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gentle, caring voice who made me feel understood and like I wasn’t alone. May he rest in peace.  
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Molecular dynamics simulations provide a means to characterize the ensemble of structures that 

a protein adopts in solution. These structural ensembles provide crucial information about how 

proteins function, and these ensembles also reveal potential drug binding sites that are not 

observable from static protein structures (i.e. cryptic pockets). However, analyzing these high-

dimensional datasets to understand protein function remains challenging. Additionally, finding 

cryptic pockets using simulation data is slow and expensive, which makes the appeal of 

computationally screening for cryptic pockets limited to a narrow set of circumstances. In this 

thesis, I develop deep learning based methods to overcome these challenges. First, I develop a 

deep learning algorithm, called DiffNets, to deal with the high-dimensionality of structural 

ensembles. DiffNets takes structural ensembles from similar systems with different biochemical 

properties and learns to highlight structural features that distinguish the systems, ultimately 

connecting structural signatures to their associated biochemical properties. Using DiffNets, I 
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provide structural insights that explain how naturally occurring genetic variants of the oxytocin 

receptor alter signaling. Additionally, DiffNets help reveal how a SARS-CoV-2 protein involved 

in immune evasion becomes activated. Next, I use MD simulations to hunt for cryptic pockets 

across the SARS-CoV-2 proteome, which led to the discovery of more than 50 new potential 

druggable sites. Because this effort required an extraordinary amount of resources, I developed a 

deep learning approach to predict sites of cryptic pockets from single protein structures. This 

approach reduces the time to identify if a protein has a cryptic pocket by ~10,000-fold compared 

to the next best method.  
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Chapter 1  

Introduction  
 

1.1 Proteins are the molecular machinery of the living  
When organizing the physical levels of biology, proteins exist toward the bottom of the scale. At 

the lower end there are atoms and small molecules (e.g. metabolites). At the higher end there are 

large molecular complexes, organelles, cells, tissues, organs, humans, and so on. Recent 

estimates suggest there are roughly 4 trillion cells in a human1 and roughly 42 million protein 

molecules per cell2, which implies there are ~1.6 * 10^19 protein molecules in an average human 

body. For reference, there are an estimated ~3 * 10^23 stars in the entire universe.3 Importantly, 

there are an estimated 20,000 protein coding genes in the human body4 and there are likely many 

more distinct proteins (e.g. splice variants) that behave differently and exist in different 

environments in the body. 

 Proteins are chains of amino acids that can be composed in nearly infinite ways to 

accomplish a dizzying breadth of functions that are crucial to life. While an exhaustive list of 

different protein functions is not practical, a few examples are worth highlighting. Proteins 

catalyze chemical reactions,5 proteins regulate how many (and which types) of other proteins 

should be in the cell,6 proteins recognize and deactivate other proteins from external pathogens,7 

proteins transport cargo across and between cells,8 etc.  

 The geometric structure that a protein adopts is an important determinant of how it 

functions. Upon production, many proteins fold into a unique three-dimensional structure, which 
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is determined by the protein’s primary sequence, or the composition of amino acid residues that 

make up the protein. A protein’s structure is one crucial feature that determines what it can 

interact with in its environment, and therefore is crucial to its function. For example, when a 

protein catalyzes a chemical reaction, it must “find” the chemical (i.e. small molecule) that it has 

evolved to interact with. This is achieved in part by having a pocket that is topologically 

complementary to the small molecule. 

Given the importance of protein structure, many decades of research have gone into 

determining protein structures with atomistic resolution. In 1958, myoglobin was the first protein 

to have its structure solved.9 Today, there are over 180,000 protein structures deposited in the 

protein data bank (PDB), which were solved using a variety of techniques including Nuclear 

Magentic Resonance (NMR),10 X-ray crystallography,11 and cryogenic electron microscopy 

(cryo-EM).12 More recently, in 2020, a computational method called AlphaFold was shown to 

accurately predict protein structures without the need for experimental data.13 With AlphaFold 

predicted structures there are now millions of structures available that provide detail on the exact 

positioning of all the atoms in a protein within ~1-2 Å error.  

 Beyond a protein’s native, folded structure, the way the protein structure fluctuates in 

solution is another important determinant of its function. Proteins are composed of atoms that are 

constantly in motion, which means that proteins adopt an ensemble of structural configurations 

when in solution. The structural diversity in these ensembles may range from subtle amino acid 

sidechain motions, which are important for coordinating ligand binding during enzyme 

catalysis,14 to large scale reorganizations like the 12 nm swinging of the myosin lever arm during 

muscle contraction.15 Many methods have been developed to characterize protein conformational 
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ensembles including NMR, fluorescence resonance energy transfer (FRET),16 Hydrogen 

Deuterium Exchange (HDX),17 and Molecular Dynamics simulations (MD).18 

1.2 Molecular Dynamics simulations provide atomistic 
resolution of a protein’s structural dynamics 
Molecular Dynamics (MD) simulations can serve as a computational microscope, providing a 

time-course trajectory of how a protein structure fluctuates in solution. Typically, MD 

simulations start with a protein molecule situated in a “box” of water where all atoms and bonds 

are modeled as balls and springs, respectively. MD simulations iteratively apply forces to each 

atom in the box over discrete timesteps to update the positions of all atoms. These forces come 

from bonded and non-bonded interactions between atoms in the system, where the interactions 

are typically parameterized by a combination of empirical observations and theoretical 

calculations, which makes up a “force field”.18 Provided a force field with perfect physical 

fidelity and a simulation of infinite timescale, one can accurately calculate the thermodynamic 

and kinetic behavior of the protein of interest. Of course, neither of these are possible in practice. 

Still, improvements to force fields and compute power over time have come with substantial 

progress in improving our ability to determine a protein’s conformational ensemble with MD 

simulations.19 

 Simulating protein dynamics contributes to our understanding of basic science. While 

experimental methods like NMR and FRET can measure protein dynamics on longer timescales 

than MD simulations, they cannot determine how the exact positions of a protein’s atoms evolve 

over time. The unique ability for MD simulations to capture this level of atomistic detail over the 

course of up to ~milliseconds of time20,21 means that MD simulations can provide mechanistic 
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insights impossible otherwise. As such, MD simulations have been instrumental for shaping our 

understanding of how proteins fold. In more recent work, MD simulations have helped us 

understand how protein conformational changes are an important part of protein function. For 

example, MD simulations of the SARS-CoV-2 spike protein have helped uncover how the spike 

protein opens to engage ACE2 receptors on human cells to infect them.22,23 Knowledge about 

important contacts in the spike trimer from these simulations helps inform how new variants of 

the spike may increase or decrease infectivity. 

 MD simulations have been particularly useful in situations where a system behaves 

differently with and without a perturbation (e.g. apo vs ligand bound), but experimentally 

determined structures do not explain why the systems behave differently. For example, different 

isoforms of the protein myosin have varying roles in different environments, but have almost 

identical native, folded structures.24 It has been shown that they manage these different functions, 

in part, by having altered preferences for certain structural states in their conformational 

ensemble. In a similar vein, Sultan et. al. used simulations to understand how structural 

fluctuations across seven different Src kinase family members tune their functions.25 

Importantly, this study identified structural states unique to each kinase, which could help in the 

development of drugs that can target each kinase specifically, rather than hitting the active site 

that is common to all seven kinases. 

 While MD simulations provide a wealth of protein structural data to explain protein 

function, it is challenging to determine which structural fluctuations are critical for function. Let 

us assume, for a typical MD simulation study, structural snapshots are saved every 20 

picoseconds, ~5 microseconds of data are accumulated, and the protein simulated contains ~250 
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amino acids. The end product is 250,000 structural snapshots, which contain thousands of atom 

positions in each snapshot. Analyzing every piece of this raw data is time consuming and, more 

importantly, it is challenging to wrangle this data into human interpretable conclusions. 

Therefore, there has been lots of research towards developing methods to analyze simulation 

data. Because of the high dimensionality of the problem, dimensionality reduction algorithms are 

often used. Common approaches include transforming the data into a Markov state model 

(MSM),26 applying principal component analysis (PCA)27 or similar algorithms like time-based 

independent component analysis (tICA),28 training neural networks,29 and simply choosing to 

focus exclusively on “collective variables” such as the distance between two residues based on 

some a priori knowledge about the system of choice. 

 Beyond advancing our understanding of basic science, MD simulations play an important 

role in the development of new medicines. One important goal when developing a new medicine 

is to identify a ligand that will bind to a protein with high affinity. In the MD simulation 

community, accurately computing the free energy of a ligand binding to a protein is a heavy area 

of focus. The SAMPL challenge is one way researchers evaluate how well MD simulation 

methods are progressing at this challenge. As one of its challenges, SAMPL holds out a test set 

of know protein-ligand binding affinities and methods are submitted to try and accurately predict 

this property.30 MD simulation methods have been progressing at this challenge, which has come 

with tangible benefits for drug development. For example, the COVID moonshot project has 

used simulation-based free energy calculations to figure out which small molecules should be 

prioritized as potential inhibitors for SARS-CoV-2 proteins, which could help treat the deadly 

COVID19 disease.31  
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 Identification and targeting of a protein’s “cryptic pockets” is another promising direction 

in medicine where MD simulations are making strong contributions. A structure of a protein’s 

native, folded state can reveal potential drug binding pockets, but leaves us blind to other 

potential pockets that form as the protein structure fluctuates in solution. There are over 100 

confirmed examples of these “other” binding pockets where a small molecule binds in a pocket 

on a protein which was not observable from any previously determined structure of that protein 

(i.e. a “cryptic pocket”).32 Since alternative structural states are known to be functionally 

important (e.g. for allostery,33 catalysis,34 ligand binding,35 etc.) and drugs designed to target 

cryptic pockets can modulate time spent in alternate states,36 cryptic pockets make for 

compelling drug targets. In fact, McCammon et. al. used MD simulations to discover a novel 

binding trench in HIV integrase,37 which led to the development of an antiretroviral drug 

raltegravir by Merck.38 Importantly, this binding trench was not observed in any previous 

determined structures of the HIV integrase, highlighting the utility of identifying cryptic pockets 

in simulation. 

1.3 Deep learning has made a lasting impact on protein 
biophysics 
In most scenarios where there is an abundance of data, machine learning algorithms are a 

suitable choice for effectively using the data. Machine learning algorithms are algorithms that 

learn through experience or by the use of data and can generally be categorized as supervised or 

unsupervised. Unsupervised machine learning algorithms try to highlight patterns in data without 

any explicit instruction on what might be important. Unsupervised algorithms such as clustering, 

PCA and neural network-based autoencoders39 are popular choices to apply to MD simulation 

data as they can highlight structural/dynamic properties in a protein that might be difficult to 
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notice otherwise. Supervised machine learning algorithms are trained to map inputs to outputs, 

which often requires that they find features in the data that separate two or more classes. 

Supervised machine learning algorithms have been used to predict sites of cryptic pockets in 

proteins,32 predict protein-protein interactions,40 predict protein/RNA structures,41 among many 

other tasks. 

 Most machine learning approaches developed over the past decade are “deep learning” 

methods based on artificial neural networks.42 Artificial neural networks emerged as a simple, 

more powerful extension of logistic regression. In logistic regression, input features (e.g. # of 

amino acid residues, net charge of protein, radius of protein) get mapped to an output (e.g. 

enzyme or not?) by multiplying each input feature by a weight, summing the values, and then 

applying a function that compress the value between 0 (e.g. not an enzyme) to 1 (e.g. is an 

enzyme). The weights are learned via example. Specifically, weights are changed such that they 

would make a more accurate prediction next time seeing the example, and this is done through a 

stochastic gradient descent algorithm.43 Artificial neural networks extend this by adding 

intermediate (“hidden”) layers that transform the input features through a successive series of 

multiplications with matrices of learned weights, with nonlinear “activation” functions between 

each matrix multiplication. The weights are updated by example through an algorithm termed 

backpropagation.44 The added layers allow neural networks to be more expressive than a logistic 

regression model giving neural networks the ability to approximate any function. 

Deep learning algorithms have become the dominant machine learning method employed 

across most domains including protein biophysics. In 2012, Krizhevsky et. al, developed 

AlexNet, a deep learning model that performed substantially better than any previous approach 
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for classifying images across ~20,000 classes.45 Since this accomplishment, deep learning has 

become the dominant approach used to tackle algorithmic challenges across many fields 

including computer vision,46 natural language processing,47 competitive gaming,48 and most 

recently protein biophysics. Within protein biophysics, the protein structure prediction problem 

has been deemed “solved” based on a deep learning algorithm called AlphaFold.13 This has 

enabled the characterization of millions of protein structures that were previously undetermined. 

Other notable deep learning breakthroughs include state-of-the-art work predicting RNA 

structure,41 predicting protein-protein interactions,40 predicting protein-ligand interactions,49 and 

predicting what protein sequence is capable of folding into a predetermined structure.50  

Accurately predicting drug binding sites is one area where deep learning is helping 

advance drug development. Before the rise of deep learning, the most common way to evaluate if 

a small molecule was a good candidate to bind a protein was via “docking”.51 In docking, one 

docks a small molecule drug to a pocket in the protein structure and scores the docked pose, 

using physics-inspired scoring functions, to determine if they are likely to bind to the protein 

target. Now, several companies are using deep-learning based algorithms to score docked poses 

after training the models to discriminate between small molecules that bind to a protein target 

from those that do not using known examples derived from the PDB.49,52 In a similar spirit, 

several deep learning algorithms have been developed to determine if a region on a protein 

structure is a “hot spot” for ligand binding, which helps researchers decide whether a protein is 

worth targeting.53,54 The deep learning based methods are not trained to identify cryptic pockets 

(i.e. pockets that are not present in the native structure), but other types of machine learning 

algorithms have shown that this goal can be achieved with reasonable accuracy.32 It is possible 

that a deep learning based approach would improve the performance on this task.   
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The impact of deep learning has mainly been felt in the world of static structures, but 

encouraging results are emerging that show the potential of applying deep learning to gain 

information about ensembles of protein structures. Improving our ability to sample structural 

ensembles is one major area of progress that can be attributed to deep learning examples. For 

example, Noe et. al. designed “Boltzmann Generators” which generate physically realistic 

alternate protein structural configurations in a manner that is Boltzmann distributed meaning 

thermodynamic information about the ensemble can be calculated from the generated 

structures.55 This accomplishes many of the goals of MD simulations, but has the potential to use 

substantially fewer computational resources. While promising, this method remains a proof of 

concept and has not been vetted at a large scale. In a similar spirit, several groups have made 

progress replacing traditional force fields, which are used to calculate Newton’s law of motion, 

by training deep learning models to accurately compute these forces.56,57 Through this type of 

approach one could, in principal, remove the bulk of atoms in simulation (i.e. water) and still 

accurately calculate a protein’s structural fluctuations. While this promises to reduce the 

resources needed to run simulations, the approach is not yet used regularly in practice. Finally, 

there has been an effort to use deep learning to speed up MD simulations by guiding the systems 

to sample functionally relevant regions of conformational space.58–60 This reduces the amount of 

compute resources spent sampling irrelevant conformations. In practice, none of the discussed 

approaches have been shown to generalize beyond a single protein per networked trained, which 

has greatly limited their utility. 

Deep learning is also starting to play a role in the analysis of conformational ensembles. 

Many non deep learning algorithms have been developed and employed successfully to analyze 

conformational ensembles, but the utility of each is limited by assumptions that are not 
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universally appropriate. For example, PCA finds linear combinations of features that retain as 

much of the geometric variance in the original data as possible,27 effectively assuming that large 

structural changes are more important than subtle ones. Unfortunately, there are many cases 

where this assumption is invalid, as in enzymes where arbitrary motions of a large floppy loop 

may dwarf subtle but functionally-relevant sidechain motions in the active site. Autoencoders,39 

deep learning based models, are a more powerful alternative since they consider nonlinear 

combinations of features. These neural networks learn a low-dimensional projection of data—

called the latent space—that is optimized to produce a high-fidelity geometric reconstruction of a 

protein configuration. However, like PCA, autoencoders still focus on capturing large geometric 

variations. Time-lagged independent component analysis (tICA) is another common approach.28 

It is similar to PCA but focuses on slowly varying degrees of freedom rather than emphasizing 

large geometric changes. However, there are many situations where the conformational changes 

of interest are fast relative to others (e.g. allostery within the native ensemble that is faster than 

folding and unfolding of the protein). Another recent approach, VAMPnets,29 combines ideas 

from autoencoders and tICA to achieve a dimensionality reduction that maps protein structures 

to metastable states. This allows VAMPnets to capture non-linearities that tICA cannot, but the 

assumption that slowly varying degrees of freedom are more important than faster ones is still 

limiting in many cases.  

1.4 Scope of Thesis  
While the application of deep learning models to protein biophysics has come with swift 

progress, there are areas of scientific and medicinal interest that could benefit from the 

development of new deep learning approaches. As discussed above, deep learning-based 

approaches for analyzing conformational ensembles are still in the nascent stages of 
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development. Specifically, comparing and contrasting conformational ensembles across similar 

systems remains a challenge. The intersection of deep learning, conformational ensembles, and 

drug development is another poorly studied area. Therefore, studies that employ deep learning 

methods to learn from conformational ensembles to inform drug development are needed. These 

studies would shed new light on the importance (or not) of conformational ensembles in drug 

development and inform on whether or not deep learning-based approaches are suitable for this 

problem. 

Chapter 2 details the development of DiffNets, a deep learning approach for comparing 

and contrasting conformational ensembles. Before the development of DiffNets, PCA, tICA, and 

autoencoders were commonly used to compare and contrast conformational ensembles derived 

from MD simulations. The main limitation of these approaches is that they have no explicit 

mechanism built in to them to highlight differences between datasets. DiffNets are an extension 

of autoencoders; they are augmented with a classification task that constrains them to learn a low 

dimensional representation of data that highlights features that distinguish two distinct datasets 

(e.g. two protein variants with different biochemical properties). Chapter 2 demonstrates the 

utility of DiffNets on a couple of examples. First, we showed that DiffNets can identify a 

structural signature of stability that distinguishes single-point variants of the bacterial protein 

TEM β-lactamase. Next, we showed that DiffNets can identify a structural signature that 

distinguishes low sequence identity isoforms of the motor protein, myosin. This work 

demonstrated that DiffNets is applicable to larger proteins that have perturbations beyond single 

point mutations. 
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While chapter 2 details the application of DiffNets to systems with well documented 

differences, chapter 3 uses DiffNets to highlight differences between conformational ensembles 

across systems that had not been previously described. Namely, we applied DiffNets to 4 

commonly occurring genetic variants of the human oxytocin receptor. Two of these variants have 

impaired signaling related to their interactions with β-arrestin, one variant has impaired signaling 

related to its interaction with Gq, and the other variant is the wild-type. After simulating all four 

variants, we trained separate DiffNets to look for signatures of β-arrestin and Gq impairment. 

Identifying the signatures that distinguish the variants helped identify several structural motions 

that appear to be critical for normal interaction with Gq and β-arrestin. 

Like many graduate students in my cohort, my research was massively interrupted by the 

onset of the COVID19 pandemic.61 This interruption shifted my research focus from 

understanding structural mechanisms (e.g. with DiffNets) to providing insight that may be 

relevant for the development of therapeutics. Toward this effort, I contributed to work that 

uncovered more than 50 new sites with druggability potential across the SARS-CoV-2 proteome 

(chapter 4). Specifically, we simulated most of the SARS-CoV-2 proteome to uncover cryptic 

pockets. The structural and thermodynamic characterization of the pockets provides a template 

for designing new antiviral inhibitors. 

In chapter 5, I explored the mechanism of activation and the druggability potential of a 

SARS-CoV-2 protein, nonstructural protein (NSP) 16. NSP16 is a methyltransferase that plays a 

key role disguising the SARS-CoV-2 genome from human immune proteins that evolved to 

recognize pathogens. Importantly, NSP16 is only active when in the presence of its binding 

partner, NSP10. Before the work in chapter 5, the mechanism of activation was unknown. 
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Comparing structural ensembles of the NSP16 monomer and the NSP10/16 dimer using DiffNets 

we found that NSP10 stimulates NSP16 by increasing its propensity to adopt structural 

configurations with an open active site. We also discovered a cryptic pocket in NSP16 that, when 

open, coincides with closing of the active site. Therefore, wedging this cryptic pocket open with 

a small molecule would serve to inactivate NSP16. This cryptic pocket opens in the SARS-CoV 

and MERS-CoV homologs, but not in the human homolog. Therefore, this discovery could help 

in the development of a pan-coronavirus inhibitor. 

Chapter 6 details a deep learning approach I developed to accelerate the discovery of 

cryptic pockets. Cryptic pockets are commonly discovered via molecular dynamics simulations 

or drug screening campaigns.62 Both of these methods are relatively slow and expensive. An 

algorithm that can quickly identify whether a protein has a cryptic pocket, and ideally locate 

where, would help researchers prioritize which proteins are worth simulating or screening. The 

state-of-the-art approach for this task is a supervised machine learning algorithm that was trained 

to identify cryptic ligand binding sites from ~90 examples in the PDB. The algorithm is slow (~1 

day to run on a single protein) and has only mediocre accuracy, which is likely due to the dearth 

of available data.32 Instead of training a model on known cryptic binding sites, I developed a 

model to predict protein breathing motions, which was trained on MD simulation data. This 

model predicts sites of known cryptic ligand binding pockets with similar accuracy to the 

previous state-of-the-art and it does so ~10,000x faster allowing it to be used in a high 

throughput manner. 

Chapter 7 concludes the thesis summarizing the achievements and discoveries made 

across studies and highlight future directions that can emerge from this work. 
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Chapter 2  

Deep learning the structural determinants of 
protein biochemical properties by comparing 
structural ensembles with DiffNets 
2.1 Preamble  
This chapter is adapted from the following article: Ward, M.D, Zimmerman, M.I., Meller, A., 
Chung M., Swamidass, S.J., and Bowman, G.R. (2021). “Deep learning the structural 
determinants of protein biochemical properties by comparing structural ensembles with 
DiffNets”, Nature Communications, 12, 3023. 

 

2.2 Introduction  
A mechanistic understanding of how a protein’s sequence determines its structural preferences 

and, ultimately, its biochemical properties is crucial for advancing our understanding of 

fundamental biology and for applications in precision medicine and protein engineering. 

Sequence variations can modulate a protein’s biochemical properties in a deleterious manner 

leading to morbidity and mortality,1,2 or in a manner that can improve a species fitness, e.g. 

conferring the ability to metabolize new substrates.3 Moreover, entire protein families with a 

wide range of functions and biochemical properties emerge after long timescale evolution of 

protein sequences. In either case, identifying the structural and dynamical differences between 

protein variants is a powerful means to understand the mechanism that connects a protein’s 

sequence and biochemical properties.4–9 Streamlining this process would make it easier to infer 

the behavior of new protein variants, which would accelerate protein engineering and the 
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interpretation of newly discovered variants. Understanding the structural basis for protein 

function and dysfunction can also accelerate the development of drugs and other therapeutics. 

Identifying the structural features that determine the biochemical differences between 

protein variants is often a difficult challenge, requiring one to consider the entire ensemble of 

structures that a protein adopts. Techniques like crystallography and cryoEM sometimes reveal 

dramatic structural differences between protein variants that readily explain their biochemical 

differences. However, there are also many cases where structural snapshots do not provide a 

clear explanation for the differences between variants,10 suggesting that one must consider the 

entire ensemble of thermally accessible configurations these proteins adopt to understand the 

biochemical differences between them11–13. Molecular dynamics simulations can provide access 

to these ensembles.14 However, there are many factors that make comparing these ensembles 

difficult. First of all, proteins have thousands of degrees of freedom that enable them to adopt an 

enormous number of different configurations15,16. Moreover, two ensembles may be highly 

overlapping, requiring one to identify differences in the probabilities of structural features that 

are present in both ensembles, rather than simply identifying features that are only present in one 

ensemble. For example, mutations in the enzyme TEM β-lactamase were found to determine its 

specificity by modulating the relative probabilities of different structures,12 but all the variants 

considered had a reasonable probability of adopting any of these structures. 

Dimensionality reduction algorithms play a crucial role in dealing with the enormity of 

conformational ensembles. Many powerful algorithms have been developed and employed 

successfully, but the utility of each is limited by assumptions that are not universally appropriate. 

For example, principal component analysis (PCA)17,18 finds linear combinations of features that 

retain as much of the geometric variance in the original data as possible, effectively assuming 
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that large structural changes are more important than subtle ones. Unfortunately, there are many 

cases where this assumption is invalid, as in enzymes where arbitrary motions of a large floppy 

loop may dwarf subtle but functionally-relevant sidechain motions in the active site. 

Autoencoders19 are a more powerful alternative since they consider nonlinear combinations of 

features. These neural networks learn a low-dimensional projection of data—called the latent 

space—that is optimized to produce a high-fidelity geometric reconstruction of a protein 

configuration (Fig. 2.1). However, like PCA, autoencoders still focus on capturing large 

geometric variations. Time-lagged independent component analysis (tICA)20,21 is another 

common approach. It is similar to PCA but focuses on slowly varying degrees of freedom rather 

than emphasizing large geometric changes. However, there are many situations where the 

conformational changes of interest are fast relative to others (e.g. allostery within the native 

ensemble that is faster than folding and unfolding of the protein). Another recent approach, 

VAMPnets,22 combines ideas from autoencoders and tICA to achieve a dimensionality reduction 

that maps protein structures to metastable states. This allows VAMPnets to capture non-

linearities that tICA cannot, but the assumption that slowly varying degrees of freedom are more 

important than faster ones is still limiting in many cases. Recent work suggests supervised 

machine learning algorithms aid in identifying features that distinguish structural states23. Here, 

we explore the idea of integrating supervised machine learning and dimensionality reduction 

algorithms. 

We hypothesized that requiring a dimensionality reduction algorithm to predict the 

biochemical differences between protein variants would be a powerful means to ensure that it 

identifies the relevant structural differences without being misled by a priori assumptions. 

Instead of assuming what type of variation is important (e.g. that large structural changes are 
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more important than smaller ones), such an algorithm would simply assume there are differences 

between two or more classes of data and then search for features that separate these classes. 

To test this hypothesis, we introduce DiffNets, a dimensionality reduction algorithm that 

uses a self-supervised autoencoder to learn features of a protein’s structural ensemble that are 

predictive of the biochemical differences between protein variants (Fig. 2.1). While we focus on 

protein variants, the algorithm should be equally applicable to other perturbations, such as 

understanding the impact of post-translational modifications and interactions with binding 

partners. DiffNets takes two inputs: 1) a set of molecular dynamics simulations for each protein 

variant and 2) the biochemical property of interest (e.g. stability or activity) for each variant. The 

algorithm then learns a low-dimensional projection (latent space) of the protein structures that is 

explicitly organized to separate structural configurations based on how closely they are 

associated with the biochemical property of interest. DiffNets achieve this by combining 

supervised autoencoders24 with self-supervision. Supervised autoencoders are multi-task 

networks. Like standard (unsupervised) autoencoders, they must learn a low-dimensional 

projection of the data that retains sufficient geometric information to reconstruct the original 

high-dimensional input (Fig. 2.1, left). However, supervised autoencoders add the additional 

requirement that the low-dimensional projection of the data be sufficient to predict a label, in this 

case one related to the biochemical property of interest. This second requirement forces the 

dimensionality reduction to dedicate representational power to identifying degrees of freedom 

that are important for the label instead of focusing exclusively on large structural changes. The 

classification task can be based on the entire latent space to minimize assumptions, or on a subset 

of the inputs (e.g. the region around a mutation, as in Fig. 2.1) to focus attention on critical areas. 

Self-supervision provides an automated way to deal with the fact that we know the biochemical 
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properties of variants (i.e. their entire structural ensemble), but the association between any 

specific structure and that biochemical property is unknown. This problem is non-trivial because 

there is likely to be overlap between ensembles (i.e. structures that are visited by all variants). 

Therefore, classifying all structures from variants without the property of interest as different 

than all structures from variants with the property is likely a misleading oversimplification. To 

overcome this limitation, we present an expectation maximization scheme that iteratively updates 

training labels to identify a subset of structures that are more probable for variants with the 

biochemical property of interest while allowing for overlap between the conformational 

ensembles of different variants. 

 

Figure 2.1 Comparison of autoencoder and DiffNet architectures.  
Standard autoencoder architecture (left) and an example DiffNet architecture (right). Autoencoders have an encoder 
that compress the input data to a bottleneck, or latent, layer and a decoder that expands the latent representation to 
reconstruct the original input. The DiffNet adds a classification task to the latent space. In the example shown, the 
input is split into two encoders. One is a supervised encoder that operates on atoms near the mutation (cyan) and 
must predict the biochemical property associated with a structure. The second encoder is unsupervised and operates 
on the rest of the protein (blue). The latent layers from these two encoders are concatenated and trained to 
reconstruct the original input. 
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To test the performance of DiffNets, we apply them to a set of four TEM β-lactamase 

variants, which differ by single point mutations, and to a set of eight myosin isoforms. First, we 

demonstrate how the DiffNet classification task alters dimensionality reduction of protein 

structures compared to standard autoencoders. Then, we use DiffNets to recapitulate known 

differences in β-lactamase variants’ folded ensembles that are predictive of changes in stability 

between variants. The relevant changes are geometrically subtle (< 1 Å distance change) 

compared to other motions, and thus, it originally took our group several months to identify 

them. Therefore, attempting to recapitulate this result is a challenging test case for new methods, 

such as DiffNets. Finally, we use DiffNets to understand the structural determinants of duty ratio 

(i.e. the amount of time a myosin protein spends attached to actin) among eight myosin isoforms. 

