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ABSTRACT OF THE DISSERTATION 

Validation, Categorization, and Prediction of Upper limb Outcomes after Stroke  

by 

Jessica Barth 

Doctor of Philosophy in Movement Science 

Physical Therapy 

Washington University in St. Louis, 2022 

Professor Catherine E. Lang, Chair 

The incidence and costs of stroke in the United States are projected to rise over the next 

decade because of the aging population. Declining stroke mortality over the past few decades 

means that more people survive stroke and live with physical, cognitive, and emotional 

disability. Stroke remains one of the leading causes of disability in the United States because 

very few survivors experience a full recovery of their upper limb. Upper limb recovery after 

stroke is critical to performing activities of daily living and physical and occupational therapies 

are one of the only treatment options to address these challenges. The World Health 

Organization’s (WHO) International Classification of Functioning, Disability, and Health 

Framework (ICF) informs our understanding of the importance of measuring upper limb changes 

across measurement levels, showing that improvements seen in one level (i.e. domain) do not 

directly transfer to another. Knowing this, it is important to evaluate existing prediction models 

of motor outcomes after stroke while simultaneously developing novel tools available to 
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researchers and clinicians to facilitate measurement of the upper limb across the ICF domains. 

This dissertation work performs an external validation of an existing prediction model of upper 

limb capacity (UL; capability measured in the clinic) after stroke, identifies and defines 

categories of UL performance (actual UL use in daily life) in people with and without 

neurological UL deficits, and explores how early clinical measures and participant demographic 

information are associated with subsequent categories of UL performance after stroke. 

Recently, prediction algorithms of upper limb capacity after stroke have been developed 

to facilitate treatment selection, discharge planning, and goal setting for clinicians and their 

clients. Prediction models have tremendous clinical utility because they aid in the clinical 

decision making required to select the appropriate efficacious and emerging interventions that 

afford improvements in upper limb functional capacity, measured by standardized assessments in 

the therapy clinic. Prior to wide spread implementation of existing prediction algorithms into 

routine rehabilitation care, however, it is necessary to understand how small healthcare system 

differences and availability of neurophysiological assessments affect external validation of the 

models. In Chapter 2, we test how well an algorithm with clinical measures, developed for use in 

another country, applies to persons with stroke within the United States. 

Knowing the importance of measurement across ICF domains, it is necessary to develop 

tools that facilitate clinical decision making and implementation of upper limb performance data 

into routine rehabilitation care. The use of wearable sensor technology (e.g., accelerometers) for 

tracking human physical activity have allowed for measurement of actual activity performance of 

the upper limb in daily life. Data extracted from accelerometers can be used to quantify multiple 

variables measuring different aspects of UL activity in one or both limbs. A limitation is that 

several variables are needed to understand the complexity of UL performance in daily life. As a 
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solution to the multi-variable problem, it would be helpful to form categories of UL performance 

in daily life. If natural groupings occur among multiple UL performance variables calculated 

from accelerometry data, then these groupings could facilitate clinical decision making and 

implementation of upper limb performance data into routine rehabilitation care. In Chapter 3 we 

identify and define categories of UL performance in daily life in adults with and without 

neurological deficits of the upper limb.  

Prediction of motor outcomes after stroke have tremendous clinical utility, however there 

have been limited efforts to develop prediction models of upper limb performance (i.e., actual 

upper limb activity) in daily life after stroke. With advances in computing power, it is possible to 

capitalize on machine learning techniques to predict upper limb performance after stroke. These 

techniques allow for predicting a multivariate categorical outcome. This is important because it 

provides more information about the expected upper limb outcome to people with stroke, their 

families, and clinicians than a single continuous variable or a binary category (e.g., good or 

poor). Chapter 4 of this dissertation explores how different machine learning approaches can be 

used to understand the association between early clinical measures and participant demographics 

to the UL performance categories from a later post stroke time point. 

Our findings provide strong support for the importance of measuring recovery of the UL 

across ICF domains, not just with impairment and capacity level measures. Collectively this 

work provides preliminary measurement tools that could eventually be available to rehabilitation 

clinicians following subsequent validation efforts. Additionally, this work provides a rich 

exploration into the strengths, weaknesses, and limitations of analytical methods and their impact 

on validation efforts. 
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Chapter 1: Introduction 
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This introductory chapter begins with an overview of stroke and its increasing burden on 

the United States (US) health care system and survivors. It then discusses measurement of upper 

limb (UL) outcomes using terms defined by the World Health Organization’s (WHO) 

International Classification of Functioning Framework (ICF).1 Emphasis is placed on the 

differences of measurement of UL impairment, capacity and performance after stroke along with 

considerations for use in stroke rehabilitation. Next there is a discussion of the development of 

prediction models of post stroke outcomes and their clinical utility. Finally, this chapter ends 

with a discussion of the importance of expanding prediction models to UL performance after 

stroke.  

1.1 Stroke and UL impairment is a significant health 
problem 

Stroke is one of the most significant health problems facing the country and is the leading 

cause of complex, long-term disability.2-5 The US spends approximately $50 billion healthcare 

dollars annually on direct and indirect stroke care costs and this amount will increase because the 

incidence of stroke is expected to rise in the coming years due to an increased aging of the 

population.4,6 In fact, the projected stroke costs in the US are expected to increase over 200% to 

$184 billion by 2030.4,6 Declining stroke mortality over the past few decades3 means that more 

people are surviving stroke but remain with physical, cognitive, and emotional disability.7  

UL paresis after stroke is a leading contributor to the substantial rates of disability in the 

US and around the world.8,9 Of the 795,000 people who suffer a stroke per year in the US, a 

staggering 80% of those individuals will incur some degree of initial impairment of the UL.10-12 

At six months post stroke, 65% of individuals will still have difficulties incorporating their UL 
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into their daily tasks.13,14  In fact, only 5-20% will experience full neurological recovery of their 

UL following a stroke.11,12 Post stroke UL problems may be caused by weakness, uncoordinated 

movements, diminished sensation, and overall reduced speed of movement, which collectively 

contribute to decreased independence, performance in daily tasks, and participation in life 

roles.12,15-17 UL problems after stroke can lead to long-term functional deterioration, higher levels 

of disability, and limited community reintegration.9,15 UL recovery after stroke is critical for 

performing activities of daily living (ADL). Physical and occupational therapies are one of the 

only treatment options to address these problems.18-24   

Individuals with stroke have identified improving UL function as a top priority for stroke 

rehabilitation.25  As a result, substantial time and research dollars have been invested to develop 

efficacious, in-clinic UL interventions to improve UL function early26-29 and later30,31 after 

stroke. UL impairment and loss of capacity has been a primary focus of stroke rehabilitation. 

Clinicians use standardized assessments within the clinic to measure UL impairment and 

capacity (see 1.2.1 and 1.2.2) to measure improvements made over the course of treatment.32,33 

With many efficacious therapies available, individuals make improvements in their UL capacity 

with the anticipation that those improvements translate into increased use of the limb during 

daily tasks.34 

1.2 Using the ICF model to conceptualize UL problems post 
stroke 

The World Health Organization’s (WHO) International Classification of Functioning, 

Disability and Health Framework (ICF) is a comprehensive framework for measuring both 

individual and population health.1,32 The ICF model is based on the biopsychosocial approach 

used to integrate the biological, individual, and social dimension.35  The ICF has two parts: 1) 
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functioning and disability and 2) contextual factors.35-37 In the ICF, functioning and disability are 

multi-dimensional concepts relating to 1) body functions and structures; 2) activities and 

participation; and 3) personal and environmental factors.1,32,37 Despite these being separate 

concepts, there is an important interplay and influence (represented by double sided arrows in 

Figure 1.1) of both internal and external factors of each component that impact an individual’s 

health status.1,32,35,37-39 Figure 1.1 outlines the three specific ICF components that apply to 

rehabilitation of persons with stroke, and other health conditions including: body 

structures/functions, activity, and participation. Within each ICF component contains 

hierarchically arranged domains presented as chapters37,38,40 which include sets of related 

physiological functions, anatomical structures, actions, tasks, areas of life, and external 

influences.1,32,36,37 Table 1.1 provides the names of the ICF components, their definitions, and an 

example of the domain aligned with the UL after stroke. The ICF model emphasizes an 

individual’s health along these domains and serves as a useful tool for understanding functional 

limitations following a health event, such as stroke.  

 
Figure 1.1 Adapted International Classification of functioning, Disability, and Health Framework (ICF) 
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Table 1.1. ICF components, their contents, and examples of domains with respect to the UL after stroke. 
ICF Component Definition Domain Example 
Body functions 
and structures 

The physiological functions of body 
systems and the anatomical parts of 
the body such as organs, limbs and 
their components 
 
 

-Sensory functions and pain including light touch 
discrimination and shoulder pain due to subluxation. 
-Neuromusculoskeletal and movement-related functions 
including power of muscles of one side of the body. 
-Structures of the nervous system such as, integrity of the 
cortical spinal tract. 
-Structures related to movement such as, the shoulder and 
scapula. 

Impairments Problems in body function and 
structure such as deviation or loss 
measured by clinicians with 
standardized processes and 
assessments. 

-Hemiparesis or weakening of one UL 
-Sensory loss 

Activity The execution of a task or action by 
an individual that represents the 
individual perspective of functioning. 
The activity domain is divided into 
the capacity for activity and 
performance of activity. 

-Handling objects such as a brush, carrying a pot, or holding 
a pen. 
-Moving around and using transportation likedriving a car. 
- Self-care tasks such as: bathing, dressing, and eating. 
-Domestic life tasks such as cleaning the kitchen or holding 
a child  

Capacity What someone is capable of doing in 
a controlled environment measured by 
standardized assessments in the clinic. 

-UL motor ability to bathe or complete self-feeding 
-Functional ability of the paretic arm and hand. 

Performance What someone actually does in their 
free-living environment. Perceived 
performance is measured with self-
report questionnaires and direct 
performance with wearable sensors. 

-subjective measure of UL use in daily life. 
-variables calculated from wearable sensor data measuring 
the duration, magnitude, variability, and symmetry of UL 
activity in daily life. 

Participation -Involvement in a life situation and 
represents the societal perspective of 
functioning. Measures evaluate the 
degree to which an individual is 
involved with roles and relationships 
common to daily life that can include 
separate subjective and objective 
performance. 

-Interpersonal interactions and reactions such as parent, 
spouse or employee. 
-Major life areas such as worker, student, and child caring. 
-Community, social, and civic life including recreation and 
leisure or religion and spirituality. 

Activity 
Limitations 

Difficulties an individual may have in executing activities. 
 

Participation 
restrictions 

Problems an individual may experience in life situations. 

Environmental 
factors 

The physical, social and attitudinal 
environment in which people live and 
conduct their lives. These are either 
barriers or facilitators of a person’s 
functioning. 

-The individual’s immediate environment (workplace, 
home, or school). 
-The societal environment of social structures, services, and 
approaches for systems. 

Functioning Umbrella term for body function, body structures, activities and participation. Denotes the positive or 
neutral aspects of the interaction between a person’s health condition(s) and that individual’s 
contextual factors (environmental and personal factors). 

Disability Is an umbrella term for impairments, activity limitations and participation restrictions. It denotes 
negative aspects of the interaction between a person’s health condition(s) and that individual’s 
contextual factors (environmental and personal factors).  
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1.2.1 Body structures and functions  
The body structures and functions components are the anatomical and physiological 

functions of body systems.1,32,37 The ICF definitions clearly differentiate physiologic functions 

from anatomical structures of the body and two separate classification systems are offered. There 

are eight hierarchical domains of body structures, the sensory functions and pain and 

neuromusculoskeletal and movement-related functions are most considered after stroke.37 There 

are also eight hierarchical domains of body functions, each can be affected by stroke however the 

structure of the nervous system and structures related to movement are considered when 

assessing the UL after stroke. Of equal importance, other domains within the body functions and 

structures domains such as, mental functions may also affect the UL after stroke. For example, a 

person’s mood and emotion, self-efficacy, and confidence may impact the movement related 

functions of the UL after stroke demonstrating the interaction of these components during 

recovery from stroke.35,41,42 

UL impairments 

  The term impairment is associated with the body structure/function component of the ICF 

(Figure 1.1 and Table 1.1) and is defined as the problems in body function or structures resulting 

in a significant deviation or loss.1,37 Impairments of the UL after stroke results from stroke-

related damage to the cortical and subcortical brain structures specifically, the primary motor 

cortex, the primary somatosensory cortex, secondary sensorimotor cortical areas, and the 

corticospinal tract.43,44 UL impairments in people who have had a stroke are well documented 

and include paresis, loss of somatosensation, spasticity, muscle contracture, loss of dexterity or 

fractionation of movement, decreased active joint range of motion, and lack of movement, speed, 

precision, and bimanual coordination.45,46 Clinicians typically conduct evaluations of a person’s 
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UL movement after stroke to identify the impairments that limit normal movement.46 These 

include goniometry measurement of active or passive range of motion,47 manual muscle 

testing,48 grip and pinch strength.49,50 and somatosensory testing.51-53  Standardized processes and 

assessments have been developed to measure specific stroke related UL impairments and include 

the Fugl-Meyer (UEFM),54-56 the modified Ashworth,57,58 the Motricity index,59 the Motor 

Assessment Scale,60,61 and the Shoulder Abduction Finger Extension (SAFE).62  

1.2.2 Activity  
The second ICF component is activity which defined as the execution of a task or action 

by an individual. Activities are characteristics of people, and they can be assessed by examining 

the functional performance of an individual in isolation.36,37 There are nine hierarchical domains 

within the activity component, and each can be affected by stroke. The general tasks and 

demands, mobility, self-care, and domestic life domains are most considered when assessing the 

UL after stroke.37 Activities tend to be simplistic, performed alone, and are generally results-

oriented.1,32,36 Problems completing activities after a health condition, such as stroke, are 

described as activity limitations. Activity limitations describe difficulties an individual may have 

in executing tasks and activities. Activity limitations may or may not lead to participation 

restrictions, depending on what activities are needed to participate in a social situation and what 

environmental barriers or supports exist.35,36,63 The activity component is divided into the 

capacity for and the performance of activity.1,37,63 These constructs provide a way to indicate 

how the environment (where measurement occurs) impacts a person’s activities and how the 

environmental change may improve a person’s functioning.37 Capacity refers to what an 

individual can do in a standardized environment and performance is what someone actually does 

in their usual environment.  
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UL capacity for activity 

UL capacity for activity is defined as the ability to execute a task or action in a 

standardized, or controlled, environment.1,32 A standardized environment has removed the 

barriers within an individual’s environment that can interfere with their ability to complete a task 

while simultaneously providing identical testing conditions for each person. There are several 

standardized clinical assessments used for rehabilitation that quantify UL capacity within a clinic 

or laboratory setting. Standardized assessments provide important information about the UL after 

stroke to provide a greater understanding of a person’s ability to complete actions and tasks 

aligned with the domains (e.g. general tasks and demands and mobility).32,37 These include the 

Wolf Motor Function Test,64,65 the Box and Blocks,66 the Nine Hole Peg Test,67,68 the Jebsen 

Taylor Hand Function Test,69 and the Chedoke Arm and Hand Activity Inventory (CAHAI).70-72  

Some of these standardized measures include aspects of measurement of compensatory UL 

movements in an attempt to determine their effects on a person’s UL capacity.64,65,71-73  

Interestingly, the CAHAI is the only standardized measure of UL capacity that includes bilateral 

tasks in their design. Given that most UL tasks involve bilateral involvement,74 it is important to 

include bilateral assessments when measuring UL capacity. The most common standardized 

assessment of UL capacity after stroke is the Action Research Arm Test (ARAT) which is a valid 

and reliable, criterion-rated assessment of UL activity limitations.73,75-77  

1.2.3 UL performance of activity in daily life 

Performance of activity is defined as the execution of tasks or actions in an unstructured, 

free-living (i.e., usual) environment.32,37,41 Performance is a measure of what someone actually 

does when they are outside of the structured clinic or laboratory setting.1  The free-living 

environment includes a combination of physical, social, and personal factors that may be either 



9 
 

barriers or facilitators to performance. Quantifying UL performance in daily life is challenging 

and is typically measured by assessments of perceived performance or direct, objective measures 

of performance.78,79 Similar to capacity for activity, the limitations in the performance of activity 

after stroke is also related to participation restrictions depending on what activities are needed to 

participate in a social situation and what environmental barriers or supports exist.35,36,63 

Perceived Performance 

Perceived performance is generally measured with standardized self-report measures, 

such as, the Motor Activity Log80,81 or the Stroke Impact Scale (activities in a typical day 

subscale).82 Self-report measures of perceived UL performance have been shown to improve 

with rehabilitation therapies,41,83 however self-report measures are subject to inherent biases84,85 

(e.g. social desirability, recall bias) which can compromise results.78 Because of these 

limitations, objective measures of direct UL performance post stroke have been developed to 

provide a more objective measure of UL activity after stroke. 

Direct Performance 

Over the past decade, the use of wearable sensor (e.g., accelerometers) technology has 

emerged in rehabilitation to measure performance of activity in daily life.86,87 Accelerometry has 

become an established, valid and reliable methodology to directly measure performance of UL 

activity in daily life in several adult populations. 74,88-93  

Data extracted from bilateral, wrist worn wearable sensors can be utilized to quantify UL 

performance variables measuring the duration74,94, laterality and symmetry,74,79,89,95,96 magnitude 

or intensity, and variability of one or both limbs.79,88,97-99 These variables collectively inform 

clinician scientists about different aspects of real-world UL activity in daily life of nondisabled 
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adults74,89 and adults with stroke.90,92,100,101 Each UL performance variable conveys slightly 

different information about the collective nature of UL activity. Measuring UL performance after 

stroke from wearable sensor data has led to a growing recognition that there is a disparity 

between UL capacity and actual real-world UL use, individuals may have the ability to move 

their affected UL but they may not actually use it for daily activities.9,89,102  UL capacity is a 

prerequisite to UL performance, however, UL performance is not a direct consequence of good 

or improved UL capacity.34,103,104  This has implications for rehabilitation because currently 

clinicians only measure UL capacity to determine if improvements are made as a result of their 

interventions. Clinicians need tools to measure UL performance to provide information about 

what their clients actually do with their ULs, outside of the clinic to complement the in-clinic 

measures of UL capacity that provide information about a client’s UL capability.105  

1.2.4 Participation  

Participation (Figure 1.1 and Table 1.1) is defined as involvement in a life situation and 

represents a societal perspective of functioning.32,36,37,39,63,106 Unfortunately, the ICF does not 

clearly differentiate activity from participation, and only one classification system of domains is 

proposed for both.36,37,107,108 Participation is a broad and complex concept that can have different 

meanings to different people.109 It has been suggested that participation is a relational construct 

that can be assessed by considering other factors beyond simply the capabilities and limitations 

of the individual. Therefore, participation is more sensitive to the characteristics of the social, 

physical, and policy environments.32,36,37 The activity and participation domains are expressed as 

a list over nine chapters that can be used to denote activities or participation or both.63 The 

interpersonal interactions and restrictions, major life areas, and community, social, and civil life 

domains are most important to consider after stroke.36,63 Problems or limitations in participation 



11 
 

is termed “participation restriction” and is viewed as a negative aspect and are defined as 

problems an individual may experience in involvement in life situations.36,37 Measures of 

participation evaluate the degree to which an individual is involved with roles and relationships 

common to daily life that can include separate subjective and objective ratings of performance. 

Difficulty has been reported in applying the ICF concept of participation because of the diversity 

of this concept36,39,63,107 resulting in a wide range of tools considered to measure participation. 

Measuring participation is difficult for conceptual and methodological reasons.107 This is 

especially complicated because the domains are the same within the activity and participation 

concepts and it has yet to be decided if participation should be expected to be measured over all 

nine domains.63 The most frequently measured domains of activity and participation belonged to 

the Community, Social and Civic Life, Domestic Life, and Mobility.63 For example, a 

participation measure might include items related to being a productive member of society such 

as employment, being a student, and being a homemaker with each of these roles requiring 

several activities for successful participation.37,63,107,108,110 Common validated assessments of 

participation after stroke include the Frenchay Activities Index,111-114 the Activity Card Sort,115 

the Assessments of Life Habits, Stroke Impact Scale (participation subscale),63,116 and the 

Reintegration to Normal Living.117,118 

 With respect to the UL after stroke, UL capacity is a predictor of participation in life 

roles post stroke. However, UL performance likely contributes as well because participation is a 

latent trait that shows its impact through a series of indicators such as employment, parenting, 

and churchgoing.107 Individuals report limitations with participating in meaningful life roles even 

years after a stroke which can result in boredom, depression and worsening of function, affect, 

and quality of life.14 Up to 50% of the community dwelling stroke population is living with the 
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sequalae of stroke that places them at risk for a diminished activity level and social isolation can 

result further compounding the negative health events.14   While measures of UL impairment, 

capacity, and participation are important and convey useful information, they cannot provide 

information about UL activity performance, or actual UL activity, in the free-living environment.  

 In summary, the ICF Framework allows for the ability to view the interconnectedness and 

complexities of stroke related disability. Unfortunately for many years, stroke rehabilitation 

assessments and interventions have tended to focus on one or a few UL impairments (e.g. 

paresis, somatosensation) with the anticipation that changes in impairments will lead to 

downstream changes in other levels of measurement (e.g. activity and participation). As our 

understanding of these concepts grow, rehabilitation professionals are moving forward to take an 

integrated approach to UL rehabilitation to improve overall outcomes for people after a stroke. 

Additionally, as clinicians realize the importance of measurement across ICF components and 

domains, it is necessary to develop tools that facilitate clinical decision making and 

implementation of UL performance data into routine rehabilitation care.  

1.3 Predicting outcomes improves post stroke care 
Independence in activities of daily living and other meaningful activities after stroke 

depends largely on the recovery of motor impairment (primarily paresis), specifically in the 

UL.17,119 In general, greater initial UL impairment is associated with worse UL capacity 

outcomes later after stroke.120 The estimated recovery of motor impairment is one of several 

factors that influence the clinical decisions regarding the type and duration of rehabilitation, and 

goals set for each person after stroke. Unfortunately, these decisions are usually made without 

objective information about a person’s likelihood of recovery of UL impairments after stroke.119 

Clinicians typically make decisions about the discharge destination from the acute care setting 
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based on their perception of persons post stroke prognosis for recovery.121,122 Post stroke 

prognosis and discharge disposition are greatly influenced by the clinicians initial impression 

along with incorporating clinical and demographic factors such as initial stroke severity and 

age.123  Unfortunately, even experienced clinicians have difficulty making accurate predictions 

of UL capacity outcomes for people with stroke.123-125  In most US healthcare settings, clinicians 

have no way to know if their prognoses at the acute stage were correct, unless their system 

routinely conducts follow up assessments several months later. This situation creates an 

immediate need for standardized tools to support less variable and more equitable decision-

making of post stroke prognoses for clinicians and their clients.122,126  

1.3.1 Prediction of UL capacity 
Recent efforts have explored predicting eventual UL capacity outcomes after stroke 

which has the potential to facilitate treatment selection, discharge planning, and goal setting for 

clinicians and clients.103,125,127 To date, several factors are thought to be related to subsequent UL 

capacity including initial motor and sensory impairments, and measures of sensorimotor system 

structure and function obtained with neuroimaging120,128-131, or neurophysiological 

techniques.120,128-130,132  Several studies have demonstrated that recovery of UL capacity occurs 

mainly within the first three months post stroke,133-135 and several prediction models have been 

developed to guide clinical decision-making.62,136  Most of these prediction algorithms have been 

proposed and evaluated on participant cohorts from clinical trials, and they are mostly accurate 

for persons with mild to moderate UL impairment.102,127,129,132,137-139  The most well-known 

algorithm was developed in New Zealand and allows for prediction of UL capacity around three 

months post stroke based on measures taken within the first week. PREP, the original algorithm 

developed in 2012, used both clinical measures and neurological biomarkers in the initial days 
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after stroke to determine UL capacity categories around three months with 64% accuracy.119 

PREP2, published in 2017, is the refined version, which predicts a category of UL capacity 

around three months with 75% accuracy using clinical measures and a single neurophysiological 

measure.62 The PREP2 algorithm classifies individuals into one of four clinically meaningful 

categories (Excellent, Good, Limited, or Poor) in anticipation of subsequent UL capacity 

outcomes.62,140 Predicting a category for an eventual UL outcome is useful because persons with 

stroke are more interested in what they can generally expect in recovery of the UL, not a specific 

numerical score on a standardized test.123,141-143 Each of the four categories from PREP2 are 

defined by boundaries on the ARAT, a standardized assessment of UL capacity.62 PREP2 

categories describe an expected UL outcome and associated rehabilitation focus, providing 

individuals with stroke, their care givers, and clinicians with more interpretable 

information.142,143  

Despite its accuracy and ease of use, there are some challenges to implementing PREP2 

in the US. The rehabilitation structure of New Zealand differs somewhat from the US, with 

respect to who, how much, where, and when individuals receive UL therapy after stroke. A lot of 

young people in the US are having strokes4,6,144-146 and many have other comorbidities that are 

poorly managed.147 Another hurdle to implementation of the PREP2 in the US is the limited 

accessibility to the neurophysiologic measurement of corticospinal tract function, via transcranial 

magnetic stimulation (TMS).148  Access to this neurophysiologic assessment may be available 

for research purposes and/or in some major academic medical centers, but is not available in 

routine rehabilitation care.148,149 Anticipating this, the PREP2 algorithm was shown to still be 

71% accurate using clinical measures only.62,140 In the version with only clinical measures, a 

measure of stroke severity150 replaces the neurophysiologic measure for participants with less 
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initial strength in their affected UL.62 Prior to widespread implementation of this useful 

algorithm into routine rehabilitation care, it is necessary to understand how small healthcare 

system differences, differences in the stroke population, and lack of the neurophysiologic 

assessments affects the accuracy of the PREP2 algorithm in individuals who have suffered a 

stroke in the US.  Aim 1 of this dissertation evaluates the accuracy of the PREP2 algorithm with 

clinical measures only here in a US healthcare system. 

