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ABSTRACT 

Multi-Omics Investigation of Tumor Heterogeneity, Oncogenic Signaling, and Treatment 

Response in human cancers 

by 

Yige Wu 

Doctor of Philosophy in Biology and Biomedical Sciences 

Human and Statistical Genetics 

Washington University in St. Louis, 2022 

Professor Li Ding, Chair 

Cancer is a highly complex disease with aberrations at the genetic, epigenetic, transcriptomic, 

and protein levels that drove its phenotypic diversity. Clear cell renal cell carcinoma (ccRCC) is 

the most common form of kidney cancer, comprising roughly 80% of cases. To define the 

epigenetic and transcriptomic regulation of ccRCC at the single nucleus (sn) level, we performed 

snRNA-seq and snATAC-seq in 34 and 28 samples respectively, including primary tumors and 

normal adjacent tissues, and matched them with bulk proteogenomics data. We identified tumor-

specific markers and tumor subpopulations using snRNA-seq, which demonstrated diverse 

pathway activity within and across patients. PBRM1 and BAP1 are two of the most frequently 

mutated genes in ccRCC, and both encode epigenetic regulators. However, the consequences of 

BAP1 and PBRM1 mutations on chromatin accessibility and downstream transcriptional 

networks remain largely unknown. Utilizing the combined analysis of snATAC-seq and snRNA-

seq, we dissected chromatin accessibility and transcriptome changes associated with BAP1 and 

PBRM1 mutations, illuminating molecular alterations underlying differential phenotypes 

between BAP1- and PBRM1-mutant patients.  



ix 
 

 

For the treatment of RCC, patients with metastatic or inoperable tumors typically receive 

systemic treatment with targeted therapy and/or immunotherapy. Although these drugs have been 

proven effective to some extent, resistance eventually develops, and combinational therapy will 

be necessary to overcome such resistance. Patient-derived xenograft (PDX) models have proven 

valuable in studying treatment mechanisms and novel therapeutics for cancer, including renal 

cell carcinoma. Hence, we performed a series of drug tests on a set of RCC PDX models, in 

which cabozantinib and sapanisertib are the two most effective drugs, and found the combination 

of two drugs is effective for all six models. We collected PDX tumors at baseline and under 

treatments and performed bulk whole-exome sequencing, bulk RNA-seq, bulk proteomics and 

phosphoproteomics, and snRNA-seq. We revealed the pathways affected by the combination 

therapy and identified treatment-affected proteins that are associated with patient survival. We 

also identified baseline protein markers that may serve to predict treatment response, such as 

MET, with support from snRNA-seq data. This study proposed a potential new combination for 

RCC patients and revealed potential molecular alterations underlying tumor reduction induced 

by the combination treatment. 
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Chapter 1: Introduction 
 

1.1 Cancer hallmarks 
Cancer is a complex disease with diverse phenotypes. To rationalize the complex cancer 

phenotypes under a conceptual scaffold, Weinburg and Hanahan et al1 have proposed a common 

set of hallmarks shared by human cancers. These cancer hallmarks define a set of functional 

capabilities acquired by normal human cells crucial for their ability to form malignant tumors. 

After the initial publication in 2000 and the later 2011 sequel1,2, the 8 cancer hallmarks, comprise 

“sustaining proliferative signaling”, “evading growth suppressors”, “resisting cell death”, 

“enabling replicative immortality”, “genome instability and mutation”, “activating invasion and 

metastasis”, “deregulating cellular metabolism” and “avoiding immune destruction”. They also 

introduced the concept of  “enabling characteristic”, a concept focusing on the molecular and 

cellular mechanisms by which hallmarks are acquired rather than the hallmarks themselves. The 

first enabling characteristic, inducing or accessing vasculature, is defined as the capability to 

induce or access vasculature that supports tumor growth, primarily by invasion and metastasis. 

The second enabling characteristic, tumor-promoting inflammation, complements the hallmark 

“genome instability and mutation and is fundamentally involved in activating the eight hallmark 

capabilities. Most recently, Hanahan et al3 proposed new hallmarks and enabling characteristics, 

including “unlocking phenotypic plasticity”, “nonmutational epigenetic reprogramming”, 

“polymorphic microbiomes”, and “senescent cells”, with the growing support from published 

evidence. In this conceptual framework, they also highlighted the importance of the tumor 

microenvironment (TME), which is composed of a heterogeneous population of cancer cells, 
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cancer stem cells, and a large array of different stromal and immune cell types. As of now, 

eleven years later, the concept of TME has been widely appreciated and known to play an 

essential role in tumorigenesis and progression4,5.  

 

1.2  Cancer genomics and new dimensions 
Since the landmark publication of the Human Genome Project6 and the publication of the first 

cancer genome in 20017, cancer genomics has made great strides because of the continuous 

advances in sequencing technologies and computational tools, establishing it as a mainstay in 

cancer research. The larger tumor sample collections and more robust statistical methods made it 

possible for researchers to identify the pathogenic variants and somatic cancer-driving mutations 

that are less frequent. These efforts have led to the discovery of more driver mutations8,9, 

recurrent mutations with patterns of co-occurrences or mutual exclusivity10,11, molecular 

subtypes12, and patterns of clonal evolution13. Notably, the Cancer Genome Atlas (TCGA) project 

genomically characterized over 10,000 patients from more than two dozen cancer types and 

helped deepen our understanding of the cancer genome14. 

 
Moving forward, single-cell and single-nucleus sequencing15,16 are becoming two of the most 

important technologies in cancer genomics. As the conventional bulk RNA-seq results in 

averaged gene expression quantification, the single-cell methods dissect the transcriptome at the 

resolution of individual cells or nuclei. Fan, Slowikowski & Zhang et al17 outlined several 

Analyses single-cell and single-nucleus sequencing data can provide for a better understanding 

of cancer genome17, including distinguishing neoplastic from non-neoplastic cells using marker 

genes and snRNA-based somatic mutation calling, copy number inference, and fusion gene 

detection and identifying common cell type and cell states across patients and disease states. 
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With these computational analyses developed, single-cell and single-nucleus sequencing are now 

applied for the studying of cancer subtyping18, chemotherapy resistance19, immunotherapy20, and 

metastasis21.  

 
While genomics helped decipher the key genetic changes driving tumorigenesis and cancer 

progression, mass spectrometry-based protein analysis opened up new dimensions in protein 

expression profiling, and protein post-translational modifications22,23. Moreover, proteomics 

enabled the identification of protein markers and protein signatures that are useful for tumor 

early detection, prognosis, classification, and identifying tumors sensitive to particular drugs24–27. 

Proteomics technologies help researchers understand the specific alterations in the signaling 

pathway of cancer cells, therefore, help improve the understanding of the disease etiology and 

potentially the therapeutic strategy to target different pathways in cancer28–31.  

 
The Clinical Proteomic Tumor Analysis Consortium (CPTAC) has published proteomics and 

phosphoproteomics studies of many cancer types, including colon and rectal, breast, ovarian, 

lung adenocarcinoma, and renal cancers32–35,29. More importantly, these studies were conducted 

using a multi-omics approach by integrating leveraged genomic, proteomic, and 

phosphoproteomic data. This multi-omics CPTAC data35 revealed four immune-based subtypes 

for clear cell renal cell carcinoma (ccRCC) with unique genomic and microenvironment 

signatures and signaling pathways that could be used to predict therapeutic response. The 

CPTAC lung adenocarcinoma study revealed new molecular subtypes and therapeutic 

opportunities associated with KRAS, EGFR, and ALK mutations29. As the CPTAC continues to 

generate data for an expanding number of samples, its publically available data serves as a great 

resource for the research community.  
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1.3  Clear cell renal cell carcinoma 
Renal cell carcinoma (RCC) is a type of cancer that originates from the renal epithelium and 

accounts for over 90% of cancers in the kidney36. It includes several subtypes and clear cell RCC 

(ccRCC) is the most common subtype (75%). The name “clear cell” denotes its distinct 

morphological feature that the cytoplasm is filled with lipids and glycogen, which are dissolved 

during histological processing, leading to a clear cytoplasm surrounded by a distinct cell 

membrane37. Kidney cancer, as a whole, accounts for 2% of all cancer diagnoses and cancer 

deaths worldwide38. RCC incidence is higher for men than for women (a 2:1 ratio of new 

diagnoses) and increases markedly with age36. Ethnicity and genetic factors also contribute to 

RCC risk. In the United States, different ethnic groups have varied incidence, with rates highest 

in Native Americans, Indigenous Alaskans, and African Americans and lowest in Asian 

Americans and people of Pacific Island descent39. Hereditary kidney cancer syndrome accounts 

for 3 - 5% of all RCCs40. And other major established risk factors for RCC include excess body 

weight, hypertension, and cigarette smoking41. 

  

Genes and pathways altered in ccRCC. Genes and pathways that are involved in ccRCC include 

the VHL-HIF pathway, epigenetic regulators and chromatin remodeling genes, and the PI3K-

AKT-mTOR signaling pathway. The VHL tumor suppressor gene is the most frequently mutated 

gene in ccRCC. It is affected by the loss of heterozygosity (LOH) at chromosome 3p, which 

occurs in > 90% of ccRCC tumors, and somatic mutation or epigenetic silencing, which occurs 

in >80% of these tumors42–44. Complete loss of VHL constitutes the earliest truncal driver event 

in ccRCC45,46. 
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The VHL-HIF pathway. pVHL controls the protein levels of the HIF transcription factors 

(including two isoforms HIF-1a and HIF-2a) in an oxygen-dependent manner47. Under normal 

oxygen tension, HIF-a is hydroxylated at two conserved proline residues48, a process mediated 

by pVHL, and results in its rapid degradation47. Under inadequate oxygen tension or hypoxia, 

HIF-a hydroxylation does not occur, which stabilizes HIF-a and promotes binding to HIF-b 

instead of pVHL. Inactivating VHL mutations also result in the stabilization of HIF-a and 

formation of a HIF-a- HIF-b complex, leading to the increased transcription of downstream 

targets involved in angiogenesis, glycolysis, cell proliferation, invasion, and metastasis49. 

  

Intratumor heterogeneity. As the tumor progresses, the genomes of tumor cells often become 

increasingly unstable. When the new mutant alleles are generated at a much higher rate than the 

elimination rate for phenotypically less-fit clones, the tumor mass may develop an increasing 

number of distinct sectors, each dominated by a genetically distinct subclone. Such intratumor 

heterogeneity (ITH), as Nowell first described 46 years ago50, is thought to enable tumors to 

adapt to metabolic demands within themselves and pressures from the microenvironment. The 

extent of ITH in ccRCC has been demonstrated by several bulk-based studies. In a multi-region 

genetic analysis of four patients with sporadic primary ccRCC, the tumors were characterized by 

a small number of truncal or clonal alterations51. Only VHL mutation and chromosome 3p LOH 

were found to be ubiquitous events across all regions sampled. Most somatic alterations were 

found to be subclonal and present in varying degrees throughout the tumor. Frequent driver 

events, such as PBRM1, SETD2, KDM5C, MTOR, PIK3CA and PTEN mutations, were found 

in some regions but not others within the primary tumor and metastatic sites. In a follow-up 
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study of eight ccRCC patients, ITH was found in all cases and 73%-75% of driver alterations 

were found to be subclonal52. 

 

ccRCC Treatment. The standard of care for RCC patients with surgically resectable tumors has 

been surgical excision by either partial or radical nephrectomy. Approximately 20-30% of 

patients present regional or distant metastases and an additional 20% will relapse in distant sites 

after radical surgical treatment53,54. Those with metastatic or inoperable RCC typically were 

treated with targeted therapy and/or immune checkpoint inhibitors, as RCC are generally not 

very responsive to chemotherapy (response rate 6%) and radiotherapy37. 

  

Targeted therapy for ccRCC. The major classes of targeted therapy for ccRCC include VEGF 

ligand antibody (bevacizumab), tyrosine kinase inhibitors, and mTOR inhibitors, while the 

immunotherapy agent is a programmed death-1 inhibitor (nivolumab). The first-line treatment 

includes tyrosine kinase inhibitors sunitinib, pazopanib, VEGF ligand antibody bevacizumab, 

and mTOR inhibitor temsirolimus, and the rest are second-line or later treatment55. Although all 

of these drugs have been proven effective to some extent, a big proportion of patients display 

intrinsic resistance to targeted therapies56, and those who do not initially will acquire resistance 

to these treatments later on56,57. 

  

Preventing drug resistance. The fact that a large proportion of ccRCC patients will develop 

resistance to single-agent treatment leads to the realization that combinational therapy will be 

necessary to overcome such resistance. Clinical experiences and studies of model systems have 

shown combinational drug regimen for RCC is superior to the single-agent regimens58. However, 
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avoiding higher toxicities (including on-target and off-target effects) is needed while pursuing 

higher efficacy. For instance, the sunitinib plus everolimus combination produced severe toxicity 

when treating metastatic RCC59. In contrast, bevacizumab plus everolimus is well tolerated and 

has been shown to be efficacious in treating non-ccRCC with papillary features60. The success of 

combinational drug treatment relies on efficient and correct targeting of both primary and 

secondary pathways. In ccRCC, VEGF is the primary pathway due to the universal VHL loss; 

secondary targets can include C-MET and the mammalian target of rapamycin complex 1 

(mTORC1), given the available clinical61–64 and preclinical studies65–68. 

  



8 
 

1.4  References 
1. Hanahan, D. & Weinberg, R. A. The Hallmarks of Cancer. Cell 100, 57–70 (2000). 
2. Hanahan, D. & Weinberg, R. A. Hallmarks of Cancer: The Next Generation. Cell 144, 646–

674 (2011). 
3. Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 12, 31–46 (2022). 
4. De Palma, M., Biziato, D. & Petrova, T. V. Microenvironmental regulation of tumour 

angiogenesis. Nat. Rev. Cancer 17, 457–474 (2017). 
5. Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for 

effective therapy. Nat. Med. 24, 541–550 (2018). 
6. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–

921 (2001). 
7. Ley, T. J. et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia 

genome. Nature 456, 66–72 (2008). 
8. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. 

Science 321, 1807–1812 (2008). 
9. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009). 
10. Barbieri, C. E. et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 

mutations in prostate cancer. Nat. Genet. 44, 685–689 (2012). 
11. Gainor, J. F. et al. ALK rearrangements are mutually exclusive with mutations in EGFR 

or KRAS: an analysis of 1,683 patients with non-small cell lung cancer. Clin. Cancer Res. Off. 
J. Am. Assoc. Cancer Res. 19, 4273–4281 (2013). 

12. Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic cancer. 
Nature 531, 47–52 (2016). 

13. Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-
genome sequencing. Nature 481, 506–510 (2012). 

14. Weinstein, J. N. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. 
Genet. 45, 1113–1120 (2013). 

15. Eberwine, J., Sul, J.-Y., Bartfai, T. & Kim, J. The promise of single-cell sequencing. Nat. 
Methods 11, 25–27 (2014). 

16. Wu, H., Kirita, Y., Donnelly, E. L. & Humphreys, B. D. Advantages of Single-Nucleus 
over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States 
Revealed in Fibrosis. J. Am. Soc. Nephrol. JASN 30, 23–32 (2019). 

17. Fan, J., Slowikowski, K. & Zhang, F. Single-cell transcriptomics in cancer: 
computational challenges and opportunities. Exp. Mol. Med. 52, 1452–1465 (2020). 

18. Gan, Y., Li, N., Zou, G., Xin, Y. & Guan, J. Identification of cancer subtypes from 
single-cell RNA-seq data using a consensus clustering method. BMC Med. Genomics 11, 117 
(2018). 

19. Sharma, A. et al. Longitudinal single-cell RNA sequencing of patient-derived primary 
cells reveals drug-induced infidelity in stem cell hierarchy. Nat. Commun. 9, 4931 (2018). 

20. Zhang, L. & Zhang, Z. Recharacterizing Tumor-Infiltrating Lymphocytes by Single-Cell 
RNA Sequencing. Cancer Immunol. Res. 7, 1040–1046 (2019). 

21. Lawson, D. A., Kessenbrock, K., Davis, R. T., Pervolarakis, N. & Werb, Z. Tumour 
heterogeneity and metastasis at single-cell resolution. Nat. Cell Biol. 20, 1349–1360 (2018). 

22. Pandey, A. & Mann, M. Proteomics to study genes and genomes. Nature 405, 837–846 
(2000). 

23. Hyung, S.-J. & Ruotolo, B. T. Integrating mass spectrometry of intact protein complexes 



9 
 

into structural proteomics. Proteomics 12, 1547–1564 (2012). 
24. Hanash, S. & Taguchi, A. Application of proteomics to cancer early detection. Cancer J. 

Sudbury Mass 17, 423–428 (2011). 
25. Yadav, M. et al. Predicting immunogenic tumour mutations by combining mass 

spectrometry and exome sequencing. Nature 515, 572–576 (2014). 
26. Chen, F., Chandrashekar, D. S., Varambally, S. & Creighton, C. J. Pan-cancer molecular 

subtypes revealed by mass-spectrometry-based proteomic characterization of more than 500 
human cancers. Nat. Commun. 10, 5679 (2019). 

27. Enroth, S. et al. High throughput proteomics identifies a high-accuracy 11 plasma protein 
biomarker signature for ovarian cancer. Commun. Biol. 2, 221 (2019). 

28. Chang, L. et al. Identification of protein biomarkers and signaling pathways associated 
with prostate cancer radioresistance using label-free LC-MS/MS proteomic approach. Sci. 
Rep. 7, 41834 (2017). 

29. Gillette, M. A. et al. Proteogenomic Characterization Reveals Therapeutic Vulnerabilities 
in Lung Adenocarcinoma. Cell 182, 200-225.e35 (2020). 

30. Nanjundan, M. et al. Proteomic profiling identifies pathways dysregulated in non-small 
cell lung cancer and an inverse association of AMPK and adhesion pathways with recurrence. 
J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 5, 1894–1904 (2010). 

31. Shruthi, B. S., Vinodhkumar, P. & Selvamani,  null. Proteomics: A new perspective for 
cancer. Adv. Biomed. Res. 5, 67 (2016). 

32. Zhang, H. et al. Integrated Proteogenomic Characterization of Human High-Grade 
Serous Ovarian Cancer. Cell 166, 755–765 (2016). 

33. Mertins, P. et al. Proteogenomics connects somatic mutations to signalling in breast 
cancer. Nature 534, 55–62 (2016). 

34. Vasaikar, S. et al. Proteogenomic Analysis of Human Colon Cancer Reveals New 
Therapeutic Opportunities. Cell 177, 1035-1049.e19 (2019). 

35. Clark, D. J. et al. Integrated Proteogenomic Characterization of Clear Cell Renal Cell 
Carcinoma. Cell 179, 964-983.e31 (2019). 

36. Hsieh, J. J. et al. Renal cell carcinoma. Nat. Rev. Dis. Primer 3, 17009 (2017). 
37. Frew, I. J. & Moch, H. A clearer view of the molecular complexity of clear cell renal cell 

carcinoma. Annu. Rev. Pathol. 10, 263–289 (2015). 
38. Cancer, I. A. for R. on. GLOBOCAN 2012 v1. 0, Cancer Incidence and Mortality 

Worldwide: IARC Cancer Base No. 11. Lyon Available Httpglobocan Iarc Fr Accessed 6, 
(2017). 

39. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2016. CA. Cancer J. Clin. 66, 
7–30 (2016). 

40. Moch, H., Cubilla, A. L., Humphrey, P. A., Reuter, V. E. & Ulbright, T. M. The 2016 
WHO classification of tumours of the urinary system and male genital organs—part A: renal, 
penile, and testicular tumours. Eur. Urol. 70, 93–105 (2016). 

41. Schottenfeld, D. & Fraumeni Jr, J. F. Cancer epidemiology and prevention. (Oxford 
University Press, 2006). 

42. Gnarra, J. R. et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. 
Nat. Genet. 7, 85–90 (1994). 

43. Banks, R. E. et al. Genetic and epigenetic analysis of von Hippel-Lindau (VHL) gene 
alterations and relationship with clinical variables in sporadic renal cancer. Cancer Res. 66, 
2000–2011 (2006). 



10 
 

44. Le, M. et al. Von Hippel-Lindau (VHL) inactivation in sporadic clear cell renal cancer: 
associations with germline VHL polymorphisms and etiologic risk factors. PLoS Genet. 7, 
(2011). 

45. Hakimi, A. A., Pham, C. G. & Hsieh, J. J. A clear picture of renal cell carcinoma. Nat. 
Genet. 45, 849–850 (2013). 

46. Linehan, W. M., Srinivasan, R. & Schmidt, L. S. The genetic basis of kidney cancer: a 
metabolic disease. Nat. Rev. Urol. 7, 277–285 (2010). 

47. Gossage, L., Eisen, T. & Maher, E. R. VHL, the story of a tumour suppressor gene. Nat. 
Rev. Cancer 15, 55–64 (2015). 

48. Chan, D. A., Sutphin, P. D., Yen, S.-E. & Giaccia, A. J. Coordinate regulation of the 
oxygen-dependent degradation domains of hypoxia-inducible factor 1 alpha. Mol. Cell. Biol. 
25, 6415–6426 (2005). 

49. Harris, A. L. Hypoxia--a key regulatory factor in tumour growth. Nat. Rev. Cancer 2, 38–
47 (2002). 

50. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976). 
51. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by 

multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012). 
52. Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell 

carcinomas defined by multiregion sequencing. Nat. Genet. 46, 225–233 (2014). 
53. Athar, U. & Gentile, T. C. Treatment options for metastatic renal cell carcinoma: a 

review. Can. J. Urol. 15, 3954–3966 (2008). 
54. Gupta, K., Miller, J. D., Li, J. Z., Russell, M. W. & Charbonneau, C. Epidemiologic and 

socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer 
Treat. Rev. 34, 193–205 (2008). 

55. Choueiri, T. K. & Motzer, R. J. Systemic Therapy for Metastatic Renal-Cell Carcinoma. 
N. Engl. J. Med. 376, 354–366 (2017). 

56. Rini, B. I., Campbell, S. C. & Escudier, B. Renal cell carcinoma. The Lancet 373, 1119–
1132 (2009). 

57. Singer, E. A., Gupta, G. N. & Srinivasan, R. Update on targeted therapies for clear cell 
renal cell carcinoma. Curr. Opin. Oncol. 23, 283–289 (2011). 

58. Hsieh, J. J. et al. Overcome tumor heterogeneity-imposed therapeutic barriers through 
convergent genomic biomarker discovery: A braided cancer river model of kidney cancer. 
Semin. Cell Dev. Biol. 64, 98–106 (2017). 

59. Molina, A. M. et al. Phase 1 trial of everolimus plus sunitinib in patients with metastatic 
renal cell carcinoma. Cancer 118, 1868–1876 (2012). 

60. Voss, M. H. et al. Phase II Trial and Correlative Genomic Analysis of Everolimus Plus 
Bevacizumab in Advanced Non-Clear Cell Renal Cell Carcinoma. J. Clin. Oncol. Off. J. Am. 
Soc. Clin. Oncol. 34, 3846–3853 (2016). 

61. Motzer, R. J. et al. Lenvatinib, everolimus, and the combination in patients with 
metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet 
Oncol. 16, 1473–1482 (2015). 

62. Choueiri, T. K. et al. Cabozantinib versus Everolimus in Advanced Renal-Cell 
Carcinoma. N. Engl. J. Med. 373, 1814–1823 (2015). 

63. Powles, T. et al. Randomized Open-Label Phase II Trial of Apitolisib (GDC-0980), a 
Novel Inhibitor of the PI3K/Mammalian Target of Rapamycin Pathway, Versus Everolimus in 
Patients With Metastatic Renal Cell Carcinoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 



11 
 

34, 1660–1668 (2016). 
64. Carlo, M. I. et al. A Phase Ib Study of BEZ235, a Dual Inhibitor of Phosphatidylinositol 

3-Kinase (PI3K) and Mammalian Target of Rapamycin (mTOR), in Patients With Advanced 
Renal Cell Carcinoma. The Oncologist 21, 787–788 (2016). 