This is a difficult test case since small loop motions are critical for determining duty ratio, which 

is difficult to pick out in large (e.g. ~800 residues) myosin motor proteins. Further, the 

underlying amino acid sequences of isoforms are highly divergent, so success on this task would 

demonstrate that DiffNets are applicable to variants with more complex perturbations compared 

to single-point mutations. 

2.3 Results  

2.3.1 The DiffNet Architecture 

The DiffNet architecture is based on an autoencoder, which is a deep learning framework 

commonly used for dimensionality reduction4,25–36(Fig. 2.1). Like standard autoencoders, 

DiffNets connect an encoder and decoder network to compress and reconstruct input data, 

respectively. In our case, the input is protein XYZ coordinates (C,CA,N,CB) from a simulation 

frame, which are whitened for normalization (see methods). First, the encoder network 

transforms the input to progressively reduce the dimensionality of the input to a bottleneck layer, 
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called the latent space. Then, the latent space vector is used as input to the decoder network that 

attempts to reconstruct the original input. Mechanically, both the encoder and decoder operate 

via successive matrix multiplications and non-linear activation functions. DiffNets (and 

autoencoders) are initialized with random matrix multiplications, and the network improves by 

iteratively tuning the matrix values (weights) by training across many examples. Concretely, the 

weights are trained to minimize a loss function that measures the difference between the input 

and output of the model, called the input reconstruction error. Ultimately, if a DiffNet (or 

autoencoder) can compress and then reconstruct the original input with high accuracy, this 

implies that the low-dimensional latent space vector retains the salient features that describe the 

input. 

Inspired by supervised autoencoders24, DiffNets augment autoencoders with a loss 

function that measures how accurately the latent space vector performs a user-defined 

classification task (e.g. did the protein structure come from a wild-type or variant simulation?). 

Therefore, DiffNets must learn weights that simultaneously minimize protein reconstruction 

error and classification error. The constraint to minimize protein reconstruction error enforces 

that the low-dimensional representation of data retains a structural basis, and the classification 

constraint is designed to reconfigure the latent space such that data points are separated to 

highlight differences between datasets (e.g. biochemical differences between protein variants). 

While supervised autoencoders have been previously used as a way to obtain better performance 

on a classification task24, we use the classification task to learn a more interpretable low-

dimensional projection of data. Additionally, we propose an expectation maximization scheme 

such that classification labels are updated between DiffNet training epochs. This self-supervision 

provides an automated way to deal with the fact that we know the biochemical properties of 
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variants (i.e. their entire structural ensemble), but the association between any specific structure 

and that biochemical property is unknown. 

The DiffNet architecture can be split to focus the classification task on a region of 

interest within a protein. If there is a region of interest known a priori (e.g. region around a 

mutation, or an enzyme active site) the input may be split into two encoder networks. In this 

case, only the encoder with inputs from the region of interest performs a classification task, then 

the latent spaces from each encoder are concatenated for input to the decoder (see Fig. 2.1). This 

split architecture guides a DiffNet to search in the region of interest to find differences between 

variants. This is a reasonable default to use when studying single point mutations as the region of 

a mutation is root of differences between variants. Moreover, classifying based on a region of 

interest does not preclude the identification of relevant distal structural differences between 

variants. If a mutation causes biochemically relevant differences at distal regions then these 

regions are inherently linked to the state of the region of the mutation and, thus, are implicitly 

linked to the classification task.  

 

2.3.2 The Classification Task Reorganizes the Latent Space to Emphasize 
Biochemically-Important Structural Features 

Dimensionality reduction algorithms are only helpful for identifying differences between two 

classes of data if the two classes of data are separated in the latent space. Unsupervised 

autoencoders learn a latent representation of data that focuses on large geometric variations, so 

structures with large geometric differences are separated, while structures with subtle differences 

are close together. As a result, if biochemical differences between protein variants are related to 

subtle geometric changes, then the variants will be highly overlapping in the latent space and 
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thus, the autoencoder will fail to provide a useful way to distinguish variants. We hypothesized 

that augmenting a standard autoencoder with a classification task, as with DiffNets, would 

reorganize the latent space to highlight relevant differences between datasets, even if they are 

subtle structurally.  

In order to test this hypothesis, we applied DiffNets and autoencoders to a set of variants 

of the enzyme TEM β-lactamase. β-lactamase is an enzyme that confers bacteria with antibiotic 

resistance by metabolizing β-lactam drugs like penicillin37. Bacteria are quick to evolve new 

variants of TEM that have activity against new drugs, but these mutations are often destabilizing, 

so compensatory mutations evolve to restore stability38–40. M182T is one stabilizing mutation 

that frequently appears in clinical isolates41,42. While crystal structures of the wild-type and 

M182T proteins had been solved, comparing them did not provide a conclusive mechanism for 

stabilization capable of predicting the impact of other variants. Recently, our group combined 

simulations, NMR experiments, and x-ray crystallography to demonstrate that compaction of 

helix 9 is a structural signature that distinguishes more stable variants (like M182T) from less 

stable ones (Fig. 2.2). This compaction is associated with stronger h-bonds along helix 9 that 

stabilize this secondary structure element. Helix 9 is part of a crucial interdomain interface, so 

stabilizing it ultimately stabilizes the native state relative to an intermediate where one domain is 

at least partially unfolded. Importantly, this helix compaction includes distance changes of less 

than 1 Ångstrom between hydrogen bonding partners. Given that this is geometrically subtle 

compared to nearby loop motions, we expect that compact and extended helix states will not be 

well separated in the latent space of a standard autoencoder. However, we do expect that a 

DiffNet trained to classify compact and extended helix states will learn a latent space that 

separates these states. 
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Figure 2.2 Helix 9 compaction distinguishes structural ensembles. 
Structural configurations sampled from molecular dynamics simulations of wild-type TEM β-lactamase (grey) and 
an M182T variant (red) that is far more stable. Helix 9 is circled in yellow and shown below in a compact 
configuration (left, red) and a more extended configuration (right, grey). Hydrogen bond distances are shown in 
Ångstroms. 
 

To evaluate if the DiffNet classification layer alters the latent space in a way that helps 

identify differences between two classes of data, we compared the latent space of DiffNets to the 

latent space of unsupervised autoencoders after training on a dataset that includes two classes of 

data distinguishable by a subtle difference in helix 9 compaction. From the original set of 

650,210 structures (from wild-type and M182T simulations) we curated a dataset of 178,402 

simulation frames from wild-type and M182T simulations where half of the frames have a 
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compact helix 9 (helix compaction criteria described in Methods) and half have a more extended 

helix. Then, we trained DiffNets and unsupervised autoencoders using a split architecture 

described in the methods and visualized in Figure 2.1b. The DiffNets and autoencoders we 

trained were identical, except the DiffNet has an additional output layer such that it has to 

classify helix 9 as compact or extended in addition to reconstructing protein structures. The 

classification labels are not updated with expectation maximization in this case. This dataset was 

selected specifically to evaluate how the classification task of the DiffNet alters the 

dimensionality reduction compared to a standard autoencoder. In a normal setting we would not 

have a priori knowledge about the importance of helix 9 compaction. However, this is an 

important test to determine if adding a classification task can reorganize the latent space to 

highlight differences between datasets, which is a property that DiffNets will ultimately need to 

identify differences between variants. 

Requiring DiffNets to perform a classification task in tandem with dimensionality 

reduction successfully reconfigures the latent space to disentangle compact helix configurations 

from more extended helix configurations. First, we note that DiffNets and unsupervised 

autoencoders have similar ability to reconstruct protein structures (~1 Ångstrom error  - see 

Figure 2.3) using as few as three latent variables and as many as fifty, which is in line with 

another study reporting autoencoder reconstruction error27. To compare latent spaces, we analyze 

a split architecture that has twenty-five latent variables including three in encoder A (which 

receives input including helix 9 and performs the classification task in the DiffNet) and twenty-

two in encoder B (takes input from the rest of the protein). This architecture provides a low 

reconstruction error (< 1 Ångstrom) and few enough latent variables so that all dimensions in 

encoder A’s latent space can be visualized. In the unsupervised autoencoder, simulation frames 
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of compact and extended helices are overlapping in encoder A’s latent space (Fig. 2.4a). This 

demonstrates that training an unsupervised autoencoder on two classes of data does not 

necessarily yield a latent representation that provides any insight into how the two classes of data 

are different. To explore this point further, we held the autoencoder’s latent space constant and 

then trained it to classify whether a structure has a compact or extended helix 9 (i.e. performed 

logistic regression). The resulting receiver operating characteristic (ROC) curve, which measures 

classification performance, shows a classification performance similar to random guessing (area 

under the curve [AUC]=0.54) providing further evidence that the latent representation does not 

help distinguish the two classes of data. In contrast, the DiffNet encoder A latent space clearly 

separates the two classes of data (Fig. 2.4a) and has excellent performance classifying compact 

and extended helix states (AUC=0.91, Fig. 2.4b). This result demonstrates that adding a 

classification component to the learning task provides a powerful means to learn a low 

dimensional representation that highlights crucial differences between datasets. It follows that 

DiffNets trained with a classification task that must predict a biochemical property should learn a 

low dimensional representation of data that highlights structural features that are predictive of 

biochemical differences between protein variants. 
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Figure 2.3 DiffNets accurately reconstruct protein structures. 
Autoencoders and DiffNets can both compress protein structures and then reconstruct them. (a) Reconstruction error 
plots showing the root-mean-square deviation (RMSD) between a protein structure from simulation and the 
corresponding protein structure generated by unsupervised autoencoders (yellow) or DiffNets (blue). One of every 
ten structures from wild-type and M182T simulation data was used (n=65,210) and the standard deviation is shown 
with error bars. (b) Structure representing the difference between a structure generated by the DiffNet (blue) vs. the 
actual conformation from simulation (grey) when training with 3 latent variables. 
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Figure 2.4 Classification task reorganizes DiffNets latent space.  
Adding a classification component to the learning task (as in DiffNets) results in a latent representation that 
separates different datasets more clearly than an unsupervised autoencoder. (a) Simulation frames that have a 
compact helix (red) and an extended helix (black) are projected onto the three-dimensional latent space learned by 
an unsupervised autoencoder (left) and a DiffNet (right). The decision boundary (black dotted line) indicates the 
plane that each neural network uses to separate compact helix states from extended helix states. (b)Receiver 
operating characteristic (ROC) curve showing the average classification performance of the unsupervised 
autoencoder (dark yellow) and the DiffNet (dark blue) as well as the performance for each of the 5 folds of cross 
validation (faded dotted lines). Mean area under the ROC curve (AUC) is shown in the bottom right corner with the 
standard deviation across the 5-folds of training. 

2.3.3 Self-Supervised DiffNets Learn Structural Signatures Associated with 
Protein Stability  

While the classification task can help DiffNets learn a useful dimensionality reduction, realizing 

this potential is non-trivial because we know the biochemical properties of variants (e.g. their 
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entire structural ensembles) but not individual structures. The simplest approach to providing 

these classification labels would be to assign ones to structures from simulations of variants with 

the biochemical property of interest and zeros to structures from simulations of variants without 

the property. However, it is likely that variants fall on a continuum rather than having a 

biochemical property or not, that their conformational ensembles overlap, and that only a subset 

of conformations are relevant for determining the property of interest. 

This problem is similar to multiple instance learning. During multiple-instance learning, 

learners are given bags of training examples where each bag is labelled negative, indicating that 

the bag contains all negative examples, or positive, indicating that there are at least some positive 

examples in the bag. The learner then must figure out how to label all of the individual instances 

as positive or negative by identifying features that are consistent in positive bags, but absent in 

negative bags. This is similar to our situation where we know the biochemical property of each 

protein variant (i.e. negative bag or positive bag), but we do not know if a given structural 

configuration is associated with a biochemical property, or inconsistent with a biochemical 

property.  

We propose a self-supervised approach for learning the relationship between individual 

structures and the biochemical property of interest using an iterative expectation maximization 

algorithm based on work from Zaretski et. al.43  Expectation maximization is a statistical method 

that allows the parameters of a model to be fit, even when the outputs of the model cannot be 

observed directly in the training data44 (i.e. when they are hidden). In our case, the hidden 

variables are labels for each structure that specify the probability that a structure is associated 

with the biochemical property of interest. These labels are initially set to ones for all structures 

from variants with a given biochemical property (e.g. more stable β-lactamase variants) and 
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zeros for variants without that property (e.g. variants with lower stabilities). Then the expectation 

maximization algorithm iteratively alternates between a maximization step and an expectation 

step to identify a self-consistent set of labels. During the maximization step, a DiffNet is trained 

to predict the current labels for each structure. Then, the expectation step refines the training 

labels by computing the expected values of the labels, 𝑦, using the output from the DiffNet, 𝑦", 

conditioned on constraints about what fraction of structures from each variant we expect to be 

associated with the property of interest. This constraint provides a way to enforce that more high 

probability values are assigned to structures from variants with the biochemical property. The 

expectation is the probability-weighted average of all binary realizations of binomial 

distributions parameterized by 𝑦", excluding binary realizations that do not meet the constraint. 

Formally, we update training labels as, 

 

𝑦# = 𝐸[	𝑦(#	|	𝑆+ ≤ 	𝑦"- ≤ 𝑆.	] (1) 

 

 

= 𝑃(𝑦"#	is	1) ∗ 7
𝑃(𝑆+ − 1 ≤ 𝑦"- − 𝑦"# ≤ 𝑆. − 1

𝑃(𝑆+ ≤ 	𝑦"- ≤ 𝑆.)
9 (2) 

 

where 𝑦# is the updated label for each individual frame, 	𝑦(# is the DiffNet output,  𝑆+  and 𝑆. are 

the lower and upper bounds on how many conformations in a batch are associated with the 

biochemical property, 	𝑦(- is the sum of the binary outcomes of a batch which contains 

conformation 𝑖, 𝑃(𝑆+ − 1 ≤ 𝑦"- − 𝑦"# ≤ 𝑆. − 1) is the probability that the number of 

conformations in a batch is within the limits if conformation 𝑖 is ignored, and 𝑃(𝑆+ ≤ 	𝑦"- ≤ 𝑆.) 

is the probability that the number of conformations in a batch is within the limits, including 
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conformation 𝑖.  Ultimately, the desired outcome is that the expectation maximization algorithm 

redistributes training labels from all 0s and 1s for simulation frames of variants without and with 

a biochemical property, respectively, to values that indicate the probability that a given structural 

configuration is associated with the biochemical property of interest. This mechanism is self-

supervised since the training labels are learned by the algorithm, rather than explicitly curated. 

To test this approach, we trained a self-supervised DiffNet to identify structural 

preferences that distinguish two highly stable β-lactamase variants (M182T and M182S) from 

two less stable variants (wild-type [WT] and M182V). In this case, the DiffNet receives no a 

priori information about features, like helix 9 compaction, that are associated with increased 

stability in M182T and M182S. If self-supervision of DiffNets works as expected, then training 

should produce a latent space where it is easy to identify the structural features that are 

associated with the stability of M182T and M182S, relative to WT and M182V. For example, we 

expect to see structural configurations with a compact helix 9 in one region of the latent space 

and structures with a more extended helix elsewhere. Beyond helix compaction, DiffNets may 

even capture additional structural features that were missed in our previous manual analysis. To 

evaluate if the DiffNet learns these biochemically relevant structural differences between 

variants, we trained a DiffNet on 6.5µs of simulation data for each variant: M182T, M182S, WT, 

and M182V. All frames from M182T and M182S (highly stable variants) were initially assigned 

classification labels of 1, and simulation frames from M182V and WT were initially assigned 0s. 

During the expectation maximization procedure, we calculate the expected values (updated 

labels) conditioned on the constraint that 0-30% of less stable variants frame are likely to be 

stabilizing, and 60-90% of frames for highly stable variants. In general, it should be sufficient to 

base bounds on qualitative a priori knowledge rather than precise, quantitative information. In 
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this case, we chose these bounds as a way to allow overlap between ensembles, but still provide 

a clear signal to distinguish more and less stable variants. Empirically, we find that DiffNets are 

robust across a wide range of bounds (Fig. A.1.1). 

Expectation maximization aids the DiffNet in learning a low-dimensional representation 

that accurately identifies that helix 9 compaction is associated with highly stable variants. First, 

we trained two supervised autoencoders (one with and one without expectation maximization) 

and compared the distribution of output classification labels. Without expectation maximization, 

almost all structures from more stable variants have output labels close to 1, and structures from 

less stable variants have output labels close to 0 (Fig. 2.5a). This is at odds with the fact that 

there is structural overlap between the ensembles. It indicates that the supervised autoencoder 

essentially memorizes which ensemble each structure comes from instead of learning a useful 

association between individual structures and stability. In contrast, when expectation 

maximization is applied the output labels span the full spectrum from 0-1 for each variant (Fig. 

2.5b), which is consistent across a wide range of expectation maximization bounds (Fig A.1.1). 

Moreover, as the labels increase from 0 to 1, helix 9 compaction smoothly decreases, which 

indicates that DiffNets learn a latent space with a continuum of structures that are less/more 

closely associated with stability (Fig. 2.5c). Without expectation maximization, the extreme 

labels (i.e. 0,1) track well with helix stability, but structures labelled between 0.1 and 0.9 do not 

show a clear trend of helix compaction. 

Using DiffNets to predict on a variant outside of training provides further support that 

expectation maximization aids in learning structural features associated with stability. We 

compared each model’s ability to predict the stability of a less stable variant not seen during 

training (M182N), and we find that this prediction is improved when expectation maximization 



 36 

is applied (Fig. A.1.2). This suggests expectation maximization helps DiffNets hone in on 

biochemically relevant structural features, and that DiffNets could be used as a predictive tool. 

However, we caution that autoencoders will fail anytime they are applied to data that is highly 

dissimilar from the training set, so a DiffNet will not perform well on new variants that visit 

conformations not visited in the training set. Future studies would be necessary to optimize 

DiffNets for prediction and should be evaluated against related methods such as by Riesselman 

et al45.  
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Figure 2.5 DiffNets learn helix 9 compaction is important for distinguishing variants. 
Self-supervision improves the DiffNet’s ability to organize structural configurations based on their biochemical 
property. Histogram showing DiffNet output labels across all simulation frames from M182T and M182S (red – 
highly stable variants in training set) versus WT and M182V (grey – less stable variants in training set) for a 
supervised autoencoder (a) and a self-supervised autoencoder (b). (c) Three key hydrogen bond lengths in helix 9 as 
a function of the DiffNet output label (n=1,300,420) (yellow – supervised, black – self-supervised), which ranges 
from zero for structures associated with low stability to one for structures associated with high stability. The 
distances are between the carbonyl carbon of the i’th residue and the nitrogen of the (i+4)’th residue. Standard error 
bars are not visible since the standard error is smaller than scatter points. 
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While many deep learning approaches are criticized for their lack of interpretability, the DiffNet 

architecture provides opportunities to understand what the network learned, which provides 

biophysical insight. To automate DiffNet interpretation, we measured all inter-atom distances 

within 1nm of the mutation using 2000 cluster centers calculated from all simulations and then 

measured the linear correlation between each distance and the DiffNet output label. We plot the 

top 1% of distances correlated with the DiffNet output label to visualize the conformational 

changes that the DiffNet views as important for distinguishing stable variants from less stable 

variants. Encouragingly, the distance correlations strongly point to helix 9 compaction as an 

important feature of more stable variants (Fig. 2.6). While the helix compaction is striking, 

DiffNets also captured other trends that our previous computational analyses did not detect. For 

example, our NMR data suggested that the packing between helix 9 and adjacent β-sheet differs 

in more stable vs less stable variants,5 but our computational analysis did not detect a clear trend. 

On the same simulation dataset, the DiffNet clearly learns that this interface becomes more 

tightly packed for more stable variants (Fig. 2.6). Specifically, the DiffNet analysis suggests 

more stable variants have tighter packing at the helix 9 and β-sheet interface (Fig. 2.6b). Often 

times the important features that distinguish protein variants can be complicated and, therefore, 

easily missed even with months of analysis. DiffNets can learn complicated features and help 

automate the process of identifying biochemically relevant structural features that distinguish 

protein variants. 
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Figure 2.6 Automated feature detection reveals what DiffNets learn. 
Visualization of the features that DiffNets find important for increased stability of M182T and M182S variants. (a) 
Crystal structure of TEM β-lactamase (PDB ID: 1JWP) overlaid with dotted lines that indicate distances between 
two atoms that change in a way that is strongly correlated with an increased DiffNet output label. Red indicates the 
atoms move closer together as the output label increases, blue indicates atoms moving away from each other. The 
mutated residue is highlighted with a yellow sphere. Protein atoms are colored cyan if they are near the mutation, 
which indicates that they were included in the classification task and considered for the distance correlation 
calculation. (b) Rotated inset of (a) showing DiffNet predicted packing at the interface of helix 9 and the adjacent β-
sheet. Residues with chemical-shift perturbations in M182S relative to wild-type are shown in deep olive. 
 

2.3.4 DiffNets works for other proteins and more divergent sequences  

In order to explore the broad applicability of DiffNets, we also trained a self-supervised DiffNet 

to identify structural features that distinguish high duty myosin motor domains from low duty 

myosins.  Myosins are a ubiquitous class of motor proteins that perform an extraordinary 

diversity of functions despite sharing a common mechanochemical cycle.46 In order to perform 

roles as diverse as muscle contraction and intracellular transport, myosins have precisely tuned 

their duty ratios, or the fraction of time a myosin spends attached to actin during one full pass 

through its mechanochemical cycle. Recent work from Porter et al.47 suggests that the 

conformational ensemble of the active site P-loop encodes duty ratio through the balance of 

nucleotide favorable and unfavorable states. Specifically, low duty motors have an increased 

propensity to adopt a P-loop “up” state, where the S180 carbonyl group sterically occludes 
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nucleotide binding, whereas high duty motors favor a “down” state, where the P-loop is 

nucleotide compatible (see Fig. 2.7b). 

We trained a DiffNet using molecular dynamics simulation data from the active sites of 

four low duty motors and four high duty motors to see if we could recapitulate the trend between 

P-loop dynamics and duty ratio (Fig. 2.7a). Importantly, this test case is especially challenging 

because it includes eight different proteins with a low degree of sequence conservation in the 

area of interest (i.e. 34% of residues were perfectly conserved within the training area). Low duty 

motors were given an initial label of zero and high duty motors were initially given a label of 

one. 

A DiffNet trained to distinguish high and low duty myosin motors substantiates previous 

work that identified P-loop dynamics to be important for distinguishing these myosins. To 

determine if a DiffNet captures the importance of P-loop “up” and “down” states, we examined 

structures with low and high DiffNet output labels (i.e. predicted low and high duty respectively) 

from a single isoform. We saw a consistent trend in the orientation of the S180 carbonyl group, 

where structures with high DiffNets labels are in the “down” orientation and structures with low 

labels are in the “up” orientation (see Figure 2.7b). This indicates that the DiffNet correctly 

learned that high-duty motors are more likely to be in the “down” state and vice-versa. To more 

precisely quantify this trend, we examined the correlation between DiffNet output labels and 

nucleotide compatibility (as defined previously47) for all frames. We find that as the DiffNet 

output labels increase (i.e. shift from low duty to high duty), there is a concurrent increase in the 

ratio of nucleotide favorable:unfavorable states (Fig. 2.7c). 

Automated interpretation of a DiffNet captures the importance of P-loop dynamics and 

suggests other order parameters that may distinguish high and low duty myosins. Similar to 
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Figure 2.6, we calculate the correlation between interatomic distances and DiffNet output labels 

for all 139,129 distances around the active site (Figure 2.7a) and then project the top 100 

correlated distances onto the structure (Fig. 2.7d). This analysis finds 78 distances between the 

P-loop and the loop connecting the third beta sheet with the SH2 helix (referred to as the β3-SH2 

loop), again highlighting that the DiffNet learns that P-loop dynamics are important for 

discriminating high and low duty motors. We compared this result to a model trained without 

expectation maximization and find that expectation maximization improves the quality of this 

analysis. Specifically, changes in Ser180 are strongly detected when expectation maximization is 

applied, but without expectation maximization these changes are not detected at all (Fig. A.1.3). 

The DiffNet also infers that high duty motors are more likely to occupy states where the P-loop 

is near to the β3-SH2 loop, and indeed this finding is confirmed using previously published 

Markov State Models of the motor domains (see Figure 2.7e). Since the β3-SH2 loop is below 

the P-loop, this provides further evidence that the DiffNet is correctly learning that high duty 

motors prefer the “down” state. While this order parameter is the predominant feature of this 

analysis, the DiffNet suggests that other distances may be important for distinguishing high and 

low duty motors. In particular, there are two residues on switch-II with distances that are 

strongly correlated with the DiffNet label indicating that conformational changes in switch-II 

may be important for determining the duty ratio, which is consistent with previous findings48 

(see Fig. A.1.4).  
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Figure 2.7 DiffNets capture known P-loop motions that distinguish myosin isoforms. 
DiffNets capture the importance of P-loop motions in distinguishing high and low duty myosin motor proteins. (a) 
Structure of a myosin motor protein (PDB ID: 4PA0) showing the DiffNet classification region (cyan), the P-loop 
(magenta), and Switch-II (Orange). (b) Twenty states predicted by the DiffNet as high duty (teal) and low duty (dark 
gold). Predicted high duty states are mostly in a nucleotide compatible, P-loop “down” conformation and vice-versa 
for predicted low duty states. (c) Percentage of nucleotide favorable (teal) and unfavorable (dark gold) states as a 
function of the DiffNet output label, measured with 10 equally spaced bins with labels spanning 0-1. Most structures 
with low Diffnets labels are nucleotide unfavorable, and vice-versa. (d) Inset of the myosin active site. Dotted lines 
indicate distances between two atoms that change in a way that is strongly correlated with an increased DiffNet 
output label. Red indicates the atoms move closer together as the output label increases, blue indicates atoms 
moving away from each other. (e) Cumulative distribution function showing the distance between S180 (P-loop) and 
T682 (β3-SH2 loop). Probabilities come from a previously published MSM47. This distance clearly separates high 
and low duty motors (green and light brown, respectively) as predicted by the DiffNet in (d). 
 

2.4 Conclusions  
We have introduced DiffNets, a deep learning framework for identifying the structural signatures 

that are predictive of biochemical differences between protein variants from molecular dynamics 

simulations. Such simulations contain valuable information about the structural mechanisms that 

determine proteins’ biochemical properties. However, extracting this insight is often difficult 

because of factors like the high dimensionality of the spaces involved and overlap between the 
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structural ensembles for different variants.  Our results suggest that self-supervised DiffNets 

learn a low-dimensional latent representation of protein structures that separates them based on 

their association with biochemical properties, such as higher or lower stability. This success 

relies on two key innovations. First, performing dimensionality reduction simultaneously with a 

classification task helps yield a latent representation that organizes protein structural 

configurations based on their association with biochemical properties. Second, challenges with 

labelling each structure with a biochemical property can be overcome using an expectation 

maximization scheme inspired by multiple instance learning.  

As a proof of principle, we demonstrated that DiffNets automatically identify structural 

changes that explain biochemical differences between variants in several systems including β-

lactamase and myosin proteins. Success identifying helix 9 compaction (< 1 Å)  as an important 

distinguishing factor between β-lactamase variants demonstrated that DiffNets finds 

biochemically relevant structural features even if they are geometrically subtle relative to other 

structural fluctuations in the protein. Success identifying the importance of P-loop dynamics for 

determining the duty ratio across myosin isoforms demonstrated that DiffNets is generalizable to 

large proteins (~800 residues) with low sequence conservation. Looking ahead, we expect the 

same architecture to be applicable to other perturbations, such as post-translational modifications 

or the presence/absence of a binding partner.  

While these results are promising, future work can be done to expand the utility of 

DiffNets further. For example, the DiffNet architecture is not translationally, nor rotationally, 

invariant, which means the results depend on the quality of the initial alignment of simulations. 

Future work exploring equivariant architectures may improve DiffNets. Additionally, the current 

study included an abundance of data, so there were no optimizations for working with small 
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datasets. It is yet to be seen how well DiffNets performs on smaller (sub-microsecond) datasets. 

Lastly, after training a DiffNet it is possible to use the model to predict the biochemical property 

of a variant for which the property has not been determined experimentally. Toward this end, we 

showed that DiffNets accurately classified the stability of a β-lactamase variant (M182N) that 

was not seen during the training. However, accurate predictions will require that the variants of 

interest have high conformational overlap, and future studies are required to optimize a model 

for this task.  

2.5 Methods 

2.5.1 MD Simulations  

All molecular dynamics simulation data were generated in previous manuscripts by Zimmerman 

et. al5 and Porter et. al47. Briefly, all simulations were run with Gromacs 5.1.1 at a temperature of 

300K using the AMBER03 force field with explicit TIP3P solvent49,50. β-lactamase simulations 

were initialized from the TEM-1 β-lactamase crystallographic structure (PDB ID: 1JWP 

[https://www.rcsb.org/structure/1JWP])39 and ran at 300K using the AMBER03 force field with 

explicit TIP3P solvent49,50. Each variant, wild-type, M182V, M182T, M182S, and M182N was 

simulated for 6.5 µs including 4 µs of FAST-RMSD adaptive sampling51 and 2.5 µs of 

conventional sampling. Conformations were stored every 20 ps. Myosin simulations were 

performed mostly on Folding@Home52 to obtain ~2 milliseconds of total sampling across four 

low duty (MYH13, MYH7, MYH10, and MYO1B) and four high duty motors (MYO5A, 

MYO6, MYO7A, and MYO10), where the initial structures were built from homology models in 

SWISS-MODEL53 using the 4PA0 [https://www.rcsb.org/structure/4PA0]54 as a guide template 

structure. 
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2.5.2 DiffNet Model 

DiffNets are neural networks with a supervised autoencoder architecture (as shown in Figure 

2.1). These models take as input a vector of features that describe a protein structural 

configuration and output a score which indicates how closely a structure is associated with a 

certain biochemical property, as well as, a vector that matches the input vector (i.e. reconstructs a 

protein structure).  