1.3.2 Prediction of UL performance 
As seen in the ICF Framework, (Figure 1.1) UL capacity for activity is a different but 

related construct to UL performance of activity.1 Data from wearable sensors are analyzed to 

produce variables that capture aspects of UL performance in daily life after stroke. With the 

ability to measure UL performance, researchers have learned that improvements in UL capacity 

seen in the clinic often do not lead to improved performance of the UL in daily life.34,89,102,103 In 

other words, individuals improve their capability to use their arm measured by in clinic 

assessments, but are not transferring these improvements into better use of their limb in daily 

life.9,34,90,102,103,151,152 These findings have solidified our understanding that UL functional 

capacity and UL performance are two separate constructs.94,153 Knowing this information, it is 

important to explore prediction models of UL performance to complement existing prediction 

tools of UL capacity.  

There have been limited efforts to develop prediction models of UL performance or 

actual activity of the UL in daily life after stroke. To date, two studies have explored early 

predictors of UL use at three months102 and one year103 after stroke. A longitudinal study by 

Rand and Eng103 used multiple linear regression to predict daily use of each UL, measured with a 

single continuous variable (mean total activity counts of the paretic UL), 12 months after stroke 
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from motor and non-motor clinical measures and participant demographic information assessed 

at discharge from subacute stroke rehabilitation centers. They found that better UL capacity at 

discharge predicted increased UL use 12 months after stroke.103 More recently, Lundquist et. 

al.102 also used multivariate linear and logistic regression to examine the factors two weeks after 

stroke that could predict future UL performance, quantified by a single continuous variable (use 

ratio), three months after stroke.102 They found that better UL capacity (ARAT) early after stroke 

predicted increased UL performance at three months. When they dichotomized UL performance 

as “normal” vs “non-normal”, the absence of a motor evoked potential (MEP) along with the 

presence of visual neglect predicted “non-normal” UL use.102  A strength of both of these studies 

was the inclusion of non-motor clinical assessments and participant demographic information in 

addition to the UL impairment and capacity measures as potential predictors of UL performance. 

Including these predictors was useful in determining how other post stroke problems (e.g. visual 

neglect, depression) influenced eventual UL use in daily life after stroke. In the Rand & Eng 

study the outcome of UL performance was measured one year post stroke which is a limitation 

because UL performance stabilizes within six weeks after stroke therefore,105 one year post 

stroke is likely too late to intervene to improve the outcome.105 There are two limitations of both 

studies; first was the analysis choice of multiple linear regression techniques and second was 

selecting a single continuous variable for the outcome of UL performance. Multiple linear 

regression techniques are statistical processes used for estimating the relationships among the 

dependent and independent variables. These techniques require that specific assumptions about 

the predictors and the outcome be met which limits the type of predictors that can be included.154 

Also, as more cutting edge methods emerge the term “prediction” can be misused because the 

results of regression models are expressed as the proportion of variance (R2) explained, not 
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accuracy.155 The second limitation was that the outcome of UL performance was a single 

variable (mean total activity counts of the paretic UL and the use ratio). Therefore, significant 

predictors can only be associated with the single variable measuring only one aspect of UL 

activity after stroke. From these two studies it is unknown how the included predictors were 

associated with other aspects of UL performance in daily life, such as the duration, magnitude or 

intensity, and variability of UL activity. 

UL performance is likely a multivariate construct because a complete measure of UL use 

in daily life requires knowledge of the duration, magnitude or intensity, symmetry and variability 

of UL movements.87  Currently, several variables must be calculated from wearable sensor data 

because each provides different information about UL activity in the free-living environment.156 

A single variable may not be not sufficient in understanding the scope of UL performance in 

daily life.156 A limitation of the multivariate approach is that calculating several variables adds 

complexity to the interpretation of UL performance data for clinical decision making. A potential 

solution to the multi-variable problem would be the formation of categories of UL performance 

in daily life. If there were natural groupings that occur among multiple UL performance 

variables calculated from accelerometry data,157 then these groupings could help to facilitate 

clinical decision making and implementation of UL performance data into routine rehabilitation 

care. Aim 2 of this dissertation investigates if categories of UL performance can be identified in 

adults with and without neurological UL deficits.  

With the advances in computing power, it is possible to capitalize on machine learning 

techniques to predict UL performance after stroke. Machine learning algorithms have several 

advantages over regression models including 1) requiring fewer assumptions about the 

distributions of the data, 2) numerous options for non-parametric models, and 3) strong 
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predictive capabilities.158-162 Machine learning techniques allow for the possibility of predicting a 

multivariate categorical outcome. This is important because categories provide more information 

about the expected UL outcome to the person with stroke, their families, and clinicians than a 

single continuous variable or a binary category (e.g. good or poor).62,102,141,155,163  Aim 3 of this 

dissertation explores how different machine learning techniques can be used to understand how 

clinical measures and participant demographics captured early after stroke are associated with 

the UL performance categories from a later post stroke time point. 

1.4 Summary and critical next steps 
The incidence and costs of stroke in the US are projected to rise over the next decade 

because of the aging population. Declining stroke mortality over the past few decades3 means 

that more people are surviving stroke but remain with physical, cognitive, and emotional 

disability.7 Stroke remains one of the leading causes of disability in the US because very few 

survivors experience a full recovery of their UL. Recently, prediction algorithms of UL capacity 

after stroke have been developed to facilitate treatment selection, discharge planning and goal 

setting for clinicians and their clients. However, prior to widespread implementation of existing 

prediction algorithms into routine rehabilitation care, it is necessary to understand how small 

healthcare system differences and availability of neurophysiological assessments affect external 

validation of the models. Aim 1 will be the first study to externally validate an algorithm with 

clinical measures only on a US population of persons with first stroke.  

Prediction models have tremendous clinical utility because they aid in the clinical 

decision making required to select the appropriate efficacious and emerging interventions that 

afford improvements in UL functional capacity,32 measured by standardized assessments in the 

therapy clinic.26,27,30 The ICF Framework, however, informs our understanding of the importance 
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of measuring UL changes across measurement levels. The literature has shown that 

improvements seen in one measurement level do not directly transfer to another.34,101 Aims 2 and 

3 of this dissertation investigate each of these gaps in an effort to move the field of stroke 

rehabilitation forward by contributing to the development of novel clinical tools that are 

available to stroke rehabilitation providers in the US and around the world to facilitate 

measurement and prediction of UL performance after stroke.  

1.5 Specific Aims 
Aim 1: Test how well an algorithm with clinical measures, developed for use in New 

Zealand, applies to persons with stroke within the US. This is a secondary analysis of data 

collected from a prospective, observational, longitudinal cohort tracking UL change over time.105 

 Hypothesis 1a: UL functional capacity will be predicted, and algorithm accuracy will 

fall in a range of 70-80% in a cohort of stroke participants in the US.  

Hypothesis 1b: Those with inaccurate predictions will be within one category of their 

expected category at 3 months. 

Recent efforts have explored predicting eventual UL capacity outcomes after stroke which has 

the potential to facilitate treatment selection, discharge planning, and goal setting for clinicians 

and clients.102, 111, 113 Several prediction models have been developed to guide clinical decision-

making,55, 122   the most well-known algorithm is PREP2 and it was developed in New Zealand.62 

PREP2 predicts a category of UL capacity around three months after stroke with 75% accuracy 

using clinical measures and a single neurophysiological measure.55 The algorithm classifies 

individuals into one of four clinically meaningful categories (Excellent, Good, Limited, or Poor)  

in anticipation of subsequent UL capacity outcomes.55, 126  Most people with inaccurate 

predictions were only one category away from their actual at 90 days.62,140 Despite the merits of 
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this algorithm, there are some challenges to implementing it in the US including participant 

factors (e.g., age of stroke and number of comorbidities)144-146 and the rehabilitation 

structure.141,149 Anticipating this, the algorithm was shown to still be 71% accurate at 90 days 

post-stroke using clinical measures only. Prior to widespread implementation of this algorithm 

into routine rehabilitation care, it is necessary to understand how small system differences and 

lack of the neurophysiologic tests (TMS) affects the overall accuracy of the algorithm in 

individuals who have suffered a first stroke in the US. The current study determines the accuracy 

of an algorithm on a sample of persons with first ever stroke, using clinical measures only, at 

time points that are most feasible in the US health care system.  

Aim 2: Identify and define categories of UL performance, as quantified from accelerometer 

recordings. This is an analysis of data from three completed studies: 1) the same prospective, 

observational cohort as Aim 1;105 2) a sample of persons with chronic stroke who participated in 

a clinical trial;31 and 3) a sample of neurologically-intact adults of similar age, race, ethnicity, 

and socioeconomic status.74  

Hypothesis 2a: Three categories of UL performance will be identified across a host of 

accelerometer variables, spanning the possible ranges of UL performance in daily life. 

Hypothesis 2b: The categories that emerge will have clinical meaning of expected UL 

performance. 

The use of wearable sensor technology (e.g., accelerometers) for tracking human physical 

activity have allowed for measurement of actual activity performance of the UL in daily 

life.79,100,156,164-166 Data extracted from accelerometers can be used to quantify multiple variables 

measuring different aspects of UL performance in one or both limbs such as: 1) duration; 2) 

magnitude; 3) variability; and 4) symmetry or laterality. Each UL performance variable conveys 
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slightly different information about the collective nature of UL use, with a single variable 

providing only part of the picture.156 One reason wearable sensor technology for measurement of 

UL performance has remained largely confined to rehabilitation research with limited ventures 

into clinical practice is because the current output from accelerometers is not easily accessible 

for rehabilitation professionals.100 A potential solution to the multi-variable problem would be 

the formation of categories (or groups) of UL performance in daily life. Statistical analysis 

methods such as a k-means hypothesis-free cluster analysis can be used to determine 

categorizations of UL performance indexed by accelerometer variables in samples of persons 

with stroke and neurologically intact adults (adult controls). Including cohorts of people with and 

without stroke will capture a wide range of the variables, extracted from accelerometer data that 

quantify different aspects of UL performance in daily life. Thus, the emerging categories would 

group individuals with similar ranges of the performance variables and provide a simpler method 

to interpret UL performance in daily life for clinicians and persons with health conditions whom 

they treat. The purpose of this study is to identify categories of UL performance in daily life in 

adults with and without stroke using data from previously collected cohorts. If there were natural 

groupings that occur among multiple UL performance variables calculated from accelerometry 

data,157 then these groupings could help to facilitate clinical decision making and implementation 

of UL performance data into routine rehabilitation care. 

Aim 3: Determine if a model can be developed to predict UL performance in daily life at 3 

months post stroke. This aim is an analysis of data collected from a prospective, observational, 

longitudinal cohort study tracking UL change over time and is the same cohort used in Aim 1.105 

Hypothesis 3a: A model can be derived from a collection of clinical measures to predict 

UL performance post-stroke. 
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Hypothesis 3b: The developed model will predict UL performance with a minimum of 

70% accuracy.  

Early prediction of motor outcomes after stroke has tremendous clinical utility 136,167 because 

predictive knowledge of subsequent outcomes can inform the delivery and specification of 

individualized rehabilitation services.162,168 Several prediction models have been developed to 

guide clinical decision-making,5, 122  however, the majority predict UL impairment or capacity. 

119-121 UL capacity for activity is a different but related construct to UL performance of 

activity.103,105,169 Prediction models of UL performance can be informed by models of UL 

capacity, such as PREP2,62  which has demonstrated that prediction of an UL capacity category 

provides clinically-useful information to people with stroke and their families. The PREP2 

prediction model was originally built and validated with a CART which resulted in the easy to 

interpret decision tree with an overall accuracy of 71% to 75%.62  Recent efforts to predict an 

individual’s subsequent UL impairment or capacity category, measures of UL impairment and 

capacity emerge as the most important predictors. Advances in computing have improved upon 

old and led to new analysis techniques for building prediction models of UL outcomes after 

stroke. An alternative to creating a single decision tree is to use ensemble classifier methods.170 

which tend to have higher predictive power and reduce the risk of over-fitting relative to other 

CART methods, but at the expense of interpretability.159,170   In the present study, different 

machine learning techniques will be used to understand how clinical measures and participant 

demographics captured early after stroke are associated with the UL performance categories 

from a later post stroke time point.171 Using different machine learning methods to build 

predictive models with different input variables as predictors will determine how each method 

yields similar versus different results. Capitalizing on the advantages of ensemble machine 
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learning algorithms by applying them for prediction of UL performance outcomes could yield 

key insights into UL recovery post stroke.  
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2.1 Abstract 
Objective: To determine the accuracy of an algorithm, using clinical measures only, on a 

sample of persons with first ever stroke in the US. It was hypothesized that algorithm accuracy 

would fall in a range of 70-80%. 

Design: Secondary analysis of prospective, observational, longitudinal cohort; two assessments 

were done, (1) within 48 hours to 1 week post stroke and (2) at 12 weeks post stroke.  

Setting: Recruited from a large acute care hospital and followed over first 6 months after 

stroke.  

Participants: Adults with first ever stroke (N=49) with paresis of the upper limb (UL) at <48 

hours who could follow 2-step commands and were expected to return to independent living at 

6 months. 

Intervention: NA 

Main Outcome Measure(s): The overall accuracy of the algorithm with clinical measures was 

quantified by comparing predicted (expected) and actual (observed) categories using a correct 

classification rate (CCR).   

Results: The overall accuracy (61%) and weighted kappa (62%) were significant. Sensitivity 

was high for the Excellent (95%) and Poor (81%) algorithm categories. Specificity was high for 

the Good (82%), Limited (98%) and Poor (95%) categories. PPV was high for Poor (82%) and 

NPV was high for all categories. No differences in participant characteristics were found 

between those with accurate or inaccurate predictions. 
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Conclusions: The results of the present study found that use of an algorithm with clinical 

measures only is better than chance alone (chance = 25% for each of the 4 categories) at 

predicting a category of UL capacity at 3 months post stroke. The moderate to high values of 

sensitivity, specificity, PPV and NPV demonstrates some clinical utility of the algorithm within 

healthcare settings in the US.  

2.2 Introduction 
Of the many people who suffer a stroke each year, a staggering 80% of those individuals 

will incur some degree of impairment of the upper limb (UL).1 The ability to predict UL 

outcomes for an individual facilitates treatment selection, discharge planning and achievable goal 

setting for clinicians and persons with stroke.2-4  Several prediction algorithms have been 

proposed and evaluated in clinical trials with the limitation that most are only accurate for 

persons with mild to moderate UL impairment.2, 4-9 The Predict Recovery Potential (PREP2) 

algorithm, developed in New Zealand, allows for prediction of UL functional capacity at 90 days 

post stroke based on measures taken within the first week.5  PREP2 was developed from a 

retrospective analysis of data from two previous studies (n=207) to improve upon a previously 

developed prediction model (PREP). 5, 10  The goal of PREP2 was to determine if two of the tests 

(Transcranial magnetic stimulation (TMS) and Magnetic resonance imaging (MRI)) could be 

used with fewer patients or completely eliminated, while maintaining a high level of overall 

accuracy.5, 10  When developing PREP2, the authors used a hypothesis-free, data-driven analysis 

method (CART)5 to determine which factors (patient demographic, clinical measures, 

neurobiomarker and neurophysiological measures) best predicted the outcome category.5 The 

result, was a new algorithm that is sequential in nature.  Variables selected were: a measure of 

strength in the paretic UE (SAFE score)5, participant age, a measure of stroke severity (National 
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Institute of Health Stroke Scale (NIHSS))11 and TMS to determine the presence of a motor 

evoked potential (MEP) for patients with less initial strength in their paretic UE.5  The algorithm 

classifies individuals into one of four clinically meaningful categories (Excellent, Good, Limited 

or Poor) of eventual UL functional capacity that can guide rehabilitation (Table 2.1).5, 12 With 

these variables, a category of expected UL outcome at 90 days after stroke is predicted with an 

overall accuracy (proportion with correct predictions to the total sample) of 75% using clinical 

measures and a single neurophysiological measure (TMS).5 The best accuracy (78%) of the 

prediction model is for persons with greater initial strength in their paretic UE (SAFE > 5) who 

are predicted to the top half of the model (Excellent and Good), the accuracy drops to 70% for 

patients with less strength in the paretic UE (SAFE <5) who are predicted to Good, Limited or 

Poor categories.5 Prediction of a category rather than a test score for an individual has high 

clinical utility 13 and is separate from the debated issue of the proportional recovery rule of 

neurobiological recovery.6, 7, 14, 15  Of critical importance for clinical practice, the predictions of 

the algorithm maintained accuracy for 83% (n=71/86) of individuals at 2 years post stroke.12 

External validation studies are required to test the algorithm on other populations of persons with 

stroke outside of New Zealand.16 Lundquist et. al. have replicated the PREP2 at a slightly later 

time point and within a European country.9 
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Table 2.1. Description of categories of UL capacity 

Category Name 
ARAT 
Score 

Ranges17 
Expected UL Outcome5, 17 Rehabilitation Focus5, 17 

Excellent 51-57 Potential to make a complete, or 
near complete recovery of affected 
arm and hand within 3 months. 

Promote normal use of the affected hand 
and arm with task-specific practice. 
Minimize compensatory and adaptive 
movements of the affected arm and hand 
during daily tasks. 

Good 34-50 Potential to use the affected hand 
and arm with clumsiness, slowness 
and weakness for most daily 
activities within 3 months. 

Promote function of the affected hand 
and arm. Minimize use of the other hand 
and trunk in task specific practice. 

Limited 13-33 Potential to regain some use of the 
affected hand and arm, daily 
activities are likely to be completed 
with significant modification. 

Promote adaptation in daily activities 
using the affected arm and hand as a 
“helper hand” whenever safely possible. 

Poor 0-12 Limited return of useful movement 
of the affected hand and arm at 3 
months. 

Prevent secondary complications such 
as pain, spasticity and shoulder 
instability, learn to complete daily 
activities with stronger hand. 

Despite the merits of this algorithm, there are some challenges to implementing it in the 

United States (US). The rehabilitation structure of New Zealand differs somewhat from the US, 

with respect to who, how much, where, and when individuals receive UL therapy after stroke. 

People in the US have strokes at younger ages (mean age US = 64 years; NZ = 71 years) 18-20 and 

many have additional comorbidities that are poorly managed.21 Another hurdle to 

implementation of the algorithm is the limited accessibility to the neurophysiologic measurement 

(TMS) of corticospinal tract function.  Access to this test in the US can be present for research 

purposes and/or in major academic medical centers, but is not available in routine rehabilitation 

care.13, 22  It has been acknowledged that making predictions with clinical measures alone is 

inaccurate and difficult.12, 23 Anticipating this, the algorithm was shown to still be 71% accurate 

at 90 days post-stroke using clinical measures only, with a measure of stroke severity (NIHSS)11 

being adjusted to replace the neurophysiologic measure (TMS) in participants with little or no 

strength (SAFE< 5) in their affected UL.5 The algorithm with clinical measures only maintains 
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similar overall accuracy (95% CI = 55%-78%); however, the prediction accuracy drops to 55% 

for patients with a SAFE score <5.5 

Prior to widespread implementation of this algorithm into routine rehabilitation care, it is 

necessary to understand how small system differences and lack of the neurophysiologic tests 

(TMS) affects the overall accuracy of the algorithm in individuals who have suffered a first 

stroke in the US.  The current study is a secondary analysis (R01 HD068290) of data from a 

prospective, observational, longitudinal cohort tracking UL change over time. The analysis in 

this paper determined the accuracy of the algorithm on a sample of persons with first ever stroke, 

using the clinical measures only,5 at time points that are most feasible in the US health care 

system.  We hypothesized that algorithm accuracy would fall in a range of 70-80%.  

2.3 Methods 
This study was a secondary analysis of data collected from a prospective, observational, 

longitudinal cohort tracking UL change over time. Sources of data utilized were clinical 

measures and participant demographics at two time points: (1) between 48 hours to 7 days of 

stroke onset and (2) 12 weeks post stroke.  

2.3.1  Participants 
Participants were included in the prospective, observational, longitudinal cohort  if the 

following criteria were met: (1) within two weeks of a first-ever ischemic or hemorrhagic stroke, 

confirmed with neuroimaging; (2) presences of UL motor deficits within the first 24 to 48 hours 

post stroke, as indicated by a NIHSS11 Arm Item scores of 1 to 4 or documented manual muscle 

test grade of <5 anywhere on the paretic UL; (3) able to follow a 2-step command, as measured 

by a NIHSS Command Items score of zero; and (4) anticipated return to independent living (i.e. 

not institutionalized), as indicated by the acute stroke team. Participants were excluded from the 
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study if any of the following criteria were met: (1) history of previous stroke, other neurological 

condition, or psychiatric diagnoses; (2) presence of comorbid conditions that may limit recovery 

(e.g., end-stage renal disease or stage IV cancer); (3) lives more than 90 minutes from study 

location; and (4) currently pregnant by self-report. The Human Research Protection Office at 

Washington University in St. Louis Missouri approved this study and all participants provided 

written informed consent.  

Cohort participants completed eight assessment sessions over the 24 weeks post stroke. 

This analysis used the assessment data at the first assessment (48 hours to 7 days), and at 12 

weeks. Assessments were administered by trained personnel (licensed PT or OT, range of 

experience with measures was 2-15 years). The majority of people received their first 

assessments in the acute hospital setting or inpatient rehabilitation. The 12 week assessments 

were completed where the participant was located at that time and includes: sub-acute 

rehabilitation facility, research lab, or home. Since this was an observational cohort study, we did 

not provide or control for the amount or type of rehabilitation services delivered to enrolled 

participants. Participants received rehabilitation services as prescribed by their medical team.  

2.3.2  Algorithm Measures 
Evaluation of accuracy of the algorithm in this US cohort used early clinical measures 

and participant age to predict the category (Excellent, Good, Limited or Poor) of UL capacity at 

12 weeks. Assessments to predict the expected UL category were: 1) the Shoulder Abduction 

Finger Extension (SAFE) score 5, 12 at time of consent (mean time post-stroke = 7 + 3 days, range 

= 2-14 days); 2) participant age; and 3) NIHSS11 total score captured around 48 hours post 

stroke. The first step in the algorithm is a calculation of the SAFE score to quantify impairment 

24, 25 of the paretic UL.  The total SAFE score is a sum of the Medical Research Council 26 
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(MRC) strength grades (0 = no strength to 5 = full strength) for shoulder abduction and finger 

extension in the paretic UL. The SAFE score of 10 indicates full strength in both movements on 

the paretic limb. A SAFE score >5 places individuals into the upper half of the prediction model, 

with age predicting the final categorization of Excellent (< 80 years). For individuals equal to 

and older than 80 years, SAFE score is used again to determine predictions to either the 

Excellent (SAFE > 8) or Good (SAFE < 8) categories.5 A SAFE score < 5 places individuals into 

the lower half of the prediction model, where the NIHSS total score11 is then used to predict the 

final outcome categorization. The NIHSS is a global measure of stroke severity11, and captures 

stroke impairment across multiple domains.11, 24  Scores range from 0 to 42, where higher scores 

indicate more severe stroke.11 In the version of the algorithm with clinical measures only, 

persons with an NIHSS total score < 9 are predicted to have a Good outcome and NIHSS >10 a 

Poor outcome.5  

The dependent variable for this study was category of UL functional capacity, as 

determined by the Action Research Arm Test (ARAT) score,5, 10 a standardized measure of 

activity limitation.25, 27 The ARAT is a valid and reliable measure of UL capacity24, 28 (grasp, 

grip, pinch and gross motor) in adults with UL paresis; scores range from 0-57 with higher 

scores indicating greater functional capacity of the UL.29-32 The actual category of UL capacity 

was determined from the ARAT score at 12 weeks post stroke.5, 17 Ranges of ARAT scores 

dictated how people were divided into one of four clinically meaningful categories: “Excellent 

“(51-57), “Good” (34-50), “Limited” (13-33) and “Poor” (0-12) based on a previously published 

report (see Table 2.1).17  
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2.3.3  Analysis 
All data were analyzed in R (version 4.0.1), an open source statistical computing 

program. The packages caret, gridExtra, yardstick, and vcd were used for the contingency table 

(CCR) and the packages ggalluvial and alluvial were used for the alluvial plot in Figure 2.2. Data 

were visually inspected to determine normality of the distribution. Continuous participant 

characteristics and 12 week clinical measure scores are summarized by mean, standard deviation 

(SD) and ranges when normally distributed, otherwise by median and ranges. 