65. Huang, D. et al. Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in 
renal cell carcinoma. Cancer Res. 70, 1063–1071 (2010). 

66. Bergers, G. & Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. 
Cancer 8, 592–603 (2008). 

67. Nakaigawa, N. et al. Inactivation of von Hippel-Lindau gene induces constitutive 
phosphorylation of MET protein in clear cell renal carcinoma. Cancer Res. 66, 3699–3705 
(2006). 

68. Mizukami, Y. et al. Induction of interleukin-8 preserves the angiogenic response in HIF-
1alpha-deficient colon cancer cells. Nat. Med. 11, 992–997 (2005). 

 
  



12 
 

Chapter 2: Epigenetic and transcriptomic 
characterization reveals progression markers 
and essential pathways in clear cell renal cell 

carcinoma 
 
This chapter is adapted from a manuscript in revision. Contribution: I lead the project design, 

sample selection, sample request, coordinate data generation for snRNA-seq data, processing 

snRNA-seq data, downstream analysis for snRNA-seq and snATAC-seq data, manuscript 

writing, and figure generation as a first-author of the paper. In particular, analysis relating to 

snATAC-seq data was done in collaboration with Nadezhda Terekhanova. Details of other 

colleagues’ contribution can be seen in the “Author Contributions” section. 

2.1 Summary 
To define the epigenetic and transcriptomic regulation of clear cell renal cell carcinoma 

(ccRCC), we performed snRNA-seq and snATAC-seq in 34 and 28 human RCC specimens 

respectively, and matched them with bulk proteogenomics data. Here, we show that tumor 

clusters identified by snRNA-seq exhibit a continuum of epithelial to mesenchymal features; 

clusters with low omics-derived epithelial scores and high EMT scores display upregulated 

expression and accessibility of TGFBI and enriched transcription factor motifs for TWIST1. We 

identified tumor-specific markers by a newly developed single-cell tiered approach coupled with 

multi-omics validation. Among the top 20 tumor-specific markers, Ceruloplasmin (CP) levels in 

tumor cells negatively correlate with patient survival. Inhibitors against CP and other markers we 

identified reduced the survival of tumor cells. Spatial transcriptomics analysis shows high CP 

expression is associated with mesenchymal histology, while high PCSK6 expression is linked to 

epithelial features. Dysregulation of 13 genes in the glycolysis pathway at the epigenetic and/or 
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transcriptomic levels underscores the metabolic abnormalities in ccRCC. BAP1 mutations show a 

moderate reduction of chromatin accessibility in a wide spectrum of genes while PBRM1 

mutations generally increase chromatin accessibility and expression of a selective set of genes. 

These integrated multi-omics analyses reveal the cellular architecture of ccRCC, providing new 

insights into key markers and pathways in ccRCC tumorigenesis and suggesting new potential 

therapeutic targets. 

 

2.2 Introduction 
Clear cell renal cell carcinoma (ccRCC) is the most common form of kidney cancer, comprising 

roughly 80% of cases. Prevailing molecular alterations of ccRCC are 3p alterations, with 

concomitant loss of VHL functionality, and mutations in epigenetic regulators and chromatin 

remodelers, including BAP1, PBRM1, SETD2, and KDM5C1. Many aspects of epigenetic and 

transcriptomic regulations within ccRCC have been investigated, though few studies have 

examined the same cohorts2–4. And the consequences of BAP1 and PBRM1 mutations on 

chromatin accessibility and downstream transcriptional networks remain largely unknown. 

ccRCC is also known as a metabolic disease, accompanied by reprogramming of glucose and 

fatty acid metabolism5–9. Studies using genomic1, proteomic5,6,10, and metabolomic11,12 profiling 

also uncovered a metabolic shift in aggressive ccRCCs that involves the tricarboxylic acid cycle 

(TCA), pentose phosphate, and phosphoinositide 3-kinase pathways. However, the current 

understanding of the transcriptional regulation of important metabolic enzymes is incomplete. 

Although there is a discordance between metabolome and transcriptome for certain pathways, a 

careful examination might elucidate additional disease mechanisms and potential therapeutic 

targets. Aside from these regulation and remodeling dynamics, ccRCC is known for its 
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substantial genetic heterogeneity, parallel evolution of subclones13, and abundant genetic 

alterations, as revealed by bulk sequencing-based studies14,15. We still do not completely 

understand how these properties arise and whether there is also a high level of heterogeneity in 

the transcriptome and chromatin accessibility of ccRCC cells. 

  

Single-cell RNA-seq (scRNA-seq) studies of relatively small numbers of ccRCC samples have 

been reported, shedding light on the molecular attributes of cells of origin16,17 and the tumor 

microenvironment. A few studies have also identified tumor markers16,18 or therapeutic targets19. 

Important aspects remain largely unexplored, including tumor markers of sufficient strength 

within and across samples, the degree of the transcriptional heterogeneity within the tumor cells, 

and the common features separating the tumor subpopulations. In addition, scRNA-seq has been 

limited by the availability of fresh tissue, especially since clinical samples are normally cryo-

preserved20. Single nucleus RNA-seq (snRNA-seq) can analyze frozen specimens and avoids the 

cell dissociation process that promotes stress-related alterations21. To our knowledge, no snRNA-

seq nor snATAC-seq studies of ccRCC samples have yet been reported. Bulk epigenomic 

profiling data (e.g. ATAC-seq and DNase-seq) for ccRCC have shown some ccRCC-specific 

regulatory elements and TFs2,4,22 and the chromatin accessibility changes associated with SETD2 

mutation23. However, the transcription factors having significantly higher accessibility in ccRCC 

genomes than in non-tumor cells and which genes are regulated by these TFs remain largely 

unknown. Furthermore, there has not yet been adequate integration of snRNA-seq, snATAC-seq, 

bulk omics (including proteomics), and spatial transcriptomics (ST) to comprehensively 

investigate the epigenetic and transcriptomic landscape of ccRCC.  
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In this study, we bring these aspects together in the broadest multi-omics analysis on ccRCC 

specimens yet undertaken. We identify key genes and pathways specifically altered 

epigenetically and transcriptionally in tumor cells, finding correlations between these alterations 

and various ccRCC features. We performed spatial transcriptomics, discovering intriguing 

patterns of the spatial distribution of gene expression and histopathological features of ccRCC. 

Finally, we dissected chromatin accessibility changes associated with BAP1 and PBRM1 

mutations, further illustrating the multi-level interplay between mutational, global, and specific 

epigenetic alterations and transcriptomic changes in ccRCC. 

 

2.3 Results 
2.3.1  Overview of clinical features and datasets 
We performed snRNA-seq on 34 samples (25 patients) and matched snATAC-seq on 28 of these 

samples (24 patients) from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) ccRCC 

collection10 (Supplementary Table 1). These were procured from the same pool of pulverized 

powder that has previously produced WES, bulk RNA-seq, and proteomics data for these 

samples (Fig. 1a, Extended Data Fig. 1a). Using the same pool of pulverized sample powder 

ensures the highest level of comparability among datasets from different platforms and enables 

tight integration of diverse omics data sets. We also performed spatial transcriptomics (ST) on 2 

patient tumor samples and 1 patient-derived xenograft (PDX) sample collected in-house using 

FFPE Visium ST technology (10x Genomics).  

  

For the snRNA-seq data, we obtained 141,950 nuclei from 34 samples, comprising 30 primary 

tumor samples and 4 normal adjacent tissue (NAT) samples (Fig. 1b). These samples had distinct 
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tumor, immune, and stromal populations based on canonical markers curated from the literature 

(Methods, Supplementary Table 2, Extended Data Fig. 1c). The snRNA-seq data indicated tumor 

cell content averaged 71% per sample, which correlated strongly with the bulk mRNA data 

estimate (Pearson’s R = 0.72, p < 0.001, Extended Data Fig. 1b). We also generated snATAC-

seq data for 211,497 nuclei from 24 of these same tumors and 4 NATs (Fig. 1a). We detected 

peaks of accessible chromatin in snATAC data across all samples, ranging from 86K to 220K 

instances per sample. As expected, the majority of peaks appeared in intronic and intergenic 

regions, while an average of 24K peaks were located in gene promoter regions (Extended Data 

Fig. 1e). snRNA and snATAC paired samples yielded comparable cell type content estimates 

(Extended Data Fig. 8b; Pearson’s R=0.77, P < 0.0001) 

 

2.3.2  Single-cell-based ccRCC tumor marker discovery and epigenetic 
regulation of tumor markers 
Although bulk sequencing studies have reported markers altered between ccRCC and adjacent 

normal tissue that presumably reflect the changes in tumor cells1, these studies were limited by 

the confounding effects from non-tumor cells or had limited discovery power for subpopulations 

of tumor cells expressing unique markers. As only a few canonical tumor-cell markers such as 

CA9 (carbonic anhydrase 9) have been widely used in ccRCC, we aim to identify additional 

markers that show higher specificity to ccRCC tumor cells than established markers that may 

also have prognostic/diagnostic values or potential to become therapeutic targets. Here we 

leveraged a 4-stage process to identify bona fide markers for ccRCC (Extended Data Fig. 2a): (1) 

compare expression levels across cell types strictly within samples to discern markers 

characteristic of tumor cells, identifying those that hold more generally across our 30 ccRCC 

samples, (2) narrow to those exclusive of proximal tubule (PT) cells and epithelial cell types (as 
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they were scarce in tumor samples), (3) confirm their chromatin accessibility changes using 

snATAC-seq, and (4) validate in a larger cohort from bulk RNA and protein data, and further 

characterize using spatial transcriptome. Using this approach, we identified 131 candidate 

surface markers overexpressed in tumor cells compared to all the other cell types in a majority of 

individual samples (step 1; Supplementary Table 3), prioritizing 20 that were also overexpressed 

in ccRCC cells compared to normal proximal tubule cells and other epithelial cell types (step 2; 

Fig. 1c, adding the canonical ccRCC marker CA9), thereby bolstering specificity to ccRCC. 19 

of these markers showed higher chromatin accessibility (gene activity, fold change > 1) in tumor 

cells using snATAC-seq data, suggesting higher chromatin accessibility may contribute to their 

higher expression in tumor cells (step 3). 17 were further supported by the bulk RNA-seq and 

proteomics data, by comparing the tumors to the normal adjacent tissues (step 4; Fig. 1c). Of the 

20 markers, 7 have not been previously associated with ccRCC, including SNAP25, PHKA2, 

EPHA6, ABLIM3, SHISA9, PCSK6, UBE2D2. 4 have been associated with ccRCC but have not 

been shown to be expressed in ccRCC tumor cells, including ABCC324, KCTD325, SEMA6A26, 

PLEKHA127. 9 have been shown to be expressed in ccRCC tumor cells, including TGFA28, 

PLIN229, FTO30, SLC6A331, NDRG132, CP33, EGFR34, ENPP335, COL23A136. However, none of 

the studies have carefully compared the expression of these markers in tumor cells to non-tumor 

cell types. 

  

We investigated correlations between expression levels of these markers and clinical features of 

the tumors using snRNA-seq data. CP, PCSK6, UBE2D2, MGST1, NDRG1, and KCTD3 tumor-

cell expression levels were associated with higher tumor grades, results which were further 

supported by the bulk RNA-seq and protein data from the larger ccRCC cohort (n = 103) 
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(Extended Data Fig. 2). Ceruloplasmin (CP) is particularly interesting because CP is specifically 

expressed in tumor cells (Fig. 1d) and high CP expression in ccRCC cells is associated with 

shorter survival in this study cohort and the larger ccRCC CPTAC cohort with bulk RNA-seq 

data (Fig. 1e-f). CP helps stabilize and transport HIF1A to the nucleus37, thus promoting VEGF 

expression and angiogenesis38,39. Consequently, elevated CP expression may benefit ccRCC cells 

by enhancing HIF signaling. Due to the lack of detection for HIF1A bulk protein levels (n = 8 

out of 103), we looked at the association between VEGFA and CP protein levels, finding a 

significant positive correlation, which further supports CP’s regulation of the HIF1A/VEGF axis 

(Extended Data Fig. 2e, R = 0.4, P < 0.0001). 

  

We asked whether differences in chromatin accessibility might be responsible for higher 

expression of ccRCC markers in tumor vs proximal tubule cells. We found that CP, UBE2D2, 

and CA9 promoter regions were more accessible in tumor cells (Fig. 1g, Supplementary Table 3). 

We also found motifs for HIF1A, ARNT, NFKB1, RELA, MXI1, KLF9, and SREBF2 

transcription factors, which were significantly enriched in tumor cells using snATAC-seq 

(Supplementary Table 3), in differentially accessible promoter regions of CP, CA9, and 

UBE2D2. As MXI1 expression itself is up-regulated and displays higher accessibility binding in 

ccRCC cells, it is likely an active transcription factor in ccRCC cells. We also found that MXI1 

may regulate many other genes up-regulated in ccRCC, such as GATM, PKM, OBSCN, TRIB3, 

and SERPINE1 (fold change > 2) based on the presence of MXI1 motifs in their promoter 

regions (Supplementary Table 3), the latter two being respectively implicated as master 

regulators of ccRCC pathogenesis4 and associated with poor prognosis in ccRCC. MXI1 appears 

to have an important role in ccRCC progression. 
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2.3.3  Spatial characterization of tumor markers identified by single-cell 
omics 
We generated immunofluorescence (IF) and spatial transcriptomics (ST) data to validate and 

further characterize the spatial distribution of novel tumor markers discovered by snRNA-seq. 

Specifically, we investigated protein level and spatial expression in 2 ccRCC human tumors (282 

and 293) and 2 ccRCC patient-derived xenografts (PDX) (RESL5 and RESL10) samples. Tumor 

cell-specific CP expression (tumor cells vs. non-tumor cells fold change = 3.6) was validated by 

IF staining of ceruloplasmin and canonical ccRCC tumor-cell marker CA9 and the co-

localization of the two proteins in ccRCC PDX model sections (Fig. 2b, ID: RESL5). We also 

validated the tumor cell expression of PCSK6 (Fig. 2a-b).  

  

To understand the heterogeneous and spatial distribution of tumor markers, as well as their 

potential impact on cellular morphological features, we utilized ST expression to validate 

selected tumor markers, namely CP (Fig. 2c), CA9, PCSK6, ABCC3, MGST1, and NDRG1 (Fig. 

2d) across 2 human tumor samples (ID: 282, 293) and 1 PDX tumor (ID: RESL10). We found 

CP expression exhibited a spatially-dependent enrichment pattern in both human tumor samples 

(Fig. 2c). In human tumor 293, CP expression was enriched in an area showing a relative 

sparsity of tumor cells embedded in an abundant background of hyalinized stroma (Fig. 2c, 

location A) compared to the rest of the tumor (Fig. 2c, location B). In tumor 282, while lacking 

areas of complete regression, there was a focus of the tumor showing a higher hyalinization-to-

cell ratio than in the rest of the tumor, indicating partial regressive changes.  CP showed greater 

concentration in these areas (Fig. 2c, location C),  compared to the rest of the tumor (Fig. 2c, 

location D). These observations suggest a role of CP, as a secreted protein, in mediating tumor-
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stroma interactions and the hyalinization of the microenvironment. This pattern was not as 

prominent in the PDX (RESL10) sample, perhaps due to the unique tumor microenvironment in 

the PDX mouse compared to the original human tissue.  

  

In addition to CP, we also validated the pattern of canonical ccRCC tumor marker CA9, as well 

as 4 other novel tumor markers. We observed various degrees of intra-tumor heterogeneity in 

spatial expression for these 4 specific markers. PCSK6 was the highest in human tumor 293 

among these tumor samples. Expression of ABCC3 was highest in PDX sample RESL10 and 

lowest in human tumor 282. Expressions of novel markers MGST1 and NDRG1 were relatively 

homogenous across all 3 tumor samples, with MGST1 exhibiting a slightly higher intra-tumoral, 

spatial-dependent expression pattern enriched in the same region PCSK6 was highest in sample 

293. Indeed, such inter-tumor heterogeneous expression patterns can also be observed via the 

scaled average expression of all tumor markers using ST and snRNA-seq among all 3 tumor 

samples (Fig. 2e). Of note, mesenchymal and proximal tubular (PT) epithelial cell markers 

indicate overall higher epithelial gene expression in both human tumor samples and a yet 

stronger mesenchymal expression profile in the PDX sample. The lower expressions of some 

tumor markers, such as COL23A1 or SEMA6A in both ST and snRNA-seq, could indicate their 

different roles in these 2 tumor states.. 

  

We next set out to test if some of the tumor-cell markers are good treatment targets for ccRCC. 

We prioritized 3 druggable targets, including ABCC3, CP, and SLC6A3, and treated 4 RCC cell 

lines and 2 control cell lines with 3 inhibitors against these markers. The control cell lines 

include an HK-2 adult proximal tubule cell line and HEK-293. The drugs include MK571 
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(targets ABCC3), Benztropine (targets SLC6A3), and Tetrathiomolybdate, which is a copper-

lowering agent that therefore interrupts CP function. The bulk gene expressions of these target 

genes were higher in the cancer cell lines versus non-cancer controls (Extended Data Fig. 3a). 

Each drug produced stronger inhibition of growth of 2-4 RCC lines compared to the control line 

HK-2. Fig. 2f depicts 4 cancer cell lines that showed higher sensitivity compared to the control 

cell line HK-2 (full results in Extended Data Fig. 3). For example, we estimated the respective 

IC50 values for MKI571 in RCC-4, RCC-4-VHL+, 786-O, and 786-O-VHL+ lines to be 68, 90, 

134, 196 µM, which are much lower than the IC50 of 246 µM for the control HK-2 (Fig. 2f). 

Both RCC-4 and 786-O were more sensitive to MK571 than their VHL-reconstituted 

counterparts, suggesting VHL deficiency might increase the cell line sensitivity to MKI571. 

Nonetheless, the IC50 for the control HEK-293 for MK571 is 64 µM, which is lower than that of 

the cancer cell lines. We also found RCC-4, RCC4-VHL+, 786-O, and 786-O-VHL+ cells to be 

more sensitive to tetrathiomolybdate than the control HK-2. Our results suggest these three 

markers could play important roles in ccRCC development and may serve as potential 

therapeutic targets for future preclinical studies. 

  

2.3.4  New transcription factors mediating high expression of glycolytic genes 
in tumor cells compared to normal proximal tubule cells 
To ascertain the cell type in the normal adjacent tissue most similar to the ccRCC cells, we 

examined transcription factor (TF) motif enrichment in different epithelial cell types based on TF 

motif binding accessibility (Methods). Among the 6 nephron epithelial cell types examined, we 

found tumor cells had the strongest correlations with proximal tubule cells in TF binding 

accessibility (Extended Data Fig. 4a). This was supported by the correlation analysis among 

different epithelial cell types using snRNA-seq data (Extended Data Fig. 4a). Our data thus have 
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gone beyond gene expression and mutational analyses to use similarity in epigenetic regulation 

between tumor cells and PT cells to support the hypothesis that ccRCC derives from PT cells16,40. 

  

To identify differentially enriched TF motifs in tumor cells, we compared the TF binding 

accessibilities between tumor cells from each tumor and combined PT cells from the 4 NATs 

(Methods, Supplementary Table 3). 23 TF motifs showed consistently higher accessibility 

(tumor cells vs PT cells) in over half of the tumor samples (Fig. 3a). 16 TF motifs, including 

HIF1A/ARNT, NF-κB TFs (NFKB1, NFKB2, REL, RELA), RBPJ, MXI1, KLF9, ZNF75D, 

HSF2, NEUROD1, SREBF2, NEUROG2, RREB1, and TBXT showed higher accessibility 

(tumor cells vs PT cells) in all tumor samples (Fig. 3a). High HIF1A motif accessibility is 

consistent with the activation of HIF1A downstream transcriptional programs associated with 

VHL loss41. 14 of the top ccRCC-specific TF motifs (except for SREBF2 and TBXT) were 

reported to be ccRCC-specific in previously published bulk pan-cancer ATAC-seq data42 

(Extended Data Fig. 4b, Methods). The absence of SREBF2 and TBXT in the published data 

could be the result of lower detection sensitivity when pooling different cell types together.  

In addition, we found that the expression of MXI1, RBPJ, and NFKB1 was significantly up-

regulated in ccRCC cells using snRNA-seq data, and the up-regulation of RBPJ and NFKB1 was 

further confirmed by bulk protein data (Supplementary Table 3), suggesting the activity of these 

TFs in ccRCC is not only enhanced by increased binding accessibility but also increased TF 

abundance. Finally, HNF and RXR family TFs, which were more enriched in PT cells compared 

to ccRCC cells (Fig. 3a), were previously associated with ccRCC by bulk ATAC analysis2 

(Extended Data Fig. 4c). These results highlight the important utility of snATAC-seq in 
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discerning motifs specific to tumor cells as bulk ATAC analysis may confuse TFs specific to the 

normal PT cells with TFs specific to tumor cells. 

  

To further investigate genes regulated by the ccRCC-specific TFs, we identified 1,161 

overexpressed and 171 down-regulated genes in ccRCC tumor cells in comparison to PT (Fig. 

3b; Methods, Supplementary Table 3). The tumor-cell-overexpressing genes include genes in 

glycolysis (PFKP, PKM), hypoxia (VEGFA, ANGPTL4), and solute carrier (SLC) transporter 

disorder pathways (SLC6A3, SLC9A9; Fig. 3c), and known ccRCC markers, such as CA9. On the 

other hand, the genes down-regulated in tumor cells were concentrated in SLC-mediated 

transmembrane transport (SLC13A3, SLC47A3), late response to estrogen (SLC27A2, SLC22A5), 

and extracellular matrix proteins (ITGA6, COL4A2).  

  

ccRCC is characteristic of the Warburg effect and is known to have glycogen and lipid 

accumulation43. Therefore, to understand the transcriptional regulation mediating the phenotypic 

transition from normal PT cells to ccRCC cells, we further focused on glycolysis, TCA cycle, 

and glycogen and fatty acid synthesis pathways. A majority of the glycolysis enzymes were 

overexpressed in ccRCC cells, as were PDK1 and PDK4, which inhibit the conversion of 

pyruvate to acetyl-CoA in the mitochondria. It is worth noting that several gluconeogenesis 

enzymes, including fructose-1,6-bisphosphatase (FBP1), phosphoenolpyruvate carboxykinase 

(PCK1), and pyruvate carboxylase (PC), were down-regulated in ccRCC cells (Supplementary 

Table 3). Together, they shunt pyruvate away from the mitochondria and thus reduce the flux 

through the TCA cycle. These results suggest glycolysis activation may mediate the transition 

from normal PT cells to ccRCC cells. We also observed up-regulated gene expression for ACLY, 
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PYGL, and GBE1, which are required for the synthesis of fatty acids or glycogen. Among the 

glycolysis enzymes, HK1, HK2, PFKP, TPI1, ENO2, and PKM showed significantly increased 

accessibility in their respective promoter regions in cancer cells (Fig. 3e). We observed motifs of 

HIF1A in the HK1, PFKP, and ENO2 open promoter regions that are more accessible in tumor 

cells, consistent with previous reports44–47 (Fig. 3d, Supplementary Table 3). We additionally 

identified many other TFs, such as RBPJ, NFKB1/2, KLF9, and MXI1, that may also regulate 

genes involved in glycolysis (Fig. 3f), as their binding sites were significantly more accessible in 

ccRCC cells compared to the  PT cells. The activation of RBPJ, NFKB1 and MXI1 is supported 

by significantly increased expression levels in tumor cells compared to PT cells. Our analysis of 

the snRNA-seq and snATAC-seq data illustrates the up-regulation of many glycolytic genes in 

ccRCC cells compared to normal PT cells. Our study also identified several new TFs, beyond 

HIF1A, that may regulate the transcription of these glycolytic genes in ccRCC. 