 

2.5.3 EM algorithm 

The goal of the algorithm is to find a vector K, that maps each structure to a value between 0 and 

1 that maps to the biophysical property of the structure (e.g. stability). We initialize K with all 1s 

for structures from variants with the biophysical property of interest, and all 0s for structures 

from variants without the biophysical property of interest. Then, we alternate between M- and E- 

steps to update the vector K. First, the M-step fits a neural network using K as classification 

targets. Next, the neural network outputs a vector of scores for structures, Y. Then, we apply an 

E-step to update the values in K. Specifically, we compute the expected value of each structure 

where we treat a set of structures as binomial random variables parameterized by Y, conditioned 

on user-defined bounds on the number of successes (i.e. structures with the biochemical 

property) for each variant. The expected values are computed as the probability-weighted 

average of all binary realizations of binomial distributions parameterized by Y that are within the 

user-defined bounds. These expected values provide an updated K, allowing us to repeatedly 

iterate between M- and E- steps. We refer the reader to Appendix and our previous work for a 

more thorough discussion of the algorithm. 
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2.5.4 Featurization 

Simulation data was preprocessed before becoming input to the DiffNets. Simulation trajectories 

and the original crystallographic structure (PDB ID: 1JWP 

[https://www.rcsb.org/structure/1JWP]) are stripped down to the XYZ coordinates of the protein 

backbone without carbonyl oxygens (C, CA, CB, and N). Then, the trajectories are centered at 

the origin and aligned to the crystallographic structure. Next, we follow a procedure similar to 

Wehmeyer and Noe31 to mean-shift the XYZ coordinates to zero, followed by whitening. First, 

we mean shift, 

 

𝑥=>?@AB->> = C𝑥# − �̅�
EF

#GH

(3) 

 

 

where 𝑥=>?@AB->>  is the mean-shifted trajectory of XYZ coordinates, 𝑥# is a single frame with 

XYZ coordinates, �̅� is the mean of the XYZ coordinates across all trajectories, and 𝑁K is the 

number of frames in all trajectories.  

Next, we whiten the data, 

 

𝑥L = 	𝐶NN
AHO	𝑥=>?@AB->> (4) 

 

 

where 𝑥L is the whitened trajectory of XYZ coordinates and 𝐶NN	  is the covariance matrix for the 

XYZ coordinates. Whitening decorrelates the inputs and adjusts their variance to be unity. After 
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whitening, we use one out of every ten simulation frames for each epoch of DiffNet training. In 

practice, whitening and unwhitening of the data is performed on the input XYZ coordinates 

directly in the DiffNet with frozen (untrainable) weights. For myosin, we subsampled the data to 

use only one of every ten simulation frames. 

 

2.5.5 Classification Targets 

To train the model we need a target for each protein structural configuration. We assign initial, 

binary targets based on the observed biochemical property (e.g. 1s for more stable variants, 0s 

for less stable variants). Our assumption that individual configurations can be mapped to 

biochemical properties is consistent with studies that attribute specific structural states to a 

biochemical property (e.g. an enzyme primed for catalysis) and designate other individual 

structural states as being incompatible with a biochemical property (e.g. an enzyme in an inactive 

state). Next, we iteratively update the initial labels with an expectation maximization algorithm 

(described above). This relaxes the labels such that structural configurations are on a continuum. 

This effectively turns the problem into a regression problem instead of a classification problem, 

which is consistent with the observation that most biophysical observables are on a continuum. 

 

2.5.6 Neural Network Training 

We trained DiffNets with three loss functions to minimize protein reconstruction error (ℓR>ST@), 

minimize feature classification error (ℓUV?WW), and minimize the correlation of latent space 

variables (ℓUT--). 

ℒY#BBE>K = ℓR>ST@ +	ℓUV?WW +	ℓUT--	 (5) 
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The reconstruction loss term attempts to tune the network weights to properly reconstruct the 

original XYZ coordinates of the protein. This loss combines an absolute error (L1), which 

funnels reconstructions to the proper XYZ coordinates, and a mean-squared error (L2) to 

strongly discourage outliers. Explicitly, 

 

ℓR>ST@ =
1
𝑁\
C

1
𝑁@
	C]^𝑥#_ − 𝑥"#_^ + `𝑥#_ − 𝑥"#_a

Ob
Ec

_GH

Ed

#GH

(6) 

		 

 

where 𝑁@ is the number of output nodes (all XYZ coordinates), 𝑁\ is the number of examples in 

a training batch, 𝑥#_ is a target value (actual XYZ coordinate), and 𝑥"#_ is the output value from 

the DiffNet.  

The classification error is a binary cross entropy error that penalizes misclassifications by 

the latent space. This classification loss attempts to constrain the latent space to learn a 

dimensionality reduction that can also classify a biophysical feature. Explicitly, 

 

ℓUV?WW = 	
1
𝑁\
C𝑦# ∗ log(𝑦"#) + (1 − 𝑦#) ∗ log(1 − 𝑦"#)
Ed

#GH

(7) 
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where 𝑁\ is the number of examples in a training batch, 𝑦# is the target value, a binary value 

indicating if a simulation frame has a specific feature or not, and 𝑦"# is the output of the 

classification layer by the DiffNet.  

Finally, we include a loss function to minimize the covariance between latent space 

variables. This loss takes the form of 

 

ℓUT-- = 	C𝐶𝑜𝑣`𝑧#, 𝑧_a
O

#n_

(8) 

 

where 𝐶𝑜𝑣(𝑧#, 𝑧_) is the covariance matrix of the latent vector, Z, across all 𝑁\ samples in a 

training batch.  We reason that preventing redundancy in latent variables should maximize the 

amount of information one can gain in a small number of variables. Ideally, this sets us up to use 

just a few latent variables and still have a rich amount of information. With fewer latent 

variables, models are generally more interpretable. 

Our training procedure uses several training iterations to progressively build in hidden 

layers of the DiffNet. First, we train a minimal version of a DiffNet. Explicitly, the encoders 

have an input layer and a reduction layer with a four-fold reduction in variables. There is no 

further reduction to a bottleneck layer. Instead, the decoder takes the reduction layer as input and 

passes it to an output layer. Training this simplified autoencoder is an easier task than training a 

full DiffNet because the dimensionality reduction it performs is modest. It has ~an order of 

magnitude more dimensions to explain the original data compared with a true bottleneck layer. 

We reason that this can generate useful priors for what the reduction layer should capture. In our 

second pretraining procedure, we freeze those priors and add the bottleneck layer in to train the 

full DiffNet. Therefore, this second pretraining step concentrates its representational power on 
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tuning how to properly reduce from the reduction layer to the bottleneck layer. Finally, we 

unfreeze the priors and train the full DiffNet to polish all weights. Each of these three procedures 

undergoes 20 training epochs. In the self-supervised setting, classification labels are updated 

using expectation maximization after each training epoch. 

All training was performed in PyTorch 1.155. Training on ~120,000 simulation frames of 

β-lactamase takes under one hour on a single AMD Vega 20 GPU. Training with expectation 

maximization approximately doubled the training time for DiffNets trained on TEM. We used 

the Adam optimizer with a learning rate of 0.0001 and a batch size of 32.  

We performed limited hyperparameter tuning to arrive at our final models. We found that 

the DiffNet performance was robust across a wide range of latent variables (Figure 2.3) and 

expectation maximization bounds (Fig. A.1.1, Fig. 2.5b). To choose a final number of latent 

variables, we chose the minimum number where reconstruction error no longer showed 

qualitative improvement. Additionally, we saved a trained model after every epoch of training 

and ultimately used the model that showed the best reconstruction performance on a validation 

set that contained 10% of the data. 

 

2.5.7 Reconstruction Experiment 

To analyze DiffNet reconstruction error (Figure 2.3), we trained on five architectures where 

we varied the numbers of latent variables. All architectures split the input (as in Figure 2.1b) 

such that any atom (C, CA, N, CB) within 1nm of residue 182 (source of single point mutation – 

colored cyan in Fig 2.6) was included in encoder A, while the rest of the protein was included in 

encoder B. Encoder A reduced down to 1, 2, 3, 5, and 10 latent variables, while encoder B 

reduced down to 2, 3, 7, 20, and 40 latent variables. After training, we use the neural networks to 
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reconstruct the protein structure from 1 of every 100 simulation frames and compute its root-

mean squared deviation from the actual structure obtained via simulation. 

 

2.5.8 Classification Labels 

To provide classification labels for Figure 2.4, we designated simulation frames as “compact 

helix” or “extended helix” based on a previous manuscript that identified three key hydrogen 

bond distances in Helix 9 that distinguish stabilizing variants from nonstabilizing variants (Res 

182-186, Res 183-187, and Res 186-190)5. Specifically, we label helix 9 compact if the distance 

between the backbone nitrogen and the carbonyl oxygen is less than 4.2 Ångstroms for all 

residue pairs listed, and we label it extended otherwise. 

 

2.5.9 β-lactamase expectation maximization experiment 

When training on β-lactamase with expectation maximization (Fig 2.5, 2.6) we trained a split 

architecture DiffNet consisting of 2 encoders and 2 latent spaces (as visualized in Fig. 2.1). The 

input to encoder “A” is all XYZ coordinates within 1nm of residue 182 (1nm region around the 

mutation). The input to encoder “B” is the XYZ coordinates from the rest of the protein. These 

encoders reduce the input to 4 and 26 latent variables, respectively (30 total latent variables split 

proportionally into latent A and latent B based on the number of atoms input into each encoder). 

After training, we applied the trained DiffNet to all simulation data to obtain DiffNet output 

labels. These output labels can be thought of as a proxy for latent A (region around the mutation) 

as the output label is simply a linear combination of the values in latent A (then scaled between 0 

and 1 using the PyTorch sigmoid activation function). We bin all structures into 10 equally 
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spaced bins from 0-1 based on their DiffNet output label. Then, we measure the average distance 

for Res 182-186, Res 183-187, and Res 186-190 in each bin (Figure 2.5a). We calculated an 

AUC evaluating how well the DiffNet output labels classify compact helix 9 states from 

extended stated where the labelling criteria is explained in the above section. To find distance 

changes that are correlated with changes in the DiffNet output label (as shown in Figure 2.6), we 

first cluster the simulation data into 2000 clusters using a hybrid k-centers and k-medoids 

approach with our open-source python package, Enspara56. Then, we enumerate all possible 

distance pairs between atoms in encoder A (i.e. within 1nm of the mutation). For each distance 

pair, we perform a linear regression between the distance and the DiffNet output label across all 

2000 cluster centers. We then select the distance pairs with the highest correlation coefficients 

(top 1%) and visualize them in PyMol (Figure 2.6).  

 

2.5.10 Myosin expectation maximization experiment 

When training on myosin (Fig. 2.7) we used an architecture with a single encoder (i.e. not 

split) that received C, CA, N, and CB atoms as input within a 2.25 nm radius around the P-loop 

(specifically residue S180, Myh7 numbering). We used 50 latent variables. All frames from low 

duty motors were initially assigned classification labels of 0, and simulation frames from high 

duty motors were initially assigned 1s. During the EM procedure, we set bounds of 10-40% for 

low duty motor frames and 60-90% for high duty motor frames. To find distance changes that 

are correlated with changes in the DiffNet output label, we copied the scheme described in the 

previous section. To identify P-loop orientations with high/low DiffNet labels, we selected the 

10 structures with DiffNet labels closest to 0.03 and 0.7 from a single isoform (Myh7). To 

calculate the cumulative distribution function in Fig. 2.7e, we used a previously published MSM. 
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Specifically, for each cluster center in the MSM, we measured its distance and weighted the 

distance by its equilibrium population. Lastly, for Fig. 2.7c, we grouped structures as nucleotide 

favorable/unfavorable as defined in a previous manuscript47. 

 

2.5.11 Code Availability 

Data normalization and DiffNets training with, or without, expectation maximization is freely 

available on GitHub at https://github.com/bowman-lab/diffnets. 

 

2.5.12 Data Availability  

The datasets are not publicly deposited because they are several terabytes in size. The datasets 

generated during and/or analyzed during the current study are available from the corresponding 

author on reasonable request. We expect that it should take several business days to share the 

data upon a particular request. Once shared, we will not enforce any limitations for how the data 

may be used.   
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Chapter 3  

Naturally-ocurring genetic variants in the 
oxytocin receptor alter receptor signaling 
profiles 
3.1 Preamble  
This chapter is adapted from the following article: Malik, M., Ward, M.D, Fang Y., Porter, J.R., 
Zimmerman, Koelblen, T., Roh, M., Frolova, A.I., Burris, T.P., Bowman, G.R., Imoukhuede, 
P.I., and England S.K. (2021). “Naturally-ocurring genetic variants in the oxytocin receptor alter 
receptor signaling profiles”, ACS Pharmacol. Transl. Sci., 4, 5, 1543-1555. 

 

3.2 Introduction  
A synthetic form of the hormone oxytocin is administered to a large portion of pregnant 

patients in the United States to induce or augment labor1 and to nearly all patients who deliver to 

prevent post-partum hemorrhage.2 Oxytocin response varies widely between individuals.3 For 

labor induction and augmentation, maximal oxytocin infusion rates range from 2 

milliunits/minute (the starting rate specified in low-dose protocols) to 40 milliunits/minute (the 

maximal infusion rate recommended by many providers).3 The duration of oxytocin infusion 

required before delivery also varies by 50 hours or more, contributing to wide variations in the 

total oxytocin dose received by patients.4 Patients who receive high oxytocin doses are at 

increased risk for uterine hyperstimulation and rupture5 and postpartum hemorrhage secondary to 

uterine atony.6-8 In contrast, patients who receive insufficient oxytocin doses may require 

Cesarean delivery, which puts them at risk for surgical complications.9 To avoid these adverse 
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events, clinicians have sought to identify individual factors that predict oxytocin dose 

requirement and thus enable personalized dosing of oxytocin. 

The oxytocin receptor (OXTR) is a member of the G-protein coupled receptor (GPCR) 

family. To bind to oxytocin, OXTR must first traffic to the myometrial smooth muscle cell 

surface. Upon oxytocin binding, OXTR activates Gq, leading to Ca2+ release from intracellular 

stores, which promotes myometrial smooth muscle contraction.10 OXTR signaling through Gq is 

counteracted by coupling to β-arrestin, which mediates desensitization and internalization of 

OXTR from the cell surface.11-14 OXTR desensitization after oxytocin exposure may impair 

myometrial contractions, leading to adverse events including uterine atony and post-partum 

hemorrhage.6-8 

Several investigators have tested the hypothesis that variants in the OXTR gene affect the 

response to exogenous oxytocin. For example, Reinl et al. and Grotegut et al. identified single 

nucleotide OXTR variants in patients who required high or low doses of oxytocin to induce labor, 

but these studies were not powered to detect significant associations.15, 16 In an ex vivo study, one 

coding and one noncoding OXTR variant altered the oxytocin-induced contractions of uterine 

tissue strips isolated from pregnant individuals.17 Although exome sequencing studies have 

shown that missense variants in the OXTR gene are prevalent in the global human population,18 

the functional effects of most of these variants have not been determined. However, prevalent 

missense variants in other GPCRs genes lead to aberrant drug responses.19 Here, we assessed the 

effects of genetic variants of unknown significance in OXTR on oxytocin response in cells. 

3.3 Methods 

3.3.1 Cell culture 
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HEK293T cells were maintained in Dulbecco’s Modified Eagle Medium/Ham’s F12 

medium without phenol red and supplemented with 10% fetal bovine serum and 25 µg/mL 

gentamicin. Cells were kept in a humidified cell culture incubator at 37 °C with 5% CO2.  

3.3.2 cDNA constructs 

The wild-type (WT) OXTR and P108A OXTR constructs in pcDNA3.1(+) vector were a 

kind gift from Dr. Jeffrey Murray (University of Iowa). Other missense single nucleotide 

variants were introduced by site-directed mutagenesis (Genewiz, South Plainfield, NJ). The WT 

OXTR sequence was identical to the coding region of the National Center for Biotechnology 

Information reference sequence NM_000916.3. 

The β-arrestin-1-Rluc8 fusion construct in the vector pcDNA3.1(+) encoded β-arrestin-1 

with a C-terminal linker SGGSTSA followed by Rluc8. The β-arrestin-2-Rluc8 fusion construct 

in the vector pcDNA3.1(+) encoded β-arrestin-2 with a C-terminal linker GGGSEF followed by 

Rluc8. The template cDNA clones for β-arrestin-1 (ARRB100002) and β-arrestin-2 

(ARRB200001) were obtained from the cDNA Resource Center (Bloomsberg, PA, 

www.cdna.org). A plasmid containing the Rluc8 cDNA was a kind gift from Dr. Brian Finck 

(Washington University in St. Louis). 

The OXTR-GFP10 fusion construct in the vector pcDNA 3.1(+) encoded OXTR with a 

C-terminal linker SGGKL followed by GFP10. A plasmid containing the GFP10 cDNA was a 

kind gift Dr. Céline Gales (INSERM, France).  

The plasmid encoding OXTR-GFP was a gift from Christian Gruber (Addgene plasmid 

#67848; http://n2t.net/addgene:67848 ; RRID:Addgene_67848).20 Note that this plasmid includes 

the missense single nucleotide variant A218T, which was corrected before introducing the 
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variants of interest. An N-terminal HA tag was added (linker GPT) to generate the HA-OXTR-

GFP construct. 

All plasmids were confirmed by bidirectional Sanger sequencing. 

Oxytocin (Tocris Bioscience, Minneapolis, MN) stock solutions diluted to 500 µM in 

water were stored at -80 °C until just before use.  

3.3.3 Ca2+ assays 

HEK293T cells (2 x 104) were plated in each well of 96-well black-walled, clear-bottom 

polystyrene microplates coated with poly-D-lysine. The following day, cells were transfected 

with a construct encoding WT or variant OXTR. Each variant was tested alongside WT controls 

on the same plate. For transfections, 50 ng of DNA and 0.5 µL of TransIT-293 reagent (Mirus 

Bio, Madison, WI) diluted in Opti-MEM reduced-serum media (Thermo Fisher Scientific, 

Waltham, MA) were added to each well. After 24 hours, media was removed and replaced with 

100 µL Brilliant Calcium indicator solution (Ion Biosciences, San Marcos, TX), which was 

prepared by diluting Brilliant Calcium indicator, DrySolv, and TRS reagent in assay buffer. After 

incubation for one hour, a Synergy2 plate reader (BioTek, Winooski, VT) was used to add 100 

µL of oxytocin of the appropriate concentration and record fluorescence intensity (excitation 

filter = 485/20 nm, emission filter = 528/20 nm) every 0.14 s for 20 s/well. Fluorescence increase 

(increase in intracellular Ca2+) was calculated as the average of fluorescence intensity readings 

from 10 s to 20 s after oxytocin addition minus the minimum fluorescence intensity averaged 

over 5 points from 0 s to 10 s.  
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For desensitization assays, transfected cells were pre-treated with the indicated oxytocin 

concentrations for 30 minutes. Then, without washing out the pre-treatment oxytocin, a Synergy 

2 plate reader was used to add a challenge dose of 1 µM oxytocin and record response as above.  

3.3.4 Bioluminescence resonance energy transfer (BRET) assays 

HEK293T cells (4 x 104) were plated in each well of 96-well white-walled, clear-bottom 

polystyrene microplates coated with poly-D-lysine. The following day, cells were transfected 

with WT or variant OXTR-GFP10 and β-arrestin-1-Rluc8 or β-arrestin-2-Rluc8 at a ratio of 15:1 

(w/w). For transfections, 50 ng of DNA and 0.5 µL of Lipofectamine 2000 reagent (Thermo 

Fisher Scientific), both diluted in Opti-MEM reduced-serum media, were added to each well. 

After 24 hours, media was removed and replaced with 100 µL of Hank’s Buffered Salt Solution 

(HBSS) supplemented with 20 mM HEPES. A Synergy2 plate reader was used to add 100 µL of 

assay buffer containing 10 µM coelenterazine 400a (Biotium, Fremont, CA) and the indicated 

concentrations of oxytocin to 10 wells at a time. Luminescence at 520 nm and 400 nm was read 

every 26 s for a total of 182 s. BRET ratio was calculated as the average ratios of emission at 520 

nm/400 nm at the 5 time points from 78 to 182 s. WT controls were tested on each plate in 

parallel with variants. 

3.3.5 Quantitative flow cytometry 

HEK293T cells (1 x 106) were plated in T25 flasks and transfected the next day with HA-

OXTR-GFP, OXTR-GFP, or HA-OXTR. Cells were transfected with 300 ng of plasmid DNA 

and 4 uL of TransIT-LT1 reagent (Mirus Bio). Cells were detached 24 hours later with 

CellStripper (Corning) and collected by centrifugation. To measure receptor internalization, cells 

were incubated with the indicated concentration of oxytocin for 30 minutes before and during 
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detachment. Cells were incubated with an empirically-determined saturating concentration (8-16 

µg/mL) of phycoerythrin (PE)-conjugated anti-HA antibody (901518, Biolegend, San Diego, 

CA) in staining buffer (0.5% BSA and 0.1% sodium azide in Ca2+/Mg2+-free PBS) on ice for 40 

minutes, then washed twice in staining buffer before flow cytometry to quantify cell surface 

OXTR. For quantification of total OXTR, the PE-labelled living cells were fixed with 2% 

paraformaldehyde and permeabilized with 0.5% Tween20 in PBS. Cells were washed with 0.1% 

Tween 20 in PBS, incubated with 16 µg/mL PE anti-HA antibody for 40 minutes at room 

temperature, and washed twice before flow cytometry. 

Flow cytometry was performed on a CytoFLEX flow cytometer (Beckman Coulter, 

Indianapolis, IN). Three technical replicates were performed for each experimental condition, 

and data from 5000 transfected cells were collected from each replicate. Three independent trials 

were performed. SYTOX Blue (Thermo Fisher Scientific) was used to exclude dead cells where 

appropriate. PE Quantibrite beads (BD Biosciences) were used for calibration. Flow cytometry 

gating was performed as follows: 1) forward and side scatter were used to exclude debris, 2) 

forward scatter-width vs. -height was used to exclude doublets, 3) SYTOX blue staining was 

used to identify dead cells, 4) GFP fluorescence was used to gate transfected cells (GFP+ 

population). The GFP+ threshold was determined relative to the GFP signal in GFP-negative 

control (cells transfected with HA-OXTR). 

The number of receptors on transfected cells was calculated from the geometric mean of 

PE fluorescence intensity calibrated to PE standards as previously described.21 Values from 

nonspecific binding of PE-HA antibody to HA-negative cells (cells transfected with OXTR-

GFP) were subtracted from all samples. 
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3.3.6 Data processing for Ca2+, BRET, desensitization, and internalization 
assays 

For Ca2+ and BRET assays, responses were normalized by subtracting the average basal 

response from all samples, then dividing by the average WT response at the highest oxytocin 

concentration for each trial. For desensitization and internalization experiments, responses were 

normalized by dividing values from all samples by the average response from the corresponding 

non-pretreated sample(s). Normalization was performed separately for each replicate experiment. 

Non-linear regression with least-squares fitting was used to generate dose-response 

curves and calculate Emax, EC50, and IC50 values (GraphPad Prism 8). The three-parameter 

regression method, which was used to fit the BRET data and internalization data, used the 

model: Y = Bottom + (Top-Bottom)/(1+10^(LogEC50 or IC50-X)). The four-parameter 

regression method, which was used to fit the Ca2+ activation and desensitization data, used the 

equation Y=Bottom + (Top-Bottom)/(1+10^((LogEC50 or IC50-X)*HillSlope)). In these 

models, Y=response, X=log(oxytocin concentration), and no constraints were placed on any 

values. Buffer controls were assigned a nominal concentration value of 10-9 M for BRET assays 

or 10-12 M for all other assays. 

All experiments were performed in triplicate, with WT controls tested alongside each 

variant on the same plate to control for day-to-day variation in assay response. Average values 

from three biological replicates were used to construct dose-response curves for each variant and 

the matched WT controls, which were compared by performing nested extra sum-of-squares F 

tests. F statistics were calculated and P-values were determined as previously described.22, 23 P-

values shown reflect comparisons of logEC50 values or Top values (see equations above), as 

indicated.  
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3.3.7 Molecular Dynamics Simulations 

The initial homology model of WT OXTR was provided by the I-TASSER GPCR 

homology model database.24 This model was then prepared for simulation by the CHARMM-

GUI membrane protein input generator.25-28 Mutations (e.g., V281M) and palmitate lipid tails on 

C346 and C347 were introduced by the CHARMM-GUI PDB manipulator.29 All proteins were 

simulated in 0.15 M KCl (111 K+ ions and 92 Cl- ions) in a rectangular box of size 99.5 x 99.5 x 

171.2 Å with a membrane consisting of 121 (upper leaflet) or 120 (lower leaflet) POPC 

molecules and 12 cholesterol molecules (upper and lower leaflet). All systems contained 

~100,000 TIP3P30 water molecules. Systems were minimized in the default manner supplied by 

CHARMM-GUI. Briefly, using the CHARMM36m force field,31 each system’s energy was 

minimized by using gradient descent, then simulated NVT with progressively weaker and fewer 

restraints on positions of atoms and membrane components. 

Production runs were performed in GROMACS.32 Hydrogen bonds were constrained 

with the LINCS algorithm.33 Cutoffs of 1.2 nm were used for the neighbor list, Coulomb 

interactions, and van der Waals interactions. The force-switch modifier was used to smoothly 

switch forces from van der Waals interactions to zero between 1.0 and 1.2 nm. The Verlet cutoff 

scheme was used for the neighbor list. The Nose-Hoover thermostat was used to hold the 

temperature at 300 K.34 The semi-isotropic Parrinello-Rahman barostat was used to maintain 

constant pressure of 1 bar as is standard in protein-membrane simulations.35 Conformations were 

stored every 20 ps. 

The FAST algorithm36, 37 was used to enhance conformational sampling for each OXTR 

sequence (WT, P108A, V281M, and V45L). Five FAST simulation rounds were conducted with 

10 simulations per round. Each simulation was 50 ns in length (2.5 µs aggregate simulation). To 
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explore away from the starting structure, the FAST ranking function favored restarting 

simulations from states that had the fewest number of preserved native contacts. Additionally, a 

similarity penalty was added to the ranking to promote conformational diversity in starting 

structures, as described previously.38 

3.3.8 DiffNet Analysis 

DiffNets can perform  dimensionality reduction in a way that highlights biochemically 

relevant differences between datasets.39 Two DiffNets were independently trained to learn about 

impairment of β-arrestin and Gq signaling. All DiffNet training and analysis was conducted 

under the assumption that the regions of Gq and β-arrestin binding were most likely to contain 

differences that explained impaired Gq or β-arrestin signaling. Therefore, the DiffNet analysis 

only considered atoms in the binding region (as shown in Figure A.2.1). All simulation data (2.5 

µs per variant) was converted to DiffNet input as described previously.39 Briefly, XYZ atom 

coordinates from simulations were mean-shifted to zero and then multiplied by the inverse of the 

square root of a covariance matrix, which was calculated from simulations. To learn about β-

arrestin impairment, a DiffNet was trained to classify all structures from V45L and P108A as β-

arrestin impaired (i.e., initial labels of one) and WT and V281M simulations as normal (i.e., 

initial labels of zero). To learn about Gq impairment, a DiffNet was trained to classify structures 

from V281M simulations as potentially Gq impaired and WT, V45L, and P108A simulations as 

normal. In both cases, the labels were iteratively updated in a self-supervised manner described 

previously39 in which expectation maximization bounds of [0.1-0.4] were chosen for normal 

variants and [0.6-0.9] for impaired variants. Both training sessions used 10 latent variables, 10 

training epochs in which the data were subsampled by a factor of 10 in each epoch, a batch size 

of 32, and a learning rate of 0.0001. 
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3.3.9 Markov State Model construction and analysis 

A Markov State Model (MSM) is a statistical framework for analyzing molecular 

dynamics simulations and provides a network representation of a free energy landscape.40-42 To 

quantify differences between variants, several measurements were made that relied on MSMs, 

each built with 2.5 µs of simulation data for each variant. All MSMs were constructed with 

Enspara,43 a python library for clustering and building MSMs from molecular simulation data. In 

this work, Enspara was used to cluster OXTR structures, count transitions between clusters, and 

derive equilibrium probabilities of structural states explored during simulation. A separate MSM 

was built for each variant, using the same methodology for each variant. Namely, simulation 

frames were converted from XYZ atom coordinates to a vector containing a value indicating the 

amount of solvent-accessible surface area (SASA) of each residue sidechain (i.e., the data was 

SASA featurized). SASA calculations were computed by using the Shrake-Rupley algorithm44 

(with a solvent probe radius of 0.28 nm) as implemented in the python package MDTraj45. SASA 

featurization was used for subsequent clustering because, unlike other clustering schemes (e.g., 

RMSD-based), SASA emphasizes the conformational changes of surface residues over internal 

residues, which should be most useful for understanding signaling of a transmembrane receptor 

that has a surface for binding ligands. Next, the SASA-featurized data were clustered with a 

hybrid clustering algorithm. First, a k-centers algorithm46 was used to cluster the data into 1000 

clusters. Next, three sweeps of k-medoids update steps were applied to refine the cluster centers 

to be in the densest regions of conformational space. Then, transition probability matrices were 

produced by counting transitions between states (i.e., clusters) using a 2 ns lag time, adding a 

prior count of H
EpFqFrp

 and row-normalizing, as described previously.47 Equilibrium populations 

were calculated as the eigenvector of the transition probability matrix with an eigenvalue of one. 