The algorithm using only the early clinical measures 5, 12 was used to assign predicted 

categories. In the process, we had to modify the algorithm slightly to account for participants 

with an NIHSS of 9, which was not included in the PREP2 algorithm, where the only choices 

were > 9 or <  9.5  Here, individuals with an NIHSS total score = 9 were predicted to have a 

“Limited” outcome.  The remaining decision points of PREP2 were unaltered.  

 The overall accuracy of the algorithm with clinical measures was quantified by 

comparing the predicted (expected) and actual (observed) ARAT categories using a correct 

classification rate (CCR). CCR calculates accuracy of the algorithm as a whole and other 

statistics for each category. Overall accuracy in this analysis is the proportion of individuals with 

correct predictions with respect to the total sample. Sensitivity, specificity, positive predictive 

value (PPV) and negative predictive value (NPV) were calculated for each category. 

Additionally, a weighted kappa was calculated to determine the classification accuracy of the 

whole algorithm. In order to interpret the sensitivity, specificity, PPV and NPV, we classified 

values from 0.75 and above as being “high”, 0.50-0.74 as “moderate” and anything 0.49 and 

below as “low”. We chose these words to avoid confusion with the names on the categories. The 

weighted kappa was selected instead of the non-weighted version because there was not an 
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equal, random chance (chance = 25% for each of the 4 categories) of prediction for each 

category. Following categorical analyses, data were explored further to see if any participant 

characteristics distinguished between persons with accurate versus inaccurate predictions. Due to 

the nonparametric nature of the samples, a Wilcoxin signed-rank test was calculated to explore 

differences in age, initial SAFE score and NIHSS total score, number of days post stroke to 

SAFE score, and number of comorbidities. 

2.4 Results  
Overall, the sample of persons with first ever stroke were generally in their sixties and 

had mild to moderate stroke (90% with NIHSS 0-15). At the time of this analysis, a total of 69 

subjects had been enrolled in the study. Enrollment in the prospective, observational, 

longitudinal cohort study was suspended and then closed due to the on-going COVID-19 

pandemic. Only participants with complete initial and 12 week assessment time points were 

included here (n=49). Reasons for exclusion include: missing initial or week 12 clinical measures 

(n=14) and data collection suspended due to COVID (n=6).  Demographics of the participants 

are provided in Table 2.2. 

Table 2.2 Participant Characteristics. Values are median (range) or number (%).   
 n=49 
Demographic Characteristics  
Age (years) 

Median age (range) 66 (43-81) 
< 80 years n (%) 47 (96%) 

Sex 
Male 28 (57%) 

Female 21 (43%) 
Ethnicity 

Non-Hispanic/ Non-Latino 49 (100%) 
Race 

White 27 (55%) 
African American 21 (43%) 

Asian 1 (2%) 
Common Co-morbidities (self-report)   

Diabetes (% yes) 16 (33%) 
High Blood Pressure 37 (76%) 
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Heart Disease 15 (31%) 
Stroke Characteristics 

First stroke 49 (100%) 
Stroke Type 

Ischemic 43 (88%) 
Hemorrhagic  6 (12%) 

Stroke Location  
Cortical 31 (63%) 

Subcortical 17 (35%) 
Cortical & Subcortical 1 ( 2%) 
Post. Circ./ Cerebellar 0 

Handedness 
Right 42 (86%) 

Left   6 (12%) 
Both   1 (  2%) 

% Concordant 39% 
Stroke Severity 

Mild (NIHSS score 0-4) 19 (39%) 
Moderate (NIHSS score 5-15) 25 (51%) 

Severe (NIHSS score > 16) 5 (10%) 
Paretic Upper Limb Measures 
Initial SAFE score  

Excellent outcome median (range) 8 (2-10) 
Good outcome median (range) 7 (2-8) 

Limited outcome median (range) 2 (0-8) 
Poor outcome median (range) 1 (0-2) 

 

Figure 2.1 Frequency of participants predicted to each category (A) and then actual category observed (B).  
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Table 2.3: Contingency table of predicted and actual categories  

Contingency Table Showing Numbers 
Actual Category 

Predicted Category Excellent Good Limited Poor Sum 
Excellent 19 8 1 0 28 

Good 0 2 5 2 9 
Limited 0 1 0 0 1 

Poor 1 0 1 9 11 
Sum 20 11 7 11 49 

Contingency Table Showing Percentages 
Actual Category 

Predicted Category Excellent Good Limited Poor Sum 
Excellent 39% 16% 2% 0% 57% 

Good 0% 4% 10% 4% 18% 
Limited 0% 2% 0% 0% 2% 

Poor 2% 0% 2% 18% 22% 
Sum 41% 22% 14% 22% 100% 

 

Frequencies of participants predicted and confirmed within each category are presented 

graphically (Figure 2.1) and as a 4x4 contingency table (Table 2.3). The colors of each bar graph 

are the colors used in the PREP2 analysis: 5 Excellent (green); Good (blue); Limited (orange); 

and Poor (red).  The predicted categories were weighted to the extremes (Excellent and Poor) 

where the actual categories at 12 weeks were more balanced among the groups.   

 The algorithm is overall better than chance (chance = 25% for each of the 4 categories) 

and most useful in determining the category someone will not end up in at 12 weeks. Table 2.4 

presents the accuracy and other calculated statistics. The overall accuracy (0.61) and the 

weighted kappa (0.62) were significant, but lower than hypothesized. Sensitivity, specificity, 

PPV, and NPV differed across categories. Note that the small numbers within some cells, e.g. 

only one person was predicted into the Limited category have a large effect on the calculation of 

these values.  Further, a total of 20 people in this sample had an initial SAFE score <5 and the 

model was accurate for 50% of them. 
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Table 2.4. Overall statistics (top) and per category statistics (bottom) 
Statistic Value 95% CI Range p-value 

Overall Accuracy 0.61 0.46 0.75 0.003 
Weighted Kappa 0.62 0.46 0.78 <.0001 

Per Category Values 
Statistic/ Category Excellent Good Limited Poor 

Sensitivity 0.95 0.18 0 0.81 
Specificity 0.69 0.82 0.98 0.95 

PPV 0.67 0.22 0 0.82 
NPV 0.95 0.77 0.85 0.95 

 

People with inaccurate predictions were typically inaccurate within one category of their 

prediction. Figure 2.2 is an alluvilial plot providing a visual representation of participants who 

were accurately and inaccurately predicted. The top axis is the predicted category and the bottom 

axis is the actual category, with the width of the category box representing the frequency of 

individuals who were within that category for the predicted and actual time points. The colored 

alluvium in the center of the plot are filled with the predicted category colors: Excellent (green), 

Good (blue), Limited (orange) and Poor (red). The most movement between categories is seen 

within the middle of the plot. One can see that the majority of inaccuracies were only off by one 

category (n=15/19), the remaining were inaccurate by two (n=3) or three (n=1) categories. Those 

inaccurate by two categories included: (a) two people who were predicted to the Good and ended 

up in the Poor category (ARAT at 90 days = 0 & 11); and (b) one person who was predicted to 

the Excellent and ended up in the Limited category (ARAT at 90 days = 26). The one person 

inaccurate by three categories ended up with a better outcome; predicted to the Poor and ended 

up in the Excellent category (ARAT at 90 days = 53).  This is a good example of an individual 

where correct classification would likely have been enhanced with TMS.  Of those inaccurately 

predicted, the algorithm was too optimistic for 16 people and too pessimistic for 3 people. The 

most movement between predicted to actual categories was seen between those predicted to be in 

Excellent and ended up in Good (n=8). 
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Figure 2.2: Alluvial plot displaying accurate and inaccurate categorizations. The predicted (top) and actual (bottom) 
axes are scaled such that the width of the box represents the frequency of each category. Note that the narrow width 
of the Limited category on the predicted axis (top) is due to only one person being predicted to end up in this 
category. The fill of the color bands are the predicted category.  Inaccuracies tended to be one category off, with the 
exception of a few individuals who had better than expected (e.g. thin red line, Poor to Excellent) or worse than 
expected (e.g. thin green line, Excellent to Limited) outcomes. 
 

Further exploration of the data revealed that participants with inaccurate predictions were 

not different from those with accurate predictions on clinical or demographic measures. We 

found no significant differences between inaccurately vs. accurately categorized individuals with 

respect to strength in the paretic UL (SAFE score median: inaccurate=5, accurate= 8, p=0.18), 

the day the SAFE score was captured (day median: inaccurate= 5.5, accurate= 6.3, p=0.33), 

stroke severity (NIHSS median: inaccurate=5, accurate = 6, p=0.45), age (median: inaccurate: 65 

yrs, accurate: 67 yrs, p=0.69), or number of reported comorbidities (mean number ± SD: 

inaccurate=2.35 ±1.9, accurate = 3.03 ±1.8, p=0.11).  

2.5 Discussion 
The algorithm, with clinical measures only, on a sample of persons with first ever stroke 

in the US had an overall accuracy of 61%, which was less than hypothesized.  The predicted 

categories were more weighted to the best and worst categories than the actual categories at 12 

weeks. Some of the values of sensitivity, specificity, PPV and NPV were high, but not all. 
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Participants with inaccurate predictions were most often only one category away from their 

actual category and no differences were found between those with accurate or inaccurate 

predictions on days of assessments, clinical or demographic measures. 

Implementation of prediction models into routine clinical practice requires external 

validation studies such as this one.13, 33 Statistical methods used to evaluate predictive models 

arise from evaluating diagnostic medical tests,34 referenced to a gold standard.35 Medical 

diagnostic tests must be highly accurate 35, due to the potentially serious downstream 

consequences of inaccuracy on outcomes (e.g. mortality).32 In the field of psychology, accuracy 

statistics of diagnostic tests have been identified as: > 0.90 are considered “excellent”, 0.80-0.89 

are “good”, 0.70 to 0.79 are “adequate” and < 0.70 “may have limited applicability”.36  The 

rehabilitation field has not yet identified values considered to be good enough for 

implementation of predictive models into standard of care.   Accuracy statistics of rehabilitation 

prediction models could theoretically be looser than values used to diagnose a life threatening 

condition or interpret lab values, since the consequences of inaccuracy are not as serious. While 

the present accuracy values were lower than desirable (61%, 95%CI: 46%-75%), the confidence 

intervals overlap with the PREP2 models (CI 45%-84%) 5, 10 and with the other external 

validation study (accuracy: 60%, with CI 50%-71%).9 These overlapping confidence intervals 

occurred despite the use of neurophysiologic test (TMS) included in other analyses 5, 9 and the 

timing differences of the initial assessment ranging from 2-3 days 5 out to two weeks9. Thus, the 

current study and others confirm that use of this algorithm is better than chance alone (chance = 

25% for each of the 4 categories) at predicting a category of UL capacity at 3 months from 

measures taken in the early days after stroke. Given these results, it may be realistic to 

implement the algorithm, with clinical measures only, into US clinical practice.  Implementation 
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would require the caveat that for persons with less initial strength in their paretic UE (SAFE<5), 

the prediction is likely less accurate5 and repeat assessments and predictions will be required.  

In the sample used to develop PREP2, 67% of the people were younger than 80 years 

old,5 while 96% of people in this US sample were younger than 80. This is likely a function of 

the average age of stroke in the US vs. New Zealand18-20 (see Introduction).  Having fewer 

people older than 80 years of age reduced the number of people who could be predicted to end 

up in the Good category. It is therefore not surprising that in this analysis the most inaccurate 

predictions were those predicted to Excellent but ended up in Good. Another potential reason for 

inaccuracies in this analysis could be because of our decision that an NIHSS=9 would be 

predicted to the Limited category. One person in this sample had an NIHSS=9 and was predicted 

to the Limited category but ended up in Good (ARAT=39 at 90 days), illustrating an added 

benefit of TMS, if that had been available and the person had positive motor evoked potentials. 

In PREP2, no one in their sample had an NIHSS=9, and thus it was not an option in the decision 

tree.5 The variables and their ranges in PREP2 were selected by an atheoretical approach that 

arrives on an algorithm that is dependent on the sample.5  Lundquist et. al.9 had similar values of 

overall accuracy as those observed in this analysis, however with the same data driven analysis 

method (CART) the same variables were selected but with different ranges for the NIHSS total 

score.9 It is anticipated that within the US, different ranges of the variables (SAFE, age and 

NIHSS) may be needed. It is possible that future prediction models could increase the predictive 

accuracy, as more is known about differences around the world in populations of persons with 

stroke.  

In the present study, the PPV for all categories was lower than PREP2 but the NPV was 

higher.5 Additionally, the categories of Excellent and Poor demonstrated greater overall 
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accuracy, sensitivity and NPV. The high NPV means the model does well at predicting which 

categories someone will not end up in.  In this analysis 10/19 people with inaccurate predictions 

had an initial SAFE score <5, contributing to the high PPV and NPV observed in the Poor 

category.  Similar to the PREP2 papers,5, 12 and other replications9 of the algorithm, most people 

with inaccurate predictions were only one category away in the current study. Having a patient 

who winds up one category away from the original prediction is much easier to manage 

clinically than one who is two or three categories off.  

Predictive models or algorithms are not designed to take over the job of the clinician, but 

are intended to assist in the clinical decision-making process by providing more objectivity.37, 38 

PREP2 was developed as a tool to provide clinicians, caregivers and persons with stroke more 

information in the early days after a stroke of the anticipated UL outcome.33 Predicting a 

category of the UL outcome rather than a score on a test has clinical utility, as persons with 

stroke are more interested in what they can generally expect in recovery of the UL.13, 38-40 A 

challenge with category boundaries is that a one point difference in the ARAT score at 3 months 

might be the difference between an accurate vs. inaccurate prediction.  In this analysis, four 

people had a total ARAT score between 47 to 49 points at 90 days, placing them in the Good 

category when they were predicted to Excellent (bottom ARAT limit = 51). Experienced 

clinicians might not consider this problematic because a point on a standardized test likely will 

not change the persons UL ability at 3 months. The predictive algorithm with clinical measures 

only is clinically efficient and does not require expensive equipment or extensive training, 

making it possible to use within the confines of the US healthcare system.  Additionally, the true 

PREP2 provides resources41 to aide clinicians about providing prediction information to persons 

with stroke. These resources will be extremely important for clinicians in the US to deliver 
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prediction information from this algorithm, especially to people with an initial SAFE score<5. 

Even with less than optimal accuracy, we speculate that using this algorithm with information 

routinely captured during stroke rehabilitation can provide useful information for clinicians and 

persons with stroke. In the US, discharge disposition is largely dictated by patient insurance, 

availability of support upon discharge and current mobility status.42 The predictions provide 

clinicians with an objective tool and language to efficiently evaluate potential UL outcome, 

communicate results to the person with stroke and begin the appropriate therapy interventions to 

meet the outcome.5, 13, 17 Since the therapy process is fluid, clinicians can modify therapy content 

appropriately as the individual’s progress unfolds.17 

2.5.1  Study limitations 
There are two key limitations to consider when interpreting the results of this analysis. 

First, our sample size is small which limits generalizability and produces wide confidence 

intervals.  This sample size, however, is similar to that in the initial algorithm (n= 40).10 A large 

sample size of 200-300 would be needed to produce enough data within each cell and understand 

the difference between those who are accurately or inaccurately classified. Second, the inclusion 

criteria used to enroll participants with first ever stroke excludes persons with substantial 

cognitive and language deficits. This is similar to the samples used to develop PREP2 which 

excluded people with impaired UL somatosensation, vision, visuospatial attention and 

cognition.5 We only included people with first stroke, but one of the samples used in PREP2 

included persons with second stroke. We recognize that future studies will need to include 

people with these impairments and with second stroke.  While it is unknown how the algorithm 

would work on the full spectrum of stroke survivors, the population enrolled here is typical of 

those who receive rehabilitation services in the US.   
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2.6 Conclusions 
The present study found that the algorithm, with clinical measures only, is better than 

chance alone at predicting a category of UL capacity at 3 months post stroke. The values of 

sensitivity, specificity, PPV and NPV of this study and others demonstrate the potential clinical 

utility of this predictive algorithm. Until there are agreed upon values of statistics calculated 

from predictive models for use in the rehabilitation field, we would continue to advocate for the 

clinical utility of this tool. 
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3.1 Abstract 
Background: The use of wearable sensor technology (e.g., accelerometers) for tracking human 

physical activity has allowed for measurement of actual activity performance of the upper limb 

(UL) in daily life. Data extracted from accelerometers can be used to quantify multiple variables 

measuring different aspects of UL performance in one or both limbs.  A limitation is that several 

variables are needed to understand the complexity of UL performance in daily life. 

Purpose: To identify categories of UL performance in daily life in adults with and without 

neurological UL deficits. 

Methods: This study analyzed data extracted from bimanual, wrist-worn, triaxial accelerometers 

from adults from three previous cohorts (N=211), two samples of persons with stroke and one 

sample from neurologically intact adult controls. Data used in these analyses were UL 

performance variables calculated from accelerometer data, associated clinical measures, and 

participant characteristics. A total of twelve cluster solutions (3-, 4- or 5-clusters based with 12, 

9, 7, or 5 input variables) were calculated to systematically evaluate the most parsimonious 

solution. Quality metrics and principal component analysis of each solution were calculated to 

arrive at a locally-optimal solution with respect to number of input variables and number of 

clusters. 

Results: Across different numbers of input variables, two principal components consistently 

explained the most variance. Across the models with differing numbers of UL input performance 

variables, a 5-cluster solution explained the most overall total variance (79%) and had the best 

model-fit. 
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Conclusion: The present study identified five categories of UL performance formed from five 

UL performance variables in cohorts with and without neurological UL deficits. Further 

validation of both the number of UL performance variables and categories will be required on a 

larger, more heterogeneous sample. Following validation, these categories may be used as 

outcomes in UL stroke research and implemented into rehabilitation clinical practice.  

3.2 Introduction 
The use of wearable sensor technology (e.g., accelerometers) for tracking human 

movement has allowed for efficient measurement of activity of the upper limb (UL) in daily 

life.1-6 Accelerometry has become an established, valid and reliable methodology to directly 

measure performance of UL activity in daily life in neurologically intact adults7, 8 and adults with 

stroke.9-13 Per the World Health Organization International Classification of Functioning, 

Disability and Health (ICF) model,14 activity performance, defined as what a person does in the 

unstructured, free-living environment, is a different but related construct to the capacity for 

activity (i.e. functional capacity), which is measured by standardized assessments in the 

structured clinical or laboratory setting. Clinicians and researchers typically assess a person’s 

functional capacity for activity in the structured clinic or laboratory environments with 

standardized assessments. However, people seek out rehabilitation services because they want to 

be able to perform better in their daily lives,15 and improvements in UL capacity seen in the 

clinic do not necessarily translate to improvements in UL performance in daily life.13, 16-19 

Therefore, assessment of UL activity performance in an individual’s unstructured, free-living 

environment is critical to evaluating effectiveness of rehabilitation services and determining if 

the services provided have achieved the goal of improving performance in daily life. 
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 Data extracted from bilateral, wrist-worn accelerometers can be used to quantify 

variables measuring different aspects of UL performance in one or both limbs. These variables 

collectively inform clinician scientists about the real-world activity performance.  The numerous 

variables calculated from accelerometers measure different aspects of UL performance, such as: 

1) duration;7, 20 2) magnitude;12, 21, 22 3) variability;12, 23 4) symmetry or laterality;3, 7, 10 and 5) 

quality of movement.5, 24-26 Each UL performance variable conveys slightly different information 

about the collective nature of UL use, with a single variable providing only part of the picture.5 

Furthermore, some variables are narrowly distributed in neurologically-intact (adult controls) 

individuals (e.g. use ratio, an index of duration of activity of one limb versus the other), while 

other variables are widely distributed (e.g. bilateral magnitude, a measure of magnitude of 

bilateral UL activity).3 Thus, multiple variables quantifying different aspects of movement along 

with heterogeneous distributions of those variables can make it difficult to interpret UL 

performance data for clinical decision-making.   

 One reason wearable sensor technology (e.g. accelerometry) for measurement of UL 

performance has remained largely confined to rehabilitation research with limited ventures into 

clinical practice is because the current output from accelerometers is not easily accessible for 

rehabilitation professionals.4 A potential solution to the multi-variable problem would be the 

formation of categories (or groups) of UL performance in daily life. If there were natural 

groupings that occur among multiple UL performance variables calculated from accelerometry 

data,27 then these groupings could help to facilitate clinical decision making and implementation 

of UL performance data into routine rehabilitation care. In other biomedical science fields, 

formation of categories which encompass multi-dimensional measures have facilitated clinical 
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decision making for persons with health conditions such as, spinal cord injury,28 heart failure,29, 

30 and chronic obstructive pulmonary disease.31  

 The purpose of this study, therefore, was to identify categories of UL performance in 

daily life in adults with and without stroke using data from previously collected cohorts. Cluster 

analyses were performed with variables of UL performance calculated from 24 hour 

accelerometer recordings from three cohorts, two samples of persons with stroke and one from 

neurologically-intact adult controls. We hypothesized that at least three categories (low, medium, 

and high) of UL performance would be identified across the UL performance variables 

quantified by accelerometer data, spanning the possible ranges of UL performance in daily life. 

We also anticipated that the emerging categories would group individuals with similar ranges of 

the performance variables and provide a simpler method to interpret UL performance in daily life 

for clinicians and persons with health conditions whom they treat.   

3.3 Methods 
This study analyzed accelerometer data from adults from three previous cohorts, using 

the same accelerometry methodology.32 Data used in these analyses were UL performance 

variables calculated from accelerometer data over one day, associated clinical capacity measures, 

and participant characteristics. 

3.3.1  Participants 
The three cohorts in this analysis include; 1) people with stroke (stroke cohort 1, n=57 ) 

from a prospective, observational, longitudinal cohort tracking UL change over time;19 2) people 

with chronic stroke (stroke cohort 2, n=78) who participated in a clinical trial; 33 and 3) a sample 

of neurologically-intact adults (adult controls, n=76) of similar age, race, ethnicity, and 

socioeconomic status of persons in the clinical trial (stroke cohort 2).7 All participants provided 
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signed informed consent to participate in the individual studies. Inclusion and exclusion criteria 

for each sample are described elsewhere (stroke cohort 1,19 stroke cohort 2,33 and adult 

controls7).  In general, persons in the stroke cohorts had documented UL motor impairments and 

diminished functional capacity as measured by the Action Research Arm Test (ARAT)34, 35 at the 

time of the study enrollment. UL motor severity ranged from mild to severe, as indicated by the 

National Institute of Health Stroke Scale (NIHSS)36 arm item scores of 1 to 4. Persons with 

stroke had to be able to follow two-step commands to enroll, and were enrolled even if they had 

other, mild, stroke-induced, non-motor deficits such as hemispatial neglect, aphasia, or mild 

cognitive impairment. Neurologically intact community-dwelling older adults had to be willing 

to participate and be able to follow two-step commands. Combining the three cohorts provided a 

broad sampling of UL performance variables. With respect to power analyses, there is no agreed 

upon sample required for a cluster analysis,37, 38 however the combined cohorts yield a sample 

size of over 200 individuals, which was deemed sufficient to proceed with a cluster analysis.39  

3.3.2  Data collection 
UL performance was captured using data from bilateral, wrist-worn accelerometers.7, 8, 40-

42 A single time point was chosen for participants in each of the three cohorts. In stroke cohort 1 

(assessments from two – 24 weeks post stroke), data from the latest assessment time point 

available between weeks six and 24 were used in the analysis, since UL performance appears to 

stabilize between three and six weeks post stroke.19, 43 In stroke cohort 2 (assessments at baseline 

and weekly for eight or more weeks), data from the earliest available assessment time point was 

used in the analysis. Data points later than the baseline (when baseline was unavailable) were 

included because UL performance did not change as a result of this treatment.18, 33 The adult 
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control cohort completed a single assessment in the cross-sectional study and this time point was 

used.8  

3.3.3  Upper limb performance variables 
Participants wore the Actigraph GT3X-BT or GT9X-Link accelerometers on both wrists 

for the three cohorts, with methods described previously.32 Briefly, tri-axial acceleration data are 

sampled at 30 Hz for 24 or more hours continuously. Once the accelerometers were returned to 

the lab, data were uploaded, visually inspected, and processed using Actilife 6 (Actigraph Corp., 

Pensacola, FL) proprietary software. For most variables, data were band-pass filtered (0.25 and 

2.5 Hz) and down sampled into 1-second epochs with ActiLife proprietary software, where each 

second is the sum of the 30 Hz values in that second and converted to activity counts (1 count = 

0.001664g). For a few variables, (see Table 1) calculations were done directly on the 30 Hz 

data.5, 24-26 Similar to previous work,7, 12, 19-21 accelerometery data was processed using custom 

written software in MATLAB (Mathworks, Inc, Natick, MA) to calculate UL performance 

variables which qualify various aspects of UL activity in everyday life. Table 1 presents the 

twelve UL performance variables included in the analysis along with their description and the 

source of accelerometer data for calculation (1 Hz versus 30 Hz). The variables independently 

measure duration, magnitude, variability, symmetry and quality of movement of one or both 

ULs.   
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Table 3.1 Upper limb performance variables. 