 

2.3.5  Intratumor signaling heterogeneity revealed by single-cell tumor 
subclustering 
Among the 30 tumor samples, we identified 95 total clusters of tumor cells (at least 50 cells per 

cluster) with substantial inter-cluster transcriptional differences ( Fig. 4a, Methods). Each sample 

averaged 3 tumor-cell clusters. For those genes and pathways most differentially expressed 

among intrapatient tumor subclusters, we performed an unbiased search across the MSigDB 

Hallmark gene sets (Methods) and found cell cycle control, DNA damage repair, epithelial-

mesenchymal transition (EMT), and mTORC1 signaling genes over-represented (Fig. 4a, 

Extended Data Fig. 5a). Some pathways, like EMT, maybe are the first steps for tumor 

metastasis48,49, while others such as mTORC1 signaling may contribute to cell growth50. Cell 

cycle control and DNA damage repair pathways are important drivers for cancer progression51,52 
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and their overrepresentation here hints at key roles in producing and amplifying tumor 

heterogeneity and driving clonal evolution in ccRCC progression.  

  

We further scored the tumor subclusters based on the expression of these pathway genes and 

identified four major, differentially-enriched gene expression modules, including cell cycle, 

immune, EMT, and mTOR signaling (Fig. 4a, Supplementary Table 4). 16 tumor subclusters (in 

15 tumors), including C3 from sample C3L-00010-T1 (Fig. 4b), were enriched with cell cycle 

gene set modules, which include genes in the mitotic spindle and G2M checkpoint pathways, 

E2F targets, as well as DNA repair pathway genes and MYC targets. Based on cell cycle scoring, 

these tumor clusters appear to have significantly higher fractions of cells in the S phase 

compared to other tumor clusters (Extended Data Fig. 5b). Recurrent up-regulated genes in these 

clusters include ABR, MYO9B, NIN, CNTRL, and CAPZB (Extended Data Fig. 5c), which are 

involved in centrosome regulation and cytoskeleton organization. Immune expression modules 

were enriched in 14 tumor subclusters (in 9 tumors), such as C3 from tumor C3N-00733-T2 (Fig. 

4b). They showed high overall expression of genes within the inflammatory response, interferon-

alpha response, complement and allograft rejection pathways, and KRAS signaling up-regulated 

genes. Recurrent up-regulated immune-regulated genes in these tumor clusters include anti-

phagocytosis signal β2-microglobulin (B2M) and other components of the MHC-I complex 

(HLA-A and HLA-E)  (Extended Data Fig. 5), while their corresponding receptor LILRB1 is 

mostly expressed in macrophages (Extended Data Fig. 5e). These observations suggest different 

tumor subpopulations appear to interact with the tumor microenvironment differently. 
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Finally, we identified 9 tumor subclusters with high EMT gene expression and 10 subclusters 

with high mTORC1 signaling gene expression. For example, C4 from tumor C3L-00079-T1 was 

EMT-module enriched, while C2 from the MTOR-mutated tumor C3L-00583-T1 was mTOR 

enriched (Fig. 4b). We also found that mTORC1 signaling activation was significantly associated 

with BAP1 mutation (Fig. 4c, P < 0.01 compared to the tumors without BAP1 or PBRM1 

mutation), a relationship that has been reported in ccRCC53,54. EMT is a cellular program 

essential for embryogenesis, wound healing, and cancer progression55,56. In the context of cancer, 

EMT could increase the tumor-initiating and metastatic potential for tumor cells119–121. We found 

significantly higher EMT activity (maximum score per tumor) in the tumor subclusters of stage 

III and IV patients compared to stage I/II patients (Fig. 4d, P < 0.05), suggesting higher EMT 

activity may be indicative of  RCCs progression.  

 

2.3.6  Tumor subgroups with distinct epithelial and mesenchymal features 
To better understand and characterize EMT in ccRCC progression, we built a panel of markers to 

calculate mesenchymal and epithelial feature scores for 95 tumor-cell clusters and 9 proximal-

tubule clusters (Fig. 5a, Methods, Supplementary Table 4). We identified 4 major tumor 

subgroups, including three subgroups with strong, medium, and low epithelial features, all of 

which have relatively low mesenchymal features (denoted as Epi-H, Epi-M, and Epi-L tumor 

clusters, respectively); and one subgroup with outlier mesenchymal feature scores (denoted as 

EMT tumor clusters).  The continuum of epithelial and mesenchymal features across tumor 

clusters was further supported by the chromatin-accessibility-based gene activities derived from 

snATAC-seq data. Specifically, five Epi-H tumor clusters with high epithelial gene expression 

scores also showed high epithelial gene activity scores and two EMT tumor clusters behaved 
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similarly (Fig. 5a). Regardless of the epithelial/mesenchymal feature scores, the tumor subgroups 

overall showed higher expression of tumor-cell markers, such as CA9, CP, and PCSK6, while PT 

clusters overall showed higher proximal tubule markers, such as CUBN, GLYAT, and LRP2. We 

further characterized the PT segmental identities of these clusters according to the commonly 

used PT S1/2 and S3 classification. Most of the PT clusters did not fit into the clear-cut S1/2 and 

S3 classifications. Only a small subset of the tumor clusters (mostly Epi-H, and Epi-M tumor 

clusters) showed enriched PT S3 and/or S1/2 features, and most of the tumor clusters cannot be 

classified squarely into PT S1/2 or S3. Matters are similar for gene activity, as inferred from 

snATAC-seq. Tumor subgroups showed higher accessibility of tumor cell markers, while PT 

clusters were higher for their respective markers. Tumor clusters were likewise sporadic for S1/2 

and S3 classifications. With the exception of sporadic clusters for VIM and a few for TGFBI, 

mesenchymal markers were not highly expressed across the epithelial subgroups. These results 

indicate that ccRCC tumor cells may originate from all three segments of the proximal tubule 

and additional PT cell states independent of the traditional PT classification. 

  

To further identify genes that characterize the aforementioned tumor subgroups, we compared 

the gene expression profiles between the EMT tumor clusters and the Epi-H tumor clusters 

supported by both snRNA-seq and snATAC-seq data. We detected many known EMT regulators 

up-regulated in the EMT tumor population (Fig. 5b), such as SERPINE157, TGFBI58, WNT5B59, 

vimentin60 (VIM), and fibronectin61 (FN1). These up-regulated genes are evidence that the EMT 

population possesses the strong mesenchymal potential and may represent a pre-metastatic tumor 

population. We validated vimentin as well as WNT5B using immunofluorescence staining in a 

tumor with EMT tumor cells compared to another tumor without EMT tumor cells (Fig. 5c). We 
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believe the regulation of the key genes defining the epithelial-mesenchymal scores is likely 

epigenetically regulated due to the correlation between the upregulation of the genes whose 

promoters show higher accessibility. Indeed, the gene expression changes between the two tumor 

groups showed a significant positive correlation with the promoter accessibility changes. 

SERPINE1 and TGFBI had the highest increased promoter accessibility and gene expression in 

EMT tumor clusters (fold change > 2). 8 genes, namely LRP2, EPB41L4A, SLC6A3, FRMD3, 

PTGER3, ABI3BP, SLC28A1, and CIT showed over 2-fold changes in increased promoter 

accessibility and expression in Epi-H tumor clusters (Fig. 5d).  

  

To understand which TFs may be differentially enriched between the two tumor clusters and may 

regulate the transcription of the above genes, we compared the TF binding accessibilities 

between the EMT tumor clusters and the Epi-H tumor cluster and prioritized TFs that were 

differentially expressed between the two groups (Fig. 5b). The EMT tumor population showed 

increased binding accessibility for known positive regulators for EMT, such as TWIST1 and 

JUN (Fig. 5e, Supplementary Table 4). We also observed increased accessibility binding for the 

hepatocyte nuclear factors (HNF4A and HNF4G) in the Epi-H tumor clusters. These 

transcription factors are known to regulate kidney development62,63. To connect these 

differentially enriched TFs to the differentially expressed genes, We subsequently searched for 

the binding motifs of these in the promoter regions of these genes. One example is TGFBI, which 

showed increased promoter accessibility and gene expression in the two EMT tumor clusters. 

The accessibility peak within its promoter harbors motifs for TWIST1 and JUN, consistent with 

the reported roles of these TFs regulating TGFBI transcription64,65. Conversely, EPB41L4A 

showed increased promoter accessibility and gene expression in the Epi-H tumor clusters.  Taken 
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together, these data indicate that many genes distinguishing tumor groups with distinct epithelial 

and mesenchymal features, such as the EPB41L4A and TGFBI, are controlled epigenetically by 

an array of transcriptional factors delineated above and chromatin accessibility changes.  

 

2.3.7  Chromatin accessibility landscape of BAP1 and PBRM1 mutant tumors 
It has been reported that 80% of ccRCC tumors carry non-synonymous mutations in epigenetic 

regulators and chromatin remodeling genes66, highlighting the central role of epigenome 

dysregulation in ccRCC. We next sought to understand the expression signatures of tumors 

harboring BAP1 (BRCA1-associated protein 1) and PBRM1 (Polybromo 1) mutations and the 

impact of these mutations on chromatin accessibility that may underpin such expression 

signatures. These genes are two of the most recurrently mutated genes in ccRCC, after VHL. 

Mutations in them are largely mutually exclusive53,67–69, although double mutants have been 

observed. Previous studies have suggested BAP1 and PBRM1 function in different processes, as 

BAP1 and PBRM1 mutations are associated with non-overlapping gene expression signatures, 

differential mTORC1 activation, and different patient outcomes53,67. For snATAC-seq analysis, 

we selected 4 BAP1-mutant tumors (15,786 total nuclei; Fig. 6a, Extended Data Fig. 6) and 9 

PBRM1-mutant tumors (48,774 total nuclei), 2 tumors with both BAP1 and PBRM1 mutations 

(13,580 nuclei), and 8 tumors without mutations in either PBRM1 or BAP1 (32,255 nuclei). All 

of these samples have matching snRNA-seq data and all mutant samples carrying VHL mutation 

(except for one with VHL promoter hypermethylation) and 3p loss opposite to the mutated alleles 

(Extended Data Fig. 1a).  
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To understand the impact of BAP1 deficiency on chromatin accessibility, we used snATAC-seq 

data to analyze differentially accessible chromatin regions (DACRs) by comparing the tumor 

cells of BAP1-mutant tumors (6 tumors including 2 with both BAP1 and PBRM1 mutations) 

versus tumors without PBRM1 or BAP1 mutations (8 tumors). We identified 4,554 DACRs. 

Interestingly, most of these regions showed reduced accessibility in BAP1 mutants (3,829 peaks, 

84%; Fig. 6a, Supplementary Table 5), which is consistent with the known BAP1 function of 

promoting transcription70,71. BAP1-associated DACRs with decreased accessibility were 

distributed across all chromosomes (Fig. 6b), with hotspots in chromosomes 11 and 19 

(Extended data Fig. 6b). DACRs with increased accessibility in BAP1 mutants were more 

sparsely distributed, with hotspots in chromosome 5 (Extended data Fig. 6b). Moreover, BAP1 

mutation seems to have a dominant effect compared to PBRM1 mutation, as the two tumors with 

both BAP1 and PBRM1 mutation showed more similar patterns in chromatin accessibility to 

BAP1-only mutated tumors than the PBRM1-only mutated tumors (Fig. 6a). We also analyzed 

DACRs for PBRM1 mutants (9 tumors, not including 2 with both BAP1 and PBRM1 mutations) 

versus tumors without PBRM1 or BAP1 mutations (again using only tumor cells) and identified 

646 DACRs, with the majority of those (87%, 561 DACRs) having increased accessibility in 

PBRM1-mutants (Fig. 6a, Supplementary Table 5). Through these analyses of snATAC-seq data, 

we observed that BAP1-deficient tumors undergo more global changes in chromatin accessibility 

compared to the PBRM1-deficient tumors in ccRCC. 

 

2.3.8  Impact of BAP1 and PBRM1 mutations on transcriptional network in 
ccRCC 
In order to better understand the functional impact of BAP1 and PBRM1 mutations in ccRCC, we 

performed pathway analysis on the genes with promoters/potential enhancers overlapping 
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identified DACRs. The potential enhancers were identified by the co-accessibility with the 

promoter DACRs. We observed that genes with promoters/enhancers displaying increased 

accessibility in BAP1 mutants (compared to the non-BAP1/PBRM1 mutants) were over-

represented in focal adhesion (MAPK9), TNFA signaling (DUSP1), and EPHA forward 

signaling pathways (EPHA6; Fig. 7a-b), while genes with more closed promoters/enhancers 

were enriched in mTORC1 (DDIT4), EGF-EGFR signaling (PEBP1), and Rho GTPase cycle 

pathways (DLC1). We found enriched pathways of focal adhesion, Rac1 GTPase cycle, and 

hypoxia for the genes with promoter DACRs having increased accessibility in PBRM1 mutants, 

and no enriched pathways for more closed genes in PBRM1 mutants due to the small number. 

This suggests BAP1 and PBRM1 control different sets of cellular signaling pathways in ccRCC. 

  

We further focused our analysis on the gene expression changes associated with BAP1 mutations 

that can be linked to the changes in DNA accessibility. We compared the tumor-cell expression 

profiles of BAP1-mutant tumors (10 tumors including 6 tumors mutated in both BAP1 and 

PBRM1, 31,002 cells) versus  non-BAP1, non-PBRM1-mutant tumors (9 tumors, 60,658 cells) 

using snRNA-seq data and identified 563 differentially expressed genes (DEGs; Methods, 

Supplementary Table 5). By cross-checking with the BAP1-associated DACRs, we observed that 

the changes in gene expression and associated promoter/enhancer peak accessibility are 

significantly positively correlated (Fig. 7c). Genes with both decreased accessibility and 

expression in BAP1 mutants were associated with the Rho GTPase cycle (DLC1, 

ARHGAP24/28/32/42), genes down-regulated by KRAS activation (PTPRJ, CDH16, CPEB3, 

NR6A1, and ZBTB16), and nuclear receptor meta-pathway (CES3, PDK4, SERPINA1, SLC5A1, 

and TGFBR3). Genes with increased accessibility and expression in BAP1 mutants were 



32 
 

associated with Ras signaling (RAPGEF5 and MAPK9) and EPHA forward signaling (EPHA6 

and EFNA5). 

  

We performed a similar analysis to understand the gene expression and chromatin accessibility 

changes associated with PBRM1 mutation. We identified 469 PBRM1-associated DEGs by 

comparing the tumor-cell expression profiles of PBRM1-mutant tumors (10 tumors, 29,656 cells) 

versus tumors without BAP1 or PBRM1 mutations (9 tumors, 31,002 cells) using snRNA-seq 

data (Supplementary Table 5). Compared to BAP1-associated DACRs, accessibility changes of 

PBRM1-associated DACRs were also positively correlated with the gene expression changes 

(Pearson’s R = 0.81, P = 7.5e-11; Extended Data Fig. 6). Genes with decreased accessibility and 

expression in PBRM1 mutants include PBX1, RP1, and NCALD (expression fold change > 2). 

Genes with increased accessibility and expression in PBRM1 mutants were associated with 

hypoxia signaling (ANGPTL4, CAV1, and PPFIA4), focal adhesion (CAV1/2), and TNFA 

signaling (TNFAIP8 and EDN1). 

  

We further used the larger bulk gene expression and protein datasets from ccRCCto validate 

identified BAP1-specific DEGs (Fig. 6b). We found that 224 DEGs were consistently down/up-

regulated in bulk gene expression and that 21 of them also showed consistent patterns in bulk 

protein data (Supplementary Table 5). Two of the most striking examples by this analysis were 

CES3 and PTPRJ, which showed both reduced gene expression and reduced accessibilities of 

associated promoter/enhancer peaks in BAP1-mutant tumor cells (Fig. 7c). We further looked 

into sample-level accessibilities for the PTPRJ promoter peak and found that it displayed 

consistently lower accessibility in tumor cells of all BAP1 mutants compared with other tumors 
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and PT cells from NATs (Fig. 7d, Extended Data Fig. 6c). PTPRJ is a member of the protein 

tyrosine phosphatases with tumor suppressor activity through inhibiting mitogenic signals72. Our 

results support the finding that PTPRJ is targeted by BAP173 and suggest BAP1 mutation may 

contribute to ccRCC progression by suppressing PTPRJ activity. We also identified a potential 

CES3 enhancer peak located ~5 Kb upstream of CES3 transcriptional start site (TSS), displaying 

consistent lower accessibility in tumor cells of all BAP1 mutants compared with other tumors 

and PT cells from NATs (Fig. 7d, Extended Data Fig. 6c). CES3 encodes a carboxylesterase with 

crucial roles in xenobiotic metabolism. We found reduced CES3 DNA accessibility and gene 

expression were associated with BAP1 mutation, which was validated by bulk RNA and protein 

data. Although the exact function of CES3, especially in RCC, is still unknown, as a 

carboxylesterase, its downregulation may affect lipid metabolism and promote tumor progression 

in BAP1 mutants. 

  

We also looked at the link between chromatin accessibility changes and methylation changes 

associated with BAP1 mutation. We identified 2675 methylation probes differentially methylated 

between BAP1-mutant tumors and other tumors (using the bulk methylation data of a larger 

ccRCC cohort) and negatively correlated with the corresponding gene expression (FDR < 0.05). 

While these probes were associated with 1551 genes, a majority of them (1386) was associated 

with hypermethylation of these probes. 21.8% of the hypermethylated genes (302/1386) also 

showed decreased promoter accessibility in BAP1 mutants versus other tumors (FDR < 0.05). In 

fact, the changes in methylation and promoter accessibility in BAP1 mutants were negatively 

correlated (Extended Data Fig. 6d). These suggest the effect of BAP1 mutation on chromatin 

accessibility may be related to its effect on DNA methylation. 
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These results provide new insights into the effects of BAP1 and PBRM1 mutations on chromatin 

accessibility in ccRCC (Fig. 6g). Compared to PBRM1 mutations, BAP1 mutations seem to exert 

moderate, but more widespread, effects on chromatin accessibility. The predominant BAP1 

mutation effect on chromatin appears to be decreasing chromatin accessibility, while PBRM1 

mutation is mostly associated with increased chromatin accessibility (Fig. 6a). Furthermore, we 

observed that BAP1 mutations may control a different set of genes and signaling pathways 

compared to PBRM1 mutations. These results suggest transcription regulations unique to BAP1 

and PBRM1 mutations might produce differential phenotypes between BAP1- and PBRM1-

mutant patients. 

 

2.4 Discussions  
We report the first combined snATAC-seq/snRNA-seq analysis on ccRCC. The single-nucleus 

approach has a number of advantages over single-cell analysis, including better representation of 

cells difficult to be dissociated in single-cell isolation and a dramatic reduction of artifacts from 

stress responses due to enzymatic treatment during tissue dissociation. These methods are also 

readily applied to archived material. However, we acknowledge that the single-nucleus approach 

generally does not cover transcripts from the small mitochondrial genome and bias toward active 

transcriptional activities. 

  

Using a 4-stage process of within-sample snRNA-seq analysis, we identified 20 markers 

expressed specifically in ccRCC cells compared to all the other cell types. We then 

comprehensively characterized these markers, including their spatial distributions, using IF and 
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ST data. Several were associated with high tumor grade, including CP and PCSK6. CP is the 

only ccRCC marker that also predicts worse survival (Fig. 1e-f). Furthermore, we illustrated that 

the up-regulation of CP could be potentially attributed to the transcription factor MXI1 binding 

at its promoter and spatial distribution within individual tumors, furthering our understanding of 

CP in ccRCC beyond previous findings33,74. We also identified 3 druggable tumor markers 

including ABCC3, SLC6A3, and CP, and tested their therapeutic potentials in ccRCC cell lines 

using corresponding inhibitors. While ABCC3 and SLC6A3 may serve as candidate therapeutic 

targets, based on the RNA-seq data obtained for 5 of the 6 cell lines (Extended Data Fig. 3a), we 

observed ABCC3 expression is quite similar between the cancer cell lines. RCC-4 has the 

highest SLC6A3 expression and RCC-4-VHL+ has the highest CP expression. However, it’s 

hard to draw any conclusions about if there is a link between the target gene expression and drug 

response, as we only have RNA-seq for 3 cancer cell lines, and the cell line with the highest 

target expression doesn’t show the highest sensitivity to the corresponding drug. 

  

When comparing tumor cells to various normal epithelial cell types in epigenetic and 

transcriptional patterns, we found the highest similarity with normal proximal tubule (PT) cells. 

In the context of previous reports suggesting PT is the cell of origin for ccRCC40,75–77, our results 

have gone beyond mutational and transcriptional similarities to support the PT origin of ccRCC 

with strong epigenetic evidence. When we compared chromatin accessibility patterns between 

tumor cells and normal PT cells, we found increased HIF1A binding accessibility in the tumor 

cells, as expected from the high prevalence of VHL deficiency in these tumors. We also 

uncovered many other ccRCC-specific TFs. MXI1, KLF9, RBPJ, and NFKB1/2 have been 

previously implicated in renal cancer tumorigenesis78–83, while HSF2 and SREBF2 have been 
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linked to renal tubular cell injury84,85. We observed a dozen genes up-regulated in the glycolysis 

pathway in ccRCC cells compared to normal PT cells, which is expected as the Warburg effect 

has been well-known in ccRCC. Several transcription factors have been known to play a direct 

role in the regulation of the Warburg effect, such as HIF-1, c-MYC, p5386, and SIX187. 

Nonetheless, transcriptional regulation of the Warburg effect remains largely unknown.  

  

In this study, we discovered that MXI1, RBPJ, and NFKB1 may contribute to the regulation of 

the Warburg effect based on the presence of their binding motifs in the open promoter regions of 

glycolytic genes and their increased binding accessibility and expression in ccRCC cells. MXI1 

is a member of the Mad family proteins that are known to antagonize c-Myc dependent 

transcription. It has been discovered that MXI1 is a direct HIF target gene. Furthermore, MXI1 

knockdown impaired kidney cancer xenograft formation in nude mice78. While some of the 

previous studies had focused on the potential MXI1 connection with c-Myc88,89 and promoting 

mitochondrial energy metabolism90, our results suggest MXI1 may promote ccRCC cell growth 

through regulating glycolytic genes 

  

On the other hand, the activation of NF-kappaB has been demonstrated by several studies in 

RCC, and NFKB1 (p50) was shown to be the subunit involved in tumorigenesis82,91,92. Increased 

NF-kappaB is associated with apoptosis and angiogenesis82,93,94, and knockdown of NFKB1 

inhibits the growth of RCC in vitro and in vivo95. Tanaka and colleagues showed that NF-

kappaB activation in p50-null mouse embryonic fibroblasts increased glucose uptake by up-

regulating the glucose transporter 3 (GLUT3) expression and maintaining a high glycolytic 

flux96. In gastric cancer and sarcoma, NF-kappaB has also been shown to promote glycolysis27,97. 
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However, none of the previous studies showed NFKB1 may regulate glycolysis in ccRCC 

through transactivating TPI1 and ENO2, which is shown in this study and remain to be validated 

experimentally. Finally, RBPJ is the main transcription factor for all canonical Notch signaling, 

and it also functions beyond Notch signaling98–100. RBPJ has shown to have an oncogenic role in 

glioblastoma and lung cancer101,102 and a tumor-suppressor role in breast cancer103. In ccRCC, 

RBPJ has shown elevated expression in cancer stem cells. but it remains largely unknown what 

the downstream targets of activated RBPJ are in ccRCC. Our results suggest that RBPJ may 

contribute to ccRCC pathogenesis through activating PKM. Future molecular investigation of 

these TFs in relation to glycolysis is needed to confirm whether and how these TFs regulate 

glycolytic genes and activity in ccRCC. 