 71 

For the distance histograms in Figures 3.6 and 3.7, the distance for each cluster center (i.e., 

representative structure of the cluster) was calculated and the distance was weighted by the 

corresponding equilibrium population calculated with the MSM. Similar calculations  performed 

with an MSM built on an RMSD-based clustering scheme produced similar results (Figure 

A.2.2). 

3.4 Results  

3.4.1 Genetic variation occurs in several locations within OXTR 

We searched the worldwide gnomAD v2.1 dataset,18 which includes 141,456 exomes, to 

identify the most prevalent single nucleotide missense variants in OXTR. We identified 11 OXTR 

variants (Table 3.1) with allele counts greater than 50, indicating that they were detected in more 

than 50 heterozygous individuals.18 These variants affected residues in multiple domains, 

including six residues in transmembrane domains (TMs), one in the first extracellular loop 

(ECL1), two in the third intracellular loop (ICL3), and two in the C-terminal tail (Table 3.1, 

Figure 3.1A). The gnomAD cohort includes homozygotes for the four most common variants: 

A218T, A238T, V172A, and L206V. The most prevalent variant, A218T, was found in 27% of 

gnomAD participants; the 11th most prevalent variant, P108A, was found in 0.05% of 

participants.  

3.4.2 OXTR missense variants alter Ca2+ signaling and β-arrestin recruitment 

We reasoned that the missense variants most likely to affect clinical oxytocin response 

would alter oxytocin-induced Ca2+ signaling, which is required for myometrial smooth muscle 

contraction, or recruitment of β-arrestin, which is thought to mediate OXTR desensitization.13 

Therefore, to prioritize variants for further study, we transiently transfected plasmids encoding 
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wild-type (WT) OXTR or the 11 variants into HEK293T cells and then performed high-

throughput assays to measure effects on these pathways. First, to measure increases in 

intracellular Ca2+ in response to oxytocin, we used a fluorescent Ca2+ indicator dye. Second, to 

measure β-arrestin recruitment in response to oxytocin, we performed bioluminescence 

resonance energy transfer assays in HEK293T cells transfected with green fluorescent protein 

(GFP)-tagged OXTR and luciferase-tagged β-arrestin-1 or β-arrestin-2. V45L, P108A, L206V, 

V281M, and E339K had the largest statistically significant effects on EC50 or Emax in two or 

more assays and were therefore selected for further study (Figure 3.1, Tables A.2.1, A.2.2, and 

A.2.3). V45L decreased the Emax for β-arrestin-1 recruitment and increased the EC50 for β-

arrestin-2 recruitment (Figure A.2.3). P108A increased the EC50 for β-arrestin-1 recruitment 

and increased both the EC50 and the Emax for β-arrestin-2 recruitment. L206V increased the Emax 

for β-arrestin-1 and β-arrestin-2 recruitment. V281M increased the EC50 for Ca2+ signaling and 

decreased the Emax for Ca2+ signaling and β-arrestin-2 recruitment. Finally, E339K increased the 

EC50 for Ca2+ signaling and decreased the Emax for Ca2+ signaling, β-arrestin-1 recruitment, and 

β-arrestin-2 recruitment (Figure 3.1).  

3.4.3 OXTR variants alter cell surface localization 

To quantify the effect of these five genetic variants on OXTR quantity and localization to 

the plasma membrane, we performed quantitative flow cytometry. A specific OXTR antibody is 

not commercially available, so we created a plasmid encoding the OXTR fusion protein HA-

OXTR-GFP. We used GFP fluorescence to differentiate transfected from untransfected cells, and 

a phycoerythrin (PE) -conjugated anti-HA antibody to quantify the HA epitope on the 

extracellular N-terminus of OXTR. To quantify surface OXTRs, living cells were labelled by 



 73 

PE; to quantify total OXTRs throughout the cell, an additional PE-labelling step was performed 

after fixing and permeabilizing the PE-labelled living cells. 

No variants had a statistically significant effect on the total number of OXTRs per cell 

after adjusting for multiple comparisons (P>0.01 in one-sample t-tests, Figure 3.2A).  However, 

two variants (P108A and L206V) increased the number of cell surface OXTRs by 23 ± 3% and 

41 ± 4%, respectively (P=0.0003 and P=0.0002, one sample t-tests). Conversely, two variants 

(V281M and E339K) decreased the number of cell surface OXTRs by 49 ± 0.7% and 36 ± 2%, 

respectively (P<0.0001, one-sample t-tests, Figure 3.2B). 

When we graphed cell surface OXTRs as a percentage of total OXTRs (Figure 3.2C), we 

found that 21 ± 2% of total WT OXTRs were localized to the plasma membrane. P108A and 

L206V increased OXTR surface localization to 25 ± 1% and 27 ± 1%, respectively (adjusted 

P=0.03 for both). Conversely, V281M and E339K decreased OXTR surface localization to 12 ± 

1% and 17 ± 1%, respectively (adjusted P=0.01 for both).  

3.4.4  V45L, P108A, and E339K impair OXTR desensitization and 
internalization 

OXTR internalization and desensitization, mediated in part by β-arrestin recruitment, are 

thought to be responsible for some adverse effects associated with oxytocin exposure, including 

uterine atony and post-partum hemorrhage.13 Thus, to assess the potential clinical implication of 

variants, we aimed to define their effects on OXTR desensitization and internalization. As 

expected, for all five variants, relative differences in the number of cell surface receptors (Figure 

3.2) corresponded to the differences seen in maximal β-arrestin recruitment assays (Figure 3.1E, 

1G). For example, P108A and L206V had elevated Emax values for β-arrestin-2 recruitment and 

elevated membrane localization, whereas V281M and E339K had decreased Emax values for  β-
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arrestin recruitment decreased membrane localization. In contrast, differences in the EC50 of β-

arrestin recruitment did not correspond to changes in cell surface receptor number. For example, 

V45L increased the EC50 of β-arrestin-2 recruitment but had no effect on membrane 

localization, and P108A increased the EC50 of both β-arrestin-1 and β-arrestin-2 recruitment and 

increased membrane localization. We hypothesized that increased EC50 values would reflect 

functional deficits in OXTR desensitization and internalization.  

To measure desensitization, we pretreated cells expressing WT OXTR or the five variants 

with varying concentrations of oxytocin for 30 minutes, then used Ca2+ indicator assays to 

measure the cellular response to a saturating concentration (1 µM) of oxytocin (Figure 3.3). To 

measure internalization, we incubated cells with varying concentrations of oxytocin for 30 

minutes, then performed quantitative flow cytometry to measure surface OXTRs (Figure 3.3). 

We found that V281M and L206V had no effect on either receptor desensitization or 

internalization (P>0.05, extra sum-of-squares F test). In contrast, V45L, P108A, and E339K 

caused a rightward shift in the dose-response curve and increased the IC50 for desensitization  

(P=0.0001, P<0.0001, and P<0.0001, sum-of-squares F test, Figure 3.4B, Table A.2.4). V45L 

and P108A caused a similar rightward shift in internalization assays (P=0.0098 and P=0.0003, 

extra sum-of-squares F test, Figure 3.4C, Table A.2.4). Although E339K did not cause a 

statistically significant increase in EC50 for internalization (P>0.05), it prevented maximal 

internalization, with 44% of E339K OXTRs versus 24% of WT OXTRs remaining on the cell 

surface (P=0.0001, Figure 3.4C). 

Three of the five variants investigated had differential effects on OXTR activation 

(oxytocin-induced Ca2+ signaling in Figure 3.4A), desensitization (Figure 3.4B), and 

internalization (Figure 3.4C). These variants altered the balance between OXTR desensitization 
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and activation at any given dose of oxytocin (Figure 3.4D, Figure A.2.4). Of the three variants 

that impaired OXTR internalization and desensitization, only one, E339K, also altered potency 

and efficacy for OXTR activation, potentially due to decreased cell surface localization (Figure 

3.2B). V281M had similar effects as E339K on OXTR cell surface localization and OXTR 

activation but had no effect on OXTR internalization or desensitization (Figure 3.4). In contrast, 

V45L and P108A impaired OXTR internalization and desensitization without altering OXTR 

activation (Figure 3.4). 

3.4.5 Variants that reduce desensitization and internalization alter OXTR 
structural conformations 

In our in vitro assays, two variants (V45L and P108A) reduced β-arrestin recruitment, 

OXTR internalization, and OXTR desensitization compared to WT OXTR. Thus, three lines of 

evidence suggest that V45L and P108A decrease OXTR’s ability to activate β-arrestin. To define 

the structural basis of β-arrestin impairment, we used molecular dynamics simulations to 

computationally model the motions of all atoms in WT and variant OXTRs in solution over time 

(Figure 3.5A, 3.5B). We paired these simulations with the FAST algorithm (see Methods36, 37) 

to enhance sampling of the conformational ensemble (i.e., the set of structural poses the receptor 

adopts) of each variant. 

To identify the conformational changes most associated with β-arrestin impairment, we 

used DiffNets, deep-learning algorithms that are trained to identify biochemically relevant 

differences between multiple conformational ensembles (see Methods).39 We first trained a 

DiffNet to identify differences between conformational ensembles of the two β-arrestin-impaired 

OXTRs (V45L and P108A) and two OXTRs (WT and V281M) with normal desensitization and 

internalization. From this training, the DiffNet learned a label for each simulation frame 
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(structural configuration) from zero to one that indicated the probability that it was associated 

with this classification. To interpret these labels, we calculated the correlation between inter-

atom distances in the OXTR cytosolic region (71,289 possible distances, Figure A.2.1) and 

changes in the DiffNet label. We then plotted the 100 distances that were most correlated with 

the DiffNet label (Figure 3.5C). This analysis showed clear enrichment in distances that cluster 

at the interface between transmembrane domain 1 (TM1) and the first intracellular loop (ICL1), 

indicating that changes in this region were associated with β-arrestin impairment. 

3.4.6 Conformational changes in V45L and P108A OXTRs disrupt putative β-
arrestin binding site 

DiffNets identified locations associated with reduced β-arrestin function without any 

prior information about functional sites in OXTR. To determine whether the DifffNet predictions 

corresponded to functional locations, we used the simulation data to build Markov State Models. 

Markov State Models provide a discrete map of structural configurations and an equilibrium 

population value that corresponds to the proportion of time a protein spends in a given 

configuration.40-42 The DiffNet prediction implicated the TM1-ICL1 region in β-arrestin 

impairment, so we used Markov State Models to more closely examine this region. In this 

analysis, V45L and P108A introduced an additional helical turn at the C-terminus of TM1 that 

was not present in WT and V281M OXTR. Specifically, we found that the hydrogen bond 

between Val60 and Leu64 was shorter in V45L and P108A OXTR than in WT and V281M OXTR 

(0.2 nm vs. 0.6 nm) (Figure 3.6A). Thus, β-arrestin-impaired OXTRs were predicted to have a 

shorter ICL1 than OXTRs with normal β-arrestin function. 

This conformational change has important implications for β-arrestin binding. First, 

shortening ICL1 may prevent the interactions between ICL1 and the bottom loop of β-arrestin 
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(Figure 3.6B) previously described by Yin et al.48  Second, shortening ICL1 reduces the distance 

between ICL1 and helix 8 (H8), causing a collapsed state (Figure 3.6C). When we superimposed 

bound structures of β-arrestin and G protein (from other GPCRs48, 49) onto the OXTR homology 

model, the model predicted that this shortened distance created a steric clash between ICL1 and 

the β-arrestin finger loop, but not between ICL1 and the G protein (Figure 3.6D). Taken 

together, our data suggest that the mechanism underlying reduced β-arrestin function was similar 

in V45L and P108A OXTR. 

3.4.7 Structural conformations in V281M OXTR 

 Our results in Figure 3.4D indicated that the balance between OXTR activation and 

desensitization in V281M OXTR deviated significantly from WT, with greater relative 

desensitization for any given unit of activation. We observed the opposite deviation in V45L and 

P108A OXTR, both of which had less relative desensitization for any given unit of activation. To 

investigate the structural basis of this difference, we used a similar approach as above and trained 

a second DiffNet to identify differences between conformational ensembles of V281M OXTR 

and V45L, P108A, and WT OXTR. We plotted the 100 distances that were most correlated with 

the DiffNet label in Figure 3.5D. This analysis showed enrichment for distances between 

transmembrane domains 3 and 5 (TM3 and TM5), indicating that structural rearrangements in 

this region were associated with V281M. 

We then used Markov State Models to plot the probability that OXTR adopts a 

conformation with a given distance between TM3 and TM5. V281M OXTR was more likely to 

adopt conformations with a shorter distance between TM3 and TM5 than were WT, V45L, and 

P108A OXTR (0.8 nm versus 1.2-1.4 nm, Figure 3.7A). When we superimposed the bound β-

arrestin and G protein structures, we saw that this collapsed state caused a steric clash with the G 
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protein but not with β-arrestin (Figure 3.7B). This finding suggests that V281M disrupted the 

binding of Gq to OXTR without affecting β-arrestin recruitment. 

3.5 Conclusions  
Our data indicate that OXTR variants found in the global human population significantly 

altered OXTR function. Specifically, these variants altered oxytocin response by changing 

OXTR localization to the cell membrane, decreasing oxytocin-induced Ca2+ signaling, altering β-

arrestin recruitment and signaling, or a combination of these effects. The variants P108A and 

L206V increased the percentage of OXTR on the cell membrane, whereas V281M and E339K 

caused OXTR to be retained inside the cell. V281M and E339K also decreased Ca2+ signaling. 

Three variants (V45L, P108A, and E339K) impaired OXTR desensitization and OXTR 

internalization upon exposure to oxytocin. Our molecular dynamics simulations predict that both 

V45L and P108A introduce an extra helical turn at the end of TM1, which may explain the 

impaired coupling to β-arrestin seen in vitro. 

Our results from the V281M and E339K variants highlight the importance of efficient 

membrane trafficking for receptor function. These intracellularly retained variants were the only 

two variants studied that decreased oxytocin-induced Ca2+ signaling (Figure 3.1B, 3.1C). In 

contrast, P108A and L206V, which increased the number of OXTR on the cell surface, did not 

increase maximal Ca2+ signaling. This may be because Ca2+ signaling becomes saturated at a 

certain concentration of receptors per cell. Because Gq signaling amplifies through the signaling 

pathway that leads to Ca2+ mobilization, intracellular Ca2+ is not a one-to-one readout of Gq 

activation.50 A more direct measurement of Gq activation may show that maximal Gq activation 



 79 

correlates with surface OXTRs, but this may not translate directly to the activation of 

downstream pathways important for myometrial contractions. 

Unlike maximal Ca2+ signaling, maximal recruitment of β-arrestin measured in the 

bioluminescence resonance energy transfer screen closely matched the number of OXTRs on the 

cell membrane. P108A and L206V, which increased cell surface OXTR, caused higher maximal 

recruitment (Emax), whereas V281M and E339K, which decreased cell surface OXTR, caused 

lower maximal recruitment (Figure 3.1E, 3.1G). Changes in Emax in our bioluminescence 

resonance energy transfer assays seemed to reflect a change in the number of receptors available 

to recruit β-arrestin, but did not always correspond to functional changes in receptor 

desensitization or internalization (Figure 3.4). For example, the L206V and V281M variants had 

the largest effects on Emax for β-arrestin recruitment but did not alter receptor desensitization or 

internalization. In contrast, increases in the EC50 for β-arrestin recruitment corresponded to right 

shifts in desensitization and internalization curves. Whereas OXTR desensitization and 

internalization can occur by several mechanisms, our results suggest that changes in β-arrestin 

recruitment EC50 translate to functional differences in desensitization and internalization. 

To complement our in vitro assays, we used an in silico method to model the behavior of 

variant OXTRs. Our in vitro assays showed that V45L and P108A caused rightward shifts in the 

dose-response curves for β-arrestin recruitment, OXTR desensitization, and OXTR 

internalization but not oxytocin-induced Ca2+ signaling.  We used the deep-learning approach 

DiffNets to identify structural changes that were common to V45L and P108A OXTRs but not 

present in OXTRs with normal internalization and desensitization. Importantly, the DiffNet 

required no input of information about OXTR/GPCR structure/function relationships to identify 

locations in OXTR that appear to be associated with β-arrestin binding. This discovery-based 
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approach yielded predictions that correspond with our in vitro data as well as published work on 

the mechanism of β-arrestin binding in other GPCRs.48 The structural differences shown in 

Figure 3.6 suggest one mechanism by which OXTR can bind to and activate G proteins without 

activating β-arrestin. However, further work is necessary to validate these predictions and 

determine the mechanism of β-arrestin binding to OXTR. In the future, these findings may guide 

the design of biased agonists, as recently demonstrated by Suomuoviri et al. for the angiotensin 

II type 1 receptor.51  Novel uterotonics that mimic the effects of V45L and P108A may 

preferentially activate OXTR signaling through Gq with less β-arrestin activation, thus 

decreasing the risk of adverse effects associated with OXTR internalization and desensitization. 

We used a similar approach to identify conformational changes associated with V281M, 

a variant that decreased OXTR activation (oxytocin-induced Ca2+ signaling) but had no effect on 

desensitization or internalization. Our Markov State Models predicted conformational changes in 

V281M OXTR consistent with steric hindrance of G protein binding (Figure 3.7). Importantly, 

these changes would not hinder binding of β-arrestin and thus present a possible mechanism by 

which V281M altered Ca2+ signaling without altering desensitization or internalization. 

However, the changes caused by V281M were also likely due, at least in part, to inefficient cell 

membrane localization of V281M OXTR (Figure 3.2). Therefore, further in vitro studies are 

necessary to determine whether V281M OXTR displays decreased binding to Gq and thus 

validate the predictions from our molecular dynamics simulations. 

Our findings add to two previous in vitro studies examining human OXTR variants. First, 

Ma et al. showed that R376G, a variant associated with autism spectrum disorder, increased the 

rate of OXTR internalization and recycling to the cell surface after treatment with oxytocin.52  It 

is unclear whether the small changes in β-arrestin recruitment seen in our screening assays 
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(Tables A.2.2 and A.2.3) explain the differences in OXTR internalization and recycling 

observed by Ma et al. Second, Kim et al. characterized three missense OXTR variants, including 

P108A, that they identified in patients who experienced premature labor.53 These authors 

reported that P108A decreased oxytocin binding but did not significantly affect Gq activation as 

measured by inositol phosphate production, which was consistent with our results. Furthermore, 

our findings show that P108A impaired OXTR desensitization, meaning that some OXTR Gq 

activation occurred unopposed. This could result in premature initiation of uterine contractions 

and thus explain an association between P108A and premature labor. Future studies are needed 

to determine whether P108A – and V45L, which we found to have similarly impaired 

desensitization and structural changes – predispose patients to preterm labor. 

Understanding how genetic variants alter receptor function is an important step towards 

personalized drug dosing. Our functional annotation of the 11 most prevalent variants of 

unknown significance in OXTR helped us to prioritize the variants most likely to affect OXTR 

function for further study. These variants caused EC50 changes in the two- to four-fold range, 

consistent with effects caused by other naturally-occurring GPCR variants linked to disease risk 

and drug response.54-57 Additionally, our data indicate that the two most prevalent missense 

variants, A218T and A238T, are unlikely to appreciably affect OXTR function. 

Both activation and desensitization of the Ca2+ signaling pathway play an important role 

in determining clinical response to oxytocin. Currently, most oxytocin dosing protocols for labor 

induction call for providers to increase the oxytocin infusion rate at steady intervals, which 

compensates for a given amount of OXTR desensitization over time.58 Imbalance between these 

processes, also known as signaling bias, may therefore have clinical consequences, as shown in 

other GPCRs.19, 57, 59 In our study, we identified three variants that may cause signaling bias: 1) 
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V45L and P108A impaired OXTR desensitization but not activation and 2) V281M decreased 

OXTR activation but not desensitization. However, further studies are necessary to determine 

whether these changes represent signaling bias between β-arrestin and Gq. Our data indicate that 

individuals who carry the V281M allele may be less responsive to oxytocin but still susceptible 

to the potential adverse effects that result from OXTR desensitization during labor (i.e., post-

partum hemorrhage, uterine atony). These individuals may require higher doses of oxytocin to 

achieve labor induction and thus may have increased risk of these adverse events. Furthermore, 

oxytocin may be less effective in preventing postpartum hemorrhage in these individuals. In 

contrast, patients with V45L or P108A variants may be less susceptible to the adverse effects that 

result from OXTR desensitization but more susceptible to uterine hyperstimulation as a result of 

induction with oxytocin. Finally, patients with the E339K variant, which impairs OXTR 

activation and desensitization to roughly the same extent, may require higher oxytocin doses to 

achieve clinical effects.  

Our studies indicate that individuals who carry the V45L, P108A, V281M, or E339K 

variants may benefit from personalized oxytocin dosing protocols or alternative methods of labor 

induction. P108A is found in 0.3% of the Finnish popuation, V281M is found in 0.7% of the 

Swedish population, and E339K is found in 1.5% of the Ashkenazi Jewish population.18, 60 

Further studies in these populations are necessary to determine the utility of genetic analyses in 

developing precision medicine approaches to oxytocin dosing. 

Variant Location Allele count  
in gnomAD 

Affected 
(%) 

A218T5.56 TM5 41562 27.09 
A238T ICL3 5067 3.87 
V172A4.61 TM4 1613 1.14 
L206V5.44 TM5 551 0.39 
E339K C-terminus 308 0.22 
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  G221S5.59 ICL3 215 0.15 
G252A ICL3 178 0.14 
V281M6.41 TM6 107 0.08 
V45L1.38 TM1 91 0.09 
R376G C-terminus 89 0.06 
P108A ECL1 74 0.05 
 
Table 3.1 OXTR variants for study.  
Affected (%): Percent of gnomAD participants with 
sequencing coverage at that locus who were homozygous 
or heterozygous for that variant. ECL: extracellular loop. 
ICL: intracellular loop. TM: transmembrane domain. 
Ballesteros-Weinstein numbering61 is shown for TM 
residues (superscripts).  
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Figure 3.1 Screen identifies OXTR variants that alter oxytocin response in Ca2+ assays and β-arrestin 
recruitment assays.  
(A) Variant residues within OXTR. ICL: intracellular loop. ECL: extracellular loop.  (A–G) Plots show EC50 (B, D, 
F) and Emax (C, E, G) for dose-response curves for each variant, relative to WT value (100%). Variants shown in red 
were chosen for further study on the basis of large effect size and statistical significance (see Tables A.2.1, A.2.2, 
and A.2.3). Error bars show standard error of the mean from N=3 independent experiments with 3-5 technical 
replicates per experiment. 
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Figure 3.2 Genetic variants alter quantity of OXTR on the cell membrane. 
(A) Total number of OXTRs, (B) the number of OXTRs on the cell surface, and (C) the percentage of OXTRs on 
the cell surface in HEK293T cells transfected with plasmids encoding wild type (WT) and variant HA-OXTR-GFP. 
For (A) and (B), values for variants are shown as % difference from the WT OXTR value. Error bars show standard 
error from N=3-6 independent experiments with 15000 cells across 3 technical replicates per experiment. * indicates 
variant value differs from 0 with P<0.01 in one-sample t-test (B), or differs from WT with P<0.05 in one-way 
repeated measures ANOVA with post-hoc Dunnet multiple comparisons test (omnibus P=0.0024 (C). 
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Figure 3.3 Method and data processing for desensitization and internalization assays. 
For desensitization assays, cells were incubated with indicated oxytocin doses for 30 minutes, then challenged with 
1 µM oxytocin. Ca2+ increase in response to 1 µM challenge is shown. For internalization assays, cells were 
incubated with indicated oxytocin doses for 30 minutes, then analyzed by quantitative flow cytometry to measure 
surface OXTR. 
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Figure 3.4  OXTR variants alter receptor activation, desensitization, and internalization.  
(A) Activation: increase in intracellular Ca2+ concentration in HEK293T cells transfected with wild type (WT) or 
variant OXTR and treated with oxytocin. Results are normalized to WT value at highest oxytocin concentration. (B) 
Desensitization: increase in intracellular Ca2+ concentration  in cells treated with  1 µM oxytocin after pretreatment 
(PT) with the indicated oxytocin concentration. Results are normalized to response without PT. (C) Internalization 
of OXTR from the cell surface after PT with indicated oxytocin concentration. (D) Bias plot showing relative 
activation (y values from regression in A) and relative desensitization (regression of 1-y from B). See also Figure 
A.2.4. P-values for difference in log(EC50) or log(IC50) between WT and variant are shown (extra sum-of-squares 
F test, see also Tables A.2.1 and A.2.4). Error bars show standard error of the mean from N=3 independent 
experiments. 
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Figure 3.5 DiffNets identify distances associated with V45L, P108A, and V281M OXTR. 
(A-B) Homology model for OXTR showing the location of V45L, P108A, and V281M. Structures for β-arrestin-1 
(red, PDB: 6pwc48) and G⍺s (blue, PDB: 3sn649) are superimposed on the OXTR structure. (C) Dotted lines show 
the 100 interatom distance changes most associated with DiffNet label (V45L and P108A vs. WT and V281M). (D) 
Distance changes most associated with DiffNet label (V281M vs. WT, V45L, P108A). TM: transmembrane domain. 
ICL1: intracellular loop 1. H8: helix 8. 
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Figure 3.6 Potential mechanism for altered β-arrestin function in V45L and P108A OXTR. 
(A) Distribution of the probability-weighted density for the hydrogen bond distance between the most C-terminal 
TM1 helix i, i+4 residue pair (Val60 and Leu64). β-arrestin-impaired variants (V45L and P108A) have a high 
probability of having a tight helix, whereas OXTRs with normal desensitization and internalization (WT and 
V281M) are more likely to lack this hydrogen bond. (B) Representative structures from each peak in (A). The β-
arrestin-1 “bottom loop” (red), which is involved in binding to ICL1, is closer to ICL1 when ICL1 is extended. (C) 
Distribution of the probability-weighted density for ICL1-H8 distances that each OXTR variant occupies. V45L and 
P108A have strong, left-shifted peaks indicating a collapse between ICL1 and H8. (D) Representative structures of 
ICL1-H8 at collapsed distances (brown) and open distances (yellow). In the collapsed position, there is a steric clash 
between ICL1 and β-arrestin. TM: transmembrane domain. ICL1: intracellular loop 1. H8: helix 8. 
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Figure 3.7 Conformational changes in V281M OXTR may reduce G protein binding. 
(A) Histogram showing a probability-weighted distribution of TM3-TM5 distances that each OXTR variant 
occupies. V281M OXTR is highly likely to adopt a collapsed state that would sterically hinder G-protein binding. 
(B) Representative structures of TM3 and TM5 at collapsed distances (brown) and open distances (yellow). The 
collapsed position sterically clashes with the G protein (blue) but not β-arrestin (red). TM: transmembrane domain. 
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Chapter 4  

SARS-CoV-2 Simulations Go Exascale to 
Predict Dramatic Spike Opening and Cryptic 
Pockets Across the Proteome 
4.1 Preamble  
This chapter is adapted from the following article: Zimmerman, M.I., Porter, J.R., Ward, M.D., 
Singh S., Vithani N., Meller, A., Mallimadugula, U.L., Kuhn, C.E., Borowsky, J.H., Wiewiora, 
R.P., Hurley, M.F.D, Harbison, A.M., Fogarty, C.A., Coffland, J.E., Fadda, E., Voelz, V.A., 
Chodera, J.D., and Bowman, G.R (2021). “SARS-CoV-2 Simulations Go Exascale to Predict 
Dramatic Spike Opening and Cryptic Pockets Across the Proteome”, Nature Chemistry  13, 651-
659. 

 

4.2 Introduction  
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that 

poses an imminent threat to global human health and socioeconomic stability.1 With estimates of 

the basic reproduction number at ~3-4 and a case fatality rate for coronavirus disease 2019 

(COVID-19) ranging from ~0.1-12% (high temporal variation), SARS-CoV-2/COVID-19 has 

spread quickly and currently endangers the global population.2–6 As of September 12th, 2020, 

there have been over 29 million confirmed cases and over 925,000 fatalities, globally. 

Quarantines and social distancing are effective at slowing the rate of transmission; however, they 

cause significant social and economic disruption. Taken together, it is crucial that we find 

immediate therapeutic interventions. 

A structural understanding of the SARS-CoV-2 proteins could accelerate the discovery of 

new therapeutics by enabling the use of rational design.7 Towards this end, the structural biology 
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community has made heroic efforts to rapidly build models of SARS-CoV-2 proteins and the 

complexes they form.8–16 However, it is well established that a protein’s function is dictated by 

the full range of conformations it can access; many of which remain hidden to experimental 

methods. Mapping these conformations for SARS-CoV-2 proteins will provide a clearer picture 

of how they enable the virus to perform diverse functions, such as infecting cells, evading a 

host’s immune system, and replicating. Such maps may also present new therapeutic 

opportunities, such as ‘cryptic’ pockets that are absent in experimental snapshots but provide 

novel targets for drug discovery. 