 Upper limb performance 
variable name Description Data source 

Included 
in final 
solution 

Duration 
Hours of paretic/non-
dominant limb activity7, 8 

Time, in hours, that the paretic/non-dominant limb is 
moving. 1 Hz  

Hours of non-paretic/ 
dominant limb activity7, 8 

Time, in hours, that the non-paretic/dominant limb is 
moving. 1 Hz  

Isolated paretic/non-
dominant limb activity8 

Time, in hours, that the paretic/non-dominant limb is 
moving, while the non-paretic/dominant limb is still. 1 Hz  

Isolated non-
paretic/dominant limb 
activity8 

Time in hours that the non-paretic/dominant limb is 
moving, while the paretic/non-dominant limb is still. 1 Hz  

Magnitude 
Median acceleration of 
paretic/non-dominant limb* 
3, 8, 21 

Magnitude of accelerations of the paretic/non-dominant 
limb, in activity counts or gravitational units. 1 Hz  

Bilateral Magnitude* 3, 8, 21 Intensity, or magnitude of accelerations of movement 
across both arms, in activity counts. 1 Hz  

Variability 
Acceleration variability of 
paretic/non-dominant limb 
activity* 12, 23 

Standard deviation of the magnitude of accelerations 
across the paretic/non-dominant limb, reflecting the 
variability of paretic/non-dominant limb movement, in 
activity counts. 

1 Hz  

Symmetry 
Use Ratio† 7, 10, 40 Ratio of hours of paretic/non-dominant limb movement, 

relative to hours of non-paretic/dominant limb 
movement. 

1 Hz  

Magnitude Ratio† 8, 12, 23 Ratio of the magnitude of paretic/non-dominant UL 
accelerations relative to the magnitude of the non-
paretic/dominant UL accelerations. This ratio reflects 
the contribution of each limb to activity, expressed as a 
natural log. 

1 Hz  

Quality of Movement   
 Jerk asymmetry index 26 Ratio of the average jerk magnitude between the 

paretic/non-dominant limb and the non-
paretic/dominant limb. Higher jerk represents less 
smooth movement, and an index of 0 represents similar 
smoothness of movement in the paretic/non-dominant 
and non-paretic/dominant limbs. Values are bounded 
between -1 to +1. 

30 Hz  

Spectral arc length of 
paretic/non-dominant and 
non-paretic/dominant limb 5, 

24, 25 

A measure of movement smoothness that quantifies 
movement intermittencies independent of the 
movement’s amplitude and duration. Longer spectral 
arc lengths are reflective of less smooth or less 
coordinated movement in either the paretic/non-
dominant or non-paretic/dominant limb respectively 

30 Hz 
  

30 Hz  

* Variables that are quantified in activity counts, computed by the Actilife proprietary software such that 1 activity 
count = 0.001664g. 
† For persons with stroke, ratios are paretic to non-paretic, while for neurologically-intact adults, ratios are non-
dominant to dominant.   
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3.3.4  Analysis 
All data were analyzed in R (version 4.0.1), an open source statistical computing 

program. A k-means hypothesis-free cluster analysis was used to determine categorizations of 

UL performance indexed by accelerometer variables in samples of persons with stroke and 

neurologically intact adults (adult controls). A cluster analysis is a robust statistical algorithm 

that groups similar objects into sub-groups called clusters,27, 44, 45 with identified clusters 

becoming the categories of UL performance. The end point is a set of clusters where individuals 

within each cluster are more similar to each other, on average, than they are to other members of 

the other clusters formed.44 A k-means method was chosen over other methods (e.g. hierarchical 

clustering or partial around the medeoid) to use an iterative approach to qualitatively explore the 

effect of adding more input variables and increasing the number of clusters on the dataset used in 

the analysis.45, 46 

First, several steps were completed prior to the cluster analysis.  The dataset of UL 

performance variables were standardized (using z-scores) as each variable is on a different 

measurement scale (e.g., hours, counts, and ratios). Then, a Hopkins statistic was calculated to 

determine if ursing a cluster analysis on these data was appropriate. The Hopkins statistic ranges 

from 0 to 1, and values >0.5 indicate clusters exist in the dataset.47 The distributions of all twelve 

UL performance variables and pairwise spearman scatterplots of variables with both strong and 

weak relationships were examined using the GGally package.48 Distributions and scatterplots 

were used to understand the relationships between UL performance variables in preparation for 

additional analyses and for later simplification of the cluster solutions that emerged.  

Second, a principal component analysis (PCA) was conducted using the factoextra 

package on datasets that included 12, 9, 7 or 5 of the UL performance variables.49 Principal 
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components can be thought of as the underlying dimensions of the individual UL performance 

variables.45 PCAs were calculated including all 12 performance variables, then variables were 

systematically eliminated to exclude the variables that are complex to calculate (e.g. used 30 Hz 

vs 1 Hz data) and the variables with less straight forward clinical interpretation. Scree plots were 

examined for each of the models (5, 7, 9, and 12 UL performance variables) to determine how 

many principal components explained variance in the UL performance variables. Further, we 

examined the loadings of the input variables on each of the resulting PCs.   

Third, different numbers of clusters were evaluated and the solutions were calculated 

using the NbClust and clusertend packages.50, 51 A k-means cluster analysis expects the number 

of clusters to be specified prior to the analysis. Thus, we started with 3-clusters as a reasonable 

solution to produce clusters of low, medium and high UL performance. There are multiple 

statistical methods for determining the optimal number of clusters. We evaluated potential 

solutions using: 1) the elbow method,52 2) the silhouette method,53, and 3) the gap statistic.27 

Although there was no clear single “elbow” where adding clusters led to diminishing returns in 

variance explained, these methods indicated that 3-,4-, and 5-cluster solutions were progressively 

better explanations of the data (see Results). Thus in the interests of parsimony, we focused on 

these three different cluster sizes in subsequent analyses. 

A total of twelve cluster solutions (3-, 4- or 5-clusters with 12, 9, 7, and 5 input variables) 

were calculated to systematically eliminate UL performance variables to create the most 

parsimonious solution.50, 51 The most complex model was calculated first (including all 12 

performance variables) for a 3-, 4-, and 5-clusters. The second most complex model included 9 

UL performance variables, excluding the three variables calculated from the 30Hz data that are 

proposed to measure quality of UL activity5, 24-26 (see Table 3.1). These variables were removed 
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because they are more complex to calculate, have not been validated in clinical populations54, 

and did not add relevant information to the analysis.  For the seven and five input variable 

models, the decision was made to maintain at least one performance variable from each of the 

other four aspects of UL performance (duration, magnitude, variability and symmetry) to capture 

the dimensionality of UL performance in daily life. Variables that were simpler to calculate (1 

Hz versus 30 Hz) and interpret were retained over those that required more complex calculations 

and/or are more difficult to interpret for ease of eventual integration into rehabilitation clinics.4 

For example, both the bilateral magnitude and the median acceleration of the paretic/non-

dominant limb activity quantify the magnitude or intensity of UL activity. These two variables 

are highly correlated to each other and the loadings from the PCA indicate that these two 

variables had moderate, positive loadings on PC1, primarily. For the five variable solution, the 

median acceleration of the paretic/non-dominant limb was selected to remain because it had a 

higher contribution to PC1 than the bilateral magnitude and it is a simpler variable to calculate 

and interpret.  

Fourth, we examined model fit metrics for each of the 12 solutions calculated to avoid 

overfitting as additional variables and clusters were added. The total variance explained by the 

models were extracted for each of the cluster-variable solutions (3-, 4- or 5-clusters with 12, 9, 7, 

and 5 input variables). Models that had a higher % of total explained variance were deemed to 

have a better model-fit.45 Additionally, a multivariate analysis of variance (MANOVA) was 

calculated to re-fit the cluster classifications (3-, 4-, and 5-clusters) to the multi-dimensional 

space of all the UL performance variables (5, 7, 9, and 12 variables). This allowed for the Akaiki 

information criterion (AIC) to be extracted to compare the model-fit for each of the cluster 

solutions with respect to the variables included.45 As the AIC imposes a penalty for additional 
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model parameters, selecting the model with the lowest AIC value helps avoid overfitting and 

improve generalizability.  

Fifth, the means and ranges of the UL performance variables, concordance, and UL 

capacity (e.g. ARAT score) were computed for each cluster in the final solution. Given 

statistically significant omnibus effects from the multivariate analyses described above, 

univariate ANOVAs were computed to determine how the means of the UL performance 

variables differed from each other across the clusters (alpha = 0.05).55, 56 Post-hoc comparisons 

(using a Tukey HSD correction) of each cluster to other clusters for five different performance 

variables were calculated (alpha = 0.05). Additionally, we looked at how the input cohorts 

(stroke cohort 1, stroke cohort 2, adult controls) were distributed across the cluster solutions.  

Finally, coxcomb charts were created.  Coxcomb charts are a two-dimensional chart type 

designed to plot one or more series of values over multiple quantitative variables. The 5 UL 

performance variables are divided into equally segmented wedges on the radial chart. The area of 

each individual wedge is proportional to the magnitude of the score on that dimension. Coxcomb 

charts were created from the standardized performance variables to provide a visual 

representation of the UL performance variable scores in each cluster both at the group and 

individual level.  

3.4 Results 
A sample of 211 participants were included in the analyses. Demographic and participant 

characteristics for the three cohorts are provided in Table 3.2. UL capacity was measured by the 

ARAT and indicated that both stroke cohorts had moderate deficits in UL functional capacity. 
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Table 3.2. Demographics and participant characteristics of the three cohorts  

Variable Stroke Cohort 1 
(n=57) 

Stroke Cohort 2 
(n=78) 

Adult Controls 
 (n=76) 

Age, years 66.5 + 8.8 59.7+ 10.9 54.3 + 11.3 

Sex, female 42% (24) 35% (27) 51% (39) 

Race  
African American 

Caucasian 
Asian 
Other 

 
40% (23) 
 58% (33) 

2% (1) 
-- 

 
47% (36) 
51% (40) 
 1% ( 1) 
  1% ( 1) 

 
59% (44) 
41% (30) 

-- 
-- 

Time post-stroke, weeks 
 

12  
(7-12) 

 
52 

(21-960) 
NA 

Hand dominance, right 82% (47) 88% (68) 82% (62) 

Concordance* 42% (24) 51% (40) NA 

Action Research Arm Test † 22.46 + 20.76 31.3 + 11.9 NA 

Values are Mean + SD or Percentage (n) except for Time-post stroke which are median (range).  
* Concordance is where dominant limb = paretic limb.   
† Action Research Arm Test is a measure of UL functional capacity. Higher scores are better, with a maximum total 
score of 57 indicating normal performance. 
 

 The Hopkins statistic was H=0.78, indicating that clusters exist in the sample. Table 3.3 

summarizes the range of solutions evaluated including 12, 9, 7, and 5 UL performance variables 

in either a 3-, 4-, or 5-cluster solutions. Across the different numbers of input variables, two 

principal components explained the majority of the variance, PC1 and PC2.  There were similar 

loadings of the input variables onto these principal components, regardless of the number of 

variables entered. Interestingly, adding more performance variables (e.g.12 versus 5) was 

associated with both PC1 and PC2 explaining less of the total variance (see the first column of 

Table 3.3). Thus, across different numbers of input dimensions, the number of principal 

components was relatively stable.  PC1 and PC2 appeared to be explaining similar variance in all 

models.  We therefore proceeded with including only 5 input variables. When including 5 UL 

performance variables, the first principal component (PC1) explained the most variance (76.4%) 
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and was comprised of variables that all had moderate to strong, positive loadings, including; 

paretic/non-dominant hours, median acceleration of paretic/non-dominant limb activity, 

acceleration variability of paretic/non-dominant limb activity and the use ratio. The second 

principal component (PC2) explained less variance (17.6%) and was comprised of primarily the 

non-paretic/dominant hours, a single variable that had a strong, negative loading. See Appendix 

A for the loadings of all factors of PC1 and PC2 for the final chosen solution. 

 Across the models with differing numbers of UL performance variables, a 5-cluster 

solution explained the most overall total variance when compared to a 3- or 4-cluster solution as 

seen in the middle portion of Table 3.3 and visually in Figure 3.1A and 3.1B (including five 

performance variables). We then examined several metrics to determine how many clusters were 

appropriate for the 5-variable solution. Figure 3.1A supports that there are > at least two clusters 

in this dataset and the flattened slope on Figure 3.1A indicates that the reduction of within-

cluster variance is minimal and there are no further improvements after 5-clusters for this 

dataset. We therefore explored a 3-, 4-, and 5- cluster solutions. Figure 3.1B displays the effect 

of increasing numbers of clusters on the total explained variance when including 5 UL 

performance variables and confirms that a 5-cluster solution explains more total variance than 

the 3- or 4-cluster solutions. Examining the AIC values seen in the last three columns of Table 

3.3, also confirmed that a 5-cluster solution produced the best model fit compared to the 3- and 

4-cluster solutions across the different number of input variables (5, 7, 9, and 12 UL performance 

variables). Although each solution was statistically feasible, the chosen final solution was 5-

clusters, from 5 UL performance variables including: 1) hours of use of paretic/non-dominant 

limb; 2) hours of use of non-paretic/dominant limb; 3) median acceleration of paretic/non-

dominant limb; 4) acceleration variability of paretic/ non-dominant limb activity; and 5) use 
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ratio. Figure 3.1C presents the location of the 5-clusters across the two dimensional space. 

Dimension 1 (x-axis) is the first principal component and dimension 2 (y-axis) is the second 

principal component. The two clusters with the lowest overall UL performance are represented 

by clusters numbered 1 and 2 with the highest in number 5.  Figure 3.2 shows a scatterplot 

matrix of how the five input variables relate to each other and to the 5-clusters. 

Table 3.3 Selection of clusters based on variance explained and model-fit 

Number of 
Variables 

Variance explained 
by each PC Total variance by # of clusters AIC value by # of clusters 

 PC1 PC2 3 4 5 3 4 5 

12 57.4% 13.1% 53% 58% 62% 2683.7 2442.2 2149.8 

9 68.5% 16.5% 64% 69% 73% 1426.4 1114.7 879.2 

7 75.6% 14.1% 70% 76% 79% 734.3 452.9 228.0 

5 76.4% 17.6% 68% 75% 79% 475.6 229.1 44.7 

Explained variance is presented in %. Values closer to 100% indicate greater variation explained.  
AIC = Akaike’s Information Criterion. A lower AIC value indicates a better model when the clusters were used as 
predictor variables in multivariate ANOVAs based on the different outcome variables (of 12, 9, 7, and 5 
dimensions).   
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Figure 3.1. (A) Scree plot representing how the within-cluster variance changes as increasing numbers of clusters 
are formed with 5 UL performance variables. (B) Line plot representing how the total explained variance changes 
with increasing numbers of clusters on dataset including 5 UL performance variables. The dashed lines represent the 
total variance explained for a 3- (blue), 4- (red), or 5- (green) cluster solution. (C) Visual representation of the 5-
clusters with 5 UL performance variables across dimension 1 (x-axis) and dimension 2 (y-axis). The cluster number 
is presented in the location of the centroid of each cluster. The shape of the point within the cluster represents if a 
participant was from a stroke (triangle) or control (+ sign) cohort. 
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Figure 3.2: Scatterplot matrix of the 5 input variables as a function of the 5 different clusters. The diagonal shows 
density plots (i.e., the univariate distribution) of each input variable as a function of the different clusters. The lower 
left panels’ show the bivariate distributions for each pair of variables with the point shapes and gray scales 
corresponding to the different clusters (see legend). The upper right panels show the Spearman rank order 
correlations for each pair of variables (on the whole, ignoring clusters). *** = p<0.001 

 The means and ranges of each UL performance variable, percentage concordant, and UL 

capacity for each of the 5-clusters in the final solution are presented in Table 3.4. The clusters 

are presented with the “lowest” overall UL performance within the first column and the 

“highest” overall UL performance in the last column. The 5-clusters become categories of UL 

performance and are named based on a synthesis of information from other publications that 

have described UL performance in daily life,45, 56-58 not on the underlying PCA dimensions. The 

cluster names were chosen as intuitively as possible and represent the overall amount of UL 

activity and integration of the ULs into daily life activities (see Discussion for further 

interpretation).  We refer to these clusters/categories as: 1) Minimal Activity/Rare Integration; 2) 

Minimal Activity/Limited Integration; 3) Moderate Activity/Moderate Integration; 4) Moderate 
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Activity/Full Integration; and 5) High Activity/Full Integration. The cluster with the lowest UL 

performance is the Minimal Activity/Rare Integration, this cluster has the lowest mean values on 

variables that quantify duration, magnitude and variability of UL activity. People in this cluster 

use their non-paretic UL approximately 2.5 times more than their paretic UL and have little to no 

magnitude or variability of their paretic UL activity in daily life. People in the Minimal 

Activity/Limited Integration cluster use both the paretic and non-paretic limb for more overall 

hours than the Minimal Activity/Rare Integration cluster, but the non-paretic limb is still active 

twice as much as the paretic UL. Additionally, people in this cluster have slightly higher mean 

values on performance variables that quantify both the magnitude and variability of the paretic 

limb when compared to the Minimal Activity/Rare Integration cluster. Both of these clusters 

have little integration of the ULs into activity, as suggested by a mean use ratio below 0.50 the 

Minimal Activity/Rare Integration cluster and a mean use ratio just above 0.50 in the Minimal 

Activity/Limited Integration cluster. The cluster with overall, moderate UL performance is the 

Moderate Activity/Moderate Integration cluster. In this cluster, people have more symmetrical 

UL use compared to the two lower clusters, which is reflected in the in the use ratio (0.85) and 

the mean values of both duration variables (4.5 hrs vs. 5.3 hrs). People in this cluster have 

moderate values on variables that quantify both the magnitude and variability of paretic/non-

dominant limb activity. The two clusters with the highest overall UL performance are the 

Moderate Activity/Full Integration and the High Activity/Full Integration clusters. These clusters 

have progressively higher mean values of variables quantifying duration, magnitude and 

variability of UL activity with those in the High Activity/Full Integration cluster having the 

highest mean values compared to the other clusters. Both of these clusters however, have similar 

mean values of the use ratio, which is approaching 1.0 indicating that people in these two 
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clusters have relatively equal contributions of both ULs. Interestingly, if only the use ratio was 

used to examine these two clusters it could be assumed that they are relatively equal, but the 

other variables show they are not. The two clusters with the highest overall UL performance also 

had the highest % of people with concordant stroke. It is also noteworthy that participants within 

each of the 5 clusters have wide, overlapping ranges of UL capacity, as indicated by the mean 

and ranges of ARAT scores in the bottom row of Table 3.4, consistent with the premise that UL 

capacity and UL performance are different, but related constructs.  Figure 3.3 presents how the 

three included cohorts separated into the 5-clusters. The two clusters with the lowest overall UL 

performance (Minimal Activity/Rare Integration and Minimal Activity/Limited Integration) are 

comprised of only persons from the stroke cohorts. The cluster with moderate UL performance 

(Moderate Activity/Moderate Integration) contains mostly people with stroke but there are also a 

few neurologically intact adult controls in this cluster too. The two clusters with the highest 

overall UL performance (Moderate Activity/Full Integration and High Activity/Full Integration) 

contains the neurologically intact adult controls and some persons with stroke. Finally, there was 

a statistically significant omnibus effect of cluster in each of the univariate ANOVAs for the five 

UL performance variables (p values for each variable <0.001).  Note that not all clusters were 

statistically different from all other clusters in each variable, based on post-hoc t-tests. However, 

this speaks to the multivariate nature of the cluster analyses; across all dimensions, these clusters 

group similar observations together, but along any single dimension there will likely be overlap 

in the neighboring clusters.  
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Table 3.4. Means (ranges) of UL performance and capacity variables by cluster. 
 
Variable name 

Minimal 
Activity/ 

Rare 
Integration 

(N=29) 

Minimal 
Activity/ 
Limited 

Integration 
(N=41) 

Moderate 
Activity/ 

Moderate  
Integration 

(N=43) 

Moderate 
Activity/ 

Full 
Integration 

(N=57) 

High  
Activity/ 

Full 
Integration 

(N=41) 
Duration 
Paretic/ND Hrs 1.5 

(0.0-2.8) 
4.6 

(2.1-8.0) 
4.5 

(1.9-6.5) 
7.4 

(5.2-9.1) 
10.2 

(8.6-15.5) 
Non-paretic/D Hrs 4.1 

(0.1-6.7) 
8.4 

(6.2-11.6) 
5.3 

(2.4-8.0) 
8.0 

(5.1-11.0) 
10.7 

(8.5-14.2) 
Magnitude 
Median acceleration 
paretic/ND (counts)* 

0 
(0-6) 

5 
(5-24) 

25 
(7-53) 

47 
(21-76) 

61 
(33-92) 

Variability 
Acceleration variability of 
paretic/ND (counts)* 

27.3 
(11.9-49.4) 

34.8 
(21.6-57.3) 

58.9 
(40.0-89.3) 

75.9 
(46.5-102.6) 

80.3 
(53.0-100.8) 

Symmetry 
Use Ratio  0.38 

(0.04-0.70) 
0.55 

(0.22-0.78) 
0.85 

(0.60-1.32) 
0.94 

(0.75-1.15) 
0.96 

(0.81-1.10) 
Additional data about the clusters  
Concordance † 38% (11) 39% (16) 50% (19/38) 70% (14/20) 57% (4/7) 
Action Research Arm Test ‡ 18.5 

 (0-43) 
27.8 

 (6-57) 
45.3 

 (22-57) 
48.4 

 (33-57) 
44.1 

 (24-55) 
*Data are reported in activity counts computed by the Actilife proprietary software, such that 1 activity count = 
0.001664 gravitational units (g).  
† Dominant limb= paretic limb, computed for persons in stroke. Percentage is expressed relative to only persons 
with stroke, not controls, in the upper three categories. 
‡ Action Research Arm Test is a measure of UL functional capacity. Higher scores are better, with a maximum total 
score of 57 indicating normal capacity. 
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Figure 3.3: Bar plot of the counts of participants from each of the 3 cohorts that separated into the 5-clusters. The 
two clusters with the lowest overall UL performance are comprised of persons from the stroke cohorts only. The 
cluster with moderate UL performance contains primarily persons with stroke and a few neurologically intact adult 
controls. The two clusters with the highest overall UL performance include primarily neurologically intact adult 
controls, as well as persons with stroke. 
 
 Figure 3.4 presents the group and individual coxcomb charts for each of the 5-clusters. 

The rows (A, B, C, D, E) are presented in order of increasing overall UL performance, with 

group data in the first column in dark gray and then individual examples of people in that cluster 

in columns two and three (A-E, numbered 2 and 3 respectively) in light gray. Each of the five 

standardized UL performance variables are represented by wedges within the plot, and the area 

of the wedge reflects the standardized value on that single variable. Figure 3.4A and 3.4B present 

the two clusters with the lowest overall UL performance (Minimal Activity/Rare Integration and 

Minimal Activity/Limited Integration), the wedges in these two clusters are small with the 

exception of the non-paretic/D hours of use, indicating that people in these two clusters use their 

non-paretic UL out of proportion to their paretic UL. As you move down each row from Minimal 
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Activity/Rare Integration (3.4A) to High Activity/Full Integration (3.4E) one can see that the 

wedges get larger and begin to fill more area of the radial plot, however some variables are still 

out of proportion to the others as seen in 3.4C-3.4D.  By the final group plot in Figure 3.4E1, the 

wedges for each variable span the largest area and almost form a perfect circle, compared to the 

clusters with lower UL performance (3.4A and 3.4B), indicating people in this cluster have the 

highest values across all five performance variables. 
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Figure 3.4: Coxcomb charts of the five clusters, illustrating the contribution of the UL performance variables on a 
standardized scale.  The first column plots group data, while the 2nd and 3rd columns plot individual participant 
examples. 
(A) Minimal Activity/Rare Integration cluster; (A1) group chart of people within this cluster; (A2) is a person from 
stroke cohort 1, ARAT=4; and (A3) is a person from stroke cohort 2, ARAT=10. 
 (B) Minimal Activity/Limited Integration cluster; (B1) group chart of people within this cluster; (B2) a person from 
stroke cohort 2, ARAT=10; and (B3) a person from stroke cohort 1, ARAT=6.  
(C) Moderate Activity/Moderate Integration cluster. (C1) group chart of people within this cluster; (C2) a person 
from stroke cohort 1, ARAT=36; and (C3) a person from the adult controls.  
(D) Moderate Activity/Full Integration cluster; (D1) group plot for this cluster; (D2) a person from stroke cohort 2, 
ARAT=42; and (D3) a person from the adult controls.  
(E) High Activity/Full Integration cluster; (E1) group chart of people within this cluster; (E2) a person from stroke 
cohort 1, ARAT=55; and (E3) a person from the adult controls. 
 