  

The discovery of averaged 3 to 4 tumor-cell clusters suggests tremendous heterogeneity within 

the tumor cells, as expected. We identified 4 distinct tumor subgroups based on a marker panel 

and the 95 tumor-cell and 9 PT-cell clusters. Epithelial tumor clusters are sporadic with respect 

to the traditional PT S1/2 and S3 group classification markers, suggesting these tumor cells 

might not come from one group of S1/2 or S3 proximal tubule cells. We believe our work 

showcased the dissection of the tumor subpopulation with EMT potential using single-cell omics 

within the primary tumor, which allows future studies to apply our methodology to connect the 

EMT tumor subpopulation with metastasis and drug response. Another value-add of our finding 

is that WNT5B is up-regulated in the ccRCC EMT tumor subpopulation. WNT5B is a member 

of the WNT5 protein subfamily and signals through the non-canonical beta-catenin-independent 

signaling pathway. It is required for cell migration, proliferation, or differentiation in many cell 

types104 and has an emerging role in mediating EMT in breast cancer and pancreatic cancer105,106. 
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Overexpression of WNT5B promotes colorectal cancer migration and invasion104. However, not 

much has been reported about whether WNT5B has a role in RCC. Here our results suggest 

WNT5B is upregulated in ccRCC tumor subpopulations with EMT features. We validated the 

expression of WNT5B in a patient tumor we predicted with EMT subpopulation using western 

blot (Fig. 5c), suggesting WNT5B may mediate/activate the EMT process in ccRCC. And we 

believe our results may serve as a foundation for future investigations into whether WNT5B 

directly or indirectly regulates the EMT process in ccRCC. 

  

The fact that BAP1 and PBRM1 mutations are associated with distinct overall survival led to the 

first molecular classification of sporadic ccRCC53,67. However, not much is known about the 

epigenetic alterations brought upon by BAP1 mutation and PBRM1 mutation leading to the 

distinct phenotypes in ccRCC. Our snATAC-seq analysis revealed an overwhelming portion of 

genomic loci displaying decreased accessibility in ccRCC with BAP1 mutations, consistent with 

the role of BAP1 in deubiquitination of H2AK119Ub and transcriptional activation107. 

Nonetheless, the presence of both increases and decreases in chromatin accessibility suggests 

that BAP1-mediated regulation of chromatin accessibility depends on the epigenetic landscape. 

For example, in a previous study of BAP1 function in human liver organoids, BAP1 knockout 

was associated with more ATAC peaks with increased accessibility rather than decreased 

accessibility, suggesting BAP1 function might vary based on cell type as well as the 

corresponding epigenetic state. On the other hand, PBRM1 encodes BAF180, a subunit of 

nucleosome remodeling complex PBAF. In contrast to the BAP1 mutation, PBRM1 mutation was 

primarily associated with ATAC-peaks exhibiting increased accessibility, suggesting PBRM1 
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may have a role in gene silencing. These results provide hypotheses for future functional studies 

of BAP1 and PBRM1 in ccRCC.  

  

This report represents the first combined application of snRNA-seq and snATAC-seq in ccRCC 

to study respective transcriptional profiles and chromatin accessibility patterns at the single-

nucleus level. Confirmation of known mutational and transcriptional alterations in ccRCC 

validates these single-nuclei methods as powerful tools to study cancer cell behavior at high 

resolution. More importantly, we have revealed previously underrecognized tumor-specific 

molecular changes and spatial distribution patterns of ccRCC subpopulations, underlying 

transcriptional regulatory mechanisms, and potential targets for treatment. 
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2.7 Methods 
Selection of CPTAC3 clear cell renal cell carcinoma (ccRCC) samples 

The recent large-scale CPTAC ccRCC proteomics study10 included 103 treatment-naive ccRCC 

samples, which had already been comprehensively characterized. Data consisted of proteomics 

and phosphoproteomics, whole-exome sequencing (WES), whole-genome sequencing (WGS), 

RNA-seq, and histology. We selected 35 samples from this corpus, with a balanced representation 

of mutation status, immune subtypes, and druggable events. More specifically, we selected 

comparable numbers of samples with PBRM1 and BAP1 mutations alone and samples without 

mutations in either of these genes, samples with immune inflamed and immune dessert subtypes, 

and samples with c-MET overexpression, the last being a promising druggable target in the lab. 

Finally, we requested the remaining cryo-pulverized tissue (the very same pool of tissue powder 

that was used for the original bulk sequencing) for single nuclei RNA-seq (snRNA-seq) and single 

nuclei ATAC-seq (snATAC-seq). Additional tumor segments were selected by the CPTAC 

Biospecimen Core Resource based on availability. Additional tumor segments processed for 

snRNA-seq were selected based on the successes of the original tumor segment snRNA-seq, the 

weight of additional tumor samples, and mutation status (the four cases selected had different 

PBRM1 and BAP1 mutation status).  

 

Clinical information 

Clinical data used in this paper were retrieved via the CPTAC Data Portal at: https://cptac-data-

portal.georgetown.edu/study-summary/S044. 

 

Internal patient-derived xenograft sample collection 

https://cptac-data-portal.georgetown.edu/study-summary/S044
https://cptac-data-portal.georgetown.edu/study-summary/S044
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All human tissues acquired for experiments were processed in compliance with NIH regulations 

and institutional guidelines, as approved by the Institutional Review Board at Washington 

University in St. Louis (WUSTL). All tumor materials from patients were obtained either via 

core needle biopsy or surgical resection after informed consent. All animal procedures were 

reviewed by and received ethical approval from the Institutional Animal Care and Use 

Committee at WUSTL. Animal environments were maintained at 68-72°F and 45-55% relative 

humidity. The sample tissues for these PDX models were obtained from archived, cryopreserved 

PDX harvests. Final tumor passages in mice were kept cold and harvested into RPMI-1640 with 

antibiotic and antimycotic additives. 

 

Cell lysis 

15-25 mg of pulverized tissue were placed in a 5mL Eppendorf tube on ice. Using a wide-bore 

pipette tip (Rainin), a lysis buffer prepared from the Nuclei Isolation protocol (10x Genomics) and 

SuperRNase inhibitor (Invitrogen) was added to the tube. The tissue solution was gently pipetted 

until the lysis liquid turned a slightly cloudy color. (The number of pipetting iterations depended 

on the specific tissue.) The tissue homogenate was then filtered through a 40-micron strainer 

(pluriSelect) and washed with a BSA wash buffer (2% BSA + 1x PBS + RNase inhibitor). The 

filtrate was collected, centrifuged at 500g for 6 minutes at 4°C, and resuspended with a BSA wash 

buffer. 

 

Fluorescence-activated cell sorting (FACS) 

100 uL of cell lysis solution was set aside for unstained reference, while the rest was stained with 

DRAQ5 or 7AAD for RNA or ATAC sequencing, respectively. Namely, snRNA-seq nuclei were 
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stained with 1 uL of DRAQ5 per 300 uL of the sample, and snATAC-seq nuclei were stained with 

1uL of 7AAD per 500 uL of the sample. Sorting gates were based on size, granularity, and dye 

staining signal.  

 

10X library preparation and sequencing of snRNA-seq and snATAC-seq 

Nuclei and barcoded beads were isolated in oil droplets via the 10x Genomics Chromium 

instrument. Single nuclei suspensions were counted and adjusted to a range of 500 to 1800 

nuclei/µL using a hemocytometer. Reverse transcription was subsequently performed to 

incorporate cell and transcript specific barcodes. All snRNA-seq samples were run using the 

Chromium Next GEM Single Cell 3’ Library and Gel Bead Kit v3.1 (10x Genomics). For 

snATAC-seq, Chromium Next GEM Single Cell ATAC Library and Gel Bead Kit v1.1 prep (10x 

Genomics) were used for all samples. Barcoded libraries were then pooled and sequenced on the 

Illumina NovaSeq 6000 system with specific flow cell types (snRNA-seq: S4; snATAC-seq: S1). 

 

Immunofluorescence (IF) staining 

5-micron thickness cut ccRCC Formalin-Fixed Paraffin-Embedded (FFPE) sections were 

deparaffinized and rehydrated using xylene, high to low percentages of ethanol, and finally 

placed in 1x PBS. Heat antigen retrieval method was applied using 1mM EDTA for at least 25 

minutes. 5% Donkey serum and 1% BSA was used as blocking buffer and as primary and 

secondary antibodies diluent. CA9 (#NB100-417; Novus Bio) at 1:350, CA9 (#PA5-47268, 

Invitrogen) at 1:50, VIM (#NB300-223, Novus) at 1:150, WNT5a/b (#55184-1-AP, Proteintech) 

at 1:100, CP (#A80-124A; Bethyl Laboratory) at 1:100, and PCSK6 (#PA5-32966; Invitrogen) at 

1:100 were applied on sections and later detected with specific fluorescent secondary antibodies 
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conjugated with alexa-fluors (594 & 488) emitting at red, green, and white light wavelengths. All 

IF images were taken using a Lecia DMi8 fluorescence microscope.  

 

FFPE Spatial transcriptomics prep and sequencing  

The RNA quality of FFPE tissue blocks were evaluated by calculating DV200 of RNA extracted 

from FFPE tissue sections following the Qiagen RNeasy FFPE Kit protocol. After the Tissue 

Adhesion Test, 5 μm sections were placed on the Visium Spatial Gene Expression Slide 

following Visium Spatial Protocols-Tissue Preparation Guide (10X Genomics, CG000408 Rev 

A). After overnight drying, slides were incubated at 60°C for 2 h. Deparaffinization was then 

performed following  Visium Spatial for FFPE – Deparaffinization, H&E Staining, Imaging & 

Decrosslinking Protocol (10X Genomics, CG000409 Rev A). Sections were stained with 

hematoxylin and eosin and imaged at 20x magnification using the brightfield imaging setting on 

a Leica DMi8 microscope. After that, decrosslinking was performed immediately for H&E 

stained sections. Next, human whole transcriptome probe panels were then added to the tissue. 

After these probe pairs hybridized to their target genes and ligated to one another, the ligation 

products were released following RNase treatment and permeabilization. The ligated probes 

were then hybridized to the spatially barcoded oligonucleotides on the Capture Area. Spatial 

Transcriptomics libraries were generated from the probes and sequenced on the S4 flow cell of 

the Illumina NovaSeq 6000 system. 

 

FFPE Spatial transcriptomics quantification and analysis 

After cDNA library construction and sequencing, we use the short read probe alignment 

algorithm for FFPE ‘count’ method in Space Ranger (v1.3.0) from the 10X Genomics to align 
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probe reads to the human reference genome (GRCh38). The resulting count matrix and 

associated H&E physiological images were then used by the R package Seurat (v.4.0.4)108 for 

subsequent analysis. The filtered gene-count matrices of all 3 samples were normalized using 

SCTransform before being merged into one object for joint processing and analysis using the 

FindNeighbors, and FindClusters function in Seurat using standard processing parameters (30 

PCs, original Louvain algorithm).  

 

In vitro cell line drug treatment and growth inhibition assessment using alamarBlue Cell 

Viability assay 

Two ccRCC cell lines 786-O-VHL+ and 786-O were maintained in RPMI culture medium 

(Sigma Aldrich - R8758-1L) supplemented with 10% fetal bovine serum (FBS; Sigma, F-9665) 

and 1% Penicillin-Streptomycin antibiotic (Pen Strep; Gibco, 10,000 U/mL - 15140122). The 

ccRCC cell lines RCC-4 and  RCC-4-VHL+ and a control cell line HK-2 were maintained in 

Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F-12) culture medium 

(Gibco – 11320033) supplemented with 10% FBS (Sigma, F-9665) and 1% Pen Strep (Gibco, 

10,000 U/mL - 15140122). All cell lines were seeded at 5000 cells/well in triplicates in 96-well 

plates at day 0 and were treated with either MK-571 (MRP inhibitor targeting ABCC3, Sigma 

Aldrich - M7571-5MG) or tetrathiomolybdate (chelator lowering copper level targeting CP, 

Sigma Aldrich -323446-1G) upon reaching 50-60% confluency at day 1 in culture. For MK-571 

treatment, the main stock was prepared at a 1mM concentration dissolved in water and the 

working concentrations were used at 500µM, 100µM, 20µM, and 4µM. For tetrathiomolybdate 

treatment, the main stock was prepared at 15mM dissolved in Dimethyl Sulfoxide (DMSO, 

Sigma Aldrich -  D5879-1L) and the working concentrations were used at 75µM, 15µM, 3µM, 
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and 0.6µM. Treatment was maintained in culture and growth inhibition assessment was 

performed using alamarBlue™ Cell Viability Reagent (Invitrogen - DAL1025) on day 4 post-

treatment at a ratio of 1:10for 4 hours according to the manufacturer’s protocol. Plots and IC50 

concentrations were produced in Prism GraphPad (version 9.2.0) by plotting the percent growth 

inhibition on the y-axis and the Log(concentration) on the x-axis. The corresponding IC50 was 

extracted from the nonlinear regression curve fitting analysis using Prism GraphPad. Cells 

treated with only a growth medium without any drugs or with a growth medium with 0.5% 

DMSO were used as negative controls for cells treated with MK-571 and tetrathiomolybdate, 

respectively. Cisplatin (Sigma Aldrich - 479306-1G) was used as a positive control at 400µM.  

  

Bulk omics data 

Raw and processed proteomic data used in this paper can be accessed via the CPTAC Data Portal 

at: https://cptac-data-portal.georgetown.edu/study-summary/S044. Genomic and transcriptomic 

data files can be accessed via Genomic Data Commons (GDC) at: 

https://portal.gdc.cancer.gov/projects/CPTAC-3. Processed bulk mutation, methylation, tumor 

purity, and immune subtype data were downloaded from the Clark et al. ccRCC study10. 

 

Bulk copy number calling 

Copy number variation was detected using BIC-seq2109, a read depth-based CNV calling algorithm 

for WGS tumor data. Briefly, BIC-seq2 divides genomic regions into disjoint bins and counts 

uniquely aligned reads for each bin. It then combines neighboring bins into genomic segments 

with similar copy numbers iteratively based on Bayesian information criteria (BIC). We used 

paired-sample CNV calling that takes a pair of samples as inputs and detects genomic regions with 

https://cptac-data-portal.georgetown.edu/study-summary/S044
https://portal.gdc.cancer.gov/projects/CPTAC-3
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different copy numbers between the two samples. We used a bin size of 100bp and a lambda of 3 

(smoothing parameter for CNV segmentation). Segments were called copy gain or loss when their 

log2 copy ratios were larger than 0.2 or smaller than −0.2, respectively. To further summarize the 

arm-level copy number change, we used a weighted sum approach110, in which the segment-level 

log2 copy ratios for all the segments located in the given arm were added up with the length of 

each segment being weighted.  

 

Sequencing read alignments and quality control (QC) of snRNA-seq data 

After single-nuclei prep and sequencing, Cell Ranger (v3.1.0) from 10X Genomics (with Count 

functionality) was used for aligning reads to the human genome (GRCh38) with the addition of 

pre-mRNA references. The resulting gene-by-cell UMI count matrix was used by the R package 

Seurat (v.3.1.0)108 for all subsequent processing. 

Quality filters were applied to the data to remove barcodes that fell into any of the following 

categories: too few genes expressed (possible debris), too many associated UMIs (possibly more 

than one cell), and too high mitochondrial gene expression (possible dead cell). The cut-offs for 

these filters were based on recommendations by Seurat package documentation and manually 

adjusted to keep the number of cells after filtering between 3000 and 6000. 

 

Normalization, feature selection, and dimensional reduction of snRNA-seq data 

The filtered gene-count matrix was normalized for sequencing depth by dividing by the total gene 

counts in each cell. The value was then log-transformed using the Seurat NormalizeData function 

(default parameters). We calculated a subset of features (genes) that showed high cell-to-cell 

variation for downstream analysis. For the processing of individual samples, the Seurat function 
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FindVariableFeatures was used (with default parameters) to identify the top 2000 most variable 

features, which were then scaled using the Seurat function ScaleData (with the default parameters) 

to have respective mean expression and variance of 0 and 1 across cells. For the merging of datasets 

across all samples, the top 3000 most variable features were identified. Here, the “features” 

parameter for the ScaleData function was specified as all genes in the count matrix, whereby the 

downstream Principle Component Analysis (PCA) will take all features (with available scaled data) 

as inputs. For the merging of snRNA data from the same patient, we applied the Seurat function 

SCTransform with the parameter “vars.to.regress” specified as “nCount_RNA” and 

“percent.mito”. The scaled data were then used directly as input for PCA using the Seurat function 

RunPCA (with the default parameters). The first 30 Principal Components (PCs) were used for 

downstream analysis. We also used the RunUMAP function (with default parameters) and the first 

30 PCs to perform the Uniform Manifold Approximation and Projection (UMAP), a standard 

dimensional reduction step, to visualize the snRNA data. For the processing of tumor cells only in 

individual samples and immune cells (lymphoid and myeloid lineage immune cells separately) of 

all samples, the same functions (used ScaleData instead of SCTransform) and the same 

aforementioned parameters were used. 

 

Clustering snRNA-seq data 

Cells were clustered using a graph-based clustering (default of Seurat) approach. First, we utilized 

the Seurat function FindNeighbors to embed cells in a K-nearest neighbor (KNN) graph structure, 

based on the Euclidean distance in PCA space, with edges drawn between cells having similar 

expression patterns. We used the previously-defined first 30 PCs as inputs to the function, while 

other parameters were left as defaults. To cluster cells, we then applied modularity optimization 
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techniques (using the default Louvain algorithm from the Seurat function FindClusters) to 

iteratively group cells together in order to optimize the standard modularity function. We set the 

resolution parameter at 0.5, while other parameters were left as defaults. For defining tumor 

clusters with substantial transcriptional differences, tumor-cell clusters initially assigned by Seurat 

were visualized in UMAPs and manually inspected. Tumor-cell clusters without clear separation, 

suggesting a lack of transcriptional differences, were grouped into one cluster. 

 

Merging of snRNA-seq data across samples 

We used the Seurat function “merge” to combine the Seurat objects from multiple samples after 

quality control. Details for merging, normalization, feature selection, dimension reduction, and 

clustering of the all snRNA-seq datasets can be found at 

30_aliquot_integration/docker_run_integration/integrate.R, and details for the merging and 

downstream analysis for multiple samples from the same patient can be found at 

merge_same_patient_segments/merge_same_patient_segments_C3L-00088.R, both being at our 

code archive https://github.com/ding-lab/ccRCC_snRNA_analysis/blob/master/integration/. 

 

Cell-type annotation of snRNA-seq data 

We curated from the literature a list of well-known markers, including CA9 for tumor cells (a 

downstream target of HIF and commonly upregulated in ccRCC cells, but not in normal kidney 

cells) and LRP2 for proximal tubule cells (Supplementary Table 2). Using the integrated snRNA 

data of all cells from the 31 samples, we filtered the marker genes down to those that were 

expressed in at least 10% of at least one cluster. We then labeled each cluster with cell type names 

by examining the expression values and the percentages expressed of all the filtered marker genes 

https://github.com/ding-lab/ccRCC_snRNA_analysis/blob/master/integration/30_aliquot_integration/docker_run_integration/integrate.R
https://github.com/ding-lab/ccRCC_snRNA_analysis/blob/master/integration/merge_same_patient_segments/merge_same_patient_segments_C3L-00088.R
https://github.com/ding-lab/ccRCC_snRNA_analysis/blob/master/integration/merge_same_patient_segments/merge_same_patient_segments_C3L-00088.R
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across all clusters (using the “Dotplot” function of the Seurat package). Finally, we also corrected 

the cell type labels in individual samples based on marker gene expression, mutation, and CNV 

mapping evidence. 

 

Tumor cell associated marker discovery 

Tumor-specific marker discovery was done in Seurat by comparing gene expression between 

tumor cells and non-tumor cells in patient samples. A gene is labeled tumor cell specific if both 

the following criteria are satisfied: 1) the average expression of the gene is higher in tumor cells 

compared with any other cell type, respectively, for at least one sample, and that all the differences 

are of statistical significance (log(Fold Change) >0; adjusted p value<0.05); 2) the average 

expression of the gene is higher in tumor cells compared with non-tumor cells (as a combined 

population) for 90% of the samples and that such differences are found to be statistically significant 

in at least 75% of the samples. Here, all p values were adjusted stringently by Bonferroni correction. 

 

Tumor-cell associated marker subcellular location annotation 

To find potential antigens, we further annotated tumor cell-specific genes by their subcellular 

location and tissue specificity. We used 3 databases to curate the subcellular location information: 

1) Gene Ontology Term 0005886; 2) Mass Spectrometric-Derived Cell Surface Protein Atlas111 

(CSPA); 3) The Human Protein Atlas (HPA) subcellular location data based on HPA version 19.3 

and Ensembl version 92.38. 

 

Average expression of given genes by cell type and sample 
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For this analysis, we utilized the merged Seurat object with all the nuclei from all patients, and 

grouped nuclei by the combination of sample ID and cell type (set it as the identity of the nuclei 

using the “Idents” function). Then we used the “AverageExpression” function to calculate the 

average expression using the “SCT” assay and “data” slot of the Seurat object (“data” slot stored 

the normalized expression values). 

 

Survival Analysis 

The R package "survival" was used to perform survival analysis. Standard multivariate Cox-

proportional hazards modeling was applied to estimate the hazard ratio among subtypes (function 

coxph). Kaplan-Meier curves of overall survival were used to compare prognoses among subtypes 

(function survfit). The expression-high and expression low groups were defined as those with 

expression level of the studied gene in the top and bottom 30% quantile respectively. 

 

Differential expression analysis 

Differential expression analysis was performed in order to compare the tumor cells of each tumor 

sample vs. proximal tubule (PT) cells of four NATs with snRNA-seq data using the default test 

(Wilcoxon Rank Sum test) of function FindMarkers (from the Seurat package) with the specified 

parameters: min.pct=0.1, min.diff.pct=0.1, logfc.threshold = 0, and only.pos = F. Additionally, in 

order to correct for CNV, we performed a comparison of all tumor cells vs. normal PT cells using 

each pre-filtered gene and the corresponding CNV-value calculated from bulk WGS data as latent 

variables. We removed from the final list of genes those that were insignificant after performing 

CNV-correction. For comparing EMT vs. Epi-H tumor clusters and comparing the tumor cells of 

each of the PBRM1-mutant and BAP1-mutant tumors to the combined non-BAP1/PBRM1-mutated 
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tumors, the following specified parameters were used: min.pct=0.1, min.diff.pct=0, 

logfc.threshold = 0, and only.pos = F.  

 

For the filtering of differentially expressed genes (DEGs) consistently up-regulated in tumor cells 

of individual tumors vs. combined PT cells, we require the DEGs to be significantly up-regulated 

(p_val_adj < 0.05, avg_logFC >0) in ≥50% of the comparisons. The filtering of DEGs consistently 

down-regulated in tumor cells, and DEGs specific to BAP1- and PBRM1-mutant tumors 

individually and together was similar to the filtering strategy described above. 

 

Pairwise correlation of the gene expression of tumor cells and normal nephron epithelial 

cell types 

First, we modified the tumor-cell-associated marker discovery pipeline to identify a set of markers 

specific to each of the 6 nephron epithelial cell types. Then we collected the top 100 markers for 

each of the nephron epithelial cell types and tumor cells. The average expression of the genes in 

the united gene list was used for the pairwise correlation of the cell groups. 