Molecular dynamics simulations have the ability to capture the full ensemble of 

structures a protein adopts but require significant computational resources. Such simulations 

capture an all-atom representation of the range of motions a protein undergoes. Modern datasets 

often consist of a few microseconds of simulation for a single protein, with a few noteworthy 

examples reaching millisecond timescales.17,18 However, many important processes occur on 

slower timescales. Moreover, simulating every protein that is relevant to SARS-CoV-2 for 

biologically relevant timescales would require compute resources on an unprecedented scale. 

To overcome this challenge, more than a million citizen scientists from around the world 

have donated their computer resources to simulate SARS-CoV-2 proteins. This massive 

collaboration was enabled by the Folding@home distributed computing platform, which has 

crossed the exascale computing barrier and is now the world’s largest supercomputer. Using this 

resource, we constructed quantitative maps of the structural ensembles of over two dozen 

proteins and complexes that pertain to SARS-CoV-2 from milliseconds of simulation data 

generated for each system. Together, we have run an unprecedented 0.1 s of simulation. Our data 

uncover the mechanisms of conformational changes that are essential for SARS-CoV-2’s 



 97 

replication cycle and reveal a multitude of new therapeutic opportunities. The data are supported 

by a variety of experimental observations and are being made publicly available 

(https://covid.molssi.org/ and https://osf.io/fs2yv/) in accordance with open science principles to 

accelerate the discovery of new therapeutics.19,20  

4.3 Results  

4.3.1 To the exascale and beyond!  

Folding@home (http://foldingathome.org) is a community of citizen scientists, researchers, and 

tech organizations dedicated to applying their collective computational and intellectual resources 

to understand the role of proteins’ dynamics in their function and dysfunction, and to aid in the 

design of new proteins and therapeutics.21 It enables anyone with a computer and an internet 

connection to contribute to biomedical research by volunteering to run small chunks of 

simulation, called “work units,” that are used to build maps of protein dynamics. The project has 

provided insight into diverse topics, ranging from protein folding to signaling mechanisms.22–24 

to the connection between phenotype and genotype.25–27 Translational applications have included 

new means to combat antimicrobial resistance, Ebola virus, and SFTS virus.28–30 

        In response to the COVID-19 pandemic, Folding@home quickly pivoted to focus on 

SARS-CoV-2 and the host factors it interacts with. Many people found the opportunity to take 

action at a time when they were otherwise feeling helpless alluring. In less than three months, the 

project grew from ~30,000 active devices to over a million devices around the globe (Fig. 4.1A 

and 1B). 

 We conservatively estimate the peak performance of Folding@home hit 1.01 exaFLOPS. 

This performance was achieved at a point when ~280,000 GPUs and 4.8 million CPU cores were 

performing simulations. As explained in the Methods, to be conservative about our claims, we 



 98 

assume that each GPU/CPU has worse performance than a card released before 2015. For 

reference, the aggregate 1 exaFLOPS performance we report for Folding@home is 5-fold greater 

than the peak performance of the world’s fastest traditional supercomputer at the time, called 

Summit (Fig. 4.1C). It is also more than the top 100 supercomputers combined. Prior to 

Folding@home, the first exascale supercomputer was not scheduled to come online until the end 

of 2021. 

4.3.2 Extreme spike opening reveals cryptic epitopes 

The Spike complex (S) is a prominent vaccine target that is known to undergo substantial 

conformational changes as part of its function.10,14,31 Structurally, S is composed of three 

interlocking proteins, with each chain having a cleavage site separating an S1 and S2 fragment. S 

resides on the virion surface, where it waits to engage with an angiotensin-converting enzyme 2 

(ACE2) receptor on a host cell to trigger infection.32,33 The fact that S is exposed on the virion 

surface makes it an appealing vaccine target. However, it has a number of effective defense 

strategies. First, S is decorated extensively with glycans that aid in immune evasion by shielding 

potential antigens.34,35 S also uses a conformational masking strategy, wherein it predominantly 

adopts a closed conformation (often called the down state) that buries the receptor-binding 

domains (RBDs) to evade immune surveillance mechanisms. To engage with ACE2, S must 

somehow expose the conserved binding interface of the RBDs. Characterizing the full range of S 

opening is important for understanding pathogenesis and could provide insights into novel 

therapeutic options. 

 To capture S opening, we employed our goal-oriented adaptive sampling algorithm, 

FAST, in conjunction with Folding@home. The FAST method36,37 iterates between running a 

batch of simulations, building a map of conformational space called a Markov state model 
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(MSM)38,39 from all the data generated so far, ranking the conformational states of this MSM 

based on how likely starting a new simulation from that state is to yield useful data, and starting 

a new batch of simulations from the top ranked states. The ranking function is designed to 

balance between favoring structures with a desired geometric feature (in this case opening of S) 

and broad exploration of conformational space. By balancing exploration-exploitation tradeoffs, 

FAST often captures conformational changes with orders of magnitude less simulation time than 

alternative methods. Broadly distributed structures from our FAST simulations were then used as 

starting points for extensive Folding@home simulations, totaling over 1 millisecond of data for 

SARS-CoV-2 S, enabling us to obtain a statistically sound final model. 

 Our SARS-CoV-2 S protein simulations predict extreme opening of S and substantial 

conformational heterogeneity in the open state (Fig. 4.2). Capturing opening of S is an 

impressive technical feat. Other large-scale simulations have provided valuable insight into 

aspects of S, but were unable to capture this essential event for the initiation of infection.28,32,33 

For example, Casalino et al. performed ~10 microseconds of simulation to show that one of the 

glycans helps stabilize a partially open state and Turonǒvá  et al.  performed 2.5 microseconds of 

simulation that revealed three hinges in the stalk.35,40 However, the shorter timescale of these 

simulations prevented the authors from capturing the opening process at all. With our 

milliseconds of sampling, we successfully 35,40,41captured this rare event for both glycosylated 

and unglycosylated S and find that glycosylation slightly increases the population of the open 

state, but the difference between glycosylated and unglycosylated S is smaller than that between 

different spike variants (Fig. A.3.1). The closed state is more probable than the open state, 

explaining the experimental observation that full-length S has a lower affinity for ACE2 than an 

isolated RBD.42 Intriguingly, we find that opening occurs only for a single RBD at a time, akin to 
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the up state observed in cryoEM structures.43 Moreover, we predict that the scale of S opening is 

often substantially larger than has been observed in experimental snapshots in the absence of 

binding partners (Fig. A.3.2). 

The dramatic opening we discover predicts that antibodies, and other therapeutics, can 

bind to regions of S that are deeply buried and seemingly inaccessible in existing experimental 

snapshots.9,13,44,45 Consistent with this prediction, the cryptic epitope for the antibody CR3022 is 

buried in up and down cryoEM structures, but is clearly exposed in our conformational ensemble 

(Fig. 4.2C). Indeed, our ensemble captures the exposure of many known epitopes, despite their 

occlusion in apo experimental snapshots (Fig. 4.2D). Our models also provide a quantitative 

estimate of the probability that different epitopes are exposed, is consistent with experimental 

measures of dynamics, and can be used to determine the most suitable regions for the design of 

neutralizing antibodies. 

Our results suggest that S binds ACE2 and many antibodies via a conformational 

selection mechanism, wherein S first opens and then binds to its partners. Previous work based 

on examining the up and down structures observed by cryoEM also proposed a role for 

conformational selection, hypothesizing that an S RBD may bind CR3022 by first adopting an up 

conformation and then twisting to expose the cryptic epitope.8 To test this hypothesis, we 

projected the free energy landscape and the highest-flux pathway for S opening onto two order 

parameters: the angle of RBD opening and the twist of the RBD (Fig. A.3.3). We find that the 

RBD simultaneously twists and peels off of the spike complex as it transitions from the closed to 

open conformation. Furthermore, the motion we observe predicts the exposure of other epitopes 

that would not be exposed by the mechanism proposed by Yuan et al.8 These additional epitopes 

have now been corroborated by work on the binding sites of other antibodies (Fig. 4.2D). 
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To understand the potential role of conformational masking in determining the lethality 

and infectivity of different coronaviruses, we also simulated the opening of S proteins from two 

related viruses: SARS-CoV-1 and HCoV-NL63. These viruses were selected because they also 

bind the ACE2 receptor but are associated with varying mortality rates. SARS-CoV-1 caused an 

outbreak in 2003 with a high case fatality rate but has not become a pandemic.46 NL63 was 

discovered the following year and continues to spread around the globe, although it is 

significantly less lethal than either SARS virus.47  

We hypothesized that phenotypic differences between coronaviruses may be partially 

explained by changes to the S conformational ensemble, particularly the probability of spike 

opening. Specifically, we propose mutations or other perturbations can increase the S-ACE2 

affinity by increasing the probability that S adopts an open conformation or by increasing the 

affinity between an exposed RBD and ACE2. In contrast, the affinity of S for ACE2 (or 

antibodies that bind cryptic epitopes) can be reduced by stabilizing the closed state or decreasing 

the affinity between an exposed RBD and its binding partner(s). 

As expected, the three S complexes have very different propensities to adopt an open 

state and bind ACE2. Structures from each ensemble were classified as competent to bind ACE2 

if superimposing an ACE2-RBD structure on S did not result in any steric clashes between 

ACE2 and the rest of the S complex. We find that SARS-CoV-1 has the highest population of 

conformations that can bind to ACE2 without steric clashes, followed by SARS-CoV-2, while 

opening of NL63 is sufficiently rare that we did not observe ACE2-binding competent 

conformations in our simulations (Fig. 4.2B). Interestingly, S proteins that are more likely to 

adopt structures that are competent to bind ACE2 are also more likely to adopt highly open 

structures (Fig 4.2C). 
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 We also predict a number of interesting correlations between the conformational 

masking, lethality, and infectivity of different coronaviruses. First, more deadly coronaviruses 

have S proteins with less conformational masking. Second, there is an inverse correlation 

between S opening and the affinity of an isolated RBD for ACE2 (RBD-ACE2 affinities of ~35 

nM, ~44 nM, and ~185 nM for HCoV-NL63, SARS-CoV-2, and SARS-CoV-1, 

respectively).48,49 

These observations suggest a tradeoff wherein stabilizing the closed spike enables 

immune evasion but hampers cell entry, requiring a higher affinity between an exposed RBD and 

ACE2 to reliably infect a host cell. We propose that the NL63 S complex is probably best at 

evading immune detection but is not as infectious as the SARS viruses because strong 

conformational masking reduces the overall affinity for ACE2. In contrast, the SARS-CoV-1 S 

complex adopts open conformations more readily but is also more readily detected by immune 

surveillance mechanisms. Finally, SARS-CoV-2 balances conformational masking and the RBD-

ACE2 affinity in a manner that allows it to evade an immune response while maintaining its 

ability to infect a host cell. 

Our atomically detailed model of glycosylated S can facilitate structure-based vaccine 

antigen design through identification of regions minimally protected by conformational masking 

or the glycan shield.50 To identify these potential epitopes, we calculated the probability that 

each residue in S could be exposed to therapeutics (e.g. not shielded by a glycan or buried by 

conformational masking), as shown in Fig. 4.3A. Visualizing these values on the protein reveals 

a few patches of protein surface that are exposed through the glycan shielding (Fig. 4.3B). 

However, another important factor when targeting an antigen is picking a region with a 

conserved sequence to yield broader and longer lasting efficacy. Not surprisingly, many of the 
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exposed regions do not have a strongly conserved sequence. Promisingly, though, we do find a 

conserved area with a larger degree of solvent exposure (Fig. 4.3C). This region was recently 

found to be an effective site for neutralizing antibodies.51 Another possibility for antigen design 

is to exploit the opening motion. A number of residues surrounding the receptor binding motif 

(RBM) of the RBD show an increase in exposure by ~30% in ACE2 binding competent 

structures (Fig. 4.3C). Consistent with immunoassays and cryoEM structures, these regions are 

hotspots for neutralizing antibody binding.9,52,53 

4.3.3 Cryptic pockets and functional dynamics are present throughout the 
proteome 

Every protein in SARS-CoV-2 remains a potential drug target. So, to understand their role in 

disease and help progress the design of antivirals, we unleashed the full power of Folding@home 

to simulate dozens of systems related to pathogenesis. While we are interested in all aspects of a 

proteins’ functional dynamics, expanding on the number of antiviral targets is of immediate 

value. Towards this end, we seeded Folding@home simulations from our FAST-pockets 

adaptive sampling to aid in the discovery of cryptic pockets. We briefly discuss two illustrative 

examples, out of 36 datasets. 

Nonstructural protein number 5 (NSP5, also named the main protease, 3CLpro, or as we 

will refer to it, Mpro) is an essential protein in the lifecycle of coronaviruses, cleaving polyprotein 

1a into functional proteins, and is a major target for the design of antivirals.11 It is highly 

conserved between coronaviruses and shares 96% sequence identity with SARS-CoV-1 Mpro; it 

cleaves polyprotein 1a at no fewer than 11 distinct sites, placing significant evolutionary 

constraint on its active site. Mpro is only active as a dimer, however it exists in a monomer-dimer 

equilibrium with estimates of its dissociation constant in the low µM range.54 Small molecules 
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targeting this protein to inhibit enzymatic activity, either by altering its active site or favoring the 

inactive monomer state, would be promising broad-spectrum antiviral candidates.55  

Our simulations predict two novel cryptic pockets on Mpro that expand our current 

therapeutic options. These are shown in Fig. 4.4A, which projects states from our MSM onto the 

solvent exposure of residues that make up the pockets. The first cryptic pocket is an expansion of 

NSP5’s catalytic site. We predict that the loop bridging domains II and III is highly dynamic and 

can fully undock from the rest of the protein. This motion may impact catalysis—i.e. by 

sterically regulating substrate binding—and is similar to motions we have observed previously 

for the enzyme β-lactamase.56 Owing to its location, a small molecule bound in this pocket is 

likely to prevent catalysis by obstructing polypeptide association with catalytic residues. The 

second pocket is a large opening between domains I/II and domain III. Located at the 

dimerization interface, this pocket offers the possibility to find small molecules or peptides that 

favor the inactive monomer state. We have repeated these calculations and found that the 

discovery of cryptic pockets is robust to the choice of forcefield (Fig. A.3.4). 

In addition to cryptic pockets, our data captures many potentially functionally relevant 

motions within the SARS-CoV-2 proteome. We illustrate this with the SARS-CoV-2 

nucleoprotein. The nucleoprotein is a multifunctional protein responsible for major lifecycle 

events such as viral packaging, transcription, and physically linking RNA to the envelope.57,58 As 

such, we expect the protein to accomplish these goals through a highly dynamic and rich 

conformational ensemble, akin to context-dependent regulatory modules observed in Ebola virus 

nucleoprotein.59,60 Investigating the RNA-binding domain, we predict both cryptic pockets and 

an incredibly dynamic beta-hairpin, which hosts the RNA binding site, referred to as a “positive 

finger” (Fig. 4.4C-D). Our observed conformational heterogeneity of the positive finger is 
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consistent with a structural ensemble determined using solution-state nuclear magnetic resonance 

(NMR) spectroscopy.61 Our simulations also capture numerous states of the putative RNA 

binding pose, where the positive finger curls up to form a cradle for RNA. These states can 

provide a structural basis for the design of small molecules that would compete with RNA 

binding, preventing viral assembly. 

The data we present in this paper represents the single largest collection of all-atom 

simulations. Table 4.1 is a comprehensive list of the systems we have simulated. Systems span 

various oligomerization states, include important complexes, and include representation from 

multiple coronaviruses. We also include human proteins that are targets for supportive therapies 

and preventative treatments. To accelerate the discovery of new therapeutics and promote open 

science, our MSMs and structures of cryptic pockets are available online 

(https://covid.molssi.org/ and https://osf.io/fs2yv/). For each system analyzed, we provide a 

detailed Markov model and relevant analysis. For cryptic pockets, we provide two directories, 

model and cryptic_pockets, as well as a README.dat that details all hyperparameters 

used for model construction. The model directory contains the following files: 

full_centers.xtc (GROMACS binary of cluster centers), populations.npy (numpy 

binary file of equilibrium populations), prot_masses.pdb (PDB topology file), 

tcounts.npy (numpy binary of the transition count matrix), and tprobs.npy (numpy 

binary of the transition probability matrix). For each cryptic pocket ‘X’ that we characterize, 

there exists a cryptic_pockets/pocketX_resis.dat  and 

cryptic_pockets/pocketX_rankings.dat, which details the residues that are present 

in the cryptic pocket and a list of states with cryptic pockets ranked from most open to most 

closed. Other contemporary works are already building on these data, providing new insight into 
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multiple systems (i.e. NSP16, Spike protein, and nucleoprotein) and making new connections 

with experiments.59,62,63 

4.4 Conclusions 
The Folding@home community has created one of the largest computational resources in the 

world to tackle a global threat. Over a million citizen scientists have pooled their computer 

resources to help understand and combat COVID-19, generating more than 0.1 seconds of 

simulation data. The unprecedented scale of these simulations has helped to characterize crucial 

stages of infection. We predict that Spike proteins have a strong trade-off between making ACE2 

binding interfaces accessible to infiltrate cells and conformationally masking epitopes to subvert 

immune responses. SARS-CoV-2 represents a more optimal tradeoff than related coronaviruses, 

which may explain its success in spreading globally. Our simulations also provide an atomically 

detailed roadmap for designing vaccines and antivirals. For example, we have made a 

comprehensive atlas and repository of cryptic pockets hosted online to accelerate the 

development of novel therapeutics. Many groups are already using our data, such as the COVID 

Moonshot,67 an international collaboration between multiple computational and experimental 

groups working to develop a patent-free inhibitor of the main protease. 

 Beyond SAR S-CoV-2, we expect this work to aid in a better understanding of the roles 

of proteins in the coronaviridae family. Coronaviruses have been around for millennia, yet many 

of their proteins are still poorly understood. Because climate change has made zoonotic 

transmission events more commonplace, it is imperative that we continue to perform basic 

research on these viruses to better protect us from future pandemics. For each protein system in 

Table 4.1, an extraordinary amount of sampling has led to the generation of a quantitative map of 
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its conformational landscape. There is still much to learn about coronavirus function and these 

conformational ensembles contain a wealth of information to pull from. 

 While we have aggressively targeted research on SARS-CoV-2, Folding@home is a 

general platform for running molecular dynamics simulations at scale. Before the COVID-19 

pandemic, Folding@home was already generating datasets that were orders of magnitude greater 

than from conventional means. With our explosive growth, our compute power has increased 

around 100-fold. Our work here highlights the incredible utility this compute power has to 

rapidly understand health and disease, providing a rich source of structural data for accelerating 

the design of therapeutics. With the continued support of the citizen scientists that have made 

this work possible, we have the opportunity to make a profound impact on other global health 

crises such as cancer, neurodegenerative diseases, and antibiotic resistance. 

4.5 Methods 

4.5.1 System preparation 

All simulations were prepared using Gromacs 2020.68 Initial structures were placed in a 

dodecahedral box that extends 1.0 nm beyond the protein in any dimension. Systems were then 

solvated and energy minimized with a steepest descents algorithm until the maximum force fell 

below 100 kJ/mol/nm using a step size of 0.01 nm and a cutoff distance of 1.2 nm for the 

neighbor list, Coulomb interactions, and van der Waals interactions. The AMBER03 force field 

was used for all systems except Spike protein with glycans, which used CHARMM36.69,70 We 

chose to use the AMBER03 forcefield for the discovery of cryptic pockets since we have had 

extensive success experimentally confirming predictions based on simulations using this 

forcefield on other systems.71 We have also found that AMBER03 gives comparable results to 

other force fields given sufficient sampling.72 Furthermore, we find that discovery of cryptic 
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pockets on NSP5 is robust to the choice of forcefield (Fig. A.3.4). All simulations were 

simulated with explicit TIP3P solvent.73  

Systems were then equilibrated for 1.0 ns, where all bonds were constrained with the 

LINCS algorithm and virtual sites were used to allow a 4 fs time step.74 Cutoffs of 1.1 nm were 

used for the neighbor list with 0.9 for Coulomb and van der Waals interactions. The particle 

mesh ewald method was employed for treatment of long-range interactions with a fourier 

spacing of 0.12 nm. The Verlet cutoff scheme was used for the neighbor list. The stochastic 

velocity rescaling (v-rescale) thermostat was used to hold the temperature at 300 K.75  

4.5.2 Adaptive sampling simulations 

The FAST algorithm was employed for each protein in Table 4.1 to enhance conformational 

sampling and quickly explore dominant motions. The procedure for FAST simulations is as 

follows: 1) run initial simulations, 2) build MSM, 3) rank states based on FAST ranking, 4) 

restart simulations from the top ranked states, 5) repeat steps 2-4 until ranking is optimized. For 

each system, MSMs were generated after each round of sampling using a k-centers clustering 

algorithm based on the RMSD between select atoms. Clustering continued until the maximum 

distance of a frame to a cluster center fell within a predefined cutoff. In addition to the FAST 

ranking, a similarity penalty was added to promote conformational diversity in starting 

structures, as has been described previously.76 The code used to run FAST simulations can be 

found online (https://github.com/bowman-lab/fast). 

FAST-distance simulations of all Spike proteins were run at 310 K on the Microsoft 

Azure cloud computing platform. The FAST-distance ranking favored states with greater RBD 

openings using a set of distances between atoms. Each round of sampling was performed with 22 

independent simulations that were 40 ns in length (0.88 µs aggregate sampling per round), where 
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the number of rounds totaled 13 (11.44 µs), 22 (19.36 µs), and 17 (14.96 µs), for SARS-CoV-1, 

SARS-CoV-2, and HCoV-NL63, respectively. 

For all other proteins, FAST-pocket simulations were run at 300 K for 6 rounds, with 10 

simulations per round, where each simulation was 40 ns in length (2.4 µs aggregate simulation). 

The FAST-pocket ranking function favored restarting simulations from states with large pocket 

openings. Pocket volumes were calculated using the LIGSITE algorithm.77  

4.5.3 Folding@home simulations 

For each adaptive sampling run, a conformationally diverse set of structures was selected to be 

run on Folding@home. Structures came from the final k-centers clustering of adaptive sampling, 

as is described above. Simulations were deployed using a simulation core based on either 

GROMACS 5.0.4 or OpenMM 7.4.1.68,78 

Estimating the aggregate compute power of Folding@home is non-trivial due to factors 

like hardware heterogeneity, measures to maintain volunteers’ anonymity, and the fact that 

volunteers can turn their machines on and off at-will. Furthermore, volunteers’ machines only 

communicate with the Folding@home servers at the beginning and end of a work unit, with the 

intervening time taking anywhere from tens of minutes to a few days depending on the 

volunteer’s hardware and the protein to simulate. Therefore, we chose to estimate the 

performance by counting the number of GPUs and CPUs that participated in Folding@home 

during a three-day window and making a conservative assumption about the computational 

performance of each device. We note that a larger time window has been used on our website for 

historical reasons. We make the conservative assumption that each CPU core performs at 0.0127 

TFLOPS and each GPU at 1.672 native TFLOPS (or 3.53 X86-equivalent TFLOPS), as 

explained in our long-standing performance estimate (https://stats.foldingathome.org/os). For 
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reference, a GTX 980 (which was released in 2014) can achieve 5 native TFLOPS (or 10.56 

X86-equivalent TFLOPS). An Intel Core i7 4770K (released in 2013) can achieve 0.046 

TFLOPS/core. We report x86-equivalent FLOPS. 

4.5.4 Markov state models 

A Markov state model is a network representation of a free energy landscape and is a key tool for 

making sense of molecular dynamics simulations.39,79 All MSMs were built using our python 

package, enspara (https://github.com/bowman-lab/enspara).80 Each system was clustered with 

the combined FAST and Folding@home datasets. In the case of Spike proteins, states were 

defined geometrically based on the RMSD between backbone Cɑ coordinates. States were 

generated as the top 3000 centers from a k-centers clustering algorithm. All other proteins were 

clustered based on the Euclidean distance between the solvent accessible surface area of 

residues, as is described previously.56 Systems generated either 2500, 5000, 7500, or 10000 

cluster centers from a k-centers clustering algorithm. Select systems were refined with 1-10 k-

medoid sweeps. Transition probability matrices were produced by counting transitions between 

states, adding a prior count of 1/𝑛WK?K>W, and row-normalizing, as is described previously.81 

Equilibrium populations were calculated as the eigenvector of the transition probability matrix 

with an eigenvalue of one. 

4.5.5 Spike/ACE2 binding competency 

To determine Spike protein binding competency to ACE2 the following structures of the RBD 

bound to ACE2 were used: 3D0G, 6M0J, and 3KBH, for SARS-CoV-1, SARS-CoV-2, and 

HCoV-NL63, respectively. The RBD of the bound complex was superimposed onto each RBD 

for structures in our MSM. Steric clashes were then determined between backbone atoms on the 
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ACE2 molecule and the rest of the spike protein. If any of the structures had a superposition that 

resulted in no clashes, it was deemed binding competent. The final population of binding 

competent states was determined as the sum of state populations that were deemed binding 

competent. Error bars were obtained from bootstrapping the MSM equilibrium populations, as 

implemented in enspara. 

4.5.6 Cryptic pockets and solvent accessible surface area 

For ease of detecting cryptic pockets and other functional motions, we employed our exposon 

analysis method.56 This method correlates the solvent exposure between residues to find 

concerted motions that tend to represent cryptic pocket openings. Solvent accessible surface area 

calculations were computed using the Shrake-Rupley algorithm as implemented in the python 

package MDTraj.82 For all proteins and complexes, a solvent probe radius of 0.28 nm was used, 

which has been shown to produce a reasonable clustering and exposon map.56 

Spike protein solvent accessible surface areas for SARS-CoV-2 were computed with 

glycan chains modeled onto each cluster center. Multiple glycan rotamers were sampled for each 

state and accessible surface areas for each residue were weighted based on MSM equilibrium 

populations. 

4.5.7 Sequence conservation 

Sequence conservation of spike proteins was calculated using the Uniprot database.83 Sequences 

between 30% - 90% were pulled and aligned with the Muscle algorithm.84 The entropy at each 

position was calculated to quantify variability of amino acids. Conservation was defined as one 

minus the entropy. 

4.5.8 Data availability 
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The datasets generated and/or analyzed during the current study are available at 
https://covid.molssi.org/ and https://osf.io/fs2yv/. 
 

4.5.9 Code availability 

GROMACS (https://github.com/gromacs/gromacs), OpenMM 
(https://github.com/openmm/openmm), our FAST adaptive sampling method 
(https://github.com/bowman-lab/fast), mdtraj (https://github.com/mdtraj/mdtraj), and our enspara 
code (https://github.com/bowman-lab/enspara) are all open source. 
 
 

 
Figure 4.1 Summary of Folding@home’s computational power. 
A) The growth of Folding@home (F@H) in response to COVID-19. The cumulative number of users is shown in 
blue and COVID-19 cases are shown in orange. B) Global distribution of Folding@home users. Each yellow dot 
represents a unique IP address contributing to Folding@home. C) The processing speed of Folding@home and the 
next 10 fastest supercomputers, in exaFLOPS (one exaFLOPS is 1018 floating point operations per second). 
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Figure 4.2 Structural characterization of Spike opening and conformational masking for three Spike 
homologues. 
A) An example structure of SARS-CoV-2 Spike protein from our simulations that is fully compatible with receptor 
binding, as shown by superimposing ACE2 (gray). The three chains of Spike are illustrated with a cartoon and 
transparent surface representation (orange, teal, and purple), and glycans are shown as sticks (green). B) Three Spike 
homologues have very different probabilities of adopting ACE2 binding competent conformations, likely 
modulating their affinities for both ACE2 and antibodies that engage the ACE2-binding interface. HCoV-NL63, 
SARS-CoV-1, and SARS-CoV-2 are shown as light-blue, orange, and black, respectively. C) The probability 



 114 

distribution of Spike opening for each homologue. Opening is quantified in terms of how far the center of mass of an 
RBD deviates from its position in the closed (or down) state. The cryptic epitope for the antibody CR3022 (red) is 
only accessible to antibody binding in extremely open conformations. D) Our simulations capture exposure of 
cryptic epitopes that are buried in the up and down cryoEM structures. The fraction of residues within different 
epitopes that are exposed to a 0.5 nm radius probe for the down structure (blue), up structure (yellow), the ensemble 
average from our simulations (green), and the maximum value we observe in our simulations (red). Epitopes are 
determined as the residues that contact the specified antibody and are clustered by their binding location on the 
RBD.13 
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Figure 4.3 Effects of glycan shielding and conformational masking on the accessibility of different parts of the 
Spike to potential therapeutics. 
A) The probability that a residue is exposed to potential therapeutics, as determined from our structural ensemble. 
Red indicates a high probability of being exposed and blue indicates a low probability of being exposed. B) 
Exposure probabilities colored on the surface of the Spike protein. Exposed patches are circled in orange. Red 
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residues have a higher probability of being exposed, whereas blue residues have a lower probability of being 
exposed. Green atoms denote glycans. C) Sequence conservation score colored onto the Spike protein. A conserved 
patch on the protein is circled in orange. Red residues have higher conservation, whereas blue residues have lower 
conservation. D) The difference in the probability that each residue is exposed between the ACE2-binding 
competent conformations and the entire ensemble. Red residues have a higher probability of being exposed upon 
opening, whereas blue residues have a lower probability of being exposed. Exposure data can be found online at 
https://osf.io/fs2yv/ under the SARS-CoV-2 spike project in the analysis folder. 
 