3.5 Discussion 
In a large sample of persons with and without neurological UL deficits, we used a k-

means cluster analysis with multiple UL performance variables, captured via accelerometry, to 

derive a 5-cluster categorization that included 5 UL performance variables. Two principal 

components explain most of the variance in the input variables and 5-clusters explained the most 

total variance and had the best model fit. In this 5-cluster solution, two groups with what might 

be considered “normal” UL performance (Moderate Activity/Full Integration and High 

Activity/Full Integration) emerged, as indicated by the presence of many neurologically intact 

adult controls in those categories. One category in the middle had moderate UL performance 

(Moderate Activity/Moderate Integration), while two categories had low, overall UL 

performance (Minimal Activity/Rare Integration and Minimal Activity/Limited Integration). The 

names of each of the 5 categories were chosen for their overall UL activity and integration, with 

the future goal that these categories could be evaluated for their application to other clinical 

populations, not just persons with stroke.  

The 5-category solution from five UL performance variables, derived from this statistical 

analysis, leads to a clinically-logical interpretation of UL performance in daily life. In this 

analysis we purposefully included three cohorts of persons with and without stroke in order to 
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capture a wide range of the variables, extracted from accelerometer data that quantify different 

aspects of UL performance in daily life. In Figure 3.3, the two categories with the highest overall 

UL performance (Moderate Activity/Full Integration and High Activity/Full Integration) contain 

most of the neurologically intact adult controls indicating that people without neurological 

impairments display a wide range of UL activity that can be considered unimpaired or normal. 

This is important because these people have integrated their ULs, as indicated by the use ratio 

variable, but people in these categories have different levels of overall UL activity, ranging from 

moderate to high UL activity. This is not unusual when we consider the wide range of activities 

and behaviors of people.59-61 For example, when walking performance is quantified by 

pedometers, neurologically-intact adults walk symmetrically but present with a wide range of 

variability in the total number of steps-per-day that can all be considered “normal” walking 

performance.59, 62-66 Based on the current results, it appears that people without neurological UL 

impairments similarly display a wide range of UL activity that can also be considered 

unimpaired or normal. For example, two neurologically intact older adults may have very 

different activities of daily living and leisure activities (e.g. swimming versus knitting) but would 

both be considered to have “normal” UL performance. In other efforts to categorize UL activity, 

some groups have found four categories,55, 56, 58 and others have found six.57 These analyses 

however tended to examine only the separation of UL activity of persons with stroke. In this 

analysis, the goal was not to form categories to differentiate between those who had a stroke and 

those who did not. Instead, the goal was to categorize people based on their overall UL use in 

daily life. In the 5-category solution here, we see that the two categories with the lowest UL 

activity and integration are comprised of only persons with stroke, but there are also people with 

stroke in the three categories with the highest overall UL performance too. This is a positive 
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finding, showing that some people with stroke use their ULs similarly to neurologically intact 

adults. Persons with stroke who ended up in the two categories with the highest overall UL 

performance have likely experienced either full recovery of their ULs following their stroke, or 

have figured out how to use the wide range of capacity that they have to integrate their paretic 

limb and be active in daily life.19  An example of this is shown in Figure 4E2 which is an 

individual from stroke cohort 1 who ended up in the High Activity/Full Integration category.  

Categories of UL performance have tremendous research and clinical potential. Within 

other biomedical science fields, formation of categories which encompass multi-dimensional 

measures have facilitated clinical decision making for persons with health conditions (See 

Introduction). Specific to rehabilitation, categories of ambulation (based on the capacity measure 

of walking speed) have been validated, shown to be sensitive to change,67-69 used to set goals in 

clinical practice, and have been used as a primary outcome in a Phase III clinical trial.70 In that 

trial, the primary outcome was the percentage of people who changed (leaped) to a higher 

ambulation category after the intervention. The identified categories of UL performance that 

emerged in this analysis could be useful for future trials of persons with UL impairments 

following subsequent, future validation studies. Categories that emerged in this analysis have 

stratified participants into groupings with similar overall UL performance, representing a profile 

of arm activity in daily life.38, 56, 71 Individuals within each category have similar ranges of each 

performance variable included (e.g., duration, magnitude, variability and symmetry) that formed 

the 5-clusters. Interestingly, in this analysis people with stroke within each of the five clusters 

display a wide range of UL capacity across the clusters. Additionally, more people in the two 

clusters with highest overall UL performance have concordant stroke compared to the three 

clusters with lower UL performance. These findings are consistent with prior work indicating 
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that people with concordant stroke (dominant limb=paretic limb) tend to have differences in the 

patterns of UL use 57, 72 and experience better recovery.19  One can envision that these categories 

could be used in future trials to analyze smaller subsets of individuals based on their UL category 

and to better understand how UL performance variables quantify change during rehabilitation 

therapy.  

From a clinical perspective, the categories that emerged offer the future opportunity to 

transition measurement of UL performance in daily life for persons receiving UL rehabilitation 

away from the current confines of rehabilitation research labs, and into standard of care.4, 73 The 

results of this analysis are a first step in simplifying measurement of UL performance in daily 

life by exploring the underlying structure in the set of observed variables.74 A future option could 

be to offer a user-friendly, software package to rehabilitation clinicians that would calculate the 5 

UL performance variables included in this analysis from data extracted from bilateral wrist-worn 

accelerometers.  Based on a person’s values across the variables, a category of UL performance 

could be determined and used to communicate current UL performance and used to set goals for 

future UL performance.  Based on the aspects of movement (duration, magnitude, variability, 

symmetry) selected to form the categories, it is possible that these categories could be highly 

relevant for many clinical conditions affecting UL performance in daily life, not just those with 

stroke. Just as with mobility, there are plenty of biological and psychological reasons why people 

could have limited UL performance in daily life.59, 75, 76 Thus, the names selected for each 

category might be applicable to other clinical populations that have similar or different UL 

impairments and capacity limitations, beyond the typical asymmetrical deficit which is a major 

aspect of stroke UL movement.3   
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3.5.1  Limitation 
 There are a few limitations to consider when interpreting the results of this study. First, 

the three cohorts used in this analysis generated a sample of over 200 people with stroke and 

neurologically intact adult controls. While our sample size was large and had wide distributions 

of each UL performance variable, validation on another large, independent sample is needed for 

generalization and implementation into clinical practice.  Future studies, including people with 

other clinical diagnoses beyond stroke are needed in order to understand how the number of UL 

performance variables and subsequently the number of clusters generalize to other populations.  

Second, the Moderate Activity/Moderate Integration category is less straightforward to 

understand than the other four categories that emerged in this analysis. This category is 

comprised primarily of persons from both stroke cohorts, however there are a few neurologically 

intact adult controls who ended up in this category as well. Unfortunately, we do not have 

enough information about other cognitive, socioeconomic, physical, emotional or behavioral 

reasons why these few people without neurological UL impairments ended up in this category 

with reduced overall UL activity and integration. This category specifically will need to be 

externally validated in a larger sample. 

3.6 Conclusions 
 The present study identified five categories of UL performance in a combined cohort of 

neurologically impaired and unimpaired adults. These categories can be formed with a minimum 

of 5 UL performance variables, extracted from bilateral wrist-worn accelerometers that span the 

possible ranges of UL activity and integration. Further validation of both the number of UL 

performance variables and categories will be required on a larger, more heterogeneous sample. 

Following validation, these categories may be used as outcomes in UL stroke research and 

implemented into rehabilitation therapies. 
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4.1 Abstract 
Background: Accelerometers allow for direct measurement of upper limb (UL) activity. 

Recently, multi-dimensional categories of UL performance have been formed to provide a more 

complete measure of UL use in daily life. Prediction of motor outcomes after stroke have 

tremendous clinical utility and a next step is to determine what factors might predict someone’s 

subsequent UL performance category. 

Purpose: To explore how different machine learning techniques can be used to understand how 

clinical measures and participant demographics captured early after stroke are associated with 

the subsequent UL performance categories.  

Methods: This study analyzed data from two time points from a previous cohort (n=54). Data 

used was participant characteristics and clinical measures from early after stroke and a 

previously established category of UL performance at a later post stroke time point. Different 

machine learning techniques (a single decision tree, bagged trees, and random forests) were used 

to build predictive models with different input variables. Model performance was quantified with 

the explanatory power (in-sample accuracy), predictive power (out-of-bag estimate of error), and 

variable importance. 

Results: A total of seven models were built, including one single decision tree, three bagged 

trees, and three random forests. Measures of UL impairment and capacity were the most 

important predictors of the subsequent UL performance category, regardless of the machine 

learning algorithm used. Other non-motor clinical measures emerged as key predictors, while 

participant demographics predictors were less important across the models. Models built with the 

bagging algorithms outperformed the single decision tree.  
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Conclusions: UL clinical measures were the most important predictors of the subsequent UL 

performance category in this exploratory analysis regardless of the machine learning algorithm 

used. Interestingly, cognitive and affective measures emerged as important predictors when the 

number of input variables was expanded. These results reinforce that UL performance, in vivo, is 

not a simple product of body functions nor the capacity for movement, instead being a complex 

phenomenon dependent on many physiological and psychological factors. Utilizing machine 

learning, this exploratory analysis is a productive step towards prediction of UL performance. 

Trial Registration:  NA 

4.2 Introduction 
Wearable movement sensors allow for direct measurement of upper limb (UL) activity in 

daily life, i.e. performance.1 Performance is operationally defined in the World Health 

Organization’s (WHO) International Classification of Function (ICF) model as activity in the 

unstructured, free-living environment, and is distinguished from capacity, operationally defined 

as the capability for activity in a structured or standardized environment. 2,3 The most common 

wearable sensors used are accelerometers, from which numerous clinically relevant variables 

about UL activity can be computed to provide insight into how people with or without 

neurological impairment use their ULs in daily life.4-7 Data extracted from bilateral, wrist worn 

wearable sensors can be used to quantify UL performance variables measuring the duration,8,9 

symmetry,6,10-12 magnitude,5,7,13 and variability of one or both limbs.4,5,7,13  Each UL performance 

variable conveys slightly different information about the collective nature of UL use; multiple 

variables may provide a fuller understanding of the scope of UL performance in daily life.14 As a 

solution to the multi-variable problem, we recently categorized UL performance in adult cohorts 
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with and without stroke.15 The most parsimonious solution was five categories of UL 

performance formed from five UL performance variables. The UL performance categories are 

multi-dimensional, with each category providing information about UL activity with respect to 

the different movement characteristics in adults with and without neurological UL deficits. Thus, 

the five categories of UL performance may provide a more complete measure of UL use in daily 

life.14,15 

Early prediction of motor outcomes after stroke has tremendous clinical utility.16,17 Our 

next step, therefore, was to determine what factors might predict someone’s subsequent UL 

performance category. Predictive knowledge of subsequent outcomes can inform the delivery 

and specification of individualized rehabilitation services.18,19 This effort to predict an 

individual’s subsequent UL performance category is informed by the development of the PREP 2 

algorithm, which has demonstrated that prediction of an UL capacity (i.e. activity a person has 

the capability to do) category provides clinically-useful information to people with stroke and 

their families. Advances in computing have improved upon old and led to new analysis 

techniques for building prediction models of UL outcomes after stroke. Recently, machine 

learning techniques of support vector machines (SVM) and tree-based methods (e.g., 

Classification and Regression Trees [CARTs]) have been used to classify people with stroke into 

categories with different ranges of UL capacity.18,20-23 The PREP 2 prediction model was 

originally built and validated with a CART which resulted in the easy to interpret decision tree.21 

Machine learning techniques have the advantages of: 1) requiring fewer assumptions about the 

distributions of the data, 2) numerous options for non-parametric models, and 3) strong 

predictive capabilities.19,22-25 There are strengths and weaknesses to each machine learning 

technique. For example, the CART algorithm yields a single, easy to interpret decision tree 



88 
 

(strength), but lower predictive accuracy on new, external samples because of high variance 

(weakness).26 An alternative to creating a single decision tree is to use ensemble classifiers like 

bootstrap aggregation (called “bagging”) or random forests.27  These ensemble techniques rely 

on the collective judgement of many decision trees (hundreds or even thousands) in order to 

make a classification. These ensemble methods tend to have higher predictive power and reduce 

the risk of over-fitting relative to other CART methods, but at the expense of interpretability (as 

there is no longer one single decision tree to follow, but a whole forest of trees).22,27  Capitalizing 

on the advantages of ensemble machine learning algorithms by applying them for prediction of 

UL performance outcomes could yield key insights into UL recovery post stroke.    

The purpose of this study, therefore, was to explore how different machine learning 

techniques can be used to understand how clinical measures and participant demographics 

captured early after stroke are associated with the UL performance categories from a later post 

stroke time point. We utilized the same data set from which we had previously predicted the 

trajectory of single, continuous UL performance variables with regression techniques.28 In this 

analyses, we attempt to predict the subsequent multivariate categories of UL performance that 

people with stroke fell into. We explicitly tested different machine learning methods to build 

predictive models with different input variables as predictors (also called feature sets) to 

determine how each method yields similar versus different results. We hypothesized that 

measures of UL impairment,21  UL capacity,18,28 and other non-motor clinical measures, would 

be the most important predictors of the subsequent UL performance category. 
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4.3 Methods 
This study was a secondary analysis of data collected from a prospective, observational, 

longitudinal cohort tracking UL change over time.28 Sources of data from two time points were 

participant characteristics, clinical measures from early after stroke, and subsequent categories of 

UL performance (from a previous report)15 later after stroke. 

4.3.1  Participants 
Participants were included in the prospective, observational, longitudinal cohort if the 

following criteria were met: (1) within two weeks of first-ever ischemic or hemorrhagic stroke, 

confirmed with neuroimaging; (2) presence of UL motor deficits within the first 24-48 hours post 

stroke, as indicated by a NIHSS29 Arm Item scores of one to four or documented manual muscle 

test grade30 of <5 anywhere on the paretic UL; (3) ability to follow a two-step command, as 

measured by a NIHSS29 Command Items score of 0; and (4) anticipated return to independent 

living (i.e., not institutionalized), as indicated by the acute stroke team. Persons with stroke were 

excluded if any of the following criteria were met: (1) history of previous stroke, other 

neurologic condition, or psychiatric diagnoses; (2) presence of comorbid conditions that may 

limit recovery (e.g., end-stage renal disease or stage IV cancer); (3) lived more than 90 minutes 

from the study location; and (4) currently pregnant by self-report. The Human Research 

Protection Office at Washington University in St. Louis approved this study, and all participants 

provided written informed consent.  

4.3.2  Data Collection 
Cohort participants completed eight assessment sessions over the first 24 weeks post 

stroke. This analysis used data from the first assessment (within two weeks of stroke onset) to 

predict the subsequent category of UL performance15 from the latest time point between six and 
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24 weeks post stroke. We retained any person in the cohort whose last measurement was 

between six and 24 weeks post stroke because UL performance appears to stabilize between 

three and six weeks.28,31 Participants were excluded from this analysis if they were missing any 

of the predictor variables from the first assessment point (see Table 4.1). Assessments were 

administered by trained personnel (licensed physical therapists or occupational therapist, range 

of experience with measures was two-15 years). Since this was an observational cohort study, we 

did not provide nor control for the amount or type of rehabilitation services delivered to enrolled 

participants. Participants received rehabilitation services as prescribed by their medical team.  

4.3.3  Dependent variable used for the models 
The dependent variable (outcome or class in machine learning) in this analysis was a 

category of UL performance established in previous report.15 These were derived from UL 

performance variables quantified via accelerometer data.15 Participants in the prospective, 

longitudinal, observational, cohort wore Actigraph GT9X-Link accelerometers on both wrists at 

each time point with methods previously described.1 Briefly, tri-axial acceleration data are 

sampled at 30 Hz for 24 or more hours continuously. Once the accelerometers were returned to 

the lab, data were uploaded, visually inspected, and processed using ActiLife 6 (Actigraph Corp., 

Pensacola, FL) proprietary software. For most variables, data were band-pass filtered (0.25-2.5 

Hz) and down sampled into one-second epochs with ActiLife proprietary software, where each 

second is the sum of the 30 Hz values in that second and converted into activity counts (1 count 

= 0.001664 g). Similar to previous work,7,11,28,32 accelerometry data was processed using custom 

written software in MATLAB (Mathworks, Inc., Natick, MA) to calculate UL performance 

variables which quantify various aspects of UL activity in everyday life. The variables measure 

the duration, magnitude, variability, and symmetry of one or both ULs. Five UL performance 
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variables were used to create the five categories of UL performance; the participant’s category 

assignment in the prior report was the outcome in this analysis.15 The names of each of the five 

categories were chosen for their overall level of UL activity and the integration of both ULs into 

activity in daily life and are named: A) Minimal Activity/Rare Integration; B) Minimal 

Activity/Limited Integration; C) Moderate Activity/Moderate Integration; D) Moderate 

Activity/Full Integration; and E) High Activity/Full Integration, see Figure 4.1 for visual 

representation of the categories for the participants included in this analyses. The categories are 

presented in order of increasing overall UL performance.15 

4.3.4  Independent predictor variables 
The input variables (also known as feature sets in machine learning) were participant 

demographics and clinical measures. In the prospective, longitudinal, observational cohort, 15 

demographic variables and nine clinical measures were administered at the first assessment time 

point, within two weeks post stroke. Of the 24 variables available, seven were excluded because 

of multi-collinearity and extremely low (or no) variability.31 In the case of multi-collinearity, we 

retained the variables that were more likely to be available in routine post-stroke clinical care.33 

Table 4.1 presents the 17 predictors selected for this analysis organized into three main 

categories: 1) UL clinical measures; 2) non-motor clinical measures; and 3) participant 

demographics.  
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Table 4.1. Predictors included in the analysis 

Predictor Name Description  Construct Scoring 
UL Measures 
Action Research Arm Test 
(ARAT)34-36 

Standardized measure assessing UL 
functional ability for activity 

UL capacity Scores range from 0-57, higher 
values indicate greater UL function 

Shoulder Abduction Finger 
Extension (SAFE)21 

Sum of two Medical Research 
Council strength grades from the 
shoulder abductors and the finger 
extensors.   

UL impairment Scores are whole numbers and range 
from 0-10, higher values indicate less 
impairment in the affected UE 

Upper Extremity Fugl-
Meyer (UEFM)37,38 

Standardized measure assessing 
movement in and out of synergies of 
the affected UL 

UL impairment Scores range from 0-66, higher 
values indicate less impairment in the 
affected UL 

Non-motor clinical measures 
Center for Epidemiological 
Studies Depression Scale 
(CES-D)39,40 

Questionnaire asking about the 
frequency and severity of symptoms 
associated with mood 

Depression 
screen 

Scores range from 0-60, higher 
scores indicative of greater 
depressive symptomatology 

Unstructured Mesulam41,42 Paper, pencil test measuring visual 
spatial ability 

Hemispatial 
neglect 

Scores are calculated by subtracting 
the omissions from the total score of 
60 (0-30 on both sides), >4 omissions 
on one side are considered 
pathological 

Montreal Cognitive 
Assessment (MOCA)43 

Brief tool to screen for cognitive 
impairment across multiple domains 

Cognitive screen Scores range from 0-30, scores < 26 
indicate cognitive impairment 

National Institute of 
Health Stroke Scale 
(NIHSS)29 

Standardized measure of global 
stroke severity 

Stroke severity Scores range from 0-42, lower scores 
indicate less severe stroke overall 

Demographics 
Area deprivation index 
(ADI)44-46 

Multi-dimensional evaluation of a 
region’s socioeconomic conditions 

socioeconomic 
disadvantage 

 

Scores are % rankings and range 
from 1 to 100, lower values indicate 
lowest level of “disadvantage” 

Age Participant age at time of testing -- Minimum age of 18  
Concordance Affected UL is dominant UL -- Categorized as: Yes/No 
Ethnicity Participant report of ethnicity -- Categorized as: Non-Hispanic/Non-

Latino or Latino 
Living status pre-stroke  Participant report of prior living 

situation  
-- Categorized as*: Living alone, 

independent ADLs/ Living alone, 
assist ADLs/ Living with others, 
independent ADLs/ Living with 
others, assist ADLs  

Living status 2-weeks post 
stroke 

Participant location at 2-week time 
point 

-- Categorized as: Inpatient / Skilled-
nursing facility / Assisted living /, 
Home / Other 

Race Participant reported racial 
identification 

-- Categorized as: White/ Black or 
African-American/ Asian/ American 
Indian or Alaska Native/ Hawaiian or 
other Pacific Islander 

Sex Participant report of sex -- Categorized as: Male/ Female 
Stroke type Cause of disruption of blood flow, 

from medical record 
-- Categorized as: Ischemic/ 

Hemorrhagic/ Unknown 
Time-post stroke Number of days from stroke-onset to 

2-week testing, from medical record 
-- Difference in days between date of 

testing and stroke onset 
Abbreviations: * Activities of daily living (ADL) 

4.3.5 Statistical Analysis  

All data were analyzed in R (version 4.1.2), an open source statistical computing 

program.47 Distributions and pair-wise scatterplots of the correlations between the variables were 
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examined to understand the variability in the sample and the relationships among the variables. 

We tested a series of supervised machine learning algorithms with different numbers of input 

variables to predict subsequent activity of the UL measured via accelerometry as a function of 

clinical and demographic variables collected within two weeks of stroke. These algorithms were 

a single decision tree48, bagged trees, and random forests.49 We present several different 

measures of classification accuracy and the importance of different predictor variables.50  

Classification Using Supervised Learning Algorithms 

In this analysis, different machine learning techniques were explored to understand how 

clinical variables captured early after stroke best predicted an subsequent category of UL 

performance. Given the smaller sample size (n=54) we lacked the capability to partition the data 

into training, validation, and testing sets. As such, our focus is on the accuracy of in-sample 

prediction (how well the model explains the data on which it was trained), cross-validation 

accuracy (the out-of-bag error estimate, defined below), and measures of variable importance (to 

identify the most important predictors).24,25 The models were built with different machine 

learning algorithms as described in the steps below.   

First, a single unpruned classification tree was built48 using the CART algorithm.26,48 If 

one thinks of the dataset as a matrix, each person (or observation) is a row and each predictor (or 

feature) is a column. The algorithm looks at all predictors and selects the one that best explains 

the outcome, creating a “branch” in the growing tree (if the predictor is > a certain value, go left, 

otherwise, go right). Moving down each branch, the algorithm then looks at all remaining 

predictors, selecting the one that explains the most variance (i.e., creates the most separation in 

predictions based on the Gini-index, a measure of node purity).25,51 In our analysis, we built a 

single decision tree based on all 17 predictors (Table 4.1) to predict the UL performance 
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categories (outcomes).25,51  The process then repeats, creating a tree made up of many branches 

that ends in the “leaves”, the final prediction at the end of that branch.24,26   

Second, we used bootstrap aggregation (bagging) as an ensemble method to reduce the 

likelihood of overfitting the data with a single tree.24  Bagging works identically to the single tree 

algorithm above, but rather than building one tree out of all available data, samples are 

bootstrapped: made by randomly sampling individuals (rows) from data with replacement. Each 

sample then gets its own tree based on the individuals who made it “in the bag”. Critically, this 

also means that the accuracy of each individual tree can be cross-validated against the 

observations left “out-of-bag”, yielding out-of-bag error as measure of cross-validation 

accuracy.24 The bagged model is thus the aggregated vote of all of the different trees when given 

input data for classification. 

Finally, we also used random forests as a slightly more complicated ensemble 

method.24,51 The random forest is constructed similarly to the bagged trees, building bootstrapped 

samples and fitting trees within each sample. However, in order to avoid potential bias and 

correlations between trees (i.e., a dominant predictor always being selected first), the random 

forest only considers a random subset of predictors (columns) at each node.51 Thus, the random 

forest model allows for a similar calculation of cross-validation accuracy with the out-of-bag 

error, but generally leads to trees being less similar than in bagging, because only a subset of 

predictors are considered at each node. This more diverse forest of uncorrelated trees can then be 

used to get an aggregate vote when given input data for classification.24,51  

 

 



95 
 

Table 4.2. Model names and specifications of the six ensemble models. 
 