 

Calculating the pathway activity score 

To identify the top pathways that can best explain the variations among tumor subclusters within 

individual samples, we first identified differentially expressed genes (DEGs, positive only) for 

each tumor subcluster (over 50 cells) for each tumor using the Seurat FindMarkers function 

(default parameters). Secondly, we ran over-representation tests for DEGs for each tumor 

subcluster using the hallmarker gene set from MSigDB (to avoid gene redundancy) using the 

clusterProfiler package in R. Thirdly, we counted the frequency of a pathway over-represented in 
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the subcluster-associated DEGs across tumors and focused on the top 15 pathways (Extended Data 

Fig. 5a). Then we calculate the pathway scores for each tumor subcluster for each of the top 

pathways. For this step, we ran the AverageExpression function (Seurat package) to get the average 

expression of DEGs by tumor subclusters (“SCT” assay, “data” slot). For each DEG, its expression 

was scaled across all tumor clusters. And for each pathway, the pathway score is the average of 

the scaled expression of the pathway-associated DEGs for each tumor subcluster. For the pathway 

modules consisting of multiple pathways, tumor clusters with pathway scores in the upper 25% 

quantile for each member of the pathway module were considered enriched in the corresponding 

pathway module. For the mTOR pathway module, we require the tumor clusters to be in the upper 

10% quantile for the pathway score of the “HALLMARK_MTORC1_SIGNALING” gene set to 

be considered enriched in the mTOR pathway module. For the EMT pathway module, we require 

the tumor clusters to be in the upper 10% quantile for the pathway score of the 

“HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION” gene set and those with 

epithelial scores lower than 20% quantile to be considered enriched in the EMT pathway module. 

For comparisons of the pathway scores across patient groups, we took the highest pathway score 

across tumor subclusters in the same patient to be tested and visualized in these figures. 

 

Calculating epithelial score and assigning epithelial group 

For the epithelial score, we used the markers for the proximal tubule cells and epithelial cells listed 

in Supplementary Table 2 that were also down-regulated in the EMT-enriched tumor clusters vs. 

other tumor clusters (FDR < 0.05). We obtained their average expression by tumor subclusters and 

PT clusters using the AverageExpression function (Seurat package, “SCT” assay, “data” slot).  The 

expression for each marker was scaled across all tumor-cell and PT clusters. And for each pathway, 
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the epithelial score is the average of the scaled expression of the markers for each tumor subcluster. 

Tumor clusters with epithelial scores higher than 70% quantile were assigned as Epi-H tumor 

clusters. Tumor clusters with epithelial scores lower than 70% quantile and higher than 40% were 

assigned as Epi-M tumor clusters. Tumor clusters that were in neither of the above two groups nor 

EMT-enriched tumor clusters were assigned as Epi-L tumor clusters. 

 

Sequencing read alignments and quality control (QC) of snATAC-seq 

To process sequenced snATAC-seq data, the Cell Ranger ATAC tool (v.1.2.0, 10X Genomics) 

was used. We utilized the cellranger-atac count pipeline to filter and map snATAC-reads and to 

identify transposase cut sites. The GRCh38 human reference was used for the reads mapping. Next, 

we performed peak calling using MACS2112. All peaks were resized to 501 bp centered at the peak 

summit defined by MACS2. After this, we combined all peaks and removed the ones overlapping 

with the peaks with greater signal, in order to get the set of non-overlapping peaks, as described in 

Schep et al113. The resulting set of sample peaks was used to calculate the peak-count matrix using 

FeatureMatrix from the Signac package v.1.2.0 (https://github.com/timoast/signac), which was 

also used for downstream analysis. QC-filtering of the snATAC-datasets was performed using 

functions from the Signac package. Filters that were applied for the cell calling include: 1,000 < 

number of fragments in peaks < 20,000, percentage of reads in peaks > 15, ENCODE blacklist 

regions percentage < 0.05 (https://www.encodeproject.org/annotations/ENCSR636HFF/), 

nucleosome banding pattern score < 10, and enrichment-score for Tn5-integration events at 

transcriptional start sites > 2. 

 

Normalization, feature selection, and dimension reduction of snATAC-seq data 

https://github.com/timoast/signac
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The filtered peak-count matrix was normalized using term frequency-inverse document frequency 

(TF-IDF) normalization implemented in the Signac package. This procedure normalizes across 

cells, accounting for differences in coverage across them and across peaks, giving higher values 

to the more rare peaks. All the peaks were used as features for the dimensional reduction. We used 

the RunSVD Signac function to perform singular value decomposition on the normalized TF-IDF 

matrix, which is known as Latent Semantic Indexing (LSI) dimension reduction. The resulting 

2:30 LSI components were used for non-linear dimension reduction using the RunUMAP function 

from the Seurat package. 

 

Clustering of snATAC-seq data 

The nuclei were clustered using a graph-based clustering approach implemented in Seurat. First, 

we utilized the Seurat function FindNeighbors to construct a Shared Nearest Neighbor graph using 

the 2:30 LSI components. Next, we used the FindClusters function to iteratively group nuclei 

together while optimizing modularity using the Louvain algorithm.  

 

Merging of snATAC-seq data across samples 

Merging of snATAC-seq datasets was performed using functions from the Signac and Seurat 

packages. In order to get the set of peaks for merging, we first combined peaks from all samples, 

and then for overlapping peaks, we performed an iterative removal procedure, the same as was 

used for creating individual sample sets of peaks. The resulting list of peaks was quantified in each 

dataset and was used to create a peak-cell matrix so that the set of features was the same across all 

snATAC datasets. After that, the merge function from the Seurat package was used to merge 

snATAC datasets. Next, we performed TF-IDF normalization. The LSI dimensional reduction was 
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performed using the RunSVD function. Non-linear dimension reduction was performed using the 

RunUMAP function with the first 2:50 LSI components. 

 

Cell type label transfer from snRNA-seq to snATAC-seq data 

Cell type label transfer was performed using functions from Signac and Seurat. First, we quantified 

chromatin accessibility associated with each gene by summing the reads overlapping the gene 

body and its upstream region of 2Kb, thus creating the gene by cell matrix. Coordinates for the 

genes were used from the Ensembl database v.86 (EnsDb.Hsapiens.v86 package). Next, we 

performed log-normalization of the resulting matrices using the NormaliseData function. The 

integration of paired snATAC-seq and snRNA-seq datasets was performed using the 

FindTransferAnchors function with the Canonical Correlation Analysis (CCA) option for the 

dimensional reduction. We then utilized the TransferData function to transfer cell type labels from 

the snRNA-seq dataset to the snATAC-seq dataset using the obtained set of anchors from the 

previous step.  

 

Peak annotation 

Peaks were annotated using R package ChiPseeker using transcript database 

TxDb.Hsapiens.UCSC.hg38.knownGene. The promoter region was specified (-1000,100) relative 

to the transcription start site.  

 

Annotating differentially accessible chromatin regions with cis-regulatory elements 
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In order to annotate DACRs with cis-regulatory elements, we used the CICERO package114. Peaks 

co-accessible with the promoter peaks (co-accessibility cutoff 0.25) were annotated as potential 

enhancer elements. 

 

Calculation of TF motif scores using snATAC-seq data 

To evaluate TF binding accessibility profiles in the snATAC-seq data, we used the chromVAR 

tool113, which calculates biased-corrected deviations (motif scores) corresponding to gain or loss of 

accessibility for each TF motif relative to the average cell profile.  

 

Identifying differential TF binding accessibilities between cell groups for snATAC-seq data 

To compare the differences in the binding accessibility profiles between cell groups we used a 

two-sided Wilcoxon rank-sum test, applying FDR correction for the resulting p-values. For the 

cell-type-specific TF motifs, we compared cells from each group vs. all other cells. For the 

comparison of tumor cells vs. the proximal tubule (PT) cells, we compared tumor cells for each 

individual sample vs. the PT cells pooled from two NAT samples. 

 

Identifying ccRCC-specific TF motifs using bulk ATAC-seq data 

In order to identify ccRCC-specific TFs in bulk ATAC-seq data we first performed an analysis to 

find KIRC-cohort-specific peaks. We performed two comparisons: between samples from KIRC-

cohort and samples from all other cancer types, and between samples from KIRC-cohort vs 

samples from KIRP-cohort. For downstream analysis, we used only significant peaks with 

positive fold change found in both comparisons. To calculate motif enrichment, we used 

TFmotifView115 with the default parameters. 
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Identifying differentially accessible chromatin regions using snATAC-seq data 

To identify differentially accessible chromatin regions (DACRs) between tumor cells and normal 

PT cells, we performed a comparison for tumor cells from each tumor sample vs. PT cells pooled 

from four NAT samples using the FindMarkers function from the Seurat package, with logistic 

regression test and the fraction of fragments peaks as a latent variable to reduce the effect of 

different sequencing depths across cells. Bonferroni correction was applied for P-value adjustment 

using all peaks from the dataset. We required the peak to be significant (FDR<0.05) in at least 50% 

of comparisons, and the same fold-change direction in all comparisons. Additionally, in order to 

correct for CNV, we performed a comparison of all tumor cells vs normal PT cells using a fraction 

of fragments in peaks and CNV-value calculated from bulk WGS data as latent variables. We 

removed from the final list of peaks the ones that were insignificant after performing CNV-

correction. 

 

Next, to identify DACRs specific to BAP1-mutant and PBRM1-mutant tumors, we used the sets 

of samples for each category described above. We performed comparisons for each BAP1/PBRM1-

mutant tumor sample vs pooled tumor cells from non-mutant samples. DACRs specific to BAP1-

mutant and PBRM1-mutant groups of samples were selected if they were significantly more 

accessible in ≥50% of the samples from the respective groups compared to the non-mutant samples. 

We also required that a DACR should have the same fold-change direction in all comparisons. 

Finally, we removed peaks that were insignificant after CNV-correction.  

 

Mapping TF motif to DACRs of DEGs 
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Then we filtered out genes lacking DACRs overlapping their short promoter regions (-1000 to 100 

relative to the TSS). Next, we searched for motifs of top cell-type-specific TFs in the DACRs of 

selected DEGs for cell types of interest. We then divided the TF-DEG interactions into two 

categories based on the coordinates, relative to TSS, of the motifs found in the DACRs overlapping 

a promoter: (1) promoter motif, if the motif was found in the short promoter region (-1,000 to 100 

from TSS) and (2) distant motif, if the motif was found outside the promoter region. We used the 

described procedure to study the mechanisms of transcriptional regulation in both normal PT and 

tumor cells. Mapping of the motifs to the DACRs was performed using the motifmatchr R package. 

 

Visualizing the coverage of snATAC-seq for individual cell types 

For snATAC coverage plots, we used the CoveragePlot function from the Signac package. For 

tumor samples, we plotted coverage for tumor cells only, and for NAT samples we plotted 

coverage for normal PT cells only. 

 

Over-representation test for differentially expressed genes and differentially accessible 

chromatin regions 

For over-representation tests other than tumor subcluster-associated DEGs, we used the hallmark 

gene set and the canonical gene set from MSigDB116,117, and the enricher function from the 

clusterProfiler R package118. For the over-representation test for DEGs between tumor cells and PT 

cells, genes that are expressed in at least 10% of either cell group were used as background. For 

the over-representation test for the differentially accessible peaks associated with BAP1 and 

PBRM1, the nearest genes associated with all detected peaks were used as background. 
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Data availability 

Clinical data and raw/processed proteomic data reported in this paper can be accessed via the 

CPTAC Data Portal at: https://cptac-data-portal.georgetown.edu/study-summary/S044. Bulk 

genomic and transcriptomic data files can be accessed via Genomic Data Commons (GDC) at: 

https://portal.gdc.cancer.gov/projects/CPTAC-3. 

 

Code availability 

Detailed codes for the analysis and figures are provided at https://github.com/ding-

lab/ccRCC_snRNA_analysis. 
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https://github.com/ding-lab/ccRCC_snRNA_analysis
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2.8 Main Figures 
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Figure 1. snRNA-seq analysis identifies tumor-cell-specific markers. 
a, Schematic for integrating snRNA-seq, snATAC-seq, bulk omics, and spatial transcriptomics 
data, and validating the omics findings with immunofluorescence staining and targeted drug 
treatment. b, UMAP visualization of 146,425 nuclei and 211,497 nuclei profiled by snRNA-seq 
and snATAC-seq, respectively, colored by major cell groups. The “immune others” cell group 
include basophils, mast cells, lymphoid lineage immune cells with proliferating signature, and 
immune cells with ambiguous myeloid/lymphoid identity. c, Dot plot showing the fold changes 
of expression of 21 tumor-cell markers in ccRCC (capped at 10X). Red dots denote the gene 
expression fold changes between tumor cells vs. non-tumor cells using snRNA-seq data. Orange 
dots denote the gene accessibility fold changes between tumor cells vs. non-tumor cells using 
snATAC-seq data. Green dots denote the gene expression fold changes between bulk tumor and 
normal adjacent tissue (NAT) samples using bulk RNA-seq data. Purple dots denote the bulk 
protein level changes (spectrum intensity) between tumors vs. NAT samples. d, Dot plot 
showing the expression levels of CA9, CP, and PCSK6 in each cell type and each sample (non-
log space). Expression levels for tumor cells are highlighted by black outlined circles. e-f, 
Kaplan-Meier survival analysis showing recurrence-free survival after initial pathologic 
diagnosis. Patients with high tumor-cell expression of CP (n = 10, top 35% percentile) displayed 
significantly lower chance of event-free survival compared to patients with low tumor-cell 
expression of CP (n = 8, bottom 35% percentile) using snRNA-seq data (left plot). This result is 
validated by a similar analysis using bulk gene expression of CP in the larger CPTAC ccRCC 
discovery cohort (n = 66). P-value was calculated by log-Rank test. g, Genomic region near CP 
gene promoter (in ccRCC cells). The plots show the normalized accessibility by snATAC-seq 
around these regions in proximal tubule cells (green) from NAT samples and ccRCC cells (pink) 
from representative tumor samples. Similar results have been obtained by comparing tumor cells 
from all tumor samples to the proximal tubule cells. 
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Figure 2. ccRCC tumor-cell markers CP and PCSK6 are validated by immunofluorescence 
staining and spatial transcriptomics. 
Immunofluorescence (IF) staining of a ccRCC a. PDX tumor (ID: RESL5) and b. human tumor 
sample (ID: 293). Left panel, markers CP (novel ccRCC marker, red), CA9 (canonical ccRCC 
marker, green), and DAPI (nucleus, blue). Right panel, markers PCSK6 (novel ccRCC marker, 
red), CA9 (green), and DAPI (nucleus, blue). c. Spatial transcriptomics and H&E histology of 2 
ccRCC human tumors (ID: 293, and 282) and a PDX tumor sample (ID: RESL10). Two regions 
were selected for each sample (293, 282, and RESL10) indicating morphology of high-CP (regions 
A, C, and E) and low-CP (regions B, D, and F). d. Spatial transcriptomics gene expression of 
canonical ccRCC marker CA9 and novel tumor markers: PCSK6, ABCC3, MGST1, and NDRG1. 
e. Bubble plot of mesenchymal, proximal tubule (PT) and tumor markers gene expression from 
snRNA-seq (green) and ST (blue) in sample 293, 282, and RESL10. f. In vitro cell line growth 
inhibition using MK-571 (left panel, MRP inhibitor targeting ABCC3) and tetrathiomolybdate 
(right panel, chelator lowering copper level targeting CP). The error bars represent the standard 
error of the mean (SEM). 
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Figure 3. Glycolysis pathway displays significant changes in ccRCC tumor cells compared 
to the proximal tubule cells. 
a, Volcano plot showing differentially enriched TF motifs between ccRCC (tumor) cells (n = 
118,409) and the combined proximal tubule (PT) cells from the NATs (n = 9,676). X-axis shows 
the motif score difference, while Y axis shows the -Log10(adjusted p-value). Color denotes 
whether a motif is consistently higher or lower in tumor cells when tumor cells from individual 
tumor samples were compared to the PT cells or it has insignificant or inconsistent fold changes 
(Methods). The motifs that have consistent higher/lower TF binding accessibilities in all 
comparisons of individual tumor vs. PT cells are highlighted.  b, Volcano plot showing 
differentially expressed genes between ccRCC cells (n = 88,536) and the combined PT cells from 
the NATs (n = 4,269). X-axis shows the log2 fold change of the sn gene expression of the ccRCC 
cells compared to PT cells; Y axis shows the -Log10(adjusted p-value). Color denotes whether a 
gene is consistently expressed higher or lower in tumor cells, or has insignificant or inconsistent 
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fold changes (Methods). Genes with log2 fold change larger than 2 or smaller than -2 are 
highlighted. c, Bubble plot showing the pathways over-represented in genes up-regulated (top) and 
down-regulated (bottom) in ccRCC cells compared to the PT cells. d-e, Genomic regions near two 
up-regulated genes in ccRCC cells compared to PT cells. The plots show the normalized 
accessibility by snATAC-seq around these regions in proximal tubule cells (green) from NAT 
samples and ccRCC cells (pink) from representative tumor samples. Similar results have been 
obtained by comparing tumor cells from all tumor samples to the proximal tubule cells. f, When 
viewed in the context of important metabolic pathways in ccRCC, ccRCC cells displayed an 
overall up-regulation of genes encoding glycolysis enzymes as well as other metabolic proteins 
(rounded rectangle) at sn gene expression level (red and blue filled colors represent significantly 
increased or decreased sn expression in ccRCC cells vs. proximal tubule cells) validated by bulk 
RNA-seq and/or proteomics data. Among them, genes showing increased promoter accessibility 
are highlighted by the yellow border. Eclipses with green borders represent transcription factors 
with significantly enriched accessibility binding in ccRCC cells vs. PT cells. Lines connecting TFs 
and genes represent TF-target relations inferred by the presence of TF motif in the more accessible 
promoter region of the genes using snATC-seq. Orange lines denote those TF-target relations with 
literature support. 
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Figure 4. Intratumor signaling heterogeneity revealed by single-cell tumor subclustering. 
a, Heatmap showing the gene set scores for 95 tumor subclusters (columns). Co-clustered gene 
sets were grouped into one module, e.g. the cell cycle module includes G2M checkpoint, E2F 
targets, DNA repair, mitotic spindle, and MYC target gene sets. The black bar represents whether 
a tumor cluster showed enriched gene expression in each module. Each tumor cluster is annotated 
by the fraction of the tumor cells with 3p (VHL/SETD2/BAP1/PBRM1) loss by snRNA-based 
CNV calling. b, UMAP visualizations of the tumor-cell-only clustering of 4 tumors, colored by 
different activated pathway modules. c, Boxlot showing maximum mTORC1 signaling score per 
tumor sample, grouped by BAP1/PBRM1 mutation status. d, Boxplot showing maximum EMT 
scores per tumor sample, grouped by tumor stage. 
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Figure 5. Four tumor subgroups with distinct epithelial and mesenchymal features.  
a, Left: Heatmap showing gene expression of the epithelial and mesenchymal marker genes for 95 
tumor clusters and 9 proximal tubule (PT) clusters (> 50 cells) using snRNA-seq data. Right: 
Heatmap showing gene activity of the epithelial and mesenchymal marker genes for 38 tumor 
clusters and 9 PT clusters (> 50 cells) using snATAC-seq data. b, Volcano plot showing 
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differentially expressed genes between the EMT tumor clusters and Epi-H tumor clusters 
highlighted in a. Labels on the right denote known mesenchymal markers, while those on the left 
denote known markers for PT cells. c, Immunofluorescence staining of vimentin (VIM), CA9, 
WNT5A/B, and DAPI, showing VIM and WNT5A/B in CA9+ cells in the cross-sections of tumor 
with EMT tumor cells (C3N-01200-T2), but not in the control tumor (C3N-00242-T1). Scale bar, 
100 μm. d, Scatter plot displaying the Log2 transformed fold change for gene promoter 
accessibility versus Log2 gene expression change in EMT tumor clusters vs. Epi-H tumor clusters 
highlighted in a. e, Volcano plot showing differentially accessible TF motifs between  the EMT 
tumor clusters and Epi-H tumor clusters. Asterisks denote the “var.2” version of the TF motif 
based on the JASPAR database. f, Genomic regions near TGFBI (up-regulated in EMT tumor 
clusters) and EPB41L4A (up-regulated in Epi-H tumor clusters). The plots show the normalized 
accessibility by snATAC-seq around these regions in EMT tumor clusters (red) and Epi-H tumor 
clusters (blue). 
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Figure 6. Chromatin accessibility landscape of BAP1 and PBRM1 mutant tumors. 
a, Heatmap showing the relative changes in ATAC-peak accessibility for peaks differentially 
accessible between the tumor cells of BAP1-mutated tumors (6 tumors, including 2 BAP1- and 
PBRM1-mutated tumors, 29,366 cells) vs. non-BAP1/PBRM1-mutated tumors (non-mutants) and 
peaks differentially accessible between tumor cells of PBRM1-mutated tumors (9 tumors, 32,255 
cells). Each column is an ATAC-peak and only significantly and consistently changed peaks are 
plotted (FDR < 0.05, Methods). Only samples with > 8% mutation VAF in either BAP1 or PBRM1 
are shown (1 sample excluded). b, Circos plot showing the genome wide chromatin accessibility 
changes associated with BAP1 mutation. The green circle represents the fold change of 
significantly different ATAC-peaks in BAP1-mutated tumors vs. non-BAP1-mutated tumors (in 
red peaks with higher accessibility and in blue peaks with lower accessibility). The yellow circle 
plots the fold changes of the differentially expressed genes (DEGs) associated with BAP1 mutation 
discovered by snRNA-seq data. The orange circle displays the fold changes of the DEGs by bulk 
RNA-seq. The innermost purple circle plots the fold changes of differentially expressed proteins.  
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Figure 7. Impact of BAP1 and PBRM1 mutations on chromatin accessibility and 
transcriptional networks. 
a, Bubble plot showing the pathways over-represented in the differentially accessible peaks 
associated with BAP1 mutation. b, Volcano plot displaying the differentially accessible peaks 
between the tumor cells of BAP1-mutated tumors (29,366 cells) vs. tumor cells of non-
BAP1/PBRM1-mutated tumors (32,255 cells) by snATAC-seq data. Dots are colored by whether 
the genes showed significant and consistent fold changes in individual comparisons of each 
BAP1-mutated tumor vs. non-BAP1/PBRM1-mutated tumors. c, Scatter plot showing the positive 
correlation of chromatin accessibility and transcriptional changes. The fold change (log2) of the 
snRNA-seq expression for each gene (mRNA) is plotted against the fold change (log2) in the 
relative snATAC-seq peaks (for all the genes/peaks with significant fold change in over 50% of 
the comparisons for individual BAP1-mutated tumor vs. non-BAP1/PBRM1-mutated tumors). 
Each dot represents a gene-peak pair. Dots are colored by whether the peak overlaps the gene 
promoter or is a potential enhancer (co-accessible with the promoter peak). d, Genomic regions 
near two down-regulated genes (PTPRJ and CES3) in BAP1-mutated tumors vs. non-BAP1-
mutated tumors. The plots show the normalized accessibility signal by snATAC-seq around 
these regions in tumor cells of BAP1-mutant tumor (purple), tumor cells of PBRM1-mutant 
tumor (orange), tumor cells of non-BAP1/PBRM1-mutant tumors (pink), and proximal tubule 
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cells (green) from NAT samples from representative tumor samples. Similar results have been 
obtained by comparing tumor cells from all BAP1-mutant tumor samples to other tumors (Extend 
Data Fig. 6). e, Schematic diagram showing the differential effects of BAP1 and PBRM1 
mutations on chromatin accessibility. 
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2.9 Supplemental Figures 

 
Extended Data Figure 1. Overview of snRNA-seq, snATAC-seq, and bulk omics data. 
a, Genomic and clinical features for 25 ccRCC patients used in this study. b, Top: Scatter plot 
showing that tumor cell percentages estimated by the snRNA-seq (x-axis) were significantly 
correlated with the tumor purity estimates by ESTIMATE using bulk RNA data (y-axis) among 
25 ccRCC tumors. Bottom: Scatter plot showing that cell type content estimated by snRNA-seq 
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(x-axis) is significantly correlated with cell type content estimated by snATAC-seq (y-axis). c, 
Heatmap showing the snRNA-seq expression of known marker genes (x-axis) in various 
lymphoid cell types (y-axis). Expression was averaged across cells within each cell type and then 
scaled across all lymphoid cell types. Expression is shown only for cell types expressing a given 
gene in at least 1% of cells. d, Expression of known marker genes (x-axis) in various myeloid 
cells (y-axis). Expression was averaged across cells within each cell type and then scaled across 
all myeloid cell types. Expression is shown only for cell types expressing a given gene in at least 
1% of cells. e, Bar plot showing the numbers of peaks, divided and colored by peak type, across 
the snATAC samples. 
  