 
Figure 4.4 Examples of cryptic pockets and functionally-relevant dynamics. 
A-B) Conformational ensemble of Mpro (monomeric) predict cryptic pockets near the active site (AS) and domain 
interface (DI). Conformational states (black circles) are projected onto the solvent accessible surface areas (SASAs) 
of residues surrounding either the active-site or dimerization interface. The starting structure for simulations (6Y2E) 
is shown as a red dot. Representative structures are depicted with cartoon and transparent surface. Domains I and II 
are colored cyan and domain III is colored gray. The loop of domain III, which covers the active-site residues and is 
seen to be highly dynamic, is colored red. C-D) The conformational ensemble from our simulations of nucleoprotein 
is similar to the distribution of structures seen experimentally. Conformational states are projected onto the distance 
and angle between the positive finger and a nearby loop. Angles were calculated between vectors that point along 
each red segment in panel D and distances were calculated between their centers of mass. Cluster centers are 
represented as black circles, the starting structure for simulations (6VYO) is shown as a red dot, and NMR structures 
are shown with solid blue dots. Representative structures are shown as cartoons. 
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*Missing residues were modeled using Swiss model.64  
**Structural model was generated from a homologous sequence using Swiss model.64  
***Missing residues were modeled using CHARMM-GUI.65,66 
 

System name Oligomerization Initial 
structure Residues 

Atoms 
in 
system 

Aggregate 
simulation 
time (µs) 

Cryptic 
pockets 
discovered 

       
SARS-CoV-2       

NSP3 (Macrodomain 
“X”) Monomer 6W02 167 23907 10,906 - 

NSP3 (Papain-like 
protease 2, PL2pro) Monomer 3E9S** 306 97285 731 2 

NSP5 (main protease, 
Mpro, 3CLpro) Monomer 6Y2E 306 64791 6,405 2 

NSP5 (main protease, 
Mpro, 3CLpro) Dimer 6Y2E 612 77331 2,902 2 

NSP7 Monomer 5F22** 79 20094 3,722 3 
NSP8 Monomer 2AHM** 191 156282 1,776 3 
NSP9 Dimer 6W4B* 226 49885 8,939 2 
NSP10 Monomer 6W4H* 131 29560 6,141 2 
NSP12 (polymerase) Monomer 6NUR** 891 186622 3,330 3 
NSP13 (helicase) Monomer 6JYT** 596 129368 3,407 3 
NSP14 Monomer 5C8S** 527 216380 2,384 2 
NSP15 Monomer 6VWW 347 67345 3,674 4 
NSP15 Hexamer 6VWW 2082 230339 4,270 - 
NSP16 Monomer 6W4H* 298 45672 2,382 5 
Nucleoprotein (RBD) Monomer 6VYO 173 29125 9,493 3 
Nucleoprotein 
Dimerization Domain Monomer 6YUN* 118 34905 6,782 - 

Nucleoprotein 
Dimerization Domain Dimer 6YUN* 236 72733 1,458 2 

Spike Trimer 6VXX*** 3363 442881 1,109 - 
NSP7 / NSP8 / NSP12 Trimer complex 6NUR** 1184 215694 1,686 - 
NSP10 / NSP14 Dimer complex 5C8S** 688 226672 689 3 
NSP10 / NSP16 Dimer complex 6W4H* 429 63752 3,463 2 

       
SARS-CoV-1       

NSP3 (Macrodomain 
“X”) Monomer 2FAV 172 33117 659 - 

NSP9 Dimer 1QZ8* 226 49599 7,763 - 
NSP15 Monomer 2H85 345 67345 4,734 - 
NSP15 Hexamer 2H85 2070 230339 1,130 - 
Nucleoprotein RBD Monomer 2OFZ 174 29125 4,088 - 
Nucleoprotein 
Dimerization Domain Monomer 2GIB 370 34905 1,626 - 

Nucleoprotein 
Dimerization Domain Dimer 2GIB 740 72733 4,221 - 

Spike Trimer 5X58*** 3261 375851 741 - 
NSP10 / NSP16 Dimer complex 6W4H** 425 69589 518 - 

       
Human       

IL6 Monomer 1ALU 166 26855 1,593 2 
IL6-R Monomer 1N26 299 149764 196 5 
ACE2 Monomer 6LZG 596 75787 664 2 

Table 4.1 Summary of protein systems we have simulated on Folding@home, organized by viral 
strain. 
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MERS       

NSP13 Monomer 5WWP 596 121134 719 - 
NSP10 / NSP16 Dimer Complex 6W4H** 424 69127 518 - 

       
HCoV-NL63       

Spike Trimer 5SZS*** 3606 453348 651 - 
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Chapter 5  

SARS-CoV2 Nsp16 activation mechanism 
and a cryptic pocket with pan-coronavirus 
antiviral potential 
5.1 Preamble  
This chapter is adapted from the following article: Vithani N.,* Ward, M.D.,*  Zimmerman, 
M.I., Novak, B., Borowsky, J.H., Singh S., and Bowman, G.R (2021). “SARS-CoV2 Nsp16 
activation mechanism and a cryptic pocket with pan-coronavirus antiviral potential”, Biophysical 
Journal. 120, 14, 2880-2889. 

*These authors contributed equally to the work 

 

5.2 Introduction  
With the coronavirus 2019 (COVID-19) pandemic ravaging communities across the globe there 

is a massive ongoing effort to understand the molecular machinery of coronaviruses, which may 

provide insight into therapeutic opportunities (1–3). The severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV2) virus responsible for COVID-19 disease has infected over sixty 

million and killed over 1.5 million people globally to date (4). Additionally, coronaviruses have 

caused several past epidemics including severe acute respiratory syndrome (SARS) and Middle 

East respiratory syndrome (MERS) which had fatality rates of ~10% and ~34%, respectively (5, 

6). Therefore, there is likely to be evolution and outbreaks of additional zoonotic coronaviruses 

in the future (7). While vaccine trials for COVID-19 are successfully wrapping up, there are still 

no approved antivirals that reduce mortality to coronavirus infections (8–10). Taken together, 

there is strong incentive to understand the fundamental mechanisms of how these coronaviruses 
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operate in hopes of discovering effective therapeutics. Biophysical studies can provide these 

details, and a tremendous amount of biophysical work has already been done to understand the 

virus’ twenty-nine proteins. So far, the spike protein, positioned on the outside of the viral 

envelope, has proven to be a good vaccine candidate (11). Beyond the spike, the sixteen 

“nonstructural” (i.e. accessory) proteins carry out the majority of the virus’ essential processes, 

making them good targets for antiviral therapeutics (12, 13).  

Among the nonstructural proteins (Nsp’s), Nsp16 is particularly important to the viral 

replication cycle as it is essential to coronavirus’ immune evasion (14–16). Nsp16 is a 2’-O-

Methyltransferase (2′-O-MTase) that forms part of the replication-transcription complex (17). It 

mimics the human protein Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase (CMTr1) to 

perform a crucial step in capping transcribed mRNA (18). Specifically, Nsp16 facilitates the 

transfer of a methyl group from its S-adenosylmethionine (SAM) cofactor to the 2’ hydroxyl of 

ribose sugar of viral mRNA (18, 19). This methylation both improves translation efficiency and 

camouflages the mRNA so that it is not recognized by intracellular pathogen recognition 

receptors, such as IFIT and RIG-I (15, 20). Importantly, inhibiting or knocking out 2′-O-MTase 

activity severely attenuates  viral replication and infectivity of coronaviruses (13, 20). Thus, 

developing small molecules inhibitors of Nsp16 is a promising therapeutic strategy.  

Interestingly, while all other 2′-O-MTases (eukaryotic and viral) are active as monomers, 

Nsp16 requires a binding partner, Nsp10, to be active (16–18, 21–23). In fact, Nsp16 does not 

even bind its ligands (SAM and RNA) in the absence of Nsp10. In the experimentally-derived 

structures of the Nsp16/Nsp10 complex, Nsp10 does not form any direct interaction with either 

ligand (Fig. 5.1a), suggesting that Nsp10 may allosterically regulate Nsp16 to enable substrate 

binding (18, 19, 24–27). Given that there is significant structural variation in the RNA-binding 
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loops of different crystal structures of Nsp16 (Fig. 5.1b) and structures of monomeric Nsp16 

have not been solved, we hypothesized that Nsp16 is highly dynamic in solution, and Nsp10 acts 

by stabilizing the active state. In contrast, we anticipate that human CMTr1 would be less 

dynamic as it doesn’t require a binding partner for substrate binding and has been crystalized in 

its monomeric state.  Often, dynamics of proteins reveal allosteric pockets that remain hidden in 

their crystal structures (i.e., cryptic pockets). If monomeric Nsp16 is more dynamic than CMTr1, 

it may adopt inactive configurations that reveal allosteric cryptic pockets, which can be targeted 

by small-molecule inhibitors for its selective inhibition.  

Here, we use computer simulations to understand the activation mechanism of Nsp16 and 

identify cryptic pockets that may be valuable antiviral targets. Active site inhibitors, such as 

Sinefungin, have been shown to outcompete SAM binding and render Nsp16 catalytically 

inactive (28, 29). However, there are more than 200 human proteins with known or putative 

methyltransferase activity that use SAM as a cofactor (30). Therefore, it may be difficult to 

design antivirals that target the SAM (or RNA) binding sites of Nsp16 without eliciting off-target 

effects by also binding human methyltransferases. For example, Sinefungin has been shown to 

occupy the SAM-binding pocket of human N7 methyltransferase in a crystal structure (PDB: 

3epp). Targeting the Nsp16/Nsp10 interface could be an alternative means to selectively inhibit 

Nsp16 since CMTr1 lacks a homologous binding partner. Towards this, peptide-based inhibitors 

that mimic Nsp10 to compete for interactions at the Nsp10/Nsp16 interface have been shown to 

inhibit Nsp16 activity (31, 32). While this approach seems promising, peptide-based inhibitors 

face challenges including limited stability and shelf-life, the possibility of adverse immunogenic 

responses, and the high cost of production (33). To expand the therapeutic opportunities, we 

search for other ways to inactivate Nsp16. First, we compare the structure and dynamics of 
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SARS-CoV2 Nsp16 in the presence and absence of Nsp10 to understand Nsp16’s activation. 

Specifically, we use over one millisecond of molecular dynamics simulation data (2) to 

characterize how Nsp10 binding shifts Nsp16’s conformational ensemble to activate Nsp16. 

After showing that the resulting model is consistent with a variety of experimental observations, 

we use it to hunt for cryptic pockets that may provide a means to inhibit Nsp16. Finally, we 

extend our simulations to SARS-CoV1, MERS, and human CMTr1 to determine if targeting 

such a pocket could provide an opportunity to develop pan-coronavirus antivirals.  

5.3 Methods 

5.3.1 System Preparation 

The systems were prepared starting from crystal structures 6w4h, 3r24, 5ynf and 4n49, 

for SARS-CoV2, SARS-CoV1, MERS, and CMTr1, respectively. All ligands, solutes, and water 

molecules from the crystal structures were removed. For monomeric Nsp16 simulations, Nsp10 

was also removed. In the coronavirus homologs, two zinc ions were retained, and the 

coordinating residues were modified accordingly (CYS->CYM and HIS->HID). Missing 

residues in the crystal structure of CMTr1 were modeled using the Modeller package (34). All 

systems were solvated in TIP3P water (35) in a rhombic dodecahedral box with periodic 

boundary conditions and Na+ and Cl- ions added to neutralize the system. Then, systems were 

energy minimized with a steepest descent algorithm until the maximum force fell below 100 

kJ/mol/nm using a step size of 0.01 nm and a cutoff distance of 1.2 nm for the neighbor list, 

Coulomb interactions, and van der Waals interactions.  

Systems were equilibrated for 1.0 ns in NPT simulations, with all bonds constrained 

using the LINCS algorithm (36) and virtual sites were used to allow a 4 fs time step. Cutoffs of 

1.1 nm were used for the neighbor list with 0.9 for Coulomb and van der Waals interactions. The 
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particle mesh Ewald method (37) was employed for treatment of long-range interactions with a 

Fourier spacing of 0.12 nm. The Verlet cutoff scheme was used for the neighbor list. Berendsen 

barostat was used to control the pressure during the equilibration.(38) The stochastic velocity 

rescaling (v-rescale) thermostat was used to control the temperature at 300 K (39). 

5.3.2 Adaptive sampling simulations 

The FAST algorithm (40, 41) was employed for all four homologs for a total of five 

FAST simulations (SARS-CoV2 FAST simulations were performed on both monomeric Nsp16 

and the Nsp10/Nsp16 complex). FAST was used here to generally enhance conformational 

sampling and also to quickly explore cryptic pockets. The procedure for FAST simulations is as 

follows: 1) run initial simulations, 2) build MSM, 3) rank states based on FAST ranking, 4) 

restart simulations from the top ranked states, 5) repeat steps 2-4 until ranking is optimized. For 

each system, MSMs were generated after each round of sampling using a k-centers clustering 

algorithm based on the RMSD between select atoms. Clustering continued until the maximum 

distance of a frame to a cluster center fell within a predefined cutoff. In addition to the FAST 

ranking, a similarity penalty was added to promote conformational diversity in starting 

structures, as has been described previously (42).  

 For SARS-CoV2 monomeric Nsp16 and Nsp16/Nsp10, the simulation data was 

generated in a previous manuscript published by our group. Briefly, FAST-pocket simulations 

were run at 300 K for 6 rounds, with 10 simulations per round, where each simulation was 40 ns 

in length (2.4 µs aggregate simulation for each system). The FAST-pocket ranking function 

favored restarting simulations from states with large pocket openings. Pocket volumes were 

calculated using the LIGSITE algorithm (43). From these simulations, a conformationally 

diverse set of structures was selected to be run on Folding@home based on the k-centers 
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clustering algorithm mentioned above. A total of 283 microseconds and 770 microseconds of 

aggregate simulation time was collected for the Nsp10/Nsp16 complex and monomeric Nsp16, 

respectively.  

 FAST-distance simulations were used for SARS-CoV1 Nsp16, MERS Nsp16, and 

CMTr1 to sample the β3-β4 pocket identified from SARS-CoV2 simulations. FAST-distance 

simulations were run at 300 K for 15 rounds, with 10 simulations per round, where each 

simulation was 40 ns in length (6.0 µs aggregate simulation for each system). The FAST-

distance ranking favored stated with greater distances between the alpha carbons of β3 and β4. 

 

5.3.3 DiffNets 

We used DiffNets, a deep learning-based dimensionality reduction algorithm developed 

by our group, to highlight biochemically relevant differences between datasets. (44) We trained a 

DiffNet to compare and contrast structure ensembles of monomeric Nsp16 and the Nsp16/Nsp10 

complex to find features that discriminate them, highlighting the structural determinants of 

Nsp16 activation. First, we subsampled the data by a factor of 25 and 68 for the Nsp16/Nsp10 

complex and monomeric Nsp16 data, respectively to have an equal amount of data. Then, we 

converted simulation data to DiffNet input following the data normalization procedure from the 

original manuscript. Briefly, XYZ atom coordinates from simulations were mean-shifted to zero, 

and then multiplied by the inverse of the square root of a covariance matrix, which was 

calculated from simulations. For all DiffNet training and analysis, we used a split architecture (as 

described previously) where the classification task was focused on all atoms within 1nm of SAM 

or RNA-cap based on 6wks crystal structure. This atom selection was chosen to guide DiffNets 

to find differences in the active site region of Nsp16, which is inherently linked to its activation. 
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For training, simulation frames are classified as “Nsp16 inactive” or “Nsp16 active” based on 

initial classification labels of 0 (i.e. Nsp16 inactive) for all monomeric Nsp16 frames, and labels 

of 1 (i.e. Nsp16 active) for all frames from the Nsp10/Nsp16 complex. These labels were 

iteratively updated in a self-supervised manner described in the original manuscript where we 

choose expectation maximization bounds of [0.1-0.4] for monomeric Nsp16 and [0.6-0.9] for the 

Nsp10/Nsp16 complex. This allows for more coherent classification labels as monomeric Nsp16 

may sometimes adopt structural poses associated with Nsp16 activation and vice-versa for the 

Nsp10-Nsp16 complex.  Additionally, we used 30 latent variables, 10 training epochs where we 

subsampled the data by a factor of 10 in each epoch, a batch size of 32, and a learning rate of 

0.0001. 

To analyze the DiffNet output, we calculated 10 representative structures that span from 

“Nsp16 inactive” states to “Nsp16 active” states (i.e. structures with classification labels 

spanning 0 to 1). After training, the DiffNet learns a low-dimensional representation of each 

simulation frame (i.e. a latent vector) and outputs a classification label for every simulation 

frame. We binned the structures into 10 equally spaced bins based on their classification labels, 

which span from 0-1. The, we calculated the mean latent vector for each bin and used the 

DiffNet to reconstruct a structure based on each latent vector. These structures were used as 

representative structures for each bin. All training and analysis were performed using the open-

source package https://github.com/bowman-lab/diffnets. 

5.3.4 Markov State Models 

A Markov State Model (MSM) is a statistical framework for analyzing molecular 

dynamics simulations that provides a network representation of a free energy landscape. (45–47) 

To quantify cryptic pocket opening across the homologs and changes between monomeric Nsp16 
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and the Nsp10/Nsp16 complex, we performed several measurements that rely on MSMs built 

based on the simulation data. We built a separate MSM for each system using all simulation data 

available for that system. All MSMs were constructed with the Enspara python package (48). 

First, the solvent accessible surface area (SASA) of each residue side-chain was calculated using 

the Shrake-Rupley algorithm (49) implemented in MDTraj (50) using a drug-sized probe (2.8 Å 

sphere). 

Then, we clustered the data using a hybrid clustering algorithm. First, we used a k-centers 

algorithm (51, 52) to cluster the data. Next, we applied sweeps of k-medoids update steps (3 for 

SARS-CoV2 data, 2 for other homologs) which refined the cluster centers to be in the densest 

regions of conformational space (53). We clustered the simulation data based on the residue-

level SASA. For SARS-CoV2 Nsp16 and Nsp10/Nsp16 complex for which we had massive 

datasets from Folding@home (283 microseconds and 770 microseconds), we used 5000 cluster 

centers. For SARS-CoV1 Nsp16, MERS Nsp16 and human CMTr1 (6 microseconds of FAST 

adaptive sampling data per system), we used 1500 cluster centers. We validated that these 

produced Markovian models by plotting the implied timescales, from which we chose a lag time 

of 5 ns (see appendix, Fig. A.4.1). To further ensure robustness of the MSMs, we also built 

models based on alternative clusterings and confirmed that they gave similar results. 

Specifically, for SARS-CoV2 Nsp16 and Nsp10/Nsp16 complex we built MSMs using (1) 5.2 

nm2 cluster-radius cut-off and (2) 5.5 nm2 cluster-radius. For SARS-CoV1 Nsp16, MERS Nsp16 

and human CMTr1 we built MSMs using (1) 4.0 nm2 cluster-radius and (2) 4.5 nm2 cluster-

radius. All MSMs were Markovian (see Fig. A.4.1). Moreover, we used these MSMs to recreate 

the distributions in Fig’s 5.2-5.4 and we find that the results are robust across all MSMs (see Fig. 

A.4.2, A.4.3, A.4.4). A Markov time of 5 ns was selected for based on the implied timescales to 
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build a Markov state model (MSM) for each homolog. To build the MSMs, transition probability 

matrices were produced by counting transitions between states (i.e. clusters), adding a prior 

count of H
EpFqFrp

 and row-normalizing, as is described previously (54). Equilibrium populations 

were calculated as the eigenvector of the transition probability matrix with an eigenvalue of one. 

For all histograms shown, we calculated the order parameter of distance (e.g. distance between 

β3-β4) using cluster centers (i.e. representative structure of the cluster) and weighted the order 

parameter by the corresponding equilibrium population calculated with the MSM. We also 

resampled the equilibrium populations 100 times by bootstrapping the MSM, which provided 

error bars for computing the fraction of SAM and RNA compatible states adopted by monomeric 

Nsp16 and the Nsp16/10 complex. 

5.3.5 Distance and SASA calculations 

Figures 5.2, 5.3, and 5.4 include distance and SASA measurements that are explained in 

more detail here. In Figure 5.2 we measure the distance between gate loop 1 and gate loop 2 as 

the distance between Gln28 and Lys141 since these residues are known to undergo significant 

changes for RNA binding. We measure the distance between SAM binding loop 2 and gate loop 

2 as the average distance between (Met131, Tyr132, Asp133, Pro134) and (Asp99, Leu100, 

Asn101, Asp102) as these are key residues that cradle SAM in the bound state. All SASA 

measurements are performed using Ala79, Thr82, Ala83, Leu86, Thr93, Leu94, Leu95, Val96, 

Asp97, Ala98 and Asp99 as this is the main component that gets exposed during cryptic pocket 

opening. 

5.3.6 Cryptic pocket detection 
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Cryptic pockets in SARS-CoV2 Nsp16 were identified using our previously established 

approach called Exposons analysis (55). This analysis was performed using the cluster centers 

and the equilibrium probabilities derived from the MSMs built on the residue level SASA 

described above. The center of each cluster was taken as an exemplar of that conformational 

state, and residues were classified as exposed if their SASA exceeded 2.0 Å2 and buried 

otherwise. The mutual information between the exposure/burial of each residue-pair was 

calculated based on the MSM, by treating the SASA values in the cluster centers as samples and 

weighting them by the equilibrium probability of the representative state. The mutual 

information was computed using the following equation: 

𝑀𝐼(𝑋, 𝑌) = CC𝑝(𝑥, 𝑦)𝑙𝑜𝑔 7
𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦)9

}∈��∈�

 

 

Finally, cryptic pockets (Exposons) were identified as groups of residues undergoing 

cooperative change in SASA, by clustering the matrix of pairwise mutual information using 

affinity propagation. 

The β3-β4 cryptic pocket identified in SARS-CoV2 Nsp16 consists of residues Ala79, 

Thr82, Ala83, Leu86, Thr93, Leu94, Leu95, Val96, Asp97, Ala98 and Asp99. Total SASA of 

these residues/homologous residues was measured for detecting cryptic pocket opening in all 

homologs of Nsp16 (SARS-CoV2, SARS-CoV1 and MERS). For measuring equivalent cryptic 

pocket in CMTR1, total SASA of structurally homologous residues (Gly141, Ser144, Glu145, 

Val148, Ala155, Lys156, Gly157, His158, Gly159, Met160, Thr161) was calculated.  

 

5.3.7 Sequence Conservation 
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Protein sequences of Nsp16 from SARS-CoV2 (YP_009725311.1), SARS-CoV1 

(Uniprot ID: P0C6X7), MERS (Uniprot ID: K0BWD0), NL63 (AFD64750.1), HKU1 

(YP_460023.1), Turkey CoV (YP_001941189.1), Bat CoV (YP_008439226.1), Murine hepatitis 

virus (YP_209243.1) were used for multiple sequence alignment. Sequences alignment was 

performed on Clustal Omega server (56). Sequence alignment was visualized, and the sequence 

conservation score was generated using Jalview 2 software (57).  

For sequence comparison of SARS-CoV2, SARS-CoV1, MERS and human CMTr1 

shown in Fig. 5.4, structure-based sequence alignment was performed using UCSF Chimera 

package (58). For the structure-based sequence alignment, we first aligned the structures of these 

homologs (PDB: 6wks (SARS-CoV2), 3r24 (SARS-CoV1), 5ynf (MERS) and 4n49 (CMTr1). 

Then, the sequences were aligned based on the structural alignment of the backbone atoms.     

5.4 Results 

5.4.1 Nsp10 promotes opening of Nsp16’s SAM- and RNA-binding pockets 

While experimental studies have demonstrated that Nsp16 requires Nsp10 to be 

functionally active, the structural determinants of Nsp16’s activation remain unknown (17, 18, 

23). Chen et. al. proposed that Nsp10’s stimulatory effects are rooted in its ability to assist Nsp16 

in binding SAM and RNA, which is supported by data showing that Nsp16 alone cannot bind 

SAM or RNA (18). They also propose that Nsp10 manages this by stabilizing or changing the 

conformation of the SAM binding pocket based on the fact that Nsp10 contacts SAM binding 

loops in their crystal structure (and numerous other structures). However, without assessing 

Nsp10-Nsp16 complex’s dynamics and comparing it to monomeric Nsp16, this hypothesis is left 

wanting. It has also been proposed that Nsp10 assists in RNA binding by directly contacting 

RNA (59). However, a recent crystal structure with RNA bound (PDB: 7jyy) contains a stretch 
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of nucleotides long enough to contact Nsp10, but the RNA curls off into solution instead of 

interacting with Nsp10. Another recent study compared an RNA and SAM bound Nsp10/16 

complex structure to one with only SAM bound and found a major opening of RNA binding gate 

loops suggesting that the dynamics of these loops might be important for Nsp16 activation 

(25). However, it is not clear if Nsp10 plays a role in those dynamics. Altogether, there is strong 

evidence that Nsp10 modulates Nsp16’s structure and dynamics to assist it in binding SAM and 

RNA, but the mechanism of these structural changes is unclear. 

To explore how Nsp10 activates Nsp16, we analyzed simulations of Nsp16 in the 

presence and absence of Nsp10 using DiffNets. Recently, our group combined the sampling 

powers of the FAST-pockets adaptive sampling algorithm (40) and the computational resources 

of Folding@home to accumulate more than one millisecond of simulation data between 

simulations of monomeric Nsp16 and the Nsp16/Nsp10 complex (see methods) (2). Here, we 

compare these simulations using a deep learning-based dimensionality reduction algorithm called 

DiffNets (44). DiffNets has been shown to accurately capture the structural determinants of 

biochemical differences between protein variants. While we are not considering protein variants, 

our problem is similar since Nsp16 has different biochemical properties when in the 

presence/absence of Nsp10 (i.e. active/inactive). Therefore, we trained a DiffNet to learn the 

structural determinants of Nsp16 activation by learning differences between Nsp16’s ensemble 

when in the presence and absence of Nsp10. For each simulation frame, the DiffNet learns a low 

dimensional projection of the protein structure and classifies the structure with a label between 0 

and 1 that indicates the likelihood that the structure is associated with Nsp16 being active.  

Analysis of the DiffNet suggests that Nsp10 shifts Nsp16’s conformational ensemble to 

stabilize more open SAM- and RNA-binding pockets. Using the DiffNet classification labels, we 
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identified ten structures that are representative of the progression from Nsp16 inactive states to 

active states (see methods and Fig. 5.2). We noticed that RNA gate loop 2 moves away from 

RNA gate loop 1, making for a more open RNA binding pocket in active states compared to 

inactive states (Fig. 5.2A). Additionally, the SAM-binding pocket also opens up in the active 

states relative to the inactive states. RNA-binding gate loop 2 and SAM-binding loop 2 move 

away from each other in the active state, which widens the pocket creating space for SAM. (Fig. 

5.2A). Strikingly, the structure associated with the highest label (i.e. most strongly associated 

with Nsp16 activation) matches well to a recently solved crystal structure that is bound to both 

RNA and SAM (Fig. 5.2B) (25). Specifically, when we align the predicted active structure to 

6WKS, then measure the root-mean squared deviation (RMSD) of gate loop 2, we find a 

deviation on par with the typical resolution of crystal structures (1.40 Å). When we perform this 

calculation for the predicted inactive structure, the RMSD is much higher (3.24 Å). The 

predicted inactive structure adopts a more collapsed gate loop 2, similar to known structures with 

SAM, but not RNA, bound (i.e. PDB: 6w4h & 7c2i – see Fig. 5.2B) (26). This result implies that 

the DiffNet learned that Nsp10 activates Nsp16, in part, by rearranging the RNA gate loop into 

an RNA binding competent pose. Though it is known that this RNA gate loop needs to open to 

bind RNA, this is the first evidence, to our knowledge, to suggest that Nsp10 may activate Nsp16 

through increasing its propensity to form a more open RNA-binding pocket. Altogether, these 

results suggest that Nsp10’s presence increases the propensity for both SAM- and RNA- binding 

pockets to be open. 

To quantify the effect of Nsp10 on the SAM- and RNA-binding pockets, we built MSMs 

for both the complex and monomeric Nsp16. MSMs are a statistical framework for analyzing 

molecular dynamics simulation data that provide (among other things) a discrete map of 



 139 

structural configurations, an equilibrium population value that corresponds to the proportion of 

time a protein spends in any given configuration, and the probability of transitioning between 

any pair of configurations (45). We constructed MSMs for Nsp16 simulations both in the 

presence and absence of Nsp10.  

Our MSMs reveal that Nsp10 binding stabilizes open structures of both the SAM- and 

RNA-binding pockets that are competent to bind their respective substrates. We first found that 

the presence of Nsp10 results in a substantial reduction of flexibility in important binding 

components including both SAM binding loops and RNA gate loops (see Fig. A.4.5). This result 

is somewhat surprising since gate loop 2, which contacts both SAM and RNA, is not in direct 

contact with Nsp10, suggesting strong allosteric communication. Next, we calculated the 

distribution of distances for opening and closing of the SAM and RNA binding pockets (Fig. 

5.2C,D). From these histograms it is clear that both of these binding pockets have an increased 

propensity to open when Nsp10 is present. We considered pockets as SAM/RNA binding 

competent when the distance between loops in a pocket is at least as open as in the crystal 

structure that binds both ligands (PDB: 6wks). From this analysis, Nsp16 adopts binding 

competent states with higher probability when Nsp10 is present vs when Nsp10 is absent for 

both SAM (0.70 ± 0.04 vs 0.46 ± 0.04) and RNA (0.48 ± 0.04 vs 0.27 ± 0.03). Altogether, our 

data suggest that Nsp10 aids SAM and RNA binding by preventing the collapse of SAM and 

RNA binding gate loops. Our analysis also provides structural snapshots of what inactive states 

look like, which may be useful in targeting Nsp16 with therapeutics. 