Model 
 

# Trees  
Predictors Included in Input Data Set # Predictors 

considered at 
each node 

(m=)* 

UL clinical 
measures 

Non-motor 
clinical 

measures 
Demographics 

Small bagged  2,000  X X 3 
Small random forest 2,000  X X √3 = 2 
Medium bagged  2,000   X 7 
Medium random forest 2,000   X √7 = 3 
Large bagged  2,000    17 
Large random forest  2,000    √17= 4 
* m is a tuning parameter for the bagged trees and random forest models 
 
 A total of six models were built with the two bagging algorithms and by systematically 

changing the model specifications, known as tuning parameters. Table 4.2 presents the model 

names and specifications for the six models built. Each of the six models were built with the 

number of trees held constant at 2,000. A high number of trees was chosen to ensure that all of 

the models would stabilize regardless of the data set used.25 Three different input data sets were 

formed from the list of predictors (Table 4.1). The small data set included the UL clinical 

measures, the medium included the small data set + other non-motor clinical measures, and the 

large data set included the medium data set + demographic predictors. The bagged and random 

forest models were built by changing the tuning parameter m, which is the number of predictors 

available at each split. In the bagged models, m is equal to the total number of predictors in the 

data set whereas in random forests, m is equal to the square root of the number of predictors in 

the data set (last column Table 4.2).  

Model performance and variable importance  

An iterative process was used to quantify the explanatory power (in-sample accuracy), 

predictive power (out-of-bag estimate of error), and variable importance of the single decision 

tree, bagged models, and random forests. For all seven models, the full data set was fed back into 

the fitted model and the “in-sample” accuracy was quantified by comparing the predicted 

category and the actual UL performance categories.24,51 As in-sample accuracy uses the same 
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data the model is trained on, it is best thought of as the “explanation” rather than “prediction” 

(because prediction requires an independent test data set). Second, for the bagged and random 

forest models the average out-of-bag error was used as a measure of cross-validation accuracy. 

This out-of-bag error is genuine prediction because each individual tree is independent of its out-

of-bag data.25 (Note that out-of-bag error cannot be calculated for the single tree, as all data are 

included in the training set for that tree.) Finally, the importance of each predictor for the six 

models was evaluated in two ways: 1) mean change in accuracy, and 2) mean change in the Gini 

index.24,25 The mean change in accuracy is the improvement or decrease in the in-sample 

accuracy when each predictor is included in the model, predictors with higher accuracy values 

are more important for the successful classification (accuracy) of the outcome. Predictors with 

negative accuracy values decrease the model performance (accuracy), and are considered 

unimportant in predicting the outcome. The mean change in the Gini index is a measure of how 

each predictor contributes to the purity of the nodes and leaves in the models. The mean change 

in the Gini index is a positive integer, higher values of the mean change in the Gini index 

indicate greater importance of that predictor for the models.  
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4.4 Results 
 
Table 4.3. Participant characteristics and demographics: Total sample and UL performance category 
 
Characteristic 

 
Total 

Sample 
N=54 

A: Min 
Activity/ 

Rare 
Integration 

N=20 

B: Min 
Activity/ 
Limited 

Integration 
N=4 

C: Mod 
Activity/ 
Moderate 

Integration 
N=16 

D: Mod 
Activity/ 

Full 
Integration 

N=10 

E: High 
Activity/ 

Full 
Integration 

N=4 
Age  66.3 + 8.8 69.0 + 7.8 63.3 + 8.1 65.4 + 10.1 65.6 + 8.6 61.3 +10.4 
Sex, n (%) 

Male 
Female 

 
31 (57) 
23 (43) 

 
10 (50) 
10 (50) 

 
1 (25) 
3 (75) 

 
10 (63) 
6 (11) 

 
7 (70) 
3 (30) 

 
3 (25) 
1 (25) 

Ethnicity, n (%) 
Non-Hispanic/Non-Latino 

 
57 (100) 

 
20 (100) 

  
4 (100)  

 
16 (100)  

 
10 (100) 

 
4 (100) 

Race, n (%) 
White 

African-American 
Asian 

 
32 (59) 
21 (39) 
1  (2) 

 
12 (60) 
8 (40) 

- 

 
4 (100) 

- 
- 

 
6 (38) 
9 (56) 
1 (6) 

 
7 (70) 
3 (30) 

- 

 
3 (75) 
1 (25) 

 
Stroke type, n (%) 

Ischemic 
Hemorrhagic 

 
48 (89) 
6 (11) 

 
20 (100) 

- 

 
4 (100) 

- 

 
11(69) 
5 (31) 

 
9 (90) 
1 (10) 

 
4 (100) 

- 
Concordance, n (%) 23 (43) 8 (40) 1 (25) 4 (25) 7 (70) 3 (75) 
Time post stroke in days 13 (12,15) 13 (12,14) 14 (13,15) 13 (12,14) 15 (13,16) 16 (13, 18) 
Living status pre-stroke n (%) 

Alone, independent 
Others, independent 

 
1 (20) 

43 (80) 

 
5 (25) 

15 (75) 

 
1 (25) 
3 (75) 

 
5 (31) 

11 (69) 

 
- 

10 (100) 

 
- 

4 (100) 
Living status 2-weeks post stroke, n 
(%) 

Inpatient 
Home 

 
 

47 (87) 
7 (13) 

 
 

20 (100) 
- 

 
 

3 (75) 
1 (25) 

 
 

14 (87) 
2 (13) 

 
 

7 (70) 
3 (30) 

 
 

3 (75) 
1 (25) 

ADI 75 (39, 86) 80 (41, 88) 66 (48, 78) 76 (45, 87) 67 (31, 84) 31 (21, 47) 
Upper limb measures 

ARAT 20 ( 0, 43) 0 (0, 3.3) 4 (0, 20) 37 (23, 48) 45 (30, 53) 37 (28, 41) 
SAFE 7 (1, 8) 1 (1, 4) 5 (1, 8) 8 (7, 8) 8 (8, 8) 8 (7, 8) 

UEFM 37 (10, 57) 10 (8, 21.3) 23 (9, 43) 54 (36, 56) 59 (48, 61) 54 (43, 57) 
Non-motor clinical measures  

CES-D 14.0 + 9.5 18.2 + 10.3 14.0+ 9.1 15.5 + 8.2 7.0 + 6.1 4.8 + 1.7 
Mesulam 0 (0, 3) 1 (0, 7) 1 (0, 4) 1 (0, 4) 0 (0, 1) -1 (-1, 1) 

MOCA 17.6 + 7.1 14.6 + 7.9 20.3 + 8.3 18.3 + 7.1 20.5 + 4.1 20.3 + 4.4 
NIHSS 6 (4, 10) 10 (6, 15) 5 (4, 9) 5 (3, 8) 4 (4, 6) 3 (3, 4) 

Summary statistics for demographic information and the predictors as means and standard deviations when normally distributed, 
otherwise by medians and the 1st and 3rd inter-quartile values. Categorical variables are presented as counts (n) and % of the total 
sample and by category. Abbreviations: Area deprivation index (ADI), Action Research Arm Test (ARAT), Shoulder Abduction 
Finger Extension (SAFE), Upper Extremity Fugl-Meyer (UEFM), Center for Epidemiological Studies Depression Scale (CES-
D), Montreal Cognitive Assessment (MOCA), National Institute of Health Stroke Scale (NIHSS). 

 Overall, the sample of persons with first-ever stroke were generally in their 60’s and had 

mild to moderate stroke (83% with NIHSS 0-15). Of the 67 participants enrolled in the 

prospective, observational, longitudinal cohort study,28 54 had the necessary data to be included 

in this secondary analyses. Participant assignment into the five UL performance categories was 

pulled from our previous report.15 Demographics of the 54 participants and for the subsets 
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assigned to the UL performance categories are provided in Table 4.3. Figure 4.1 is included for 

descriptive purposes as a visual representation of the five UL performance categories. In Figure 

4.1, categories (4.1A-4.1E) are represented by Coxcomb plots, where the individual variables 

used to define the categories are wedges.  As one moves from Figure 4.1A to Figure 4.1E, the 

wedges take on different relative proportions, generally getting larger, with the best UL 

performance represented by category E, High Activity/Full Integration.   
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Figure 4.1. Coxcomb charts of the five UL performance categories of the 54 participants in this analysis (categories 
assigned in Barth et.al 2021). The five UL performance variables are divided into equally segmented wedges on the 
radial chart and the area of each wedge is proportional to the magnitude of the score on that dimension relative to the 
sample that created the categories. Each chart illustrates the contribution of the five UL performance variables on a 
standardized scale and are anchored to the minimum and maximum value of each variable in the prior analysis used 
to establish the categories. The categories are presented in order of increasing overall UL performance and are 
named: (A) Minimal Activity/Rare Integration; (B) Minimal Activity/Limited Integration; (C) Moderate 
Activity/Moderate Integration; (D) Moderate Activity/Full Integration; (E) High Activity/Full Integration. 
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The single, unpruned decision tree (Figure 4.2) allocated participants into only three of 

the five UL performance categories. The predictors that were selected for this tree included all 

three UL clinical measures (SAFE, ARAT, and UEFM) and two non-motor clinical measures 

(CES-D and Mesulam). This tree has a misclassification rate of 29%, meaning that 16/ 54 people 

were misclassified into a different category than their actual. In this tree, the SAFE score is the 

root node. For participants with less overall strength in their paretic UL (SAFE <7.5), the left 

side of the tree is used, with the ARAT, Mesulam, and UEFM scores used to assign people into 

either category A (Minimal activity/rare integration) or C (Moderate Activity/Moderate 

Integration). For participants with more overall strength in their paretic UL (SAFE >7.5), the 

right side of the tree is used, with participants assigned to either category C (Moderate 

Activity/Moderate Integration) or D (Moderate Activity/Full Integration) based on their scores 

on the depression scale (CES-D). 

 
Figure 4.2. Single unpruned decision tree predicting a category of UL performance from all 17 predictors. In 
reading the tree, if the argument is true, go left; if the argument is false, go right. This model predicts three out of 
five UL performance categories (A, C, and D) from 3 UL clinical measures and 2 other non-motor clinical measures. 
The categories are: (A) Minimal Activity/Rare Integration; (B) Minimal Activity/Limited Integration; (C) Moderate 
Activity/Moderate Integration; (D) Moderate Activity/Full Integration; (E) High Activity/Full Integration.  
 
* Measures with a red asterisk are counter-intuitive results. For example, UEFM score above 25.5 indicates less 
impairment in the paretic UL and with this tree, people with less UL impairment would be predicted to category A , 
the lowest UL performance category. Abbreviations: Shoulder Abduction Finger Extension (SAFE), Action 
Research Arm Test (ARAT), Upper Extremity Fugl-Meyer (UEFM), Center for Epidemiological Studies Depression 
Scale (CES-D)  
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Table 4.4. Model performance of models built with different machine learning algorithms.  
 

Model 
Performance 

Statistic 

Model Name 

Single 
Decision 

Tree 

Small Medium Large 

Bagged 
model 

Random 
forest 

Bagged 
model 

Random 
forest 

Bagged 
model 

Random 
forests 

In-sample 
Accuracy* 

Mean 
IQR 

 
 

0.70 
(0.56, 0.82) 

 
 

0.96 
(0.87, 1.0) 

 
 

0.96 
(0.87, 0.99) 

 
 

1.0 
(0.93, 1.0) 

 
 

1.0 
(0.93, 1.0) 

 
 

1.0 
(0.93, 1.0) 

 
 

1.0 
(0.93, 1.0) 

Out-of-bag 
estimate  
of error† 

Mean 
95% CI 

 
 
 

na 

 
 
 

0.55 
(0.54, 0.56) 

 
 
 

0.52 
(0.52,0.54) 

 
 
 

0.47 
(0.46, 0.48) 

 
 
 

0.46 
(0.44, 0.46) 

 
 
 

0.48 
(0.46, 0.48) 

 
 
 

0.48 
(0.48, 0.48) 

*In-samle accuracy is a measure of the explanatory power of the model and was quantified for all seven models by 
comparing the predicted category and the actual UL performance categories. Values closer to 1.00 indicate better 
model performance. 
† Out-of-bag estimate of error is a measure of the predictive power of the models and was quantified for the six 
bagging models as cross-validation accuracy. Lower error-rate values indicate better model performance.   
Abbreviations: confidence interval (CI), inter-quartile range (IQR) 
 

Our next step was to explore the use of bagging methods to build the six models (Table 

4.2). The statistics used to evaluate model performance of the single decision tree, bagged 

models, and random forest models are presented in Table 4.4. The in-sample accuracy of all the 

models is better than chance (chance=0.20 for each of the five categories) alone. The single 

decision tree has an in-sample accuracy of 0.70 whereas the in-sample accuracy of the bagged 

and random forest models ranges from 0.96 to 1.00, indicating better performance. Predictive 

power of the six models was better than chance, with the medium and large models being better 

than the small models and having mostly overlapping 95% confident intervals. 
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Figure 4.3. Variable importance computed as the mean change in accuracy. Variable importance plot for the six 
models built with bagging algorithms from different input datasets and tuning parameters. Variable importance is 
computed using the mean change in accuracy, and is expressed relative to the maximum. Higher values indicate 
greater importance of the specific predictor in the model and values < 0 indicate these predictors decrease the overall 
accuracy of the model. The shape represents the algorithm used and color represents the size of the input dataset. 
The small data set that includes UL clinical measures, the medium sized data set includes UL clinical measures + 
non-motor clinical measures, and the large sized data set includes UL clinical measures + non-motor clinical 
measures + demographics. The bagged models were built with all predictors available in the data set and random 
forests were built with the square root of the number of predictors.  

Figures 4.3 and 4.4 present the variable importance plots for the six models using the 

mean change in accuracy (Figure 4.3) and the mean change in the Gini index (Figure 4.4). The 

two red lines on the y axis are placed to separate the predictors relative to the data sets with UL 

clinical measures first, non-motor clinical measures second, and the demographics last. In these 

plots, shape represents the algorithm, which was either  bagged (triangle) trees or random forests 

(circle) and the three colors represent the size of the input data set as: small (green), medium 

(orange), or large (purple). In Figure 4.3, one can see that two UL clinical measures (ARAT and 
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SAFE) are the most important predictors regardless of the algorithm used or input data set size. 

Additionally, the UEFM and CES-D emerge as important predictors to maintain accuracy of the 

models, specifically with the medium and large input data sets. Interestingly, a few of the 

demographic predictors (sex, living status pre-stroke, living status 2-weeks post stroke, and time 

post stroke) all have negative values indicating including these predictors decrease the accuracy 

of the models. In Figure 4.4, the UL clinical measures and non-motor clinical measures are most 

important with respect to the mean change in the Gini index regardless of the algorithm or input 

data set size. All UL clinical measures (ARAT, SAFE, and UEFM) have the highest values of 

the mean change in the Gini index for the small data set only compared to the models built with 

the medium and large data sets. For most of the predictors, the circles and triangles of the same 

color are close together indicating similar values for mean change in the Gini index regardless of 

if the bagged or random forest algorithm was used. Additionally, some of the demographic 

predictors have a mean change in the Gini index close to 0 indicating less importance of these 

predictors similar to the mean change in accuracy (Figure 4.4).  
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Figure 4.4. Variable importance computed as the mean change in the Gini Index. Variable importance plot for the 
six models built with different input datasets and tuning parameters. Variable importance is computed using the 
mean change in the Gini index, and is expressed relative to the maximum. The shape represents the algorithm used 
and color represents the size of the input dataset. The small data set that includes UL clinical measures, the medium 
sized data set includes UL clinical measures + non-motor clinical measures, and the large sized data set includes UL 
clinical measures + non-motor clinical measures + demographics. The bagged models were built with all predictors 
available in the data set and random forests were built with the square root of the number of predictors. 
 

4.5 Discussion 
The purpose of this study was to explore how different machine learning techniques 

could be used to understand the association between clinical measures and participant 

demographics captured early after stroke and the subsequent UL performance category. Our 

hypothesis was supported, such that measures of UL impairment and capacity were the most 

important predictors of subsequent UL performance category, regardless of the machine learning 

algorithm used. Other non-motor clinical measures emerged as key predictors, while participant 

demographics predictors were less important across the models. Models built with the bagging 

algorithms had better in-sample accuracy compared to the single decision tree. The models had 
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moderate out-of-bag errors, indicating that there are likely unevaluated, missing predictive 

factors. There are two novel contributions of the present study: 1) different machine learning 

techniques were used to allow for comparison of the results and 2) the outcome of the models 

was a multi-dimensional category of UL performance. These findings contribute to the 

understanding of what factors early after stroke may partially influence the subsequent UL 

performance categories.     

Using different machine learning techniques provided information about which predictors 

were most important to the outcome for this sample and those that generalize to the population. 

Consistent with efforts to predict an individual’s subsequent UL impairment or UL capacity 

category,21,52-56 these results point to the importance of measures of UL impairment and capacity 

for predicting subsequent UL performance category. The UL impairment (SAFE score, UEFM) 

and capacity (ARAT) measures were generally the most important predictors regardless of the 

algorithm or input data set used. Depressive symptomology (CES-D) and overall stroke severity 

(NIHSS) increased the overall predictive ability of the models. The NIHSS is a measure of 

global stroke severity and it is possible that the non-motor aspects of this measure are driving the 

added value of this predictor. Collectively these results indicate that the subsequent UL 

performance categories were most influenced by UL impairment, capacity, presence of 

depression, and overall stroke severity. These are different secondary predictors than were 

identified in a previous study predicting a single UL performance variable, where non-motor 

clinical measures of hemispatial neglect and cognitive impairments along with participant 

demographic information were found to be important.20,57  It is reasonable that different factors 

emerged as predictors of a single UL performance variable vs. a multivariate category of UL 

performance. A key finding in the current analysis is the substantial out-of-bag estimate of error 
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(0.48 to 0.55), indicating that there other factors (predictors) that likely contribute to UL 

performance that were not assessed in the cohort studied here. Other possible factors that could 

influence UL performance include: biopsychosocial, cognitive constructs (e.g. apraxia), 

neurobiology (e.g. motor evoked potential [MEP]), and other demographics (e.g. employment 

status). Future research should explore how these factors captured early after stroke are 

associated with subsequent UL performance.   

The purpose of the present analysis was not to make perfect predictions, but rather to 

explore the associations between these variables using different machine learning techniques. 

The first model we explored was a single decision tree built with the CART algorithm. While the 

graphical representation of this decision tree (Figure 4.2) may be easy to interpret, the output is 

somewhat counterintuitive. For example, on the left side of the tree for people with a SAFE score 

< 7.5 and an ARAT score > 3.5, it is counterintuitive that a UEFM score < 25.5 (more UL 

impairment) would put one in a better category (C, Moderate activity/moderate integration), and 

an UEFM > 25.5 would put one in a worse category (A, Minimal activity/rare integration). This 

likely occurred because the tree is constructed with all of the input data and the algorithm 

assigned people to the categories based on the probability of ending up in each node. It is 

possible that there were a few people in this data set that had this unusual pattern of scores with 

respect to UL impairment and capacity. Likewise, the tree selected the Mesulam, a non-motor 

clinical measure of hemispatial neglect, for the most leftward node, but inclusion of this node 

does not change the categorization. Then, two different bagging algorithms were used to build 

predictive models with different sized input data sets to determine if they yielded similar versus 

different results. A benefit of the bagged and random forest is the relative increase in the 

explanatory and predictive power of these models because of cross-validation, even with the 
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smaller sample size of our data set, as seen in Table 4.4. The in-sample accuracy for these six 

models was improved compared to the single decision tree, indicating that these models are 

doing a good job explaining the data we had. The out-of-bag estimate of error, however, is more 

important with respect to the predictive power of these models. While the out-of-bag estimate of 

error does decrease (indicating more accurate predictions) with the addition of the non-motor 

clinical measures, the outcome of the models remain largely unchanged and the out-of-bag error 

remains substantial. These data illustrate the point that, ultimately, prediction models are only 

going be as “good” as the input data available; simply switching to a different machine learning 

method with different tuning parameters may not substantially change the predictive ability of 

the model. While we did not try all possible machine learning algorithms (e.g. SVM or neural 

networks), this could be an important consideration for future research. The single decision tree 

is a transparent model because one can see how the decisions are made in the tree where the 

bagged and random forest models are harder to interpret, because the classification is based on 

thousands of trees. These ensemble classifiers, however, can still be clinically useful. As we 

move to a world where electronic health records are integrated into advanced information 

management systems with data visualization and machine learning capability,58 the possibilities 

are endless to imagine how clinical measures and participant demographics early after stroke 

could be used to predict meaningful outcomes for people with stroke and their families. 

Implementation of these techniques into routine care will require extremely large data sets to 

build and then to validate models. Sample sizes will need to be at least an order of magnitude 

bigger than the larger data sets available today (i.e. in the thousands, not tens or hundreds of 

participants).24,25  For these machine learning methods to be clinically-available in the future, 
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research groups need to start now on pooling participant data, data sharing, and/or using common 

data elements across studies.     

There are a few limitations to consider when interpreting our findings. First, these results 

should be interpreted as exploratory or “hypothesis-generating”. Additional studies are required 

to validate these results. Second, due the small sample size the data could not be split into test 

and training sets. Nonetheless, we were still able to capitalize on the computing power of these 

techniques to provide additional information that contributes to our understanding of how typical 

information captured early after stroke was associated with a subsequent UL performance 

category. Finally, the predictor sets only included clinical measures and participant demographic 

information because we were limited by the data collected for the prospective, observational, 

longitudinal cohort study and the variability of the predictors across the cohort.28 One example of 

a potential predictor variable not collected here is a positive motor evoked potential (MEP), 

which has been identified as an important factor predicting UL capacity for persons with greater 

UL impairment in their paretic UL.20,21,52 As an example of lack of variability in potential 

predictors, we also collected a survey quantifying self-perception of UL performance recovery. 

Scores on these measures were highly homogenous across participants, making it impossible for 

this factor to contribute to the variance in the outcome.  Future studies will need to be designed 

with a more comprehensive set of potential predictors, including neurobiological and 

psychosocial factors.   

4.6 Conclusion 
Machine learning techniques can be used to understand how clinical measures and 

participant demographics captured early are associated with subsequent post stroke UL 

performance category. UL clinical measures were the most important predictors of the 
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subsequent UL performance category in this exploratory analysis regardless of the machine 

learning algorithm used. Other non-motor clinical measures emerged as important predictors to 

maintain the accuracy of the models, but including these measures had little impact on out-of-

bag estimate of error. These results reinforce that UL performance, in vivo, is not a simple 

product of body functions nor the capacity for UL movement, instead being a complex 

phenomenon dependent on many physiological and psychological factors. Utilizing machine 

learning, this exploratory analysis is a productive step towards prediction of UL performance. 

Future research is required to explore other factors associated with UL performance along with 

the role of predictive models in rehabilitation after stroke.  
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Chapter 5: Summary of Major Findings 
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5.1 Summary of specific Aims 
 In Chapter 2, we tested how well an algorithm with clinical measures, developed for use 

in New Zealand, applied to persons with stroke within the US. Our first hypothesis was that UL 

capacity would be predicted and algorithm accuracy would fall within a range of 70-80% in a 

cohort of US participants with first ever stroke. Our second hypothesis was that that participants 

with inaccurate predictions would be within one category of their expected at three months. Our 

first hypothesis was partially supported; the algorithm successfully predicted participants into the 

four UL capacity categories, however overall accuracy of the algorithm with clinical measures 

only was 61% (CI: 46%-75%). Our second hypothesis was supported; 39% (19/49) of the total 

number of participants had inaccurate predictions, 79% (15/19) were one category away from 

their actual category at three months post stroke. The findings of the present study indicate that 

use of this algorithm, with clinical measures only, is better than chance alone (chance =25% for 

each of the four categories) at predicting the category of UL capacity three months after stroke. 

The moderate to high values of sensitivity, specificity, PPV, and NPV demonstrates some 

clinical utility of the algorithm within the US healthcare setting.  

 In Chapter 3, we explored if categories of UL performance, as quantified from 

accelerometer recordings, could be identified and defined. Our first hypothesis was that three 

categories of UL performance would be identified across a host of accelerometer variables, 

spanning the possible ranges of UL performance in daily life. Our second hypothesis was that the 

categories that emerged would have clinical meaning of expected UL performance in daily life. 