76 
 

Extended Data Figure 2. CP, PCSK6, KCTD3, NDRG1, and UBE2D2 expressions are 
associated with higher tumor grades. 
a, Schematic showing the tumor-cell discovery pipeline. b, Violin plots showing the tumor-cell 
expression of CP, PCSK6, KCTD3, NDRG1, and UBE2D2 for grade 1/2, grade 3, and grade 4 
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tumors (by cell). Horizontal connecting segments indicate levels of statistically significant 
differences between grades (* = 0.05, ** = 0.01, *** = 0.001, **** = 0.0001, “ns” = not significant) 
c, Violin plots showing the bulk RNA expression of the aforementioned genes for tumors with 
different grades. d, Violin plots showing the bulk protein abundance of the aforementioned genes 
for tumors with different grades. e, Scatter plot showing the significant correlation between CP 
and VEGFA protein levels when considering tumor and normal data jointly (left), though 
correlation weakens when they are considered individually. 
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Extended Data Figure 3. Gene expression of CP, ABCC3, SLC6A3, and growth inhibition 
for the corresponding inhibitors in RCC cell lines and controls. 
a, Heatmap showing the gene expression of CP, ABCC3, SLC6A3, and CA9 in ccRCC cell lines 
(786-O-VHL+ RNA-seq data not available) and control cell lines. b-d, Growth inhibition curves 
in ccRCCC and control cell lines of b, MK571 (targeting ABCC3), c, tetrathiomolybdate (TM; 
targeting copper, related to CP signaling) and d, Benztropine (targeting SLC6A3) treatments. The 
error bars represent the standard error of the mean (SEM). 
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Extended Data Figure 4. Pairwise correlation between tumor cells and other normal 
nephron epithelial cell types, and bulk ATAC-seq validation of ccRCC-specific TF motifs. 
a, Left: Heatmap showing the pairwise correlation between tumor cells and other normal nephron 
epithelial cell types using snATAC-based TF motif scores. Right: Heatmap showing the pairwise 
correlation between tumor cells and other normal nephron epithelial cell types using snRNA-seq 
based gene expression. b, Volcano plot showing the snATAC-based ccRCC-specific TF motifs 
validated by the TCGA bulk ATAC-seq data (enriched in ccRCC compared to other cancer types, 
highlighted in red dots). Those that are not validated are in blue dots. c, Volcano plot showing the 
snATAC-based PT-specific TF motifs in the TCGA bulk ATAC-seq data. Red dots denote those 
that are significantly enriched in ccRCC compared to other cancer types. Those that are not 
enriched in ccRCC are in blue dots. 
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Extended Data Figure 5. Differential pathway activities among tumor subclusters. 
a, Barplot showing the number of tumors in which certain pathways are over-represented in the 
differentially expressed genes among tumor subclusters. b, Violin plot showing tumor clusters 
annotated as cell-cycle-enriched have significantly higher fraction of tumor cells in S phase. c, Bar 
plot showing the genes frequently upregulated in the cell-cycle enriched tumor clusters compared 
to other tumor clusters in the same tumor, and the number of cell-cycle enriched tumor clusters 
with up-regulated expression of these genes.  d, Bar plot showing the genes frequently upregulated 
in the immune-signaling enriched tumor clusters compared to other tumor clusters in the same 
tumor, and the number of immune-signaling enriched tumor clusters with up-regulated expression 
of these genes. e, Bar plot showing the expression of LILRB1 is highest in macrophages compared 
to other cell types. 
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Extended Data Figure 6. Overview of the snATAC-seq samples and BAP1/PBRM1-
associated chromatin accessibility changes. 
a, Heatmap showing the mutation status, gene expression and protein levels of the BAP1, 
PBRM1, KDM5C, and SETD2 among the snATAC-seq samples. b, Circos plot showing the 
distribution of ATAC-peaks associated with BAP1 mutation. The outermost circles show the 
genomic location of individual ATAC-peaks associated with BAP1 mutation, with red dots 
denoting more accessible peaks and blue dots denoting more closed peaks. The middle circle 
shows the density of more closed BAP1-associated peaks across the genome. The innermost 
circle shows the density of more BAP1-associated peaks across the genome. c, Genomic regions 
near two down-regulated genes (PTPRJ and CES3) in BAP1-mutated tumors vs. non-BAP1-
mutated tumors. The plots show the normalized accessibility signal by snATAC-seq around 
these regions in tumor cells of BAP1-mutant tumor (purple), tumor cells of PBRM1-mutant 
tumor (orange), tumor cells of non-BAP1/PBRM1-mutant tumors (pink), and proximal tubule 
cells (green) from NAT samples from representative tumor samples. d, Scatter plot showing 
genes with both differential methylation and differential promoter accessibility in BAP1-mutated 
tumors vs. other tumors. The majority of these genes show hypermethylation and decreased 
promoter accessibility. The color of the dot denotes the correlation coefficient between the probe 
methylation (bulk) and the expression of the corresponding genes (bulk RNA-seq). e, Scatter plot 
showing the positive correlation of chromatin accessibility and transcriptional changes associated 
with PBRM1 mutation. The fold change (log2) of the snRNA-seq expression for each gene 
(mRNA) is plotted against the fold change (log2) in the relative snATAC-seq peaks (for all the 
genes/peaks with significant fold change in over 50% of the comparisons for individual PBRM1-
mutated tumor vs. tumors not mutated in either BAP1 or PBRM1). Each dot represents a gene-
peak pair. Dots are colored by whether the peak overlaps the gene promoter or is a potential 
enhancer (co-accessible with the promoter peak). 
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Chapter 3: Sapanisertib and cabozantinib 
combination results in potent antitumor 
activity in renal cell carcinoma patient-

derived xenografts 
 
This chapter is adapted from a manuscript in preparation. Contribution: I lead the project 

management, data analysis and figure generation for the drug-treated tumor volumes, 

downstream analysis for all the omics-related results as a first-author of the paper. Details of 

other colleagues’ contribution can be seen in the “Author Contributions” section. 

3.1 Abstract 
Patient-derived xenograft (PDX) models have proven valuable in studying treatment effects, 

mechanisms, and novel therapeutics for cancer, including renal cell carcinoma (RCC). We 

performed a series of omics-guided drug tests on a set of RCC PDX models, in which 

cabozantinib and sapanisertib are the two most effective drugs. The combination of cabozantinib 

and sapanisertib treatment induced tumor growth arrest or regression for all 6 models and it’s 

better tolerated compared to treatment with single agents. Cabozantinib plus sapanisertib can 

inhibit tumor growth by reducing vascular density. Proteomics analysis reveals increased 

epithelial-mesenchymal transition pathway may be the potential drug resistance mechanism in 

the residual tumor after the combination treatment. Finally, we identified MET baseline protein 

levels that may serve to predict treatment response to cabozantinib, with support from single-

nucleus RNA-seq data. This study proposed a potential new treatment option for RCC patients 

and revealed molecular alterations underlying tumor reduction induced by the combination of 

cabozantinib and sapanisertib treatment. 
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3.2 Introduction 
Renal cell carcinoma (RCC) originates from cells in the renal epithelium and accounts for over 

90% of cancers in the kidney1. It includes several subtypes, among which clear cell RCC 

(ccRCC) is the most common subtype (75%). For the past 20 years, several targeted agents and 

one immunotherapy agent have been approved for the treating metastatic RCC. The major 

classes of targeted therapy include Vascular Endothelial Growth Factor (VEGF) ligand antibody 

(bevacizumab), tyrosine kinase inhibitors, and mammalian target of rapamycin (mTOR) 

inhibitors, while the immunotherapy agent is a programmed death-1 inhibitor (nivolumab). 

Although all of these drugs are effective to some extent, a big proportion of ccRCC patients 

display intrinsic resistance to targeted therapies2. For those who responded well at first, the vast 

majority will eventually develop acquired resistance to these treatments2,3. This fact points to 

combinational therapy as a way to overcome such resistance. 

 

Patient-derived xenograft (PDX) models have proven valuable in the quest toward personalized 

medicine for studying treatment effects, mechanisms, and novel therapeutics for cancer. Here, 

we performed a series of drug treatment effect tests on a set of RCC PDX models, ultimately 

identifying cabozantinib and sapanisertib as the two most effective agents. Cabozantinib 

(Cabometyx, by Exelixis) is a relatively new receptor tyrosine kinase (RTK) inhibitor approved 

for advanced renal cell carcinoma targeting VEGFR, mesenchymal-epithelial transition factor (c-

MET), and AXL4. It was recently approved as a first-line treatment for advanced RCC. Although 

cabozantinib rescues sunitinib resistance in some patients, resistance eventually develops.  

 

Sapanisertinib (TAK-228, MLN0128, by Takeda/Millenium) is an experimental small-molecule 

inhibitor of mTOR, targeting both mTORC1 and mTORC25,6. There are several phase-I and 
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phase-II studies of sapanisertib for multiple non-RCC solid cancer types (NCT03047213, 

NCT02417701, NCT02244463, NCT03430882, NCT03017833, NCT02159989). Sapanisertib is 

tolerable and has some activity in NFE2L2 and KEAP1 mutant squamous cell lung cancer 

patients7. On the other hand, sapanisertib did not result in an objective response in bladder 

cancer8. Although mTOR activation is well known in RCC, and mTOR inhibitors such as 

rapamycin analogs (rapalog) have been used to treat advanced RCC in the clinic, they mostly 

target mTOR complex 1 (mTORC1) rather than mTOR complex 2 (mTORC2), and the 

corresponding patient response varies9. Therefore, we hypothesized that a newer class of drugs 

that target both mTORC1 and mTORC2, such as Sapanisertib, would likely show good efficacy 

by inhibiting mTOR more completely. To provide potential novel treatment options to the clinic, 

we also studied the treatment effects of combined drugs and explored potential molecular 

mechanisms for such effects. Our results showed the combination of cabozantinib plus 

sapanisertib has the best efficacy among all combinations tested. One model even showed close 

to a 70% reduction of tumor volume after 8-week treatment. The combination inhibits tumor 

growth by reducing vascular density and the cell cycle-related targets of E2F transcription 

factors. Based on the omics results, the resistance to the combination treatment may arise from 

the activation of the epithelial-mesenchymal transition pathway. In general, the omics results are 

valuable in explaining the molecular alterations underlying treatment effects and in predicting 

potential drug resistance mechanisms.  
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3.3 Results 
3.3.1  Study overview and PDX treatment response 
We applied 10 drugs to a set of 6 RCC PDX models, based on evidence of activated genes and 

factors in a number of pathways in ccRCC from previous studies10–19. The clinical and genetic 

features of the 6 PDX models are described in Tables 1 and 2. The drugs we have used in this 

study were RTK inhibitors cabozantinib (targets VEGFRs, c-MET, RET, KIT, AXL) and 

sunitinib (targets VEGFRs, PDGFRb), mTOR inhibitor sapanisertib (targets mTORC1 and 

mTORC2), HDAC inhibitors panobinostat (targets broad spectrum HDACs) and beta-

hydroxybutyrate (BHB; suspected to have HDAC inhibitor and other effects), HIF inhibitor 

acriflavine hydrochloride (targets HIF1a and HIF2a), CDK inhibitor abemaciclib, MEK inhibitor 

selumetinib, IAP inhibitor birinapant, and angiotensin receptor blocker losartan potassium (Fig. 

1A). Among these 10 drugs, only cabozantinib and sapanisertib showed effective responses 

across all PDX lines (Fig. 1A), meaning the drugs can inhibit tumor growth or keep it at a lower 

growth rate than the control. This promising result prompted us to test the combined effects of 

these two drugs in comparison to the single treatment and perform sequencing to further explore 

the mechanisms underlying the tumor reduction (Fig. 1B). 
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Table 1. Clinical features of the patients 

 

Table 2. Genetic features of the PDX models 

For cabozantinib treatment, all models showed some extent of response when compared to 

vehicle-treated controls. Cabozantinib-treated tumor volumes were lower than the vehicle-treated 

tumor volumes in all 6 models after 1-month treatment (day 27-30) and the differences were 

significant for RESL4, RESL5, RESL10, and RESL12 (FDR < 0.1), albeit at variable levels (Fig. 

1C). For example, when comparing PDX models RESL5 and RESL10 specifically, there was an 

obvious difference: cabozantinib caused tumor regression in RESL5, while only slowing tumor 

growth rate in RESL10. When taking a closer look at days 47/48, cabozantinib reduced tumor 

growth with tumor growth inhibition (TGI) of 84.6% and 43.8% in RESL5 and RESL10, 

respectively, relative to the control (Methods), resulting in tumor regression in RESL5 with a 
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relative tumor volume (RTV, relative to day 0) of 75.8% and sustained tumor growth in RESL10 

with an RTV of 274.2% (Table 3). On the other hand, sapanisertib showed reversed treatment 

effects in RESL5 and RESL10, when compared to cabozantinib. To be specific, RESL10 showed 

tumor growth arrest to sapanisertib with an RTV of 121.2% (TGI = 75.1%), while RESL5 

showed sustained tumor growth with an RTV of 212.0% (TGI = 57.1%) on days 47/48. Overall, 

Sapanisertib-treatment tumor volumes were lower than the vehicle-treated tumor volumes in all 6 

models after 1-month treatment (day 27-30)  and the differences were significant for 4 out of 6 

models (RESL4, RESL5, RESL10, and RESL12; FDR < 0.1). When we combined cabozantinib 

and sapanisertib, 5 out of 6 models showed significantly lower RTVs compared to controls on 

days 27-31 (FDR < 0.1; except for RESL11 due to only 1 data point). And the combinational 

therapy was significantly more effective than at least one of the monotherapies in 5 models 

(RESL5, RESL10, RESL3, RESL4, and RESL12; FDR < 0.1). On days 47/48, RESL12 and 

RESL5 showed 72.2% and 57.3% reduction in RTV compared to day 0, respectively, while 

RESL10 and RESL4 showed tumor stabilization (RTV = 88.9% and 110.0% respectively). 

While toxicity is usually a major concern for combinational therapy, the combination of 

cabozantinib and sapanisertib appears to be well-tolerated as the co-treatment did not induce 

dramatically reduced body weight compared to the control (Fig. 1D). 
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Table 3. Relative tumor volume and tumor growth inhibition statistics 

We also identified some potential connections between the patient's clinical and genetic features 

and the corresponding PDX model responses to the two drugs. RESL10 was derived from a 

patient who relapsed after a 10-month treatment of axitinib (targets VEGFRs) plus avelumab 

(targets PD-L1) and a 2.5-month cabozantinib treatment (Table 4). RESL4 was derived from a 

patient receiving lenvatinib and everolimus concurrent to the tumor collection. The other 4 

patients had no recorded targeted therapy before tumor collection. RESL10 and RESL4 showed 

the highest RTV during the two-month cabozantinib treatment (Table 3), suggesting a similar 

suboptimal response to cabozantinib in both PDX models RESL10 and RESL4 and the 

corresponding patients. We also observed that RESL10 carries a ‘hotspot’ PIK3CA mutation 

(H1047R) and RESL4 carries a PIK3CA D350G mutation (Table 2). The activation of PI3K 

signaling in RESL10 and RESL4 was supported by the increased AKT (Ser 473) 

phosphorylation compared to the PIK3CA wild type RESL5 (Fig. 1E). The PIK3CA H1047R 

mutation has been associated with resistance to cabozantinib in NIH3T3 fibroblast cells and head 

and neck cancer cells20, which is consistent with observations in our RCC PDX model RESL10. 

On the other hand, RESL10 showed the lowest RTV to sapanisertib. This is consistent with a 
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previous study that showed PIK3CA H1047R mutation is sensitive to sapanisertib21. For RESL4, 

although it also carries a PIK3CA activating mutation, its lack of response to sapanisertib may be 

potentially due to the resistances developed from its previous everolimus (mTORC1 inhibitor) 

treatment (Table 4).  

 
Table 4. Treatment histories of the patients 

 

3.3.2  Cabozantinib and sapanisertib combination reduces vascular density 
To further understand how the 6 PDX lines are organized and structured at the tissue level, we 

performed H&E staining on collected tumor samples (Fig. 2A). As shown in the clinical 

information table (Table 1), RESL3, RESL4, RESL5, and RESL12 are T2-T3 ccRCCs; RESL10 

is a ccRCC line with sarcomatoid and rhabdoid features; RESL11 is papillary renal cell 

carcinoma. In concordance with the clinical information, RESL3 and RESL5 exhibited typical 

clear cell characteristics while RESL4 and RESL12 are less typical; the sarcomatoid and 
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papillary structures in RESL10 and RESL11 look representative and convincing. Based on the 

treatment response curve in Figure 1, we observed that RESL5 responded well to cabozantinib 

while RESL10 showed resistance.  Among the 6 PDX models, RESL5 and RESL10 showed the 

most differential architectural patterns. RESL5 exhibited a low-grade, classical nested clear cell 

pattern, with the optically transparent cytoplasm and a rich capillary vascular network enclosing 

the cells (Figure 2B). Vascularity for RESL10 was not as easy to identify as for RESL5 by H&E 

staining. But the spindle-shaped cells and nuclei underscored the classical sarcomatoid feature 

for this line, as indicated by the triangles in Figure 2B. Furthermore, by applying 

immunofluorescence staining, the positive staining for CA9 in the spindle cell areas also 

supported that RESL10 is a PDX line retained clear cell RCC with sarcomatoid features (Figure 

3A). In addition to this, the positivity for Ki67 highlighted the proliferating spindle-shaped 

nuclei, which co-stained with CA9 within the same cells (Figure 3A). In comparison to RESL10, 

the majority of the nuclei in RESL5 were more round-shaped and there was significantly higher 

expression of CA9 on the cell membrane.  

 

As cabozantinib has been reported to have an anti-angiogenic effect22, we want to investigate 

vascular density changes in response to cabozantinib and sapanisertib. Specifically, we 

performed immunofluorescence staining with CD31 on control and treated RESL5/10 samples. 

We first noted that the positive CD31 staining in RESL10 exposed the rich vascular network, 

which was somewhat obscured in H&E staining. This further demonstrated the diagnostically 

essential characteristic for sarcomatoid tumors with clear cell RCC origin (Figure 3B). Next, we 

compared CD31 expression densities between control and after treatment. As shown in Figure 

3B, for both RESL5 and RESL10, cabozantinib significantly reduced the vascular density, while 
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sapanisertib treatment did not show obvious changes in vessels. This is consistent with the fact 

that cabozantinib inhibits the tyrosine kinase activity of MET, VEGFRs, and several other 

receptors that are actively involved in tumor angiogenesis. As an mTOR inhibitor, sapanisertib 

mainly works on regulating cell metabolism and proliferation. So it is expected that sapanisertib 

would not cause the change in vascular density. When cabozantinib and sapanisertib were used 

together, the decrease in vessel density was still obvious. This indicates that adding sapanisertib 

does not generally affect the excellent performance of cabozantinib inhibiting tumor 

angiogenesis. Lastly, by quantifying the expression density of CD31, we found that RESL5 was 

more responsive to cabozantinib than RESL10 (Figure 3C; P < 0.0001). After cabozantinib 

treatment, the expression density of CD31 in RESL5 decreased by 94% compared to control; as 

for RESL10, the density dropped only by 75%. 

 

3.3.3  Cabozantinib plus sapanisertib treatment inhibits cell cycle related 
proteins while inducing proteins related to epithelial-mesenchymal transition 
To obtain a mechanistic understanding of the observed tumor regressions after cabozantinib-

sapanisertib co-treatment, we collected tumors at baseline and under four treatment regimens, 

namely vehicle, cabozantinib, sapanisertib, and the combination therapy, for 1-month and two-

month periods, subsequently performing bulk whole-exome sequencing (WES), bulk RNA 

sequencing (RNA-seq), bulk proteomics and phosphoproteomics, and single-nucleus RNA-seq 

(snRNA-seq) on selected samples (Fig. 1B). The combination resulted in differential expression 

of 310 human proteins compared to the control (P-value < 0.05, difference in log2 intensity > 

0.1), inducing more down-regulation than up-regulation (97 up + 213 down) (Fig. 4A). To 

identify the pathways altered by the combination treatment, we performed pathway over-

representation tests on the differentially expressed proteins and examined the top 5 pathways 
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enriched in differentially expressed proteins (Fig. 4B). Proteins that decreased after the 

combination treatment are enriched in translation, oxidative phosphorylation, protein 

localization, E2F targets, and bile acid metabolism pathways. Decreased proteins in the 

translation include a large number of mitochondrial ribosomal proteins 

(MRPL1/3/9/11/14/16/19/41/43 and MRPS9/10/31). Oxidative phosphorylation is another 

mitochondrial process having a myriad of decreased proteins (TIMM8B, GOT2, HCCS, 

UQCRQ, SLC25A20, NDUFB1, COX7C, TOMM22, SLC25A5, UQCRB, UQCR10, COX4I1, 

COX17, MRPL11, DLD). Mitochondrial oxidative phosphorylation is already reduced in 

primary ccRCC23, our results suggest the translational and respiratory capacities of mitochondria 

are further reduced after combination therapy. We also observed decreased protein levels of cell 

cycle-related targets of E2F transcription factors (TK1, CDK1, KPNA2, MCM2, PRDX4, 

PCNA, TBRG4, MCM3, RFC3, MCM7), which may explain the tumor growth arrest/regression 

induced by the combination treatment.  

 

On the other hand, proteins increased after the combination treatment are enriched in epithelial-

mesenchymal transition (EMT), amino and nucleotide sugar metabolism, G2M checkpoint, 

nuclear envelope breakdown, and cellular trafficking proteins pathways (Fig. 4B). In particular, 

the combination treatment increased the protein levels of EMT pathway members TGFBI, LRP1, 

COL7A1, TAGLN, SCG2, THBS1, and TFPI2 compared to the control. Moreover, the 

combination treatment also increased the protein levels of G2M checkpoint proteins CDK4, 

TNPO2, RPS6KA5, PRMT5, and NUP98. EMT has been known to play an important role in 

cancer progression, metastasis, and drug resistance24,25. The up-regulation of EMT and G2M 
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checkpoint proteins may be a survival adaptation to the blockade of RTK and mTOR signaling 

by the combination treatment.  

 

We were interested to see the specific effects of combination treatment on the tumor proteome, 

so we compared the combination-treated PDX tumor proteome to post-monotherapy proteomes. 

8 proteins showed significantly lower levels in combination-treated tumors compared to both 

cabozantinib-treated and sapanisertib-treated tumors, namely IGF2BP3, DNAJC7, PYCR1, 

CHMP6, MRM3, ERO1B, CLIC6, and COBLL1 (Fig. 4C). Using the proteomics data from an 

independent ccRCC cohort (81 cases), we found that IGF2BP3, PYCR1, and ERO1B showed 

significantly higher protein levels in tumor samples than in the matching normal adjacent tissue 

(P < 1e-10, Fig. 4D). Kaplan–Meier analysis showed a significant association between IGF2BP3 

protein levels and survival (Fig. 4E; P < 0.05). Increased IGFBP3 protein may have an oncogenic 

role in ccRCC, which would suggest that their reduced levels caused by combination treatment 

contribute to the more effective tumor inhibition as compared to the two monotherapies. 

