terrain*”, “*rock*”, and “sky*”, the
search fields of the IEEE Xplore, Web of Science, and Scopus are set to “All Metadata”,
“AB (abstract)”, and “TITLE-ABS-KEY (title, abstract, and keywords)”, respectively. The
three databases have different settings for the search field, and the decision of choosing the
search field is decided by a single researcher and reviewed by another researcher.

The definitions of the “Classical Image Processing-based Study”, “Machine Learning-based
Study”, and “Deep Learning-based Study” are introduced in Sections 1 and 4.1.4. However,
image processing, machine learning, and deep learning are not independent topics in
common practice, which might not be precisely divided.

5. Conclusions

In summary, computer vision and deep learning have been making significant achieve-
ments in accurate navigation, intelligent geological analysis, and fast inference time through
big data and artificial intelligence development. As planetary exploration projects progress
worldwide [3–5], it is reasonable to look forward to further promising studies, attraction
from global communities, and contributions via artificial intelligence.

This systematic literature review raises attention to the following five aspects:

i. Distributions: The community has increased interest in the semantic segmentation
of navigation vision for planetary rovers. New studies are emerging significantly,
and deep learning-based studies appear to have a significant increasing impact trend
recently. However, the geological concentration is obvious, and the community’s
interests have been considerably influenced by national space activities.
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ii. Terrain targets: The rock is a challenging target with high value in geological analysis,
navigation, and path planning. Although half of the Included Study addresses rock,
an on-time rock segmentation solution with high pixel-level accuracy in onboard
hardware does not exist yet.

iii. Open and annotated data: The discussion in Section 4.1.5 shows that more than half of
the Included Study utilizes less than 1000 images, which is very abnormal considering
the numerous data achieved in past space exploration projects. This review found
that most space exploration data are raw and unannotated data, which are difficult to
use directly. Thus, reference [13] proposes a large and annotated dataset (AI4Mars)
to boost the research into planetary exploration. However, AI4Mars is a massive
project that uses multiple labeler strategies, which is not a flexible strategy that can be
broadcast to most topics (“multiple labelers” refers to the annotation conducted by
more than one labeler, which can decrease human error.) Furthermore, AI4Mars does
not result in the pixel-level annotations for the segmentation task, which is still a long
way to the eventual semantic terrain segmentation for the planetary rovers. Therefore,
the challenge for utilizing current raw and unannotated data can be specifically
allocated to “how to annotate and efficiently use current data properly?” Furthermore,
references [66,67,70] propose a synthetic algorithm for generating artificial images
and annotations, but it is still challenging to justify the generalizability of synthetic
data to the real world. Moreover, reference [65] proposes weak supervision to bypass
the complicated annotation, but it can only work for large targets instead of small
pixel globs (such as stones or sample tubes).

iv. Performance: Section 4.1.6 mentions that accuracy and efficiency are two widely used
metrics in the Included Study. However, there are no standard metrics to evaluate the
performance of the terrain segmentation solution. The Included Study applies various
metrics according to their specific mission, which increases the difficulty of horizontal
comparison for state-of-the-art.

v. Challenges: There is no existing dataset that is open to all communities, with a pixel-
level annotation, and that uses real-world images. The significant challenges will be
massive efforts of data annotation with minimum human error, which brings further
difficulty to a standardized benchmark of state-of-the-art. The on-broad test for real-
time evaluation will depend highly on the planetary rover platform, considering that
only a few countries have the ability to produce planetary rovers. The solution will be
to build an open environment for related research, which requires significant effort to
construct an open dataset, a standard benchmark, and an online remote test platform
for the community.
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Appendix A

This section lists similar surveys by partially expanding the search keywords discussed
in Section 2.2. Tables 2 and 3 include all related studies in the three databases (IEEE Xplore,
Scopus, and Web of Science), while Table A1 lists similar surveys related to this SLR. It is
noteworthy that all related surveys in Table A1 are found in the Scopus database, and only
the surveys published in the past three years are considered to maintain its advances.

The four search commands in Section 2.2 are (ii-a), (ii-b), (iii-a), and (iii-b), and the new
search command is “TITLE (review OR survey)” to specify the type to be surveyed. There
are no surveys found by combining (ii-a), (ii-b), (iii-a), (iii-b), and the new search command,
no surveys found by combining (ii-b), (iii-a), (iii-b), and the new search command, three
surveys (refs. [101–103]) found by combining (ii-a), (iii-a), (iii-b), and the new search
command, two surveys (refs. [104,105]) found by combining (ii-a), (ii-b), (iii-b), and the
new search command, and no surveys found by combining (ii-a), (ii-b), (iii-a), and the new
search command.

Table A1. The comparison between this SLR and similar surveys.

Ref. The Difference Compared to This SLR

[101]

• This survey is not an SLR.
• This survey did not concentrate on the impact of computer vision and

artificial intelligence.
• This survey studied the Martian and lunar lava tube instead of the

terrain for planetary rover navigation.

[102]

• This survey is not an SLR.
• This survey did not concentrate on the impact of computer vision.
• This survey studied the characterization of planetary soils instead of

the terrain for planetary rover navigation.

[103]

• This survey is not an SLR.
• This survey studied the autonomous spacecraft relative navigation

technology instead of the terrain for planetary rover navigation.

[104]

• This survey is not an SLR.
• This survey did not concentrate on the impact of computer vision and

artificial intelligence.
• This survey studied the transmissive fractures in crystalline aquifer

instead of the terrain for the planetary rover navigation.

[105]

• This survey is not an SLR.
• This survey focused on information fusion instead of the impact of

computer vision and artificial intelligence.
• This survey studied the GNSS and on-board vision-based solution of

environmental context detection instead of the terrain for the
planetary rover navigation.

Ref. refers to the reference index.
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