Our first hypothesis was refuted; five categories of UL performance were identified from five 

UL performance variables in cohorts of adults with and without neurological UL deficits. Our 

second hypothesis was supported; the five categories that emerged have stratified people into 
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groupings with similar overall UL performance, representing a profile of arm activity in daily 

life. Individuals within each category have similar ranges on each performance variable included 

(e.g. duration, magnitude, variability, and symmetry) in each of the five clusters. As such, the 

names of the five categories were chosen for their overall activity and integration of the ULs into 

their daily activity, and are named: Minimal Activity/Rare Integration, Minimal Activity/Limited 

Integration, Moderate Activity/Moderate Integration, Moderate Activity/Full Integration, and 

High Activity/Full Integration.  

 In Chapter 4, we explored if a model could be developed to predict categories of UL 

performance in daily life at three months post stroke. Our first hypothesis was that a model could 

be derived from a collection of clinical measures to predict a category of UL performance post 

stroke. Additionally, our second hypothesis was that the developed model would predict UL 

performance with a minimum of 70% accuracy. Our first hypothesis was supported; the 

categories of UL performance identified in Aim 2 were predicted using different machine 

learning techniques. Measures of UL impairment and capacity were the most important 

predictors of the subsequent UL performance category, regardless of the machine learning 

algorithm used. Other non-motor clinical measures emerged as key predictors, while participant 

demographic predictors were less important across the models. Our second hypothesis was 

partially supported; the in-sample accuracy across the seven models ranged from 70% to 100%.  

The out-of-bag estimate of error, however, ranged from 48% to 55%.  The out-of-bag estimate of 

error is a better assessment of model accuracy with respect to the predictive power because it is 

calculated from data not used to build the model. These values of the out-of-bag estimate of error 

can be compared to overall accuracy with the inverse values, such that, the overall accuracy of 

these models ranged from 42% to 55%. 
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5.2 Significance of Findings  
 In the validation and development of novel clinical tools available to stroke rehabilitation 

providers, we report multiple findings that add to the current scientific body of knowledge.  

5.2.1  Importance of quantifying UL performance 

 Chapters 2-4 highlight the value of measurement of UL recovery after stroke across the 

ICF domains, because of the differences observed in UL impairment, capacity, and performance. 

Wearable sensor data has provided evidence to challenge the status quo, because clinicians and 

researchers have seen that improvements in UL capacity observed in the clinic do not necessarily 

translate to improvements in UL performance in daily life.1-6  In Chapter 3, five categories of UL 

performance were formed from five UL performance variables in persons with and without 

neurological UL deficits. Each of the five categories differ with respect to the duration, 

magnitude, variability, and symmetry of UL activity in daily life. In the five category solution, 

two categories emerged that could be considered to have “normal” UL performance (Moderate 

Activity/Full Integration and High Activity/Full Integration) as indicated by the presence of 

many neurologically-intact adult controls in those categories. People assigned to these two 

categories engage both ULs into activities to a similar degree, as evidenced by similar mean 

values of the use ratio.  The use ratio values in both categories approach 1.0, indicating that 

people in these two categories have relatively equal contributions of both ULs to daily activity.  

The differences between the two categories (and why they are two separate categories) is that 

people in these categories have different values on variables measuring the duration, magnitude, 

and variability of UL movement. Taken together, people in these categories have different levels 

of overall UL activity, ranging from moderate to high UL activity. People assigned to the High 
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Activity/Full Integration category having the highest values on these variables, while those 

assigned to the Moderate Activity/Full Integration have lower values.  

Of the participants with stroke included in this analysis, 20% (27/135) of people 

ended up in the two categories with the highest overall UL performance. This is a 

positive finding, as it indicates these individuals have either experienced a full recovery 

of their ULs following their stroke, or they have figured out how to use their available 

capacity for activity in order to integrate their paretic limb and be active in daily life.7 

What is highly interesting is that people assigned to these categories do not necessarily 

have the highest values of scores on measures of UL impairment and capacity. One can 

see from Table 5.1 that people in these two categories had similar median values of UL 

capacity (ARAT) at the same time point post stroke time point as when the accelerometer 

data were collected for the two studies.8   Interestingly, only 26% (7/27) of the 

participants with stroke in these two categories achieved a score of 57, the highest 

possible score on the ARAT. Even more interesting is the wide range of values of UL 

capacity of people in these performance categories. Stinear et. al.9, 10 formed categories of 

UL capacity based on ranges of ARAT scores (see Table 2.1) and only 41% (11/27) of 

people in these top two performance categories would have been in the highest UL 

capacity category of Excellent. Of the remaining participants 52% (14/27) would have 

been in the Good category and 7% (2/27) in the Limited category. This is important 

because all of these people are using their ULs with similar duration, magnitude, 

variability, and symmetry as adults without neurological UL deficits. A similar finding 

emerged when examining the subset of people in the top two categories with impairment 

measures (N = 20), i.e. SAFE and UEFM scores captured between six and 12 weeks post 
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stroke. Again, one can see that people assigned to both of these categories displayed similar 

median values and wide ranges of scores on the UL impairment measures (UEFM and SAFE). 

These findings taken together contribute to our understanding that UL capacity and impairment 

measures are not a direct indicator of UL performance after stroke. 

Table 5.1. Median (ranges) of UL capacity and impairment measures 

Measure name and ICF 
domain* 

 

Total† 
N=27  

or N=15 

Moderate  
Activity/ 

Full Integration 
N=20 

High  
Activity/ 

Full Integration 
N=7 

UL Capacity    
ARAT 47 (24-57) 47 (33-57) 46 (24-55) 

UL Impairment    
UEFM 62 (42-66) 63 (59-66) 61 (42-66) 
SAFE 9 (7-10) 10 (8-10) 9 (7-10) 

*UL capacity and impairment measures were collected at the same time point used to form the UL performance 
categories in Aim 2  
† Both stroke cohorts completed the UL capacity measure (N=27) and only stroke cohort completed the UL 
impairment measures (N=15) 
5.2.2  Lessons learned 

   The first lesson learned is about the importance of carefully defining study aims and 

hypotheses to match the intended purpose of the analysis. Upon reflection, to simply state 

“develop a prediction model” as written in Aim 3 was too simplistic. We quickly learned that 

with the plethora of analysis choices, it is certainly possible to develop a model. It is now 

apparent that one must consider how that model will be used given the available data. For 

example, we lacked the sample size to split our data into training, validation, and test sets that are 

typically required of machine learning methods, therefore our results and thus prediction models 

were exploratory in nature and should be interpreted as a first step to understanding factors 

associated with UL performance after stroke.11 The novelty of this Aim was the comparison of 

the results from three unique machine learning algorithms, the single decision tree, the bagged 

tree, and the random forest. In this comparison, we realized that our second hypothesis was 

lacking specificity because the in-sample prediction (e.g. explanation) of the models was well 
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above 70% however, the out-of-bag accuracy (e.g. predictive power) was much lower. An 

unexpected finding from this Aim was the identification of which variables measured early after 

stroke are most important to the five UL performance categories. The in-sample prediction and 

the above chance (20% for each of the five categories) out-of-bag estimate of error revealed that 

we in fact included some variables important to the UL performance categories, but we failed to 

build a predictive model with 70% accuracy as our hypothesized benchmark.  

 The second lesson learned was that there is a lack of detail in the quality of reporting the 

“whys” and “how’s” in stroke rehabilitation prediction studies that is limiting science in the 

field.  Historically, methodological approaches to prediction rely on linear and logistical 

regression models.12, 13 These models are by nature inflexible, because they yield temporally 

fixed predictions from temporally fixed input data.12, 14, 15 Another limitation of these models is 

the assumption of linearity between the dependent variable and the independent variables. There 

is rapid growth with respect to UL recovery the first three months after stroke that may not be 

appropriately modeled with linear regression techniques.7, 15-17 For example, a ten-point gain 

observed on the lower end of an UL impairment or capacity measure may not be the same as a 

ten-point gain at the higher end of that same scale.17 Other non-linearity that might not be 

detectable by linear regression models include how the influence of different non-motor 

impairments (e.g. visual neglect) impact UL motor recovery.12, 15 These non-linearities are likely 

not detectable by linear regression models, regardless of the amount or quality of data 

available.17 As in other fields, unfortunately, the majority of the prediction modeling in 

rehabilitation has employed these analytic techniques.14, 15, 18-24  To overcome the limitations of 

regression techniques, others have used the CART algorithm for prediction modeling.12, 13 This 

method was used to develop the PREP2 algorithm that we attempted to externally validate in 
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Aim 1.9, 25 External validation studies of prediction models are critical because a model’s 

predictions may not be reproducible on samples external to the model.26-29 Certainly poor 

predictions of the model in a new data set of persons with stroke could arise from differences 

between the settings of the new and derivation samples, including differences in health-care 

systems, methods of measurement, and participant characteristics.30 However, another source 

that contributes to poor predictions is due to the CART algorithm itself.  To build a single 

decision tree, the CART algorithm used the entire data set and therefore only the exact values of 

scores on clinical measures and participant characteristics are considered. Lundquist et.al.25 

replicated PREP2 within two weeks of stroke onset to accommodate differences in the timing of 

transitions of care between Denmark and New Zealand. The overall accuracy (accuracy: 60%; 

CI: 50%-71%)25 was lower than they hypothesized.  Similar to our analyses in Aim 1 (Chapter 

2), most people in their study with inaccurate predictions were still within one category of their 

predicted at three months post stroke. Because of the low overall accuracy values, a separate 

CART analysis was conducted on this sample from Denmark and the same measures selected in 

PREP2 emerged as important predictors in the decision tree but the values of participant age and 

stroke severity changed.25  We noted similar issues with the cut-off values in our sample as well.  

If we had run a separate CART analysis too, it is likely that the cut-off values would again 

change, since they are completely dependent on the input data. While using the CART algorithm 

is appealing because it results in the easy to interpret single decision (e.g. Figure 4.2), the 

limitations of the CART analytic method itself may not be able to generate a single UL capacity 

prediction algorithm for use around the world. In Chapter 4, the CART algorithm was one of the 

machine learning techniques used to predict the categories of UL performance from early clinical 

measures. Different predictors emerged in the single decision tree that did not emerge when 
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using the bagging algorithms.  For example, the Mesulam was selected in the single decision tree 

but had little to no improvement in accuracy or node purity of the bagged trees or random forest 

models (Figure 4.3 and 4.4 in Chapter 4).  As prediction models of post stroke outcomes 

continue to be explored, it will be important for researchers to explore the full range of analytic 

options available. Additionally, researchers should be transparent when reporting how and why 

decisions were made to build the prediction model including highlighting the strengths and 

weaknesses of each analytic choice.  

 The third lesson learned from this work is that there are important factors that influence 

UL performance after stroke that are not currently being measured and therefore have not been 

included in recent prediction efforts. All of the attempts to predict UL performance in daily life 

after stroke have explained a portion of the variance (48% – 55%), alluding to the fact that there 

are missing variables in our models and others.19, 31  In one previous study, a multivariate model 

that included an UL impairment measure (UEFM), the presence or absence of a motor evoked 

potential (MEP) measured by transcranial magnetic stimulation (TMS), and the presence or 

absence of visual neglect within two weeks of stroke accounted for 55% of the variance in a 

single UL performance variable, the use ratio, three months post stroke.31 In Chapter 4, models 

built with the medium sized data set and the bagged tree or random forest algorithm had an out-

of-bag estimate of 0.47 and 0.46, respectively when predicting a multivariate category of 

eventual UL performance. While variance explained is not the same as accuracy these results 

highlight that there are missing predictors important to UL performance in all of these studies. 

Other groups have begun exploring how various cognitive constructs (e.g. apraxia, spatial 

neglect) may contribute to UL performance after stroke.32 Our data sets did not include any 

thorough cognitive assessments, nor did it include thorough social or emotional assessments – 
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which also may impact UL performance.7 For example, we did not have access to a measure of 

apraxia, characterized by spatiotemporal deficits in imitation, pantomime of tool use movements, 

and/or tool use, even with the non-paretic UL.32, 33  It is possible that the presence and severity of 

apraxia and other cognitive and emotional impairments could substantially limit UL performance 

in daily life.  

The fourth lesson learned was that we do not yet know whether the same factors that 

influence daily performance of walking or other activities influence UL performance after stroke. 

Despite recent efforts, UL performance after stroke is a relatively unexplored area and it is 

undetermined if the factors that affect lower limb performance are similar to those affecting the 

UL. With respect to lower limb performance, measures of walking capacity, 34-39 depressive 

symptomology,40-42 the environment,34, 35, 43 participant demographics,43-45 and biopsychosocial 

factors35, 43, 46, 47 contribute to walking performance after stroke in varying degrees. Age and 

other demographic factors did not emerge as important predictors in Chapter 4, whereas they 

have in models predicting UL capacity.9, 19, 22  In the present analysis, superficial measures of the 

physical and social (e.g. ADI, pre- and post-stroke living status) environment were included as 

demographic predictors, but neither were important to the accuracy or node purity of the models. 

It is plausible that other aspects of the social environment, such as marital status or employment 

status may influence UL performance, as they have been shown to influence walking 

performance after stroke.35, 43 Balance self-efficacy is a biopsychosocial factor important to 

walking performance after stroke43, 48-51 and in the prospective, observational, longitudinal cohort 

study (data used in Chapter 3 and Chapter 4) a survey was administered to quantify a persons’ 

belief, confidence, and motivation to use the paretic UL in daily life.7 We did not include these 

data in the analysis in Chapter 4 because of the high, unwavering levels of these three 
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psychosocial constructs.52 Perhaps the influence of belief, confidence, and motivation is different 

for UL activity than for walking activity because of the low risk of using the paretic UL in 

everyday life.  There is a much higher risk associated with poor walking performance (e.g. falls, 

fracture) and therefore balance self-efficacy may matter more in what people choose to do every 

day.35 

5.3 Future directions  
In Chapter 2, the algorithm with clinical measures predicted a category of UL capacity 

with lower overall accuracy than hypothesized and people with inaccurate predictions were 

typically within one category of their predicted category at three months post stroke. There are a 

few possible solutions that could be explored to combat the limitations of the systematic 

differences in the healthcare systems, differences in stroke rehabilitation populations, and 

limitations of the algorithms used to develop prediction models.  First, it could be possible to 

pool data from persons with stroke across the world, including clinical measures and participant 

demographic information along with the geographical location and time post stroke.53 A new 

model predicting UL capacity could be created using the same CART algorithm with pruning 

and cross validation to create a model that could potentially be used around the world. Others 

have advocated for the importance of including the neurophysiologic assessment of the integrity 

of the corticospinal tract (via Transcranial Magnetic Stimulation) especially for people with less 

initial strength in their paretic UL.25, 54, 55  Unfortunately, access to this test in the US and other 

countries is not possible outside of academic medical centers.54, 56 Therefore it may be necessary 

to develop two models, one that uses this assessment for use in countries that have access to this 

test early after stroke (e.g. New Zealand) and another for countries that do not have access. 

Repeated model building and testing could then yield models with similar predictive and 
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exploratory power suitable for use in a large portion of the world.25   Future studies should also 

investigate using machine learning ensemble methods, such as bagged trees and random forests, 

to compare the important variables that emerge from single decision trees predicting UL capacity 

to the variable importance measures available from these methods. A second solution would be 

to provide the software capabilities to medical centers (by state, region, nation, or country) and 

provide education and training to create a unique version of prediction models of UL capacity 

that would be realistic to use within each geographical area. This solution would likely produce 

the most accurate prediction models, however it is unrealistic that these efforts could be 

implemented on such a large scale. Finally, the rehabilitation field must come together to educate 

clinicians and researchers of the strengths and limitations of these models, and to offer resources 

on how to use these algorithms can be used in other countries. Suggestions could include 

conducting a reassessment at various time points within the first three months post stroke to 

update predictions and interventions to maximize a person’s full potential for recovery of UL 

capacity post stroke.14  

 In Chapter 3, five categories of UL performance were formed from five UL performance 

variables in people with and without neurological UL impairments. Future studies could 

investigate if the same number of input performance variables and the same number of categories 

emerge when including larger, more heterogeneous data from people with and without other UL 

problems. Wearable sensors have provided the ability to measure UL performance in daily life, 

however there has been limited progress to integrate this data into standard rehabilitation 

research and therapies.57 One reason is because currently a large number of single variables have 

been proposed in various research studies in an attempt to capture similar or related constructs of 

UL movement in daily life.58 These variables can be mathematically complex and are 
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challenging to interpret from a clinical perspective. Of these single variables, validation efforts 

are scarce and even less work has been done to determine if these variables are sensitive to 

change.59 Another limitation is that the variables that have been proposed to date tend to align 

with only one specific patient population, with much of the development occurring in the stroke 

rehabilitation population. For example, the use ratio quantifies the relative time, in hours, that 

one UL is active compared to the other. This single variable is most relevant to rehabilitation 

populations with asymmetric effects,60, 61 such as stroke, hemiparetic cerebral palsy, and limb 

amputation/prosthetic use. There are many other clinical populations that present with UL 

problems that would benefit from the ability to measure UL performance in daily life, but do not 

have asymmetrical deficits. Given these limitations it seems unrealistic to continue 

proposing/developing, validating, and determining sensitivity to change of single variables 

across clinical populations with UL problems. The categories that were formed in Chapter 3 have 

the potential to streamline implementation of wearable sensor data into routine rehabilitation 

care. They could be a tool for clinicians to measure UL performance in daily life. UL 

performance is a complex construct that is likely multi-dimensional 58, 62, 63 and therefore may 

not be well-represented by a single performance variable.62, 63 The five categories from Aim 2 

were formed from five UL performance variables that measure aspects of the duration, 

magnitude, variability, and symmetry of UL activity in daily life. As a result, the categories of 

UL performance capture the multi-dimensional complexities of UL activity in daily life of 

people with and without neurological UL deficits. UL disability stems from a range of biological 

causes including neurological (e.g. stroke, multiple sclerosis), musculoskeletal (e.g. UL 

fractures, adhesive capsulitis), and other medical conditions (e.g. post breast cancer treatment). 

People with and without UL problems generally need to complete similar UL activities to 
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function in their daily life.  Because of these reasons, it seems realistic that these categories could 

be validated across multiple rehabilitation populations with health conditions that cause UL 

disability. Additional studies will be required to determine what constitutes a meaningful change 

in UL performance, either of multivariate categories or of single variables. There have been 

some efforts to identify the minimal clinically important difference (MCID) of a single variable 

from wearable sensors (e.g. activity counts),64, 65 but much more work is needed. An efficient 

approach might be to validate the categories first and then determine what a meaningful change 

in UL performance categories would be. Categories could provide more accessible information 

to people with health conditions and their health providers compared to single variables. In other 

biomedical science fields, formation of categories which encompass multi-dimensional measures 

have facilitated research and clinical decision making for persons with health conditions such as, 

spinal cord injury,66 heart failure,67, 68 and chronic obstructive pulmonary disease (COPD).69 

Categories also are used for general physical activity levels, such as, “sedentary” through “highly 

active”.70-72 With the physical activity categories, individuals assigned (by a clinician or via 

consumer-grade wearable sensors) to any one category have a variety of biological conditions, 

impairments, capacity limitations, and personal and environmental factors, but the category helps 

set goals to improve physical activity.  

Use of validated multi-dimensional UL performance categories have the potential to ease 

the burden on rehabilitation clinicians that work with clients with UL problems of various 

causes. Typically rehabilitation professionals do not see clients with UL problems due to a single 

condition. Instead, a clinician’s case load may include people with stroke, spinal cord injury, 

cardiac problems, and amputation.73, 74 People with health conditions generally access services 

when they have difficulty performing activities in daily life.75, 76  Regardless of the cause of a 
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person’s UL problems, self-identified rehabilitation goals are almost always directed at 

improving performance of activities in daily life.77 UL performance categories, therefore, have 

the potential to measure the outcome of interest for clinicians and people with health conditions 

that cause UL problems. Once the categories are validated, future studies could involve 

stakeholder engagement of rehabilitation providers and people with health conditions that impact 

the ULs to understand the barriers and facilitators to using categories to convey UL performance 

information. A future option could be to offer a user-friendly, software package to rehabilitation 

clinicians that would calculate the UL performance variables from data extracted from wrist-

worn accelerometers. Based on a person’s values across the variables, a category of UL 

performance could be determined and used to communicate current UL performance and used to 

set goals for future UL performance. Based on the aspects of movement (duration, magnitude, 

variability, and symmetry) selected to form the categories, it is possible that these categories 

could be highly relevant for many clinical conditions affecting UL performance in daily life, not 

just those with stroke. 

 In Chapter 4, we used machine learning techniques to predict the categories of UL 

performance from clinical measures and participant demographic information. We identified 

some factors important to UL performance after stroke, but there is still a large portion of 

unexplained variance. In this analysis, we lacked the capability to partition the data into training, 

validation, and testing sets because of the limited sample size. Our results are a first attempt at 

exploring the relationship of early clinical measures and participant demographics to the 

subsequent UL performance categories. Future studies with larger data sets should continue to 

explore what other factors could influence UL performance in daily life. We suspect that other 

personal factors will need to be explored, such as employment status (pre- and post- stroke), 
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marital status, and other social supports. It has also been suggested that UL performance is 

influenced by both intrinsic and extrinsic sources of motivation.15, 78, 79 Intrinsic motivation has 

led to better long-term behavioral outcomes for medication adherence,80 weight loss 

maintenance,81 and persistence and enhanced subjective well-being.82 A serious challenge is that 

measuring intrinsic motivation is difficult, and new measures may need to be developed to 

understand the influence of intrinsic motivation on UL recovery after stroke. Other personal 

factors that should be explored to understand their impact on UL performance after stroke 

include self-regulation,82-84 outcome expectation, 84 and perceived control.83  

5.4 Conclusion  
This dissertation work has conducted an external validation of an existing prediction 

model, developed categories of UL performance in people with and without neurological UL 

deficits, and explored how early clinical measures and participant demographic information were 

associated with subsequent categories of UL performance after stroke. Our findings provide 

strong support for the importance of measuring recovery of the UL across ICF domains, not just 

with impairment and capacity level measures.   The UL performance categories formed in 

Chapter 3 offer the future opportunity to transition measurement of UL performance in daily life 

for person’s receiving UL rehabilitation away from the current confines of rehabilitation research 

labs and into standard of care. In Chapter 4, different machine learning techniques were explored 

to predict the categories of UL performance from information routinely captured after the onset 

of a stroke. Collectively this work provides preliminary measurement tools that could eventually 

be available to rehabilitation clinicians following subsequent validation efforts. Additionally, this 

work provides a rich exploration into the strengths, weaknesses, and limitations of analytical 

methods and their impact on validation efforts.  
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Appendix A 
The table below is the Supplemental table of the loadings of the UL performance variables 
included in the final solution from Chapter 3. A total of two principal components explained the 
most variance in the UL performance variables. Interestingly, as more UL performance variables 
were included less total variance was explained. 

Supplementary Table 3.1. Loadings on principal component one and two of the five UL performance variables 
included in the final solution 

Variable Name PC1 Loadings PC2 Loadings 

Paretic/ND Hrs 0.48 -0.31 

Non-paretic/D Hrs 0.34 -0.78 

Median acceleration paretic/ND 
(counts)* 

0.45 0.39 

Acceleration variability of paretic/ND 
(counts)* 

0.48 0.22 

Use Ratio 0.47 0.30 

Total Variance Explained 76.4% 17.6% 
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Appendix B 
This study fulfilled the degree requirement for the Masters of Science in Clinical Investigation 
(MSCI) degree. These results may be of interest to the committee because they highlight that 
while accelerometry is a tool that, while measuring quantity of movement, can also reflect the 
use of general compensatory movement patterns of the upper limb in persons with chronic 
stroke.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This study has been published: 

Barth J, Klaesner JW, Lang CE. Relationships between accelerometry and general compensatory 
movements of the upper limb after stroke. Journal of NeuroEngineering and Rehabilitation. 
October 2020; 17(138): 1-10. 
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B.1 Abstract  
Background:  Standardized assessments are used in rehabilitation clinics after stroke to measure 

restoration versus compensatory movements of the upper limb. Accelerometry is an emerging 

tool that can bridge the gap between in- and out-of-clinic assessments of the upper limb, but is 

limited in that it currently does not capture the quality of a person’s movement, an important 

concept to assess compensation versus restoration. The purpose of this analysis was to 

characterize how accelerometer variables reflect upper limb compensatory movement patterns 

after stroke. 

Methods:  This study was a secondary analysis of an existing data set from a Phase II, single-

blind, randomized, parallel dose-response trial (NCT0114369). Sources of data utilized were: 1) 

a compensatory movement score derived from video analysis of the Action Research Arm Test 

(ARAT), and 2) calculated accelerometer variables (quantifying time, magnitude and variability 

of upper limb movement) from the same time point during study participation for both in-clinic 

and out-of-clinic recording periods. 

Results: Participants had chronic upper limb paresis of mild to moderate severity. Compensatory 

movement scores varied across the sample, with a mean of 73.7 + 33.6 and range from 11.5 to 

188. Moderate correlations were observed between the compensatory movement score and each 

accelerometer variable. Accelerometer variables measured out-of-clinic had stronger 

relationships with compensatory movements, compared with accelerometer variables in-clinic. 