 

3.3.4  Baseline MET protein levels predict response to cabozantinib 
We would like to know whether the baseline levels of proteins and phosphorylation sites in the 

models may be associated with their response to the drug treatment, especially proteins within 

key pathways affected by cabozantinib and sapanisertib respectively. These proteins/pathways 

include RTKs and their corresponding ligands (such as MET, HGF, VEGFRs, and VEGFs), 

PI3K/AKT/mTOR pathway, and Ras/Raf/MAPK pathway26 (Fig. 5A-B). Among them, we found 

MET protein levels are highest in RESL10, which is the least sensitive to cabozantinib (TGI = 

35.1% at day 28), and lowest in RESL5, which is most sensitive to cabozantinib (TGI = 65.3% at 
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day 28). Overall, MET protein level is significantly negatively associated with cabozantinib TGI 

(Fig. 5C; P = 0.0013, R = -0.97). We observed a similar trend for MET mRNA levels (Fig. 5C). 

The higher MET level in RESL10 compared to RESL5 is supported by the bulk RNA-seq and 

single-nuclei RNA-seq (Fig. 5D), and it’s validated by western blot (Fig. 5E). 

 

3.4  Discussion 
Systemic treatment with targeted agents and/or immune checkpoint inhibitors have been the 

pillars for treating RCC patients with inoperable or metastatic tumors, as RCCs are generally not 

very responsive to chemotherapy and radiotherapy. Immunotherapy has shown good efficacy in 

RCC and is also widely used to treat many other types of cancers. And the other major category 

of drugs for RCC are targeted therapies. RCCs are highly vascular, thus tyrosine kinase 

inhibitors targeting the VEGF signaling have been major approved first-line and second-line 

targeted agents. Although these single agents have been proven effective to some extent, 

resistance eventually develops, leading to the realization that multiple drugs with specific 

different targets are needed to overcome such resistance. Here we tested 10 drugs as well as 

selected combinations across 6 RCC models, finding cabozantinib and sapanisertib to be the 

most effective single agents. The combination of cabozantinib and sapanisertib is also the most 

effective combinational therapy we tested, and its effect superior to either of the single agents 

across all 6 lines. Compared to a similar combination that has been FDA-approved – lenvatinib 

plus everolimus, our preliminary results showed that the combination of cabozantinib plus 

sapanisertib performs similarly to lenvatinib plus everolimus. However, comparisons in more 

models need to be done to ascertain if there is a difference in their tumor inhibition effect as well 

as toxicity.   
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We hypothesized that RCCs with different mutational profiles may respond very differently to 

cabozantinib and sapanisertib. We indeed found various degrees of response to the two drugs 

across the 6 lines, which have differential mutation profiles (Table 2). Interestingly, tumor 

RESL10, which harbors a PIK3CA H1047R mutation, showed the least tumor inhibition by 

cabozantinib (at least at day 28 and day 47). It has been known that mutations in members of the 

PI3K pathway are highly frequent in various human cancer types, including clear cell renal cell 

carcinoma27–29. These mutations are most commonly found in the PIK3CA gene, which encodes 

the p110alpha catalytic subunit of PI3K. 5% of ccRCC harbor PIK3CA mutations or 

amplifications30. PIK3CA mutations cluster at hotspot H1047 in the kinase domain, as well as 

E542 and E545 within the helical domain. Previous in vitro studies have shown the PIK3CA 

H1047R mutation increases kinase activity and confers variable oncogenic features28,31. Nisa et 

al reported that PIK3CA H1047R confers resistance to MET inhibition (using tepotinib) in head 

and neck cancer cells, and combined MET/PI3K inhibition led to enhanced anti-tumor activity in 

tumors with PIK3CA H1047R20. Our results for RESL10 seem to agree with the Nisa et al study, 

considering cabozantinib also targets MET and sapanisertib targets mTORC1/2, downstream of 

PI3K signaling. Further investigation with an expanded RCC sample set and/or with isogenic cell 

lines is needed to explore the relation between PIK3CA  mutation and cabozantinib response in 

RCC. 

 

The inhibition of cell cycle-related proteins by the combination therapy is expected and maybe 

the molecular alterations underlying the tumor regression. The decreased mitochondrial proteins 
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may be a sign of mitochondrial damage, which is usually considered a drug’s “off-target” effect, 

contributing to adverse reactions32. The mTORC1 is known as a regulator of mitochondrial 

functions33–35. As a mTORC1/2 inhibitor, sapanisertib alone decreased several proteins in the 

oxidative phosphorylation pathway (ATP6V1G1, NDUFA2, COX17, COX7C, NDUFB3) 

compared to the control (P < 0.05, difference in log2 intensity > 0.1). Cabozantinib has been 

reported to increase mitochondrial membrane potential (an indicator of mitochondrial activity) in 

medullary thyroid carcinoma36. However, here in our data, we observed cabozantinib decreased 

cytochrome C (CYCS) and OPA1 mitochondrial dynamin-like GTPase proteins, which function 

in the oxidative phosphorylation pathway and did not lead to a dramatic increase in proteins 

related to mitochondrial processes.  It’s interesting to see that the combination of sapanisertib 

and cabozantinib seems to decrease mitochondrial activity based on our proteomics analysis, 

suggesting the combination therapy may contribute to adverse reactions through damaging 

mitochondria. 

 

We found an over-representation of EMT-related proteins increased after the cabozantinib plus 

sapanisertib treatment, including LRP1 and TGFBI. Low-density lipoprotein (LDL)-related 

protein-1 (LRP1) has been shown to bind tissue-type plasminogen activator and activate 

extracellular ERK1/2 to stimulate MMP9 production in kidney fibroblasts37, which degrades the 

basement membrane of epithelial cells and initiates EMT38,39. LRP1 was also reported to induce 

MMP2 and MMP9 to promote glioblastoma cell migration and invasion40. Knockdown of LRP1 

in ccRCC cells has been shown to compromise the recombinant lactotransferrin-mediated 

suppression of cell migration and EMT marker expression41. Although lactotransferrin (LTF) 

was not differentially expressed after the combination treatment and tissue-type plasminogen 
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activator (PLAT) was not detected in our dataset, we did observe a slight increase in human 

MMP2 protein (P = 0.05, protein change in log2intensity = 0.86). We also observed an increase 

in the mouse Mmp19 protein after combination treatment (P = 0.03, protein change in 

log2intensity = 1.02), a matrix metalloproteinase that was reported to induce EMT in vitro42, 

promote metastasis in lung cancer43, and it is associated with ccRCC patient survival44, although 

there is no report on direct association between MMP19 and tissue-type plasminogen activator 

nor LRP1. Transforming growth factor-beta-induced (TGFBI) protein is a downstream member 

of the TGF-beta signaling pathway45, and has been reported to promote EMT in gastric cancer 

and cholangiocarcinoma. Although TGFBI has not been directly linked to EMT in RCC, TGF-

beta 1 treatment was reported to promote RCC EMT46. EMT has been associated with drug 

resistance in cancers.  Although how EMT induced resistance to targeted therapies is largely 

unknown, studies have shown EMT-regulating transcription factors, such as ZEB1 and TWIST1, 

are correlated with resistance to EGFR inhibitors in EGFR mutant lung cancer through inhibiting 

pro-apoptotic protein BIM and therefore suppressing apoptosis47,48. Yochum and colleagues47 

showed that BCL-2/BCL-XL inhibitor (ABT-737) and a TWIST1 inhibitor, harmine, desensitize 

EMT EGFR mutant lung cancers via apoptosis sensitization. We did not find differential 

expression of BIM protein after the combination treatment in our dataset. But we did observe 

decreased pro-apoptotic proteins CASP8, IRAK1, and anti-apoptotic proteins BIRC6 after 

combination treatment. Further studies would be needed to evaluate the apoptosis activity for the 

residual tumor after combination treatment, as it may provide a new therapeutic option to combat 

potential resistance to the combination treatment.  
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IGF2BP3 is a member of the IGF2BP protein family, which is involved in RNA localization, 

transportation, and stability, and plays functional roles in embryonic development and cell 

metabolism, proliferation, migration, and invasion49. The IGF2BP proteins were known to be 

expressed in developing human tissues but absent in normal adult tissues. IGF2BP3, however, 

was reported to be re-expressed in a variety of tumors, including kidney cancer50,51. Previous 

studies showed tissue and circulating IGF2BP3 levels may be used as a prognosis marker as well 

as a predictor for metastasis in ccRCC52–55. IGF2BP3 has been shown to promote RCC 

progression by activating NK-kappaB signaling pathway52 and by stabilizing lncRNA CDKN2B-

AS156. In this study, we found decreased IGF2BP3 proteins in RCC PDX tumors after 

cabozantinib plus sapanisertib treatment, a significant change compared to the single agent-

treated tumors (P < 0.05). And we also found high IGF2BP3 protein level is associated with 

worse survival in the CPTAC ccRCC cohort. We did not find significant differential expression 

of NFKB1/2 protein nor CDKN2B-AS1 RNA. However, by examining the reported IGF2BP3 

targets in cancer summarized by Mancarella, Scotlandi, and colleagues57, we found combination 

treatment also decreased mRNA levels of CCND3 compared to the control (P < 0.05), 

cabozantinib treatment (P < 0.05) as well as sapanisertib treatment (P < 0.1), suggesting the 

coordinated down-regulation of IGF2BP3 and downstream targets CCND3 may contribute to the 

superior tumor inhibition effect of cabozantinib plus sapanisertib treatment. Pyrroline-5-

carboxylate reductase 1 (PYCR1) is the last key enzyme that catalyzes the synthesis of proline, 

and it also functions to increase mitochondrial reactive oxygen species production, promoting 

EMT through inducing mitochondrial ion protease, thus also activating M2 macrophage 

polarization and angiogenesis58. Previous studies have shown that PYCR1 up-regulation is 

correlated with shorter overall survival (OS) in RCC59,60. In ccRCC cell lines, PYCR1 is 
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associated with resistance to multiple drugs, including RTK inhibitor lapatinib61. Cabozantinib 

treatment leads to increased PYCR1 protein compared to the control (P < 0.05). Interestingly, the 

combination of cabozantinib plus sapanisertib seems to decrease PYCR1 protein levels 

compared to the cabozantinib-alone and sapanisertib-alone treatments, bringing it to a similar 

level compared to the control. Our results indicate the cabozantinib plus sapanisertib 

combination may be able to block the increase in PYCR1 protein, thus preventing PYCR1-

mediate drug resistance.    

 

We found high MET protein expression (as well as gene expression) predicts worse tumor 

growth inhibition by cabozantinib, which targets many RTKs including MET. High MET 

expression in advanced RCC patients has been associated with poor prognosis and prior 

exposure to VEGFR tyrosine-kinase inhibitors62,63. Of note, RESL10 in our study shows the 

highest MET protein expression and was derived from a patient who has previously received 

VEGFR inhibitors axitinib and cabozantinib. RESL4 was also derived from a patient who is 

undergoing VEGFR inhibitor lenvatinib plus everolimus treatment, however, its MET protein 

expression is lower than other RESL3, RESL11, and RESL12, which did not receive prior 

VEGFR inhibitors. In preclinical models, high MET expression is associated with resistance to 

VEGFR tyrosine-kinase inhibitor treatment64. MET expression level does not affect cabozantinib 

treatment outcome in the phase 3 METEOR RCC clinical trial65, nor in breast cancer or 

cholangiocarcinoma clinical trials for cabozantinib treatment66,67. However, in a recent study of 

the plasma biomarkers for the RCC METEOR trial, decreased MET levels, when analyzed with 

log2 of baseline protein levels as a continuous variable, are prognostic for improved progression-

free survival (PFS) and OS68. In phase 3 CELESTIAL trial of cabozantinib treatment in 
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advanced hepatocellular carcinoma, high levels of MET were associated with shorter OS69. 

These results suggest additional studies are needed to confirm the relation between MET protein 

and cabozantinib response in RCC as our sample size is limited. 
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3.7  Methods 
Tumor materials 

All human tissues acquired for experiments were processed in compliance with NIH regulations 

and institutional guidelines, as approved by the Institutional Review Board at Washington 

University in St. Louis (WUSTL). All tumor materials from patients were obtained either via core 

needle biopsy, skin punch biopsy, or surgical resection after informed consent. Freshly collected 

tumors were maintained in Dulbecco's Modified Eagle Medium (DMEM)/F-12 (Gibco, 11330032) 

on ice until implantation. In addition to the implanted piece, another piece of each tumor tissue 

was fixed in 4% paraformaldehyde at 4°C and processed the next day; several small pieces (3 mm 

cubes) were frozen in 10% dimethylsulfoxide (Sigma-Aldrich, D2660) and 90% fetal bovine 

serum (Gibco, 10437028) at –80°C and stored in liquid nitrogen for future implantation; several 

small pieces were snap-frozen in liquid nitrogen and stored at –80°C for subsequent analyses; all 

leftover tissues were dissociated and used for organoid culture. 

 
PDX model establishment 

All animal procedures were reviewed by and received ethical approval from the Institutional 

Animal Care and Use Committee at WUSTL. This study followed the protocol approved by 

American Association for Laboratory Animal Science (IACUC). All immunodeficient NSG mice 

(NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ, Stock No: 005557) were purchased from The Jackson Laboratory. 

Mice were kept in a temperature-controlled facility on a 12/12-hour light/dark schedule with 

normal food and water supplies. 6~8 week old female NSG mice were placed under isoflurane 

anesthesia and received tumor implantation subcutaneously on both flanks. Mice were checked 

daily after surgery for one week. Upon signs of solid tumor establishment, growth was monitored 
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weekly. Tumor growth was determined by a two-dimensional measurement with calipers. Tumor 

volume [mm3] = length [mm] x width2 [mm2] x 0.5. When tumors reached 2 cm in diameter or the 

mouse was weak, mice were euthanized and tumors were collected immediately. Collected tumors 

were cut into 3 mm cubes in PBS for another implantation immediately. The remaining tumor 

pieces were assigned and stored in the same way as described in the “Tumor materials” section. 

For each tumor, volumes are expressed relative to the initial volume (day 0), as a relative tumor 

volume (RTV). The % tumor growth inhibition (TGI) is defined as (1 – (mean volume of treated 

tumors)/(mean volume of control tumors)) x 100%. The statistical significance of tumor inhibition 

by drug treatment was assessed by comparing RTVs between the treated vs. control groups or 

combinational tharapy vs. monotherapy groups in unpaired Student’s t tests. 

  

Treatment cohort and tumor sample collection 

Implantation was performed similarly to PDX establishment. A batch of 7 week-old female NSG 

mice received bilateral tumor implants. Tumor growth and body weight were monitored once there 

were signs of solid tumor growth. When most tumors from one cohort reached a volume of 

150~250 mm3, the mice were assigned into 4 groups randomly with comparable median and mean 

tumor volumes. The day of grouping was designated as day 0 of an experiment and was also the 

first day of treatment. 

Mice in the vehicle group were given corn oil (Sigma, C8267) 5 days/week (Monday to Friday) 

by oral gavage using feeding tubes (Instech, FTP-20-38). Mice in the treatment groups were treated 

with 30 mg/kg cabozantinib (Selleck, S4001), 1 mg/kg sapanisertib (Sigma, L21907), or 30 mg/kg 

cabozantinib + 1 mg/kg sapanisertib, 5 days a week by oral gavage. Tumor size and body weight 
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were measured twice a week. The treatment lasted about 30 days, or stopped when the tumor 

reached 2 cm in diameter. Tumors were harvested immediately after the host was euthanized. One 

small piece of tissue from each tumor was fixed in 4% paraformaldehyde at 4°C and processed the 

next day; all other tissues were snap-frozen in liquid nitrogen and stored at –80°C for subsequent 

analyses. 

  

Genomic DNA and total RNA extraction 

A small piece (~10 mg) of tumor tissue was cut from each sample and the genomic DNA was 

isolated using the QIAamp DNA mini kit (Qiagen, 51304) following the Quick-Start Protocol. 

Total RNA was isolated with TRI Reagent (Sigma, T9424) and cleaned up with RNeasy MinElute 

Cleanup Kit (Qiagen, 74204). Briefly, about 15 mg of tumor tissue was chopped on a petri dish 

into finer pieces with a scalpel blade on ice and transferred to a 1.5 ml Eppendorf tube with 800 

µl TRI Reagent. After vortexing, the mixture stayed at room temperature for 10 minutes. Then 200 

µl chloroform (Sigma, 319988) was added to the tube, vortexed for 1 minute, and incubated at 

room temperature for 5 minutes. The mixture was centrifuged at 12,500 rpm for 10 minutes. The 

upper aqueous layer (500 µl) was transferred into a new tube and mixed with 500 µl of ice-cold 2-

propanol (Sigma, 190764). After vortexing, the mixture was incubated at –20°C for 2 hours and 

then was transferred to an RNeasy MinElute spin column. After that, the sample was processed 

following the Quick-Start Protocol of the RNeasy MinElute Cleanup Kit. Total RNA was run on 

TapeStation (Agilent Technologies) and a sample that had a minimum RNA integrity number 

equivalent to 7 was subjected to RNA sequencing.  

 
Whole-exome sequencing 
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Genomic DNA quantity was assessed by fluorometry using the Qubit dsDNA HS Assay (Q32854) 

according to the manufacturer’s instructions (Thermo Fisher Scientific, Waltham, MA). 100–250 

ng of genomic DNA was fragmented on the Covaris LE220 instrument targeting 250 bp inserts. 

Automated dual-indexed libraries were constructed with the KAPA Hyper library prep kit (Roche) 

on the SciClone NGS platform (Perkin Elmer). Up to ten libraries were pooled at an equimolar 

ratio by mass prior to the hybrid capture targeting a 5-μg library pool. The library pools were 

hybridized with the xGen Exome Research Panel v1.0 reagent (IDT Technologies) that spans a 

39Mb target region (19,396 genes) of the human genome. The libraries were hybridized for 16–18 

h at 65°C followed by a stringent wash to remove spuriously hybridized library fragments. 

Enriched library fragments were eluted and PCR cycle optimization was performed to prevent 

over-amplification. The enriched libraries were amplified with the KAPA HiFi master mix (Roche) 

prior to sequencing. The concentration of each captured library pool was accurately determined 

through qPCR utilizing the KAPA Library Quantification Kit according to the manufacturer's 

protocol (Roche) to produce cluster counts appropriate for the Illumina NovaSeq-6000 instrument. 

2x150 paired-end reads were generated targeting 12Gb of sequence to achieve ~100x coverage per 

library. 

 
RNA sequencing 

Library preparation was performed with 500 ng to 1 µg of total RNA. Ribosomal RNA was 

blocked using FastSelect reagents (Qiagen) during cDNA synthesis. RNA was fragmented in 

reverse transcriptase buffer with FastSelect reagent and heated to 94°C for 5 min, 75°C for 2 min, 

70°C for 2 min, 65°C for 2 min, 60°C for 2 min, 55°C for 2 min, 37°C for 5 min, 25°C for 5 min. 

mRNA was reverse transcribed to yield cDNA using SuperScript III RT enzyme (Life 
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Technologies, per manufacturer’s instructions) and random hexamers. A second strand reaction 

was performed to yield ds-cDNA. cDNA was blunt ended, had an A base added to the 3′ ends, and 

then had Illumina sequencing adapters ligated to the ends. Ligated fragments were then amplified 

for 15 cycles using primers incorporating unique dual index tags. Fragments were sequenced on 

an Illumina NovaSeq-6000 S4 instrument generating approximately 30M paired end 2x150 reads 

per library. 

 
Sample cryopulverization 

Sample cryo-pulverization was performed at Washington University in St. Louis (Ma Lab). Flash-

frozen tissues were transferred into pre-cooled Covaris Tissue-Tube 1 Extra (TT01xt) bags 

(Covaris #520007) on the dry ice and quickly processed in a Covaris CP02 Cryoprep device using 

an impact setting of 3. Tissue powder was then transferred to an aluminum weighing dish (VWR 

#1131-436) and thoroughly mixed with a  pre-cooled metal spatula. Next, the tissue powder was 

partitioned into three aliquots, aliquot 1 = ~25mg, aliquot 2 = ~ 25mg and excess tissue in aliquot 

3,  into separate precooled cryovials (Corning #430487). All procedures were carried out on dry 

ice and liquid nitrogen to maintain tissues and all tools in the frozen state. Aliquot 1 was used for 

proteomics analysis in this study. 

 
Sample processing for protein extraction and tryptic digestion 

All samples for the current study were prospectively collected as described above and processed 

for mass spectrometric (MS) analysis at Johns Hopkins University. Tissue lysis and downstream 

sample preparation for global proteomic and phosphoproteomic analysis were carried out as 

previously described70. Approximately 25-120 mg of each cryo-pulverized renal tumor tissues or 

NATs were homogenized separately in an appropriate volume of lysis buffer (8 M urea, 75 mM 
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NaCl, 50 mM Tris, pH 8.0, 1 mM EDTA, 2 g/mL aprotinin, 10 g/mL leupeptin, 1 mM PMSF, 10 

mM NaF, Phosphatase Inhibitor Cocktail 2 and Phosphatase Inhibitor Cocktail 3 [1:100 dilution], 

and 20 mM PUGNAc) by repeated vortexing. Lysates were clarified by centrifugation at 20,000 x 

g for 10 min at 4°C, and protein concentrations were determined by BCA assay (Pierce). Lysates 

were diluted to a final concentration of 8 mg/ml with lysis buffer, and 800 g of protein was reduced 

with 5 mM dithiothreitol (DTT) for 1 h at 37°C and subsequently alkylated with 10 mM 

iodoacetamide for 45 min at RT (room temperature) in the dark. Samples were diluted 1:3 with 50 

mM Tris-HCl (pH 8.0) and subjected to proteolytic digestion with LysC (Wako Chemicals) at 1 

mAU:50 g enzyme-to-substrate ratio for 2h at RT, followed by the addition of sequencing-grade 

modified trypsin (Promega) at a 1:50 enzyme-to-substrate ratio and overnight incubation at RT. 

The digested samples were then acidified with 50% trifluoroacetic acid (TFA, Sigma) to a pH 

value of approximately 2.0. Tryptic peptides were desalted on reversed-phase C18 SPE columns 

(Waters), followed by aliquoting 20 g of digested peptides for global proteomic analysis, dried in 

a Speed-Vac, and resuspended in 3% ACN/0.1% formic acid prior to ESI-LC-MS/MS analysis. 

 
ESI-LC-MS/MS for global proteome and phosphoproteome using DIA-MS analysis 

Individual global proteome and phosphoproteome samples were analyzed using the same 

instrumentation and methodology; albeit with varied gradient settings. Unlabeled, digested 

peptide material from individual tissue samples was spiked with index Retention Time (iRT) 

peptides (Biognosys) and subjected to data-independent acquisition (DIA) analysis. Peptides 

(~0.8 g; ~1 ug for glycopeptides) were separated on an Easy nLC 1200 UHPLC system (Thermo 

Scientific) on an in-house packed 20 cm x 75 m diameter C18 column (1.9 m Reprosil-Pur C18-

AQ beads (Dr. Maisch GmbH); Picofrit 10 m opening (New Objective)). The column was heated 
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to 50°C using a column heater (Phoenix-ST). The flow rate was 0.200 μl/min with 0.1% formic 

acid and 3% acetonitrile in water (A) and 0.1% formic acid, 90% acetonitrile (B).  

For global proteomic characterization, the peptides were separated using the following LC 

gradient: 0-3 min (2% B, isocratic), 3-103 min (7%-20% B, linear), 103-121 min (20-30% B, 

linear), 121-125 min (30-60% B, linear), 125-126 min (60-90% B, linear), 126-130 min (90% B, 

isocratic), 130-131 min (90-50% B, linear), 131-140 min (50% B, isocratic). Samples were 

analyzed using the Thermo Fusion Lumos mass spectrometer (Thermo Scientific).  