5.4.2 A cryptic pocket in Nsp16 is a potential therapeutic target 

A traditional approach to drug development involves molecules designed to target 

binding cavities observed in singular structural snapshots of a protein, but this approach often 
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misses “cryptic” pockets that can form in proteins due to thermal fluctuations. Often times the 

active site of an enzyme is targeted for drug development to design an inhibitor that can 

outcompete substrate binding. However, active sites are often conserved among functional 

homologs. In the case of Nsp16, its human homolog (CMTr1) shares the same overall fold and 

binds the same substrates. Though there are significant sequence and structural differences in the 

active site, specificity may be more easily achieved by targeting a less functionally relevant 

region of the protein. Cryptic pockets can provide both a new target for drug development and 

the potential to achieve specificity. For example, cryptic pockets that remain closed and invisible 

in the crystal structure, but open in solution due to thermal fluctuations (55), can present unique 

potential binding sites due to differences in the dynamics of subsets of homologs (e.g. open in 

coronavirus homologs, but closed in human CMTr1). Therefore, it may be easier to achieve 

specificity by targeting a cryptic pocket. Importantly, the cryptic pocket must communicate with 

functional sites in order for it to be an effective therapeutic target. Here, we explore if Nsp16 

contains any cryptic pockets that, when open, would stabilize the inactive state identified with 

DiffNets. 

To find cryptic pockets, we applied “Exposons”, an algorithm (55) that identifies residues 

with cooperative changes in solvent exposure, to Nsp16 simulation data. Using this method, we 

found that residues in the β3 strand and ɑ3 helix transition between closed states and open states 

(i.e. low to high solvent accessible surface area) (Figure 5.3A). Specifically, the β4 strand curls 

up to form an ɑ-helical structure, which results in surface exposure of β3 and residues from ɑ3 

(Fig. 5.3A). The opening motion of β4 shifts the adjacent SAMBL2 against gate loop 2 to 

collapse the SAM binding pocket in a closed conformation (Fig. 5.3A,B). This agrees with the 

DiffNet prediction that the β4 strand moving away from β3 is associated with inactivation (see 
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Fig. A.4.6). Further, several residues forming this cryptic pocket directly contact Nsp10 in 

crystal structures of the Nsp16/Nsp10 complex (see Fig. A.4.7). The β3-β4 pocket opening 

displaces these Nsp10 binding residues, which could inhibit Nsp16’s association with Nsp10 (see 

Fig. A.4.7). The Nsp16/Nsp10 binding interface has also been targeted with peptide-based 

inhibitor design (31, 32). While this flat surface may be amenable to peptide inhibitors, it is a 

challenging target for small molecules. In contrast, the concave shape of the cryptic pocket 

identified in this work presents a more viable target for small molecule inhibitors. Finally, we 

find that this open pocket structure is commonly visited as part of monomeric Nsp16’s 

conformational ensemble, as measured with MSM equilibrium populations (Fig. 5.3B). Taken 

together, we propose that targeting the β3-β4 pocket with a small molecule could inhibit Nsp16’s 

activity by preventing SAM binding or preventing association with Nsp10. 

5.4.3 Conservation of the cryptic pocket in Nsp16 makes it a promising target 
for broad-spectrum inhibitors 

To explore the possibility of targeting the cryptic pocket for broad-spectrum inhibition of 

coronaviruses, we evaluated the conservation of cryptic pocket opening in Nsp16 

homologs. Ideally, a therapeutic developed to treat SARS-CoV2 would also work against other 

coronaviruses like MERS, SARS-CoV1, and potentially future outbreaks. Additionally, the 

therapeutic target should be sufficiently dissimilar from human CMTr1 such that it would not 

cause unwanted, off-target effects. While we identified a promising cryptic pocket in SARS-

CoV2, we wanted to investigate if this pocket is specific to SARS-CoV2, or specific to 

coronaviruses in general, or if it is common across homologs including CMTr1.   

First, we analyze cryptic pocket conservation by comparing sequence features and 

structural features based on the native, folded state. We find that the β3-β4 pocket residues are 
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100% conserved between SARS-CoV2 and SARS-CoV1 (Fig. 5.4B).  Additionally, of the eleven 

residues that form the pocket, there are only two non-conservative mutations between SARS-

CoV2 and MERS. Based on the sequence similarity, we expect that, if the cryptic pocket forms 

in all homologs, it may be possible to develop small-molecule therapeutics that targets all three. 

Further, we find substantial sequence differences between SARS-CoV2 and CMTr1. Eight out of 

the eleven pocket residues are non-conservative mutations relative to SARS-CoV2. Based on 

sequence differences alone, we reason that selective inhibition could be achieved even if the 

cryptic pocket is adopted by CMTr1. Moreover, the sequences and structure of SARS-CoV2 

Nsp16 and human CMTr1 are sufficiently different in the β3-β4 pocket region that the human 

protein may not even have the cryptic pocket (see Fig. A.4.8). Based on these sequence and 

structural differences, combined with the lack of requirement of a stabilizing binding partner, we 

hypothesized that cryptic pocket opening is not likely to be conserved in CMTr1. 

To explore cryptic pocket opening across homologs, we performed FAST-pocket 

simulations of monomeric Nsp16 for SARS-CoV1 and MERS, as well as, for human CMTr1. 

Then, we built an MSM for each homolog and measured opening of the β3-β4 pocket by 

measuring the equilibrium weighted solvent exposure of the pocket residues we previously used 

to define the pocket (i.e. Fig. 5.3). In these simulations, we find that the β3-β4 pocket opens with 

high probability in both SARS-CoV1 and MERS Nsp16 (Fig. 5.4).  The timescales for 

transitioning between the open and closed states of the pocket are given in Supporting 

Information (Table A.4.1). Encouragingly, we find that the β3-β4 pocket has a substantially 

lower probability of opening in CMTr1. Taken together, features of the β3-β4 cryptic pocket in 

coronavirus homologs of Nsp16 appear sufficiently similar to each other and dissimilar to 

CMTr1 to make for a promising target for pan-coronavirus inhibitors. 
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5.5 Conclusions 
Our work provides mechanistic insight into how Nsp16 is activated and reveals a new 

opportunity for inhibiting this essential viral component that could provide a target for pan-

coronavirus antivirals. First, we elucidate the activation mechanism of Nsp16 by comparing its 

dynamics in the presence and absence of its activator, Nsp10. Our results are consistent with 

previous experimental findings that Nsp16 cannot bind its substrates SAM or RNA in the 

absence of Nsp10 (18). We provide a structural rationale for this observation by elucidating the 

structural dynamics of Nsp16 in its monomeric state, which has remained inaccessible to 

experimental studies, and comparing it to the structural dynamics of the Nsp16/Nsp10 complex. 

Here, we find that Nsp10 activates Nsp16 by opening its SAM and RNA binding loops, allowing 

them to accommodate their respective ligands. Guided by this activation mechanism, we identify 

structural states of Nsp16 that are incompatible with substrate binding and also contain potential 

drug binding sites. Specifically, we find a pocket formed between β3 and β4 of Nsp16 that 

collapses the SAM binding pocket when open. The region of the pocket has overlap with where 

Nsp10 binds to Nsp16, so targeting this cryptic pocket could inhibit both substrate (SAM) and 

Nsp10 binding. Therefore, this cryptic site is a promising target for small-molecule inhibitor 

development. Further, we find that this cryptic pocket is conserved in MERS and SARS-CoV1 

Nsp16, but not in the human homolog CMTr1, suggesting its potential for development of a pan-

coronavirus, broad-spectrum inhibitor that may be efficacious against COVID19 and yet unseen 

coronavirus outbreaks. 
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Figure 5.1 Structural view of NSP16.  
Substrate binding pockets and Nsp10 binding interface of Nsp16 observed in the crystal structure of the 
Nsp16/Nsp10 complex (PDB: 6wks). (A) Surface representation of Nsp16 showing the SAM-binding pocket (cyan), 
RNA-binding pocket (yellow) and Nsp10-binding interface (green). (B) Overlay of Nsp16 structures from structures 
of the Nsp16/Nsp10 complex with RNA (PDB: 6wks, shown in grey) and without RNA (PDB: 6w4h, shown in 
cyan), showing structural heterogeneity in the RNA-binding site. Gate loop 1 and Gate loop 2 of the RNA-binding 
pocket, and SAM-binding loop 1 (SAMBL1) and SAM-binding loop 2 (SAMBL2) lining the SAM-binding pocket 
are highlighted.  
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Figure 5.2 DiffNets and MSMs reveal the mechanism of NSP16 activation.  
Nsp10 binding shifts Nsp16’s conformational ensemble increasing its propensity to adopt structural states that are 
ligand binding compatible. (A) Ten structures of Nsp16 that represent the DiffNet prediction changing from inactive 
to active (white to purple). (B) Comparison of the DiffNet predicted active and inactive states (purple + white, 
respectively) to the starting simulation state (yellow), a known SAM and RNA bound structural state (orange), and a 
known SAM (but not RNA) bound state (teal). All structures aligned to 6WKS (orange). (C) Probability-weighted 
distance distribution between RNA-binding gate loops 1 and 2 comparing monomeric Nsp16 (black) to the Nsp10-
Nsp16 complex (gray). (D) Probability-weighted distance distribution between SAM-binding loop 2 and gate loop 2, 
comparing monomeric Nsp16 (black) to the Nsp10-Nsp16 complex (gray). For (C) and (D), the distance for a SAM 
and RNA bound crystal structure is also plotted (red dotted line). 
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Figure 5.3 Cryptic pocket opening in NSP16.   
Cryptic pocket opening in SARS-CoV2 Nsp16. (A) Structural states with the cryptic pocket closed and open. The 
insets show surface views of the closed and open pocket. Residues exposed upon pocket opening are shown in cyan 
and the regions undergoing the opening motion are shown in blue. Collapse of the SAM-binding pocket is measured 
as the distance between SAMBL2 and gate loop 2, shown in yellow. (B) Equilibrium probability weighted 2D 
histograms of solvent-accessible surface area (SASA) of pocket residues (shown in cyan in A) and the distance 
between SAMBL2 and gate loop 2 in Nsp16 for monomeric Nsp16 (upper panel) and the Nsp16/Nsp10 complex 
(lower panel). The black dotted line separates the pocket closed and open states in Nsp16.  
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Figure 5.4 Cryptic pocket opening is conserved across coronavirus homologs.  
Comparison of cryptic pocket opening in Nsp16 homologs and human CMTr1. (A) Equilibrium probability-
weighted distribution of the solvent exposure of pocket forming residues for SARS-CoV2 (black), SARS-CoV1 
(blue), MERS (red) and CMTr1 (cyan). Structures representing the open pocket are shown for each homolog with 
β3 colored in cyan, and other pocket forming residues from a3 colored in green. Black dotted line depicts SASA of 
pocket residues in the crystal structure of Nsp16/Nsp10 complex (PDB: 6wks). (B) Structure-based sequence 
alignment of Nsp16 homologs (SARS-CoV2, SARS-CoV1 and MERS) and human CMTr1 is shown for the cryptic 
pocket forming regions. Residues of β3 are marked inside the black colored box, and other pocket forming residues 
from a3 are by green colored stars. 
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Chapter 6  

Predicting cryptic pocket opening from 
protein structures using graph neural 
networks 
6.1 Preamble  
This chapter is adapted from the following conference proceeding: Ward, M.D.,* Meller, A.,* 
Kshirsagar, M., Perhavec, F.O., Borowsy, J.H., Miller. G., Ferres, J.L., and Bowman, G.R 
(2021). “Predicting cryptic pocket opening from protein structures using graph neural networks”, 
NeurIPS Machine Learning for Structural Biology workshop. 

*These authors contributed equally to the work 

 

6.2 Introduction  
A structure of a protein’s native, folded state can reveal potential drug binding sites, but 

leaves us blind to other potential sites that form as the protein structure fluctuates in solution. 

There are over 100 confirmed examples of these “other” binding sites where a small molecule 

binds in a pocket on a protein which was not observable from any previously determined 

structure of that protein (i.e. a “cryptic pocket”)1. Currently, it is challenging to predict these 

cryptic pockets from the ground state experimental structure, but the ability to do so would come 

with several benefits. For example, protein structures that lack any obvious binding pockets are 

often considered undruggable2, but they may actually prove to be good drug targets if they have 

a cryptic pocket that can be targeted. Even if a protein structure already reveals a binding pocket 

that can be targeted with a small molecule (e.g. an active site), it is useful to know if there are 

cryptic pockets as targeting cryptic pockets may improve specificity (i.e. reduce off-target effects 
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when targeting a family of homologous proteins) or lead to the discovery of allosteric 

activators3,4. 

Current methods for identifying cryptic pockets in proteins are either slow or have low 

accuracy. Molecular dynamics simulations, which use physics-based force fields to model 

protein structural fluctuations5, are the primary means to identify and sample structural 

configurations of cryptic pockets but they often consume 100s of GPU hours per protein. Ideally, 

one could employ an algorithm that quickly and accurately determines if a protein will form a 

cryptic pocket, then use this result to determine if resources should be deployed to run a costly 

simulation or an experimental drug screen. Cryptosite is one such machine learning algorithm 

that predicts which amino acid residues of a protein will form a cryptic pocket with good 

performance (AUC=0.83)1. However, this method takes ~1 day to run because it relies on 

simulation data as input to the algorithm.  When simulation features are removed its performance 

markedly drops (AUC=0.74). 

In the current study, we train a graph neural network to accurately determines sites of 

cryptic pockets from experimental structures. In a previous study, molecular dynamics 

simulations were performed to identify and sample cryptic pockets across most proteins in the 

SARS-CoV-2 proteome to uncover ~50 new potential binding sites6. Across these simulations 

there are thousands of events where a cryptic pocket forms. We used these events as training 

examples to train a graph neural network to classify whether or not a residue is likely to 

participate in a cryptic pocket given the 3D topology and the chemical environment of its 

neighborhood. 

6.3 Results 

6.3.1 Predicting cryptic pockets with Geometric Vector Perceptrons 
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We hypothesized that the propensity of an amino acid residue to participate in a cryptic 

pocket is a function of the 3D topology and the chemical environment in which the amino acid 

resides. On one hand, if a residue is in a tightly packed region of a protein and has extremely 

strong attractive interactions with its neighbors, it is unlikely to undergo a structural 

rearrangement that creates a pocket that a ligand might bind. On the other hand, if a residue is in 

a loosely packed environment and has weak interactions with its neighbors, it may be more likely 

to be in a region that forms a cryptic pocket. Given this hypothesis we sought to train a model 

that takes a protein structure as input and outputs a value that indicates the likelihood that each 

amino acid residue will participate in a cryptic pocket. 

 Previous work has established that graph neural networks are an efficient way to learn 

complicated tasks from 3D protein structures. Specifically, a graph neural network architecture 

that employs a Geometric Vector Perceptron (GVP) has been previously shown to accurately 

evaluate the model quality of predicted protein structures and also successfully predict feasible 

protein sequences from 3D structures7. Briefly, the GVP-based graph neural network takes a set 

of node (i.e. an amino acid residue) and edge features that describe geometric and chemical 

features describing a residue, i, and its relation to another residue, j (Fig. 6.1a). To learn a 

representation for a given residue, the network uses message passing in which messages from 

neighboring residues and edges are used to update the residue representation.  

 Here, we adapt the GVP-based graph neural network to the task of predicting sites of 

cryptic pockets from a native, folded structure of a protein. As in the original paper, we use node 

features that include: the type of amino acid residue, sine and cosine transformations of 

backbone dihedral angles, an imputed unit vector between the alpha and beta carbon, and a 

forward and reverse unit vector to the i - 1 and i + 1 neighboring residues. Edge features include 
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a unit vector between nodes, a distance between nodes, and a sine transformation of the distance 

in the protein’s primary sequence. We update a node of interest using its 30 nearest neighbors as 

done in the original work. In the original work, protein-level predictions were made by taking the 

mean representation of all residues and making a prediction. Importantly, we do not take a mean 

of residues, but instead predict on residues individually. 

 

 

Figure 6.1 Training scheme to predict cryptic pocket opening.  
Depiction of how residue level representations are calculated in the graph neural network (a) and how residues are 
labelled for training (b). Node features include a one-hot encoding of residue type, sine and cosine transformations 
of 3 different backbone dihedral angles (only 2 shown for clarity), a unit vector capturing the direction of the C-
alpha to C-beta bond, and forward and reverse unit vectors (C-alpha to C-alpha from preceding and following 
residues). Edge features include a unit vector in the direction of the neighbor, the distance to the neighbor, and a sine 
transformation of the distance in sequence space. 
 

The training data for our model comes from time windows from molecular dynamics 

simulations. Specifically, we select a structure at some timepoint in simulation (t0) and the 

resulting structures within the next 10 nanoseconds of simulation to calculate the maximum 

pocket volume increase across the protein structures within that time window using the pocket 

detection algorithm LIGSITE8 (Fig. 6.1b). LIGSITE outputs sets of “pocket grid points” that 

indicate cavities on the protein surface (i.e. points that are surrounded by protein on all sides). 
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For all residues, we calculate how many pocket grid points are within 5 Angstroms of the 

residue. We label a residue a positive example if at some point in the time window that residue’s 

assigned pocket volume increases by 40Å3 (roughly the size of an ADP molecule) relative to its 

volume at time t0. We label a residue as a negative example if the change is less than 10Å3, and 

we do not consider residues with intermediate values. 

6.3.2 Graph neural networks accurately predict residue level pocket volume 
changes from simulation data  

We trained and evaluated a model using a simulation dataset of SARS-CoV-2 proteins 

(and related human proteins) that consisted of 17 proteins. First, we chose 15 proteins randomly 

(resulting in 1,160 simulation trajectories) and split the trajectories into training and validation 

sets in a 90:10 split. Then, we held out all trajectories from 2 proteins as a test set. Importantly, 

since the simulations provide many different structural configurations of the proteins and 

because each protein has many residues, the training set contained ~1.6M training examples 

(~176K positive, ~1.4M negative). 
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Figure 6.2 Evaluation of graph neural network’s ability to predict cryptic pocket opening in simulation.  
Several metrics evaluating the model relay its ability to accurately predict cryptic pocket opening in simulations. (a) 
Training and validation loss. (b) ROC curve. (c) Precision-recall curve. (d) Predictions and ground truth labels 
overlaid on a random structure from simulation. 
  

Our model effectively learned to classify how the pocket volume around a residue will 

change over the course of 10ns of simulation. First, we show that the model trains stably with the 

training and validation loss flattening around 25 epochs (Fig. 6.2a). We apply the best model 

(according to validation loss) to the test set of 2 held out proteins and calculate a ROC-AUC of 

0.82 (Fig. 6.2b). Overlaying the ground truth labels and predicted labels onto a random structure 

selected from simulation also demonstrates the high accuracy of the model (Fig. 6.2d). 

Additionally, we have plotted a precision-recall curve and observe good performance (Fig. 6.2c). 

In both the ROC curve and precision-recall curve our model substantially outperforms a random 

baseline, a model that classifies residues based on whether they are polar or nonpolar, and a 

model that classifies residues based on if they have secondary structure.  
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6.3.3 Graph neural networks accurately identify cryptic pockets from 
experimental structures 

To evaluate if our model can predict known sites of cryptic pockets without the need for 

simulations, we applied a trained model to a new test set of experimental protein structures with 

known cryptic pockets. This model was trained identical to the model from section 3.1 except it 

also included the 2 prior test set proteins. For the test set, we curated a set of 11 protein structure 

pairs that include an apo protein (no ligand bound) and the corresponding holo protein (ligand 

bound to cryptic site). We applied our model to the 11 apo protein structures (which were not 

part of the training) and found that it accurately identified the known cryptic pockets (Fig. 6.3, 

ROC-AUC=0.78). This result is slightly better than the reported result for the related algorithm 

CryptoSite1 (ROC-AUC=0.74 when not using features extracted from simulations). However, 

the test set used in the two studies are different and a follow-up comparison with an identical test 

set is warranted.  

 

Figure 6.3 Graph neural network prediction on experimentally determined cryptic pockets.  
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A graph neural network accurately predicts the locations of cryptic sites in 11 crystal structures with known cryptic 
pockets. Apo structures are colored from red to blue depending on the network’s prediction of whether pocket 
opening will occur at that residue. Ligands which bind cryptic sites (shown in yellow) are superposed onto apo 
structures. Residues at the ligand binding site are labelled as positive examples and shown in a stick representation 
in the apo structures. PDB ID’s for the apo and holo structures are provided. 
 

6.4 Conclusions 
We have shown that a graph neural network trained on protein simulation data can be used to 

predict sites of cryptic pockets from experimental structures of proteins. First, we showed that 

we can predict whether or not residues in a protein will undergo structural changes that lead to 

increased pocket volumes over the course of 10ns of simulation. Next, we showed that this same 

model can accurately predict sites of cryptic pockets from single structures without the need to 

run molecular dynamics simulations. 

While our model can accurately predict whether or not residues in a protein will undergo 

structural changes that lead to increased pocket volumes over the course of 10ns of simulation, 

there are come caveats. The highest precision only reaches ~0.5 meaning there is likely to be one 

false positive for every true positive at the lowest recall value. One explanation is that pocket 

formation is stochastic across a 10ns simulation window. Even with the exact same starting 

structural configuration, a residue can sometimes form a pocket in 10ns, and sometimes not. 

Therefore, many of the false positives called by our model may actually be residues that do 

sometimes form cryptic pockets in other 10ns windows. 

It may be surprising that our model can predict sites of cryptic pocket formation from 

crystal structures given that the model was not trained to perform this task. Nonetheless, we find 

that a model trained to predict how pocket volumes change in protein structures over the course 

of 10ns of simulation is transferable to the harder task of predicting cryptic pocket formation 

from experimental structures. Given that success on the former task begets success on the latter 
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task, this suggests that 10ns of simulation time may be a sufficient amount to sample at least 

partial cryptic pocket openings with molecular dynamics simulations. This is encouraging since, 

historically, simulations to discover cryptic pockets usually consumed far more resources. 

This work represents an encouraging proof-of-concept and should be improved by access 

to more simulation training data on a larger set of proteins, as well as, better model selection, 

which can come from a hyperparameter search to find the best model.  
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Chapter 7  

Conclusions  
 

7.1 Main Findings  
Applying deep learning approaches to protein biophysics has come with many breakthroughs in 

recent years, and the goal of this work has been to extend these approaches to areas in protein 

biophysics that have been relatively untouched. In particular, while there has been an explosion 

of work predicting static structures of biomolecules1–3 there has been less work characterizing 

structural ensembles. Among the studies at the intersection of deep learning and structural 

ensembles, most of the work has been around the goal of improving sampling of ensembles.4–7 

There has been less emphasis on using deep learning with the goal of analyzing structural 

ensemble data. In this section, I discuss the progress I made pursuing both of these goals. 

 Chapters 2, 3 and 5 detail the development and application of DiffNets, a deep learning 

based approach for analyzing structural ensembles to highlight differences between datasets. One 

feature that makes DiffNets stand out compared to previous methods is that it includes a specific 

mechanism to highlight differences between datasets. Namely, the low dimensional 

representation of data is constrained to predict which dataset each structure comes from. Taken 

together with the task of reconstructing the structure, the algorithm learns how to sort structures 

based on their association with one system or the other, which ultimately helps connect structural 

features to the biochemical properties that distinguish the systems of interest. After 

demonstrating that DiffNets correctly identifies structural signatures that distinguish protein 

variants and isoforms across model systems we applied it to new systems. In Chapter 3, we 
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applied it to naturally occurring genetic variants of the oxytocin receptor and showed how 

different variants alter signaling through modified interactions with β-arrestin and Gq. In chapter 

5, we showed how the SARS-CoV-2 NSP10 protein stimulates the enzymatic activity of NSP16 

by increasing NSP16’s propensity to adopt structural configurations with active sites open wide 

enough to be competent for ligand binding. 

 In chapter 4, I adapted the goals of my thesis work joining in the fight against COVID198 

by searching for new druggable sites across SARS-CoV-2 proteins. Structural biologists 

determined structures of the majority of the SARS-CoV-2 proteome within months of the global 

pandemic announcement.9 These structures revealed ways to inhibit these proteins as a means to 

cripple SARS-CoV-2. Building on this effort, we simulated how the protein structures fluctuate 

in solution and characterized more than 50 potential drug binding sites that had not been 

previously described. This effort required an unfathomable amount of resources; over a million 

people donated spare CPU/GPU cycles from their personal computers through a project called 

Folding@Home.10 The amount of resources required made me realize the discovery of cryptic 

pockets at scale using MD simulations is not currently feasible. However, MD simulations 

provide invaluable structural information about the cryptic pockets, so a way to prioritize 

proteins for cryptic pocket discovery could have tremendous impact. 

 In chapter 6, we developed a deep learning approach for predicting sites of cryptic 

pockets from single protein structures. Specifically, we utilized the simulation data from chapter 

4 to train a graph neural network to predict pocket opening events that were observed in 

simulation. This model accurately predicts which residues would participate in cryptic pocket 

opening over the course of 10 nanoseconds of simulation. This suggests that the topology and 
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chemical environment around a given residue contains sufficient information to forecast future 

events on a much longer time horizon than a typical MD timestep (~2 femtoseconds). We also 

found that this same model accurately determines sites where ligands had bound in known 

cryptic sites (derived from the PDB). This finding was surprising because it was not obvious if 

predicting a protein’s breathing motions would be a good proxy for predicting regions on a 

protein that are amenable to ligand binding.  

7.2 Future Directions  
One aspect of scientific research that is equally exciting and frustrating is that no research project 

is ever neatly completed; the number of questions seems to grow exponentially the deeper you 

go. My work certainly has not been without its frustrations and there are many things I would do 

to improve each project I have undertaken. This section will detail some of the future 

improvements that could be undertaken, which both excite and agitate me. 

 While DiffNets has been a useful tool, there are several modifications that could expand 

the scope of its usefulness. One problem with DiffNets is that the architecture is not 

translationally, nor rotationally, invariant. This means that if the same exact structure gets 

translated or rotated, the DiffNet will produce a different output. This does not match the 

underlying physics; the structure has the exact same properties even if it is translated or rotated. 

Therefore, DiffNets only works well in situations where structures across the ensemble can be 

well aligned to a starting structure. For this reason, DiffNets does not work well on highly 

dynamic proteins. Over the past couple of years there have been several physically-inspired 

neural networks that are equivariant with respect to translation and rotation and these are good 

candidates architectures to build future DiffNets.11 
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 DiffNets could also be improved by considering transitions between states. Currently, 

DiffNets is trained only on individual structures from simulations. This limits the networks to 

only learn differences between ensembles in terms of their preferences for specific structural 

states. However, there are cases where two proteins with different behavior might adopt the same 

exact states the same proportion of time, but differ in how frequently they transition between 

states. Adding in the ability for DiffNets to train on chunks of trajectories from MD simulations 

might allow them to hone in on important dynamic transitions between structural states rather 

than just focusing on individual structural states. There are several well-established deep learning 

architectures for handling this problem including recurrent neural networks12 and transformers.13 

 Beyond technical improvements, it would be exciting to see DiffNets used in a way that 

advances progress in medicine. The studies I carried out in chapters 3 and 5 helped understand 

the mechanism of how perturbations to a protein (e.g. a mutation or a regulatory partner) affect 

its behavior. These studies are descriptive in nature, and DiffNets was not used to make any 

predictions that may serve in developing new therapeutics. However, DiffNets do have the 

potential to be used in this capacity. For example, one might use DiffNets to compare isoforms 

within a family of proteins. This could help uncover structural features that can be targeted in 

one isoform but not others allowing for the development of a drug with high specificity. One 

might also be able to use DiffNets to help with precision medicine. For example, if a patient with 

a disease has a genetic variant of unknown significance, it’s possible that MD simulations in 

conjunction with DiffNets could help establish if that variant is similar to other variants, which 

would inform what type of treatment the patient should receive. 
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Improving cryptic pocket prediction is another avenue for advancing medicine. Cryptic 

pocket discovery comes with two major challenges. First, determining if a protein has a cryptic 

pocket is important to determine if it is worth pursuing the protein as a drug target. In chapter 5, 

we addressed this challenge with a graph neural network-based solution. Our solution reduces 

the time needed to make this determination from days, or weeks, to less than a second. While the 

results are promising, there is room for improvement with the accuracy of the model, which will 

probably come as more cryptic pocket data emerges in the PDB. The second challenge is 

structurally characterizing a protein’s cryptic pockets. Currently this require weeks (at least) of 

MD simulation time to sample the relevant structures. I propose that this could be accelerated by 

a neural network explicitly trained to generate structures of open cryptic pockets. Specifically, 

one could train a time-lagged autoencoder on pairs of structures that include closed and open 

pockets. From the closed state, the network would have to predict the structure of the open state. 

After training, one could apply this model to the native, folded structure of a protein and generate 

structures with open pockets. These open states could serve as a template for drug design. 

Altogether, this would provide a rational way to target cryptic pockets after ~seconds of 

calculation on the native, folded structure. 
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Appendices  
A.1 Appendix to Chapter 2 

A.1.1 Expectation Maximization Algorithm 

We hypothesize that it is possible to use EM to learn the association between individual 

structures and a biochemical property of interest. EM is a statistical method that allows the 

parameters of a model to be fit, even when the outputs of the model cannot directly be observed 

in the training data (i.e. when they are hidden)1. In our case, the hidden variables are the 

elements of a vector of numbers, associated with every structure in the simulation training data. 