Variables quantifying time, magnitude, and variability of upper limb movement out-of-clinic had 

relationships to the compensatory movement score. 
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Conclusions: Accelerometry is a tool that incorporates aspects of both quantity of upper limb 

movement and general compensatory movement patterns of the upper limb in persons with 

chronic stroke. Individuals who move their limbs more in daily life with respect to time and 

variability tend to move with less movement compensations and more typical movement 

patterns. Likewise, individuals who move their paretic limbs less and their non-paretic limb more 

in daily life tend to move with more movement compensations at all joints in the paretic limb 

and less typical movement patterns. 

B.2 Introduction  
As advances in medicine persist, more people are surviving a stroke.  Over 80% of those 

affected will have persistent hemiparesis of their upper limb.1 These people will be left with 

chronic disability when trying to complete their activities of daily living (ADL), and an even 

larger number will not resume their normal daily activities completed prior to stroke.2 At this 

time, physical and occupational therapy is the only option available to improve upper limb use 

after stroke. The ultimate goal of these therapies is to restore the use of the upper limb to the 

same level it was used before the stroke. Most individuals, however, only partially regain 

function of their upper limb requiring compensations of the upper limb to complete daily tasks. 

The differentiation between restoration of upper limb movement and compensation is an area of 

high interest in stroke rehabilitation.3 Compensatory movements can be thought of on multiple 

levels, including a change in behavior (e.g. completion of an activity by a spouse rather than the 

individual) and a change in context (e.g. using a built up spoon for self- feeding). For the 

purposes of this paper, compensatory movements will refer to completion of the same movement 

but with an alternative movement pattern. Specifically, this level of compensatory movements 

typically describe accessory movements of the head, trunk and upper limb that an individual 



142 
 

incorporates in order to accomplish tasks. A simple example is that if an individual lacks 

shoulder flexion, or the ability to raise their arm in front of them, the individual lifts their arm by 

raising it more to the side and bending forward with the trunk.4,5 Many in the neurorehabilitation 

field view compensation and restoration as a dichotomy, where individuals will either be 

classified as using compensatory movement patterns or restored movement patterns. Return of 

upper limb function may be better conceptualized as a gradient, with individuals having degrees 

of compensatory movement patterns.6  

Currently, many in-clinic standardized assessments have some aspects that measure use 

of compensatory movement patterns. For example, the Reaching Performance Scale specifically 

assesses compensatory movements of the upper limb during reaching in people with 

hemiparesis.7   The Wolf motor function tests, functional ability scale reduces scores if 

movement compensations were observed during item completion.8 The Fugl-Meyer arm motor 

scale, an impairment scale, focused on movement patterns, takes points off where specific 

compensatory movements are observed on each item.9   Additionally the Action Research Arm 

Test (ARAT) scores individuals completing functional reaching tasks with consideration of the 

quality of the reach and grasp pattern along with the fluidity or precision of the task.10,11 

Standardized assessments have the ability to measure upper limb functional capacity and 

compensatory movements of the upper limb after stroke, however these assessments only capture 

one piece of upper limb recovery after stroke.  

The current gold standard in the field to measure quality of movement or compensatory 

movements is through the use of 3D kinematics.12 Kinematics provides the most detailed 

assessment of how an individual moves after stroke.  It is not realistic, however, to use 

kinematics in the clinic for all patients due to cost of equipment, time required to test, and 
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training of personnel. This leaves standardized assessments to be the alternative and most 

accessible measure of compensatory movement patterns. This gap in measurement has lead our 

lab to question how we might utilize our existing accelerometry methodology to capture some of 

these changes in compensatory movement. 

In-clinic assessments are limited in that they measure the individual’s ability to use the 

limb in a standardized, structured setting, leaving the individuals actual activity of the limb 

during daily life unaccounted for. Over the past five years, methodology has been developed to 

measure upper limb activity in daily life using wearable sensors (accelerometers).13,14  

Accelerometry can quantify how much and how often a person uses their affected limb during 

their daily life, bridging the gap between in and out-of-clinic assessment. Current accelerometer 

metrics quantify time, magnitude and variability of movement of the upper limb.15-19 A limitation 

of current accelerometry methods is that they quantify the amount of movement, but do not 

capture the quality of a person’s movement, an important concept to assess compensation versus 

restoration. 

The purpose of this secondary analysis was to characterize how accelerometer variables 

reflect upper limb compensatory movement patterns after stroke. Relationships between 

compensatory movement patterns and accelerometer variables were calculated for both in-clinic 

and out-of-clinic time points. Both time points were included as the in-clinic time includes 

completion of standardized assessments and participation in an intensive upper limb therapy 

protocol. Due to the nature of the therapy protocol, we anticipated there may be different 

relationships because during the in-clinic time participants are intentionally training their 

affected limb. The out-of-clinic recordings captures the individual in their free-living 

environment, providing a more realistic picture of how the individual uses their upper limb in 
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daily life. It is hypothesized that quantitative metrics from accelerometers both in and out-of-

clinic will have moderate associations with compensatory movement patterns of the upper limb.  

B.3 Methods 
This study was a secondary analysis of an existing data set from a Phase II, single-blind, 

randomized, parallel dose-response trial (NCT0114369).20 Sources of data utilized were: 1) a 

compensatory movement score derived from video analysis of the Action Research Arm Test 

(ARAT), and 2) calculated accelerometer variables from the same time point during study 

participation. 

B.3.1  Participants 

Inclusion criteria were (1) ischemic or hemorrhagic stroke as determined by neurologist 

and consistent with neuroimaging; (2) time since stroke > 6 months; (3) cognitive skills to 

actively participate, as indicated by scores of 0 to 1 on items 1b and 1c of the National Institutes 

of Health Stroke Scale (NIHSS); (4) unilateral upper limb weakness, as indicated by a score of 1 

to 3 on items 5 (arm item) on the NIHSS; and (5) mild-to-moderate functional motor capacity of 

the paretic upper limb, as indicated by a score of 10 to 48 on the ARAT. 10,11 Exclusion criteria 

were (1) participant unavailable for 2 month follow-up (2) inability to follow-2-step commands; 

(3) psychiatric diagnoses; (4) current participation in other UL stroke treatments (ex/Botox); (5) 

other neurological diagnoses; (6) participants living further than 1 hour away or were unwilling 

to travel for assessments and treatment sessions; and (7) pregnancy. The clinical trial was 

approved by the Washington University Human Research Protection Office and all subjects 

provided informed consent prior to trial participation.   
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B.3.2  Compensatory movement score 

A compensatory movement score was derived from video recordings of available 

baseline or subsequent ARATs. We first developed a checklist to quantify the degree of 

movement compensations of the upper limb. Compensatory movement information was 

synthesized from 9 standardized assessments of the upper limb measuring quality of movement 

or compensatory movement patterns. 7,8,10,21-26 Descriptions of compensatory movement patterns 

of the upper limb were extracted from the assessments and organized to generate the list of items 

on the checklist.  The checklist was piloted and refined following feedback from licensed 

physical and occupational therapists. The Supplemental Table provides the final checklist. 

Items selected for the checklist were compensatory behaviors specific to each joint. 

Compensatory behaviors on the checklist 7,8,10,21-26 included movements at the head, trunk, 

shoulder, elbow, forearm, wrist, fingers, and fluidity/movement precision. The administration of 

the ARAT adhered to the standardized instructions recommended by Yozbatiran et al. 10, 

participants were not provided with instructions regarding how the task should be completed. 

Compensations were scored as present or absent from the videotaped completion of the ARAT. 

For example, potential trunk compensations could be: excessive trunk flexion or excessive trunk 

side bending/rotation. In addition to compensations at each joint, an item labeled fluidity and 

precision of moment was added to capture jerky or uncoordinated sub-movements and multiple 

attempts to complete a task.7,8,10,21-26 

Raters were current physical therapy students and one undergraduate summer intern. 

Non-licensed individuals were selected to decrease bias.  In piloting, we found that licensed 

therapists tended to rate compensatory movement scores higher due to anticipation of expected 

movement patterns, whereas students simply rated if a compensatory movement was present (+1 
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point) or absent (0 points). Raters were trained prior to beginning scoring videos for data 

collection. Raters were provided with a manual that described the movement compensations. 

Then, raters scored a video side-by-side with a trainer (JB), where they discussed and highlighted 

each type of movement compensation. Finally, raters independently scored 3 videos of subjects 

with varying degrees of movement compensations. When the rater scoring was deemed to be 

acceptably close to the trainer (+10 points) they were allowed to score independently. If the score 

varied by more than +10 points (+/- 3% error), the rater continued to review videos with the 

trainer. This process continued until the rater became independent. Once training was complete, 

each video was scored by 2 raters, if total scores differed by over +10 points, a third rater scored 

the video. Scores were averaged for use in the final analysis. Possible scores range from 0 to 261 

points, with lower scores indicating fewer observed compensations, or better movement quality. 

B.3.3  Accelerometer variables 

 Data were extracted from bilateral, wrist worn accelerometers (wGT3X+, Actigraph, 

Pensacola, FL, USA) for 24 hours at the selected time point matching the video that was scored. 

Sleep was not excluded from the analysis, persons with stroke have irregular sleep patterns 

which would prove challenging to extract definitive time for sleep from the data.27,28 

Accelerometers are a valid and reliable instrument to capture upper limb movement in daily life 

in individuals after stroke16,18,29-32 and non-disabled adults.13,14,28    

  For the selected time point, accelerometers were donned at the beginning of their 

session, prior to their in-clinic assessments and intensive upper limb therapy, then worn for an 

entire day afterward. Accelerometers were returned on the next treatment session and the data 

were downloaded using ActiLife 6 software (Actigraph Corp, Pensacola, FL, US). 

Accelerometers measure UL movement along 3 axes with activity counts, where 1 count= 
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0.001664g. Data were sampled at 30Hz.  Data were binned into 1-second epochs, and activity 

counts across each axis were combined creating a single vector magnitude value.17  Using 

custom-written software in MATLAB (Mathworks Inc, Natick, MA, USA), ten variables were 

calculated for in-clinic and out-of-clinic time from the recorded data. Recording time was 

separated into 1.5 hours of in-clinic time which included upper limb assessments and intensive 

therapy (targeting repetitions of upper limb movement) and then 22.5 hours of out-of-clinic 

wear. Variables quantified different aspects of upper limb movement and can be conceptualized 

into variables measuring movement time, movement magnitude, and movement 

variability.13,14,18,33,34  Table B.1 provides a summary of variables. In addition, two newly 

proposed variables were calculated, the jerk asymmetry index35 and the spectral arc length.36,37 

These variables were calculated as they have been proposed to measure smoothness of 

movement, an aspect of quality of movement, by others in the field. 

Table B.1. Accelerometer variables 

Variable Name Description 
Time  
Isolated Non-Paretic Limb Activity28 Time, in hours, that the non-paretic limb is moving, while the paretic limb is still. 

Isolated Paretic Limb Activity28 Time, in hours, that the paretic limb is moving, while the non-paretic limb is still.  

Bilateral Activity28,38 Time, in hours, that both upper limbs are moving together. 
Use Ratio16,30,39 Ratio of hours of paretic limb movement, relative to hours of non-paretic limb 

movement. 
Magnitude  
Paretic Limb Magnitude40,41 Magnitude of accelerations of the paretic limb, in activity counts.* 
Bilateral Magnitude28,38 Intensity, or magnitude of accelerations, of movement across both arms, in activity 

counts.* 
Magnitude Ratio28,38,41 Ratio of the magnitude of paretic UL accelerations relative to the magnitude of the non-

paretic UL accelerations. This ratio reflects the contribution of each limb to activity, 
expressed as a natural log. 

Variability 
Variability of Paretic Movement 40,41 Standard deviation of the magnitude of accelerations across the paretic limb, reflecting 

the variability of paretic limb movement, in activity counts* 
Variability of Bilateral 
Movement40,41 

Standard deviation of the magnitude of accelerations across both limbs, reflecting the 
variability of bilateral upper limb movement, in activity counts.* 

Variation Ratio40,41  Ratio of the variability of paretic limb accelerations relative to the variability of the non-
paretic limb accelerations, reflecting the relative variability in the paretic limb.  

Smoothness 
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Unimanual Jerk Asymmetry Index 35 Ratio of the average jerk magnitude between the paretic upper limb and the non-paretic 
upper limb. Higher jerk represents less smooth movement, and an index value of 0 
represents similar smoothness of movement in the paretic and non-paretic limbs.  Values 
are bounded between -1 to +1.  

Spectral Arc Length36,37 A measure of movement smoothness that quantifies movement intermittencies 
independent of the movement’s amplitude and duration. Longer spectral arc lengths are 
reflective of less smooth or less coordinated movement. 

* Activity counts are computed by the Actilife proprietary software such that 1 activity count=0.001664g 

B.3.4  Analysis 

All data were analyzed in R, an open source statistical computing program. The main 

analyses evaluated the relationships between the compensatory movement scores and each 

calculated accelerometer variable. Spearman rank correlations were chosen because relationships 

between compensatory movement scores and accelerometer variables were not assumed to be 

linear. Criteria for statistical significance was set at  α < 0.05. The following criteria were used 

to interpret correlation coefficients: coefficients of rho > 0.25 or below were considered low, 

coefficients ranging from 0.26 to 0.50 were considered moderate, coefficients from 0.51 to 0.75 

were considered good, and those greater than 0.75 were considered excellent.42  Beyond the 

individual relationship analysis, an exploratory, step-wise multiple regression evaluated how 

multiple accelerometer variables might collectively explain the variance in compensatory 

movement scores. 

B.4 Results 
Participants  

Demographics of the participants are provided in Table B.2 and have been reported 

elsewhere.20   Overall, the sample had chronic upper limb paresis post stroke of mild to moderate 

severity. Compensatory movement scores were highly variable across the sample, with a mean of 

73.7 + 33.6, and a range from 11.5 to 188. This range indicates that none of the subjects were 

free from compensatory movements, and no subject used the maximum amount of 
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compensations defined by the checklist.  The majority of movement compensations were 

observed at the shoulder (28%). The second highest observed compensations were at the trunk 

(22%), followed by the fingers (21%), fluidity and movement precision (14%), elbow (5%), 

wrist (4%), head (3%), and finally forearm (2%). 

Table B.2: Characteristics of Sample, Values are means + SD (range) or % of total sample unless otherwise 
specified. 
Descriptors (n= 78) 
Age (Years) 61.9 + 10.5   

(32, 85) 
Gender 35% Female 

65% Male 

Type of Stroke 72% Ischemic 
13% Hemorrhagic 
15% Unknown 

Ethnicity 99% Non-Hispanic/Latino 
1% Hispanic/Latino 

Months post stroke (median, min/max) 12 , 5/221 
Affected Limb 46% Left 

 54% Right 
% Concordance* 51% 
% Independent with ADL  79% 
Baseline ARAT score 32.4 + 11.2  

(10 - 48) 
Compensatory Movement Score 73,7 + 33.6  

(11.5 - 188) 
Baseline Use Ratio 0.66 + 0.23  

(0.22 - 1.32) 
*Concordance is the percent of individuals whose paretic UL was their dominant UL 

Relationships of variables to compensatory movement 

Overall, moderate correlations were observed between the compensatory movement 

scores and each accelerometer variable. Figure 1 shows the correlation coefficients and their 

95% confidence intervals for each accelerometer variable, calculated from both in-clinic and out-

of-clinic time.  For most of the accelerometer variables, higher scores are better, making most of 

the correlation coefficients negative.   
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Figure B.1. Relationships (x-axis) of compensatory movement scores to accelerometer variables (y-axis). Open 
symbols are in-clinic calculations, and closed symbols are out-of-clinic calculations. Error bars are 95% confidence 
intervals for each correlation coefficient. Lack of statistical significance occurs when error bars cross the vertical 
dashed line at 0. 

More than half of the accelerometer variables had similar relationships with 

compensatory movement scores when calculated from both in-clinic and out-of-clinic time. 

Figure 2 is a scatterplot of one such variable, variability of bilateral movement, where Figure 2A 

illustrates its relationship to the compensatory movement score in-clinic (rho = -0.35, p < 0.001), 

and Figure 2B its relationship out-of-clinic (rho = -0.32, p < 0.01). This moderate relationship 

indicates that individuals with more movement compensations tended to have less movement 

variability of the upper limbs, regardless of in which environment they were moving. 
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Figure B.2. Relationship of bilateral movement during in-clinic time (a. rho= -0.32, p<0,001) (b. rho= -0.35, 
p<0.01). This accelerometer variable has a similar moderate relationship both in and out-of-clinic. 

Other accelerometer variables had a stronger relationship with compensatory movement 

scores, when calculated from time out-of-clinic versus in-clinic. Figure 3 shows scatterplots of 

two variables, isolated non-paretic limb activity and use ratio plotted relative to the 

compensatory movement score. Figure 3A illustrates the relationship of isolated non-paretic limb 

activity to compensatory movement score in-clinic (rho = 0.14, p = 0.23), and Figure 3B its 

relationship out-of-clinic (rho = 0.61, p < 0.0001). The stronger positive relationship out-of-

clinic indicates that individuals with more compensatory movements moved their non-paretic 

limb only more while out-of-clinic. The use ratio also had a stronger negative relationship with 

the compensatory movement score out-of-clinic. Figure 3C illustrates the use ratio in-clinic to 

the compensatory movement score (rho = -0.15 p = 0.18), and Figure 3D its relationship out-of-

clinic (rho = -0.57, p < 0.0001). The strong relationship out-of-clinic indicates that, at home, 

individuals with more compensatory movements had a lower use ratio, indicating less relative 

paretic limb activity. None of the accelerometer variables had a stronger relationship during in-

clinic time versus out-of-clinic time.   
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Figure B.3. Relationship of isolated use of the non-paretic limb to compensatory movement score, both in-clinic 
(3A, rho = 0.14, p = 0.23) and out-of-clinic (3B, rho = 0.61, p < 0.0001). Relationship of the use ratio to the 
compensatory movement score in-clinic (3C, rho = -0.15, p = 0.18) and out-of-clinic (3D, rho = -0.57, p = 0.18) 
These variables both had a little to no relationships in-clinic, yet good relationships out-of-clinic. 

Two variables have been proposed to reflect movement smoothness as an aspect of 

quality of movement.35-37  Figure 4 shows the relationship of the compensatory movement score 

to the jerk asymmetry index (Figure 4A, rho = -0.19, p = 0.09) and to the spectral arc length of 

the paretic limb (Figure 4B, rho = 0.29, p < 0.01). Both variables had low relationships with the 

compensatory movement score.  
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Figure B.4: Relationship of two newly proposed metrics that quantify quality of upper limb movement. 4A: 
Relationship of the Jerk Asymmetry Index to compensatory movement scores (rho = -0.19, p = 0.09). 4B: 
Relationship of the spectral arc length of the paretic limb to compensatory movement scores (rho = 0.29, p < 0.01). 
In 4B, one outlier with a spectral arc length of > -6 has been omitted from the plot.  Both variables are from out-of-
clinic time and had a low relationship with the compensatory movement score. 

 Last, an exploratory multiple regression evaluated which combination of accelerometer 

variables explained the most variance in the compensatory movement score. Using a stepwise 

approach to select variables, two time-based variables explained the most variance. The use ratio 

out-of-clinic and the hours of isolated non-paretic limb use out-of-clinic together explained 37% 

of the variance in the compensatory movement score (R2 = 0.37, p ≤ 0.0001).  

B.5 Discussion 
This study was a secondary analysis of an existing dataset that explored the relationships 

between accelerometer variables and compensatory upper limb movements in individuals with 

chronic hemiparesis. Individuals in the sample had a range of compensatory movements 

observed during the video scoring. Most accelerometer variables had a moderate relationship 

with the degree of compensatory movements of the upper limb for both in and out-of-clinic time 

points. This study used a novel approach to quantify compensatory movement patterns of the 

limb at a single time point, during completion of a standardized assessment. The developed 
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checklist is proposed as an idea for a new scale that would need further work in terms of 

examining its psychometric properties. These results indicate that accelerometry incorporates 

aspects of both quantity of upper limb use and general compensatory movement patterns of the 

upper limb.  

Most accelerometer variables had moderate relationships with compensatory movement 

scores.  The variables more strongly associated with compensatory upper limb movements 

quantified time, magnitude, and variability of upper limb movement while participants engaged 

in activity out-of-clinic.  For example, the strong relationship of movement compensations to 

isolated use of the non-paretic limb aligns with clinical expectations3,38,43 that individuals who 

have more movement compensations of the paretic upper limb, frequently use their non-paretic 

limb to complete daily tasks at home. Likewise, individuals who use more movement 

compensations have less variability in both paretic and bilateral limb movements. In general, 

reduced movement variability is considered to align with “an unhealthy pathological state or an 

absence of skill.” 44 Individuals who use more compensatory movements have fewer options for 

movement available.45,46  

 Some accelerometer variables tended to be have stronger relationships with 

compensatory movement scores when quantified from out-of-clinic recordings vs. in-clinic 

recordings.  This is illustrated visually in Figure 1, where more closed triangles are further from 

the zero line than open circles are.  The in-clinic recordings here are from participation in an 

intensive, progressive, upper limb trial, where individuals are trained to use their affected paretic 

limb for functional activities.20   Weaker relationships of some variables in-clinic confirms that 

therapy sessions were promoting activity of the affected upper limb.  We note that the intent of 

the training protocol was to improve upper limb functional capacity, not to reduce movement 



155 
 

compensations.20   During in-clinic recordings, the accelerometer variables measure what an 

individual does during the training protocol. The out-of-clinic time measures how an individual 

moves their upper limbs during daily life.31,47  Based on the moderate or strong relationships, 

out-of-clinic, accelerometer variables reflect not just quantity of upper limb movement, but also 

collective use (more vs. less) of compensatory movements of the upper limb. 

Limitations 

 Several limitations should be considered when interpreting these data.  First, video 

recordings of a standardized assessment were used to quantify movement compensations as a 

proxy for compensatory movements that would occur throughout the recording period.  Given 

that research and therapy participants often try to do their best on tests in front of an assessor, 

28,48-50 using these videos to quantify compensatory movements may be an under-estimate of the 

compensatory movements participants engage in throughout the day.  Second, video-recording of 

the assessment was chosen to quantify compensatory movements over the video-recording of the 

therapy session.  This decision was made because the assessment was the same for all, while the 

therapy sessions involved individualized therapeutic activities of different amounts, i.e. making it 

hard to compare across subjects.  While the ARAT standardized assessment captures most upper 

limb movement components,51 one cannot rule out the possibility that alternative compensations 

might be observed within the therapy session or at home. Collectively these two limitations mean 

that we may have underestimated upper limb compensatory movements, and perhaps also 

underestimated the strength of the relationships of the accelerometer variables to the 

compensatory movement score. A third limitation is the use of coding from videos instead of 

using kinematic analysis of movement compensations. 12 Kinematic data from this sample does 

not exist.  It is anticipated that using a kinematic analysis would not diminish the relationships of 
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accelerometer variables to movement compensations of the upper limb, rather future studies 

using kinematics could be used to validate the relationships found here.  Additionally, kinematic 

analysis could expand upon those relationships by indicating the specific movement 

compensations an individual is using with their upper limb, not just the general quantification 

used here. The round table currently suggests kinematics as the gold standard, in the future we 

envision that accelerometry may be a way to measure specific movement compensations of the 

upper limb if sensors were cheaper and smaller. 

B.6 Conclusion 
This study quantified movement compensations of the upper limb and determined their 

relationship to accelerometer variables. Individuals who move their limbs more in daily life with 

respect to time and variability tend to move with less movement compensations and more normal 

movement patterns. Likewise, individuals who move their paretic limbs less and their non-

paretic limb more in daily life tend to move with more movement compensations at all joints in 

the paretic limb and less normal movement patterns. These results suggest that, for people with 

upper limb paresis due to chronic stroke (> 6 months), movement quality is not be an 

independent construct from movement quantity. While accelerometers as a tool can provide 

some information on movement quality, more work is needed to improve the methodology.  
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B.7 Supplemental Table 
Table B.1. Compensatory movement scoring checklist 
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Items to create this checklist were synthesized from the following assessments, Reaching Performacne Scale 7, 
Upper Extremity Fugl- Meyer 52, Wolf Motor Function Test, 8 Action Research Arm Test, 51 Chedoke McMasters, 23 
Stroke Rehabiliation Assessment of Movement (STREAM), 22 Motor Evaluation Scale for Upper Extremity in 
Stroke Patients (MESUPES), 25 Motor Assessment Scale (MAS), 24and Quantative assessment of upper extremity 
function.26  Compensatory behaviors on the checklist included movements at the head, trunk, shoulder,elbow, 
forearm, wrist, fingers and fluidity/movement. Compensations were scored as present or absent from the videotaped 
completion of the ARAT. 
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