For global and phosphoproteome, the DIA segment consisted of one MS1 scan (350-1650 m/z 

range, 120K resolution) followed by 30 MS2 scans (variable m/z range, 30K resolution) as 

described previously71. Additional parameters were as follows: MS1: RF Lens – 30%, AGC 

Target 4.0e5, Max IT – 60 ms, charge state include - 2-6; MS2: isolation width (m/z) – 0.7, AGC 

Target – 3.0e6, Max IT – 80 ms. 

 
Single nuclei isolation 

Each tumor sample (25~30 mg) stored at -80oC was cut into 2 mm pieces on a petri dish with a 

scalpel blade on ice and loaded into a 2 ml glass homogenizer (Fisher, K8853030002) with 1 ml 

of ice-cold lysis buffer, which was made freshly with 10 mM Tris-HCl (pH 7.4, Thermo, 

15567027), 10mM NaCl (Thermo; AM9759), 3 mM MgCl2 (Thermo, AM9530G), 0.01% NP-40 

substitute (Sigma, 74385), nuclease-free water (Sigma, W4502), and 0.2 U/ul RNase inhibitor. 

Each sample was homogenized with the pestle (Fisher, K8853020002) by 4 pushes and 4 pulls. 

The homogenate was then incubated on ice for 1 minute with an additional 1 ml of cold lysis buffer, 

then pipetted gently for 4 times, and incubated on ice for another 1.5 minutes. After incubation, 

the homogenate went through a 40 um cell strainer, and the cell strainer was washed with 1 ml 

wash buffer, which was freshly made with 2% BSA in PBS and 0.2 U/ul RNase inhibitor. Both 
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filtrates were collected in the same tube and centrifuged at 500 g for 6 minutes at 4°C. The pellet 

was resuspended in a 300 ml ice-cold wash buffer gently and 1 ml DRAQ5 was added for staining. 

After 10 minutes of incubation on ice, the sample was sorted by FACS and ~200,000 nuclei were 

collected in the ice-cold wash buffer. Then the sorted nuclei in the wash buffer were centrifuged 

at 500 g for 6 minutes at 4°C and the pellet was resuspended in ~35 ml ice-cold wash buffer gently. 

We then extracted a 1 ul nuclei sample for counting on a hemocytometer with trypan blue staining. 

For single nuclei sample submission, the nuclei were diluted into 1,500~2,000 nuclei/ml in the ice-

cold wash buffer. 

 
H&E staining 

Fresh tumor tissues were fixed in 10% neutral buffered formalin (Epredia, 5725) at room 

temperature overnight but for less than 24 hours. Tissues were then dehydrated, infiltrated with 

wax, and embedded into paraffin blocks. Formalin-fixed paraffin-embedded (FFPE) samples were 

cut into 4-μm tissue sections and heated to 55°C prior to staining. Next, deparaffinization was 

performed by incubating in xylene, followed by rehydration incubation in 100%, 95%, 70%, 50%, 

and 25% ethanol. Then, slides were stained with hematoxylin (Vector Labs, H-3401-500) for 6 

minutes followed by triple-washing with tap water and bluing in Scott’s Tap Water (Sigma, S5134) 

gently for 30 seconds. After that, tissues were counterstained with eosin (Biosciences, 786-1063) 

for 30 seconds followed by washing with tap water. Finally, the stained tissues were dried 

overnight at room temperature. The next day, sections were dehydrated with 100% ethanol and 

xylene. Finally, slides were sealed with nail polish, and images were taken using the Leica DMi8 

microscope. 

 
Immunofluorescence Staining of FFPE Slides 
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Fresh samples were processed into FFPE blocks as described in the “H&E staining” section. FFPE 

slides were first heated to 55°C for 10 minutes prior to staining. After this, section dehydration 

was performed via incubation subsequently in xylene, 100%, 95%, 70%, 50%, and 25% ethanol. 

After another 2-minute wash in ddH2O, antigen retrieval was performed in a hot-water bath using 

a Tris EDTA buffer pH 9 (Genemed, 10-0046) at 80-90°C for 22 minutes. The slides were then 

cooled to room temperature. After that, glycine blocking was then performed using two 9-minute 

washes in 100mM glycine, followed by two 2-minute washes in PBST. Sections were circled with 

a PAP pen, then blocked for one hour in a blocking solution consisting of 10% normal donkey 

serum in 1% BSA/PBS. The sections were dried with a Kimwipe, but the blocking solution was 

not washed. Next, primary antibodies, diluted to the appropriate concentration in the same 

blocking buffer as above, were applied to the sections and allowed to incubate at 4°C overnight. 

The next day, the slides were washed twice for 5 minutes in 1x PBST. Secondary antibodies, also 

diluted to the appropriate concentration in the same blocking buffer as before, were applied to the 

sections and allowed to incubate on the bench for one hour. Following two more 5-minute washes 

in PBST, sections were treated with Hoechst stain at a concentration of 1:2000 for 8 minutes. 

Sections were then washed in 1x PBS twice for 3-minutes, and then mounted in an aqueous 

mounting medium and covered with a coverslip. Pressure was applied to the sections to ensure 

total coverage by the mounting medium. Finally, slides were sealed with nail polish and stored at 

4°C until ready for use. 

 
Immunoblotting 

Flash-frozen tissue was washed with 1x PBS and was submerged in RIPA buffer (#9806, CST) 

and lysed using PRO200 Biogen homogenizer, and centrifuged at 13300 rpm for 15 min. 
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Supernatants were quantified using Bio-rad DC protein assay and equal amounts of proteins were 

loaded and separated using 10% polyacrylamide gel. Proteins were transferred onto the PVDF 

membrane (Immobilon-FL Merck Millipore ) and later blocked using Odyssey blocking buffer. 

Primary antibodies were incubated at appropriate concentrations O/N and the next day were 

incubated with Licor IR 680 (Donkey anti-Mouse)  and IR700 (Donkey anti-Rabbit) fluorescent 

antibodies from Licor. The blot was developed using the Bio-rad Chemidoc MP imaging system. 

 

Bulk WES and RNA-seq data processing 

The bulk WES and RNA-seq data were processed as previously described by Sun et al. PDX study72. 

 
Proteomics data analysis 

Proteome and phosphoproteome DIA data quantification 

All the DIA files of the global proteome were analyzed via a library-free directDIA approach 

embedded in Spectronaut (version 14.10, Biognosys) with precursor and protein Qvalue cutoff at 

1%. Forty raw files acquired from 1 μg injections were analyzed together in one directDIA 

search. The phospho analyses were conducted by searching global DIA data with phospho 

modification via directDIA approach. 

 
Proteomics data normalization 

For all the DIA data, we use SpectronautTM to analyze and use the software function of "Cross 

Run Normalization" to normalize by the median at the peptide level as previously described by 

Callister et al73. The resulting quantified protein and phosphorylation spectral intensity values 
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were log2 transformed. The protein abundance level was further quantile normalized using the 

preprocessCore R package74,75. 

 
Protein changes associated with drug treatment 

The comparison of the protein abundance level between different treatment groups was 

performed using paired Student’s t-test. The false discovery rates were derived based on the 

Benjamini & Hochberg correction. 

 
Gene set over-representation test 

For over-representation tests, we used the hallmark gene set and the canonical gene set from 

MSigDB76,77, and the enricher function from the clusterProfiler R package78. 

 
Independent ccRCC cohort proteomics data analysis 

Global proteomics data for the independent ccRCC samples were downloaded from the Clark et 

al. ccRCC study70. 

 
snRNA-seq quantification and analysis 

First, the combined human genome (GRCh38) and mouse genome (mm10) references were 

made using Cell Ranger (v5.0.1) mkref functionality. The raw snRNA-seq FASTA files were 

first aligned to the human-mouse combined reference using the Cell Ranger count function 

(specifying –include-introns) to generate the barcode classification (from 

gem_classification.csv), which classifies each barcode to either mouse cell or human cell or 

multiplet. Then the FASTA files were aligned to the human-only reference using Cell Ranger as 

described above. The resulting gene-by-cell UMI count matrix was used to construct a Seurat 

object for each sample using the R package Seurat79 (v.3.1.0). Mouse cells and multiplets were 
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filtered out based on the gem_classification.csv. Doublets were filtered out using Scrublet 

(https://github.com/AllonKleinLab/scrublet). Scrublet was run on each sample separately with 

the following parameter settings: expected_doublet_rate=0.06, min_counts=2, min_cells=3, 

min_gene_variability_pctl=85, n_prin_comps=30. The doublet score threshold was adjusted 

manually, which can separate the two peaks of a bimodal simulated doublet score histogram. 

Quality filters were applied to the data to remove barcodes that fell into any of the following 

categories: possible debris with too few genes expressed (<200) or too few UMIs (<1,000), 

possibly more than one cell with too many genes expressed (>10,000) or too associated UMIs 

(>80,000), and possible dead cell with too high mitochondrial gene expression over the total 

transcript counts (> 10%). Each cell was scored based on the cell cycle S phase and G2M phase 

gene markers from 

https://raw.githubusercontent.com/hbc/tinyatlas/master/cell_cycle/Homo_sapiens.csv using the 

CellCycleScoring function from the Seurat package. Each sample was scaled and normalized 

using Seurat’s ‘SCTransform’ function to correct for batch effects (with parameters: 

vars.to.regress = c(""mitoRatio", 'nFeature_RNA', "nCount_RNA", 'S.Score', 'G2M.Score'), 

variable.features n = 2000). Any merged analysis or subsequent subsetting of cells/samples 

underwent the same scaling and normalization method. Cells were clustered using the original 

Louvain algorithm80 and top 30 PCA dimensions via ‘FindNeighbors’ and ‘FindClusters’ (with 

parameters: resolution = 0.5) functions. Any integrated analysis underwent the same scaling and 

normalization method. The resulting objects were then merged and integrated (using 

SelectIntegrationFeatures, PrepSCTIntegration, FindIntegrationAnchors, and IntegrateData 

functions) for the subsequent analysis. 
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3.8 Main figures 

 
Figure 1. Study design and PDX relative tumor volume curves.  
A, Heatmap summary of the treatment response for 10 single-agent drugs tested across 6 PDX 
lines. B, Schematic of the study design. C, Relative tumor volume curves for mice treated with 
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vehicle, cabozantinib, sapanisertib, and the combination (cabozantinib plus sapanisertib) across 6 
PDX lines. D, Bodyweight changes (compared to day 0) for mice treated with vehicle, 
cabozantinib, sapanisertib, and the combination. P values were derived from the Wilcoxon test. 
E, Western blot of phospho-AKT (Ser473), total AKT, phospho-ERK (Thr202/Tyr204), total 
ERK, and total GAPDH using untreated PDX tumor samples of RESL4, RESL5, and RESL10.  
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Figure 2. H&E images for the PDX models. 
A, H&E images for the 6 PDX models. B, H&E images for tumors in mice treated with vehicle, 
cabozantinib, sapanisertib, and the combination (cabozantinib plus sapanisertib) in PDX line 
RESL5 and RESL10. Red arrows denote the clear cells. Green arrows denote sarcomatoid cells. 
Blue arrows denote vessels. 
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Figure 3. Immunofluorescence staining for tumor cells and vasculature in PDX lines 
RESL5 and RESL10. 
A. IF images of untreated tumor samples stained with anti-CA9 antibody (green), anti-Ki67 
antibody (red), and DAPI (blue) for PDX lines RESL5 and RESL10. Scale bars represent 100 
µm. B, IF images of tumor samples stained with anti-CD31 antibody (red) and anti-CA9 
antibody (green) in mice treated with vehicle, cabozantinib, sapanisertib, and the combination 
(cabozantinib plus sapanisertib) in PDX line RESL5 and RESL10. C, Bar plot showing the 
normalized CD31 expression from IF images for mice treated with vehicle, cabozantinib, 
sapanisertib, and the combination in PDX line RESL5 and RESL10. **** indicates P < 0.0001 
using Student’s T-test.  
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Figure 4. Proteomic analysis of the treatment effect. 
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A, Volcano plot showing differentially expressed proteins between tumors after combination 
treatment of cabozantinib plus sapanisertib compared to the vehicle-treated controls, mapping 97 
up-regulated proteins (red dots) and 213 down-regulated proteins (blue dots). B, Dot plot 
showing the overrepresented gene sets in proteins down-regulated (upper panel) and up-
regulated (bottom panel) after combination treatment. C, Volcano plots showing differentially 
expressed proteins between tumors after combination treatment vs. single-agent treatments. The 
left panel represents the comparison between combination-treated and cabozantinib-treated 
tumors, mapping 59 up-regulated and 146 down-regulated proteins. The right panel represents 
the comparison between combination-treated and sapanisertib-treated tumors, mapping 42 up-
regulated and 154 down-regulated proteins. D, Violin plots showing protein levels of IGF2BP3, 
ERO1B, and PYCR1 in the tumor and normal adjacent tissue (NAT) samples in the CPTAC 
ccRCC discovery cohort. E, Kaplan-Meier curves displaying progression-free survival 
probability for 2 groups of patients in the CPTAC ccRCC discovery cohort. The two groups of 
patients are selected based on the IGF2BP3 protein levels in their primary tumors. High 
IGF2BP3 protein expression represents those with protein expression in the upper 35% quantile. 
Low IGF2BP3 protein expression represents those with protein expression in the bottom 35% 
quantile. 
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Figure 5. Protein markers associated with treatment effect.  
A, Heatmap showing the scaled protein/phosphorylation abundance of the key members in the 
PI3K-mTOR pathway and RTKs targeted by cabozantinib (that were detected in the proteomics 
and phosphoproteomics datasets) in the control tumor samples across 6 PDX lines. B, Heatmap 
showing the scaled gene expression of the key members in the PI3K-mTOR pathway and RTKs 
targeted by cabozantinib in the control tumor samples across 6 PDX lines. The unscaled gene 
expression represents log2(TPM+1).  C, Scatter plot showing the association between baseline 
MET protein level (left panel) or MET gene expression (right panel) with the tumor growth 
inhibition at day 28. D, MET (left panel), and HGF (right panel) gene expression in the human 
tumor cells in the snRNA-seq data of the RESL10 and RESL5 control tumor samples. E, 
Western blot of the phospho-MET (Tyr1234/1235), total c-MET, and total GAPDH in untreated 
RESL4, RESL5, and RESL10 tumor samples. 
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Chapter 4: Conclusions and Future 
Directions 

My dissertation made several contributions to cancer research: (1) providing unique value 

resources of paired snRNA-seq and snATAC-seq of 30 ccRCC tumors and 4 normal adjacent 

tissues, the largest single-nucleus datasets for ccRCC to our knowledge; (2) a better 

understanding of intratumor heterogeneity, transcription regulation and transcriptomic and 

epigenetic changes associated with BAP1 and PBRM1 mutations in primary human ccRCCs; (3) 

discovering a novel combination treatment for RCC and elucidated protein changes associated 

with treatment effect. Moving forward, I will discuss some of the future directions below. 

 

4.1 Experimental validation for the single-nucleus 
RNA/ATAC analysis of primary human ccRCCs 
In Chapter 2, we generated an impressive ccRCC dataset consisting of snRNA-seq data of 34 

samples (30 tumors + 4 normal adjacent tissue (NATs)) and snATAC-seq data of 28 samples (24 

tumors + 4 NATs). By mapping the transcriptomic and epigenetic landscape specifically altered 

in ccRCC tumor cells, we identified ccRCC tumor-specific markers with therapeutic potential, 

ccRCC-specific alterations in the glycolytic pathway, heterogeneous tumor subpopulations, and 

tumor clusters exhibiting a continuum of epithelial to mesenchymal features. In addition, we also 

investigated the transcriptomic and epigenetic changes associated with BAP1 and PBRM1 

mutations, which frequently occur in ccRCC. However, this study would benefit greatly from 

additional experimental validation of the computational findings, especially for the ccRCC 

tumor-specific markers and the relation between transcription factors and their putative target 

genes. 
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We identified 20 ccRCC tumor-specific markers, among which we highlighted CP and PCSK6 

as the two most promising tumor markers. Ceruloplasmin (CP) as a ccRCC marker has been 

reported and studied by multiple groups previously1–3. My work in chapter 2 provided additional 

insights into the upstream regulation of CP by studying its promoter’s chromatin accessibility 

and potential TF regulators, the spatial expression of CP, and its potential role in mediating 

tumor-stroma interactions based on the spatial transcriptomics data. However, both of these 

analyses were performed with a lack of validation. For example, our results suggest that 

transcription factor MXI1 may drive the transcription of CP and other genes. One of our future 

directions is to knock down MXI1 in ccRCC cell lines using vector-based short hairpin RNA 

(shRNA). Similarly, we can also perform shRNA-mediated knockdown of CP gene in ccRCC 

cell lines and perform bulk RNA-seq and western blot for the knockdown and control cell lines. 

Specifically, a western blot can be performed to validate the knockdown status. For cells with 

MXI1 knocked down, western blot can further confirm whether the putative MXI1 target CP is 

down-regulated in the MXI1 knockdown cell lines. By comparing the bulk RNA-seq data of the 

knockdown and control cell lines, we can evaluate genes and pathways affected by the knocked-

down gene, such as CP and MXI1, and examine whether CP knockdown affects VEGF 

expression and pathways related to tumor-stroma interactions. Similarly, as we identified 

transcription factors MXI1 and KLF9 might drive the transcription of multiple glycolytic genes, 

we test whether MXI1 or KLF9 knockdown affects the glycolysis activation in ccRCC cells by 

measuring the glucose intake and lactate production of the knockdown and control cell lines. 

Finally, we also identified several druggable tumor markers, some of which we have tested using 

specific inhibitors in ccRCC cell lines. Although the results suggest some tumor inhibition effect, 
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the difference between tumor cell lines and one control cell line HEK293 is not very clear, 

potentially due to the high passage number of HEK293, making it more like tumor cells. 

Additional testing with a new low-passage HEK293 and ccRCC cell lines could be done, as well 

as testing more inhibitors against druggable markers such as PCSK6 and testing using ccRCC 

patient-derived organoids we have in-house. 

 

4.2 Deeper analysis of the ccRCC tumor microenvironment 
using the single-nucleus sequencing data 
Clear cell renal cell carcinoma is one of the cancer types that respond to immune checkpoint 

inhibitors4,5. And the ccRCC tumor microenvironment (TME) is characterized by the extensive 

infiltration of regulatory T cells and various myeloid lineage immune cell types, such as tumor-

associated macrophages and myeloid-derived suppressor cells (MDSC), which have been 

recognized to suppress the immune system both dependent and independent of the interaction 

between PD1 and its ligands6. Previous studies have identified several immunosuppression 

mechanisms in the ccRCC TME, such as amino acid depletion, NO and kynurenine production7–

13. In Chapter 2, we identified 13 lymphoid lineage immune cell types and 16 myeloid lineage 

immune cell types, including Treg and various tumor-associated macrophage populations. 

Although we have done some analysis focusing on the immune cells, due to the space limitation 

and the plethora of topics we want to explore for tumor cells, we did not include those results in 

Chapter 2. Going forward, our future direction will be to reevaluate the existence of MDSC in 

our dataset as well as new immunosuppressive mechanisms in light of existing literature with 

therapeutic potentials. 
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In addition to the immune cells, the ccRCC is also one of the most highly vascularized of all 

cancer types. It is thought to be a result of the overproduction of VEGF and other pro-angiogenic 

cytokines by tumor cells driven by the loss of VHL and the subsequent accumulation of 

transcription factors HIF-1 and HIF-214. The ccRCC vasculature has been reported to consist of 

multiple types of microvessels with varying levels of differentiation. Specifically, Qian and 

colleagues15,16 identified two types of RCC endothelium, including differentiated vessels that 

express both CD31 and CD34, and a less differentiated type of vessel that expresses only CD31. 

These two types of vessels have different localization within the tumor mass and pericyte 

coverage. More importantly, the undifferentiated vessels are more abundant in high-grade RCC 

and they are associated with shorter survival in patients.  Similar studies have also found six 

distinct vessel types17–20, among which all but two types lost the dependency on VEGF and may 

persist despite the VEGFR inhibition, limiting the efficacy of VEGFR inhibitors in the treatment 

of RCC patients. In Chapter 2, we identified the endothelial cell population as a whole across our 

34 samples. However, deeper characterization of the endothelial cells in light of the reported 

endothelial subpopulations will help us better understand the landscape of vasculature in primary 

ccRCC.  

 

Furthermore, the accessory cells in the TME, including endothelial cells, cancer-associated 

fibroblasts, and innate immune cells, are thought to enhance their tumor-promoting ability not 

through the mutational programming and genetic instability but rather are epigenetically 

reprogrammed upon their recruitment by factors produced by the tumor cells and TME21,22.  A 

recent study23 showed such reprogramming can involve epigenome modification in the 

infiltrating myeloid cells in lung and oesophageal cancer cells, which can be blocked by drugs 
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targeting the epigenome. Thus, another future direction is to use our paired snRNA-seq and 

snATAC-seq dataset to investigate how normal accessory cells in the ccRCC TME may be 

corrupted by epigenetic regulation to support tumor development and progression. 

 

4.3 Experimental validation for the sapanisertib plus 
cabozantinib treatment  
In Chapter 3, we identified the mTORC1/2 inhibitor sapanisertib potentiates the antitumor effect 

of the FDA-approved RTK inhibitor cabozantinib, inducing tumor growth arrest or regression 

after 1-month treatment. Moving from the preclinical studies to future clinical trials, we need to 

compare our new drug combination with the FDA-approved combination of RTK inhibitor 

lenvatinib and  mTORC1 inhibitor everolimus. We need to evaluate whether cabozantinib plus 

sapanisertib performs better than lenvatinib plus everolimus in terms of efficacy, toxicity, and 

other parameters. We have some preliminary results on this comparison using two PDX models 

(not shown), and it seems to suggest the two combinations have similar tumor inhibition effects 

as well as tolerance. One of our future directions would be to test more PDX models for these 

two combinations and systemically evaluate whether there is a differential effect on cellular 

proliferation, migration, and invasion between the two combinations. 

 

We also observed in Chapter 3 one interesting case with PIK3CA hotspot mutation H1047R 

showing the highest resistance to cabozantinib. PIK3CA H1047R mutation was known to 

increase the PI3K kinase activity and confer multiple oncogenic features24,25. It was associated 

with resistance to MET inhibition in head and neck cancer26. So it can be anticipated that 

PIK3CA mutation may also confer resistance to cabozantinib in RCC. To validate this 
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hypothesis, we will collect more PIK3CA-mutated RCC models or use isogenic cell lines, 

perform cabozantinib testing and compare their response to PIK3CA wild-type counterparts. 

Similarly, additional experimental validation is needed to validate the relation between MET 

overexpression and cabozantinib resistance. Based on our proteomics analysis, increased EMT-

related proteins may mediate resistance to cabozantinib plus sapanisertib co-treatment. We can 

confirm their treatment-associated change using western blot and potentially perform knockdown 

or inhibitor study in cell lines to see if blocking EMT may result in further tumor inhibition. 

 

4.4 Identifying new therapeutic options in cancer 
The major treatment categories for patients with inoperable or metastatic RCC are systemic 

treatments using targeted agents and/or immune checkpoint inhibitors. In Chapter 3, we took 

advantage of the valuable resources being a part of the WashU PDX Development and Trial 

Center (PDTC) and tested a variety of drugs in the RCC PDX models. However, PDX models 

only contain a microenvironment of murine cells, lacking immune components in the 

immunocompromised mice to test potential immunotherapy. Our lab has been developing 

autochthonous mouse models for ccRCC with conditional knockout of a single allele (Pax8-

rtTA, tetO-Cre, Vhl f/f) and multiple alleles among Vhl, Pbrm1, and Setd2 (Pax8-rtTA, tetO-

Cre, Vhl f/f, Pbrm1 f/f; Pax8-rtTA, tetO-Cre, Vhl f/f, Pbrm1 f/f, Setd2 f/f). The generation of 

ccRCC genetic engineered mouse models that resemble human ccRCC, if successful, will allow 

testing of immune checkpoint inhibitors as well as combinations with the targeted agents. 
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