Each variable should be a 1 if it is associated with the biochemical property and 0 otherwise, but 

we do not know what the correct value is, they are hidden. First, this vector is initialized to 

reasonable starting values. Next, during the Maximization step (M-step) we train a neural 

network to create a mapping between each structure’s descriptors (i.e. XYZ coordinates) and the 

current estimate of the hidden variables. Then, during the Expectation step (E-step), we re-

estimate our hidden variables using the trained model and the region constraints that specify how 

many structures we expect to be associated with the biochemical property of interest. Finally, we 

alternate between the E- and M-steps for a predefined number of steps. 

The EM algorithm alternates between E- and M-steps. To initialize the algorithm, we 

pick an output vector 𝑌 = (𝑦#) such that all values corresponding to simulation frames of one 

class of variant are assigned 0s, and all other values are assigned 1s. This is our initial guess for 

our hidden variables, 𝐾 = (𝑘#) (Eq. 1). Each element of 𝐾 is our current estimate of which 

structures are associated with the biochemical property of interest. Next, the M-step fits a neural 

network using 𝐾 as targets (Eq. 2),  

𝐾H 	←		 𝑌#@#K (1) 
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𝑊H	𝑎𝑛𝑑	𝑌H 	← 𝑀 − 𝑠𝑡𝑒𝑝				(𝐾H, 𝐷), (2) 

where 𝑊H is the tuned weights of the neural network and 𝑌H is the output of the model using 

these weights with the data. This output vector, 𝑌H, is used in the E-step to compute the next 

guess for the hidden variables 𝐾 (Eq. 3). The next iteration repeats the E- and M-steps, 

𝐾O 	← 𝐸 − 𝑠𝑡𝑒𝑝				(𝑌H) (3) 

𝑊O	𝑎𝑛𝑑	𝑌O 	← 𝑀 − 𝑠𝑡𝑒𝑝				(𝐾O, 𝐷), (4) 

Subsequent iterations repeat these steps for a predefined number of steps. As the algorithm 

progresses, both the 𝐾 and 𝑌 vectors should converge to a value that indicates the extent that a 

structure is associated with the biochemical property of interest. They should label the structures 

associated with the property with high probabilities, and the other structures with low 

probabilities.  

The E-step computes the expected values of the hidden variables 𝐾 from the outputs 𝑌 

conditioned on constraints defined by the user (e.g. only 0-30% of simulation data is expected to 

be associated with the property of interest for one class of data, and 40-70% for the other class). 

The expectation of the hidden variables is the probability-weighted average of all binary 

realizations of binomial distributions parameterized by 𝑌 that assign the right number of 

structures as being associated with the property of interest. Conceptually, the expectation is 

computed by, first, enumerating all binary realizations of 𝑌, each denoted as a vector of boldface 

variables 𝒀 = (𝑦#). Second, vectors that do not have the right number of structures according to 

the user-defined constraints are rejected. Third, the remaining vectors are scored by their 

probability according to 𝑌, and, finally, a probability-weighed average of the binary vectors is 

computed. This average vector is the expectation, and is assigned to 𝐾. A straightforward Python 
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implementation of this calculation can be found here (https://github.com/bowman-

lab/diffnets/blob/master/diffnets/exmax.py) under the function name “expectation_range_EXP”. 

While conceptually clear, computing 𝐾 in this way is very slow because there are 

exponentially many realizations of 𝑌 that must be enumerated. Fortunately, the expectation is 

computable in polynomial time. Here, we treat the structure labels as binary random variables 

following binomial distributions parameterized by 𝑌. For each class of data, the expectation of 

these variables is assigned to elements of 𝐾. Given the user-defined constraints about the number 

of structures associated with the property of interest, this update can be derived from Baye’s 

Rule, 

𝑘W = 𝐸[𝑦W	|	𝑆+ ≤ 	𝑦- ≤ 𝑆.	] (5) 

= 𝑃(𝑦W	is	1) ∗ 7
𝑃(𝑆+ − 1 ≤ 𝑦- − 𝑦W ≤ 𝑆. − 1

𝑃(𝑆+ ≤ 	𝑦- ≤ 𝑆.)
9 (6) 

where 𝑦- is the integer sum of the binary labels associated with the structures of the given class 

which are associated with the biochemical property of interest, 𝑦W is the binary label of a given 

structure (site s), 𝑃(𝑦W	is	1) is the probability that the structure is associated with the biochemical 

property according to 𝑌, the numerator is the probability that the number of structures associated 

with the biochemical property (ignoring site s) ranges from 𝑆+ − 1 to 𝑆. − 1, and the 

denominator is the probability that the number of structures associated with the biochemical 

property range from 𝑆+  to 𝑆.. 𝑆+  and 𝑆. are equal to the number of structures in a given class 

that are associated with the biochemical property of interest according to the user-defined 

constraints. 

 A.1.2 Supporting Figures  
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Figure A.1.1 Self-supervised DiffNets are robust across a range of expectation maximization bounds.  
(a) Histogram showing DiffNet output labels across all simulation frames from M182T and M182S (red – highly 
stable variants in training set) versus WT and M182V (grey – less stable variants in training set) across a range of 
expectation maximization bounds. Predictions on a less stable variant not seen during training (M182N) are also 
shown (black dotted line). (b) Three key hydrogen bond lengths in helix 9 as a function of the DiffNet output label 
(n=1,300,420 for each plot) (yellow – supervised, black – self-supervised), which ranges from zero for structures 
associated with low stability to one for structures associated with high stability. The distances are between the 
carbonyl carbon of the i’th residue and the nitrogen of the (i+4)’th residue. Standard error bars are not visible since 
the standard error is smaller than scatter points. 
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Figure A.1.2 Self-supervised DiffNets improve ability to predict property of a variant outside the training.  
Histogram of final DiffNet output labels for all simulation data points organized by variant (red – more stable 
variants, grey – less stable variants, black – less stable variant not seen during training) for a self-supervised DiffNet 
and a supervised DiffNet. 
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Figure A.1.3 Impact of expectation maximization on what features a DiffNet uses to distinguish variants.  
Dotted lines indicate distances between two atoms that change in a way that is strongly correlated with an increased 
DiffNet output label. Red indicates the atoms move closer together as the output label increases, blue indicates 
atoms moving away from each other. Results for β-lactamase variants and myosin are shown in (a) and (b) 
respectively. In (a), protein atoms are colored cyan if they are near the mutation, which indicates that they were 
included in the classification task and considered for the distance correlation calculation. The site of the single point 
mutation is highlighted with a yellow sphere. 
 
 
Self-supervised and supervised DiffNets both capture helix 9 compaction as the key feature that 
distinguishes stability in β-lactamase variants and we observe no qualitative improvement for the 
self-supervised model. In contrast, a self-supervised DiffNet correctly hones in on the 
importance of S180 dynamics in determining duty-ratio in myosin isoforms, but a supervised 
DiffNet does not. 
 
 
 
 
 



 173 

 
 
Figure A.1.4 DiffNet analysis suggests conformational changes on switch-II are important for distinguishing 
high-and low-duty myosin isoforms. 
Dotted lines indicate distances between two atoms that change in a way that is strongly correlated with an increased 
DiffNet output label. Red indicates the atoms move closer together as the output label increases, blue indicates 
atoms moving away from each other. Switch-II is colored orange and the p-loop is colored purple. 
 
Self-supervised DiffNet predicts that distance changes involving residues on switch-II (F468, 
E466) distinguish high and low-duty motor myosins. These residues are in close proximity to the 
p-loop (purple), which has a known role in determining duty-ratio. Moreover, E466 is directly 
involved in phosphate coordination in phosphate release2, which lends support to the DiffNet 
prediction that changes in this residue are important for determining duty ratio. 
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A.2 Appendix to Chapter 3 
 

Log(EC50)  
Variant log(EC50) 
(95% CI) 

WT log(EC50) 
(95% CI) 

Significance 
(P) 

V45L -8.165 (-8.237 to -8.099) -8.266 (-8.349 to -8.165) 0.0525 
P108A -8.195 (-8.355 to -8.195) -8.307 (-8.432 to -8.185) 0.2499 
V172A -8.295 (-8.444 to -8.161) -8.396 (-8.531 to -8.265) 0.2879 
L206V -8.432 (-8.657 to -8.212) -8.352 (-8.492 to -8.208) 0.5264 
A218T -8.435 (-8.503 to -8.368) -8.399 (-8.483 to -8.316) 0.4842 
G221S -8.465 (-8.655 to -8.277) -8.533 (-8.638 to -8.427) 0.5237 
A238T -8.533 (-8.679 to -8.386) -8.543 (-8.681 to -8.403) 0.9157 
G252A -8.734 (-8.932 to -8.516) -8.659 (-8.769 to -8.545) 0.5224 
V281M -8.054 (-8.115 to -7.989) -8.301 (-8.449 to -8.136) 0.0028 
E339K -8.167 (-8.282 to -8.055) -8.445 (-8.572 to -8.314) 0.0020 
R376G -8.699 (-8.900 to -8.480) -8.650 (-8.763 to -8.532) 0.6732 

 
Emax  

Variant Emax 
(95% CI) 

WT Emax 
(95% CI) 

Significance 
(P) 

V45L 93 (89 to 96) 97 (93 to 101) 0.0783 
P108A 98 (91 to 107) 96 (91 to 102) 0.7520 
V172A 91 (86 to 97) 98 (92 to 103) 0.0868 
L206V 93 (85 to 102) 98 (92 to 104) 0.0783 
A218T 91 (89 to 94) 98 (95 to 102) 0.0019 

Table A.2.1 Oxytocin response in Ca2+ assays for wild type (WT) and variant OXTRs 
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G221S 103 (95 to 111) 98 (94 to 102) 0.2751 
A238T 100 (94 to 106) 99 (94 to 105) 0.8697 
G252A 101 (93 to 109) 99 (95 to 103) 0.7182 
V281M 74 (72 to 77) 97 (91 to 105) <0.0001 
E339K 76 (72 to 81) 98 (94 to 104) <0.0001 
R376G 98 (91 to 107) 98 (94 to 103) 0.9194 

 
Results shown are point estimates and 95% confidence intervals from dose-response curves 
generated from three replicate experiments. Variant point estimates are shown next to point 
estimate from the WT control on the same plate. Statistically significant changes in log(EC50) or 
Emax are shown in bold [(extra sum of squares F test, P<0.0045 (⍺=0.05 with Bonferroni 
correction for 11 comparisons)]. 
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Log(EC50) 
 Variant log(EC50) 

 (95% CI) 
WT log(EC50)  
(95% CI) 

Significance 
(P) 

V45L -6.842 (-7.095 to -6.587) -7.232 (-7.419 to -7.038) 0.0139 
P108A -6.793 (-6.990 to -6.593) -7.363 (-7.474 to -7.249) <0.0001 
V172A -7.083 (-7.334 to -6.829) -7.232 (-7.419 to -7.038) 0.3240 
L206V -7.416 (-7.637 to -7.187) -7.456 (-7.598 to -7.309) 0.7793 
A218T -7.411 (-7.665 to -7.148) -7.363 (-7.474 to -7.249) 0.7072 
G221S -7.123 (-7.462 to -6.764) -7.232 (-7.419 to -7.038) 0.5538 
A238T -7.392 (-7.710 to -7.053) -7.232 (-7.419 to -7.038) 0.3924 
G252A -7.559 (-7.909 to -7.192) -7.456 (-7.598 to -7.309) 0.5925 
V281M -7.579 (undefined) -7.363 (-7.474 to -7.249) 0.6644 
E339K -6.750 (-7.443 to -5.984) -7.363 (-7.474 to -7.249) 0.0478 
R376G -7.566 (-7.729 to -7.400) -7.456 (-7.598 to -7.309) 0.3221 

 
Emax 
 Variant Emax 

(95% CI) 
WT Emax 
(95% CI) 

Significance 
(P) 

V45L 73 (65 to 82) 99 (93 to 107) <0.0001 
P108A 101 (92 to 112) 102 (98 to 107) 0.8726 
V172A 80 (73 to 89) 99 (93 to 107) 0.0007 
L206V 134 (123 to 146) 102 (96 to 108) <0.0001 
A218T 79 (71 to 88) 102 (98 to 107) <0.0001 
G221S 88 (77 to 100) 99 (93 to 107) 0.0751 
A238T 94 (83 to 107) 99 (93 to 107) 0.4363 
G252A 112 (97 to 127) 102 (96 to 108) 0.2147 
V281M 9 (4 to 18) 102 (98 to 107) 0.0174 
E339K 26 (18 to 38) 102 (98 to 107) 0.0006 
R376G 128 (121 to 137) 102 (96 to 108) <0.0001 

 
Results shown are point estimates and 95% confidence intervals from dose-response curves 
generated from three replicate experiments. Variant point estimates are shown next to point 
estimate from the WT control on the same plate. Statistically significant changes in log(EC50) or 
Emax are shown in bold [(extra sum of squares F test, P<0.0045 (⍺=0.05 with Bonferroni 
correction for 11 comparisons)]. 
  

Table A.2.2 Oxytocin-induced β-arrestin-1 recruitment for wild type (WT) and variant OXTRs 
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Log(EC50) 
 Variant log(EC50) 

 (95% CI) 
WT log(EC50)  
(95% CI) 

Significance 
(P) 

V45L -7.041 (-7.218 to -6.862) -7.504 (-7.625 to -7.379) <0.0001 
P108A -6.893 (-7.048 to -6.735) -7.295 (-7.485 to -7.099) 0.0017 
V172A -7.206 (-7.378 to -7.030) -7.504 (-7.625 to -7.379) 0.0050 
L206V -7.533 (-7.880 to -7.167) -7.655 (-7.850 to -7.457) 0.5756 
A218T -7.349 (-7.538 to -7.153) -7.295 (-7.485 to -7.099) 0.6795 
G221S -7.352 (-7.588 to -7.103) -7.504 (-7.625 to -7.379) 0.2376 
A238T -7.392 (-7.603 to -7.169) -7.504 (-7.625 to -7.379) 0.3463 
G252A -7.601 (-7.829 to -7.364) -7.655 (-7.850 to -7.457) 0.7065 
V281M -7.287 (-7.612 to -6.940) -7.295 (-7.485 to -7.099) 0.9767 
E339K -7.074 (-7.287 to -6.857) -7.295 (-7.485 to -7.099) 0.1975 
R376G -7.570 (-7.740 to -7.395) -7.655 (-7.850 to -7.457) 0.4945 

 
Emax 
 Variant Emax 

(95% CI) 
WT Emax 
(95% CI) 

Significance 
(P) 

V45L 87 (81 to 94) 98 (94 to 103) 0.0056 
P108A 120 (111 to 129) 103 (95 to 111) 0.0039 
V172A 93 (87 to 99) 98 (94 to 103) 0.1178 
L206V 149 (131 to 169) 103 (95 to 110) <0.0001 
A218T 94 (87 to 101) 103 (95 to 111) 0.0942 
G221S 100 (91 to 109) 98 (94 to 103) 0.7994 
A238T 105 (97 to 113) 98 (94 to 103) 0.1488 
G252A 104 (95 to 113) 103 (95 to 110) 0.8088 
V281M 26 (22 to 30) 103 (95 to 111) <0.0001 
E339K 51 (46 to 56) 103 (95 to 111) <0.0001 
R376G 113 (105 to 120) 103 (95 to 110) 0.0478 

 
Results shown are point estimates and 95% confidence intervals from dose-response curves 
generated from three replicate experiments. Variant point estimates are shown next to point 
estimate from the WT control on the same plate. Statistically significant changes in log(EC50) or 
Emax are shown in bold [(extra sum of squares F test, P<0.0045 (⍺=0.05 with Bonferroni 
correction for 11 comparisons)]. 
  

Table A.2.3 Oxytocin-induced β-arrestin-2 recruitment for wild type (WT) and variant OXTRs 
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Desensitization 

 
Variant log(IC50) 
(95% CI) 

WT log(IC50) 
(95% CI) 

Significance 
(P) 

V45L -7.781 (-7.969 to -7.541) -8.314 (-8.474 to -8.146) 0.0001 
P108A -7.840 (-8.054 to -7.530) -8.414 (-8.490 to -8.336) <0.0001 
L206V -8.414 (-8.609 to -8.200) -8.427 (-8.541 to -8.310) 0.9040 
V281M -8.532 (-8.734 to -8.328) -8.338 (-8.683 to -8.002) 0.3124 
E339K -7.828 (-7.976 to -7.654) -8.355 (-8.518 to -8.180) <0.0001 
 
Internalization 

 
Variant log(IC50)  
(95% CI) 

WT log(IC50) 
(95% CI) 

Significance 
(P) 

V45L -8.016 (-8.285 to -7.746) -8.436 (-8.606 to -8.269) 0.0098 
P108A -7.965 (-8.199 to -7.732) -8.559 (-8.756 to -8.356) 0.0003 
L206V -8.556 (-8.670 to -8.441) -8.657 (-8.909 to -8.384) 0.4626 
V281M -8.571 (-9.381 to -7.769) -8.704 (-9.169 to -8.229) 0.7595 
E339K -8.350 (-8.687 to -8.026) -8.585 (-8.796 to -8.369) 0.2135 

 
Results shown are point estimates and 95% confidence intervals (CI) from dose-response curves 
generated from three replicate experiments. Variant parameters are shown next to parameters 
from the WT control from the same experiment. P value shown from extra sum-of-squares F test 
comparing log(IC50) values between variant and WT. 
  

Table A.2.4 Log(IC50)s for desensitization and internalization curves for wild type (WT) and 
variant OXTR. 
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Figure A.2.1 Atoms included in DiffNets analysis. 
 

 
 
Atoms included in DiffNets analysis (cyan). OXTR homology model (grey) showing variants V45L (magenta), P108A 
(purple), and V281M (orange). Superimposed structures show β-arrestin-1 (red) and G protein (blue). 
 
 
Figure A.2.2 Comparison of equilibrium properties calculated from simulations using different clustering 
methods. 
 

 
 
The three distance distributions from Figure 6A, 6C, and 7A are replotted here from left to right using SASA-based 
clustering (a) and RMSD-based clustering (b). (a) and (b) are highly consistent suggesting that the choice of 
clustering used prior to MSM construction does not strongly affect the computed equilibrium properties of the 
system.  
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Figure A.2.3 Oxytocin-induced ß-arrestin recruitment to wild type (WT) and variant OXTRs. 
 

 
Dose response curves for β-arrestin-1 (A) and β-arrestin-2 (B) recruitment are shown for WT and variant OXTR.  
Error bars show standard error from N=3 independent experiments. 
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Figure A.2.4 Bias plots for wild type (WT) and variant OXTRs 

 
Each point represents activation and desensitization (A) or internalization (B) for one oxytocin dose (10-12-10-6 M). 
Error bars are SEM from N=3 independent experiments. 

 

A.3 Appendix to Chapter 4 
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Figure A.3.1 Distribution of SARS-CoV-2 Spike RBD opening.  
The probability that the center of mass of an RBD deviates from its position in the closed (or down) state for SARS-
CoV-2 spike with glycans (gray) and without glycans (black). 

 
Figure A.3.2 Simulations of the SARS-CoV-2 Spike complex reveal the existence of an “open” state. 
For reference, three Spike complex snapshots are shown: the “down” state (6VXX), the “up” state (6VSB), and an 
“open” state from our simulations. Structures are depicted with a cartoon backbone, transparent surface for 
sidechains, and sticks for glycans. Each chain in the complex has a unique color, orange, purple, or teal, and glycans 
are colored green.  
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Figure A.3.3 Gylcosylated SARS-CoV-2 spike protein transitions to an extremely open state through 
simultaneous rotation of the RBD. 
The Markov model of the spike protein is projected onto two order parameters: tilt angle and RBD rotation. Tilt 
angle is determined as the angle between points determined as the center of mass of the RBD, the helical S2 subunit, 
and the three RBDs when in the down position. The highest-flux transition pathway between the starting state and 
the state with the largest tilt-angle is shown in cyan. 
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Figure A.3.4 The discovery of cryptic pockets on NSP5 is robust to the choice of forcefield.  
FAST simulations of NSP5 were performed using the AMBER03, AMBER99sb-ildn, and CHARMM36 forcefields 
and projected onto the SASA of the active site and dimerization interface. For all three forcefields, we observe a 
cryptic pocket at the active site and dimerization interface. 
 
Cryptic pocket highlights for select systems in the SARS-CoV-2 proteome 
 

 
Figure A.3.5 NSP3-PL2Pro domain transition from closed to open state.  
Backbone is represented as a cartoon and sidechains are represented with a transparent surface (gray). The residues 
that undergo a large conformational change to expose a cryptic pocket are highlighted in pink. 
 
 

 
Figure A.3.6 NSP5 (dimer) transition from closed to open state.  
Backbone is represented as a cartoon, sidechains are represented with a transparent surface, and pocket volumes are 
represented as blue spheres. Each molecule in the dimer is identified with a unique color, gray or cyan. 
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Figure A.3.7 NSP7 transition from closed to open state.  
Backbone is represented as a cartoon and sidechains are represented with a transparent surface. The protein is 
colored by residue number following a rainbow. 
 

 
Figure A.3.8 NSP8 transition from closed to open state.  
Backbone is represented as a cartoon and sidechains are represented with a transparent surface. For reference, two 
regions that undergo a large conformational transition are highlighted as green and pink. 
 

 
Figure A.3.9 NSP9 (dimer) transition from closed to open state.  
Backbone is represented as a cartoon and sidechains are represented with a transparent surface. Each molecule in the 
dimer is identified with a unique color, gray or cyan. The residues that undergo a large conformational change to 
expose a cryptic pocket are highlighted in red. 
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Figure A.3.10 NSP10 transition from closed to open state.  
Backbone is represented as a cartoon and sidechains are represented with a transparent surface. Pocket volumes are 
highlighted with pink spheres. Here, an existing pocket is greatly expanded from the swivel of an α-helix. 
 

 
Figure A.3.11 NSP12 transition from closed to open state.  
Backbone is represented as a cartoon and sidechains are represented with a transparent surface. The residues that 
undergo a large conformational change to expose a cryptic pocket are highlighted in red. 
 

 
Figure A.3.12 NSP13 transition from closed to open state.  
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Backbone is represented as a cartoon and sidechains are represented with a transparent surface. The protein is 
colored by residue number following a rainbow and highlights the various domains. Here, we observe a large 
domain motion between domains 1A and 2A, which may be relevant for nucleotide binding. 
 

 
Figure A.3.13 NSP14 transition from closed to open state.  
Backbone is represented as a cartoon and sidechains are represented with a transparent surface. The residues that 
undergo a large conformational change to expose a cryptic pocket are highlighted in red. 
 

 
Figure A.3.14 NSP15 transition from closed to open state.  
Backbone is represented as a cartoon and sidechains are represented with a transparent surface. The residues that 
undergo a large conformational change to expose a cryptic pocket are highlighted in red. 
 

 
Figure A.3.15 NSP16 transition from closed to open state.  
Backbone is represented as a cartoon and sidechains are represented with a transparent surface. Pocket volumes are 
highlighted with maroon spheres. SAM cofactor is shown with pink sticks. 



 189 

 
Figure A.3.16 NSP10/NSP14 (complex) transition from closed to open state.  
Backbone is represented as a cartoon and sidechains are represented with a transparent surface. The residues that 
undergo a large conformational change to expose a cryptic pocket are highlighted in pink. 
 

 
Figure A.3.17 NSP10/NSP16 (complex) transition from closed to open state.  
Backbone is represented as a cartoon and sidechains are represented with a transparent surface. Each molecule in the 
complex is identified with a unique color, gray (NSP16) or cyan (NSP10). The residues that undergo a large 
conformational change to expose a cryptic pocket are highlighted in red. 
 

 
Figure A.3.18 Nucleoprotein dimerization domain transition from closed to open state.  
Backbone is represented as a cartoon and sidechains are represented with a transparent surface. The residues that 
undergo a large conformational change to expose a cryptic pocket are highlighted in orange. 
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Figure A.3.19 Human ACE2 transition from closed to open state.  
Backbone is represented as a cartoon and sidechains are represented with a transparent surface. The protein is 
colored by residue number following a rainbow. Pocket is proximal to the region that binds to SARS-CoV-2 spike 
protein. 
 

 
Figure A.3.20 Human IL6 transition from closed to open state.  
Backbone is represented as a cartoon and sidechains are represented with a transparent surface. The residues that 
undergo a large conformational change to expose a cryptic pocket are highlighted in red. 
 

 
Figure A.3.21 Human IL6-R transition from expanded to closed state.  
Backbone is represented as a cartoon and sidechains are represented with a transparent surface. The residues that 
undergo a large conformational change to reveal a potential druggable site are highlighted in red. 

 

A.4 Appendix to Chapter 5 
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Figure A.4.1 Implied timescales plot.  
Implied timescales plotted as a function of the lag time for MSMs for Nsp16/Nsp10 complex (SARS-CoV2), Nsp16 
homologs (SARS-CoV2, SARS-CoV1, & MERS) and human CMTr1 for different clustering cut-offs. 5 ns lag-time 
was selected to build the final MSMs used in this study. 
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Figure A.4.2 Distance distribution replicates.  
(A) Probability-weighted distance distribution between RNA-binding gate loops 1 and 2 comparing monomeric Nsp16 
(black) to the Nsp10-Nsp16 complex (gray) are shown for three different clustering cut-offs. (B) Probability-weighted 
distance distribution between SAM-binding loop 2 and gate loop 2, comparing monomeric Nsp16 (black) to the 
Nsp10-Nsp16 complex (gray) are shown for three different clustering cut-offs. The distance for a SAM and RNA 
bound crystal structure is also plotted (red dotted line) in all figures. 
 
 
 
 

 
 
Figure A.4.3 SASA calculation replicates.  
Equilibrium probability weighted 2D histograms of solvent-accessible surface area (SASA) of the cryptic pocket 
residues and the distance between SAMBL2 and gate loop 2 in Nsp16, derived from MSMs built with three different 
clustering cut-offs (5000 cluster centers, 5.2 nm2 cluster radius and 5.5 nm2 cluster radius) 
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Figure A.4.4 Cryptic pocket opening distribution replicates.  
Equilibrium probability-weighted distribution of the solvent exposure of pocket forming residues for SARS-CoV2 
(black), SARS-CoV1 (blue), MERS (red) and CMTr1 (cyan). Solid lines show the distributions derived from MSM 
built on 5000 clusters (for SARS-CoV2 Nsp16) and 1500 clusters (for other homologs). Thick dashed lines show the 
distributions derived from MSM built on clustering with 5.5 nm2 (for SARS-CoV2 Nsp16) and 4.5 nm2 clusters (for 
other homologs). Thin dashed lines show the distributions derived from MSM built on clustering with 5.2 nm2 (for 
SARS-CoV2 Nsp16) and 4.0 nm2 clusters (for other homologs). Black dotted line depicts SASA of pocket residues in 
the crystal structure of Nsp16/Nsp10 complex (PDB: 6wks). 
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Figure A.4.5 Change in root mean square fluctuation (rmsf) of Nsp16 upon Nsp10 association. 
(A) Probability weighted Δrmsf of Nsp16’ residues upon Nsp10 binding is plotted. Negative values represent a 
decrease in rmsf upon Nsp10 binding. RNA binding loops (gate loop 1 and 2) and SAM binding loops (SAMBL1 and 
2) are highlighted by the blue colored boxes. (B)  Probability weighted Δrmsf of Nsp16 is mapped on its structure, 
with negative values shown in blue and positive values in red.  
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Figure A.4.6 DiffNets predict that β4 peels away from β3 in Nsp16 inactive structural states. 
(Left) Structural states changing from inactive to active (white to purple) as predicted by the DiffNet. (Right) The 
loop connecting β3 and β4 peels away from β3 into solution in predicted inactive states. 
 
 

 
 
Figure A.4.7 Displacement of Nsp10 binding residues by cryptic pocket opening.  
(A) Structure of Nsp16 in cryptic pocket closed state is shown in grey. Cryptic pocket forming residues and the 
residues undergoing opening motion are shown in cyan and blue, respectively. Cryptic pocket residues that contact 
Nsp10 are depicted in spheres. (B) Opening motion of the cryptic pocket shows the displacement of Nsp10 binding 
residues.  
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Figure A.4.8 Structural comparison of β3-β4 cryptic pocket in SARS-CoV2 Nsp16 and human CMTr1.  
(A) β3 and residues lining the cryptic pocket in SARS-CoV2 are shown in cyan and blue, respectively. (B) Regions 
of human CMTr1, structurally equivalent to β3 and the pocket lining regions are depicted in cyan and blue, 
respectively. 
 
 
  

Nsp16 homolog Transition time (microseconds) 
‘Closed’ à ‘Open’ 

Transition time (microseconds) 
‘Open’ à ‘Closed’ 

SARS-CoV2 77.0 81.4 
SARS-CoV1 26.0 13.5 
MERS 19.5 9.9 

 
 
 
  

Table A.4.1 Timescales for transitioning between the pocket closed and open states in Nsp16 
homologs. 
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Figure A.4.9 Multiple sequence alignment of Nsp16 homologs from coronaviruses.  
The color ranges from white to orange for the sequence conservation score ranging from 0 to 10, where 10 denotes 
100% sequence identity. Residues of ꞵ3 are enclosed in the black box. Uniprot ids of the sequences used for the 
alignment are given in the Methods section. 
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