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Time series analysis is an essential tool in modern statistical analysis, with many real

data problems having temporal components that need to be studied better to understand

the temporal dependence structure in the data. For example, in the stock market, it is of

significant importance to identify the ups and downs of the stock prices, for which time

series analysis is crucial. Most existing literature on time series deals with linear time

series or with Gaussianity assumption. However, there are multiple instances where the

time series shows nonlinear trends or when the underlying error structure is non-Gaussian.

In such cases, nonlinear time series analysis is essential, which can be achieved using a

nonlinear parametric design or nonparametric approaches.

In Chapter 2, we have presented a quadratic prediction technique to improve prediction

accuracy when the time series is nonlinear or non-gaussian. We have also quantified the

amount of prediction gain we achieve using the quadratic prediction procedure. Further-

more, we have provided a characterization of the processes for which the quadratic predic-

tion will always give a better result than linear prediction in terms of the bispectra of the

underlying process. We have provided comprehensive simulation studies and two real data

xv



analyses to substantiate the theoretical results obtained. Chapter 3 deals with polyspec-

tral means, a higher-order version of spectral means, which gives us important insights

into a time series under the existence of non-linearity. We have proposed an estimate of

the polyspectral mean and derived its asymptotic distribution. We have also proposed

a linearity test based on the obtained asymptotic normality result. Finally, we have pro-

vided a simulation study and a real-world data analysis to offer possible applications of the

polyspectral means in the real-world scenario.

The next part of the thesis deals with real data analysis. Chapter 4 is devoted to an

election-prediction algorithm, which utilizes hashtag information and the dynamic network

structure in social media data and opinion polls. We proposed two algorithms, one using

the network structure (THANOS) and one without (THOS). Both our methods performed

better than existing election prediction algorithms. Moreover, the network structure gave

a closer prediction for closely fought elections than the one without it. Chapter 5 involves

proposing a bot-detection algorithm for social media data. Inorganic accounts, famously

known as bots, are used extensively for spreading malicious information and false pro-

paganda, and it is of significant importance to identify them as quickly as possible. We

have extracted several temporal and semantic features and used known machine learning

algorithms to identify the inorganic accounts.

The final chapter deals with bootstrap in extreme value analysis. Efron’s bootstrap is

proven to be inconsistent with extreme value theory. [50] showed that m out of n boot-

strap works in this particular scenario when m = o(n). that m out of n bootstrap works

in this particular scenario when m = o(n). However, there has not been much work on

how to find the optimal m in the m out of n bootstrap. In Chapter 6, we propose an op-

timal choice of m that would minimize the bootstrap’s convergence rate. We have given a

real-world data analysis using the AQI level of several cities worldwide.
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Chapter 1

Introduction

Time series analysis is essential in analyzing real data with a temporal component. With

continuous monitoring and data collection becoming increasingly common, the need for

time series analysis is continually increasing. Time series analysis often comes down to

the question of causality: how did the past influence the future? Time series analysis finds

application in a variety of sectors: medicine ([32], [84], [49]), weather forecast ([43], [114],

[66]), economic forecasting ([33], [125], [78]), and so on. There are numerous literature

in time series analysis, most of which works with linear time series or under Gaussianity

assumption ([25], [141], [56]). However, there are multiple instances where the time series

shows nonlinear trends or when the underlying error structure is non-Gaussian, which de-

mands nonlinear time series analysis ([69], [101], [68]). In such instances, nonlinear time

series analysis is essential, which can be achieved using a nonlinear parametric structure or

nonparametric approaches ([46]). Nonlinear time series prediction can offer potential accu-

racy gains over linear methods when the process is nonlinear. In this thesis, we provide a

brief overview of our contribution to the field of time series analysis. The first contribution

is motivated by the need to improve prediction accuracy when there is non-Gaussianity
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or non-linearity in the data. Several real-world applications, including stock market data,

economic data, and astronomy data, exhibit nonlinear trends in their temporal compo-

nents. Polyspectral means, higher-order versions of spectral means, give essential insights

into the data under nonlinear circumstances. In our second work, we propose an estimate

for polyspectral mean and its asymptotic distribution and also used the same to present a

test for linearity of time series. In chapter 4, we propose a model THANOS, which incor-

porates various temporal aspects of social media data to predict the results of a two-party

election. Chapter 5 deals with identifying inorganic accounts, popularly known as bots,

in social media. Finally, Chapter 6 gives an optimal choice of m in m out n bootstrap for

sample extremes.

1.1 Time Series Analysis

Chapters 2 and 3 deal with theoretical works on time series analysis. In Chapter 2, We

explore the class of quadratic predictors, which directly generalize linear predictors. We

show they can be computed using the second, third, and fourth auto-cumulant functions

when the time series is stationary. The new formulas for quadratic predictors generalize

the normal equations for linear prediction of stationary time series, and hence we obtain

quadratic generalizations of the Yule-Walker equations; we explicitly quantify the predic-

tion gains in quadratic over linear methods. We say a stochastic process is second-order

forecastable if quadratic prediction provides an advantage over linear prediction. One of

the critical results of the paper characterizes second-order forecastable processes in terms

of the spectral and bispectral densities. We verify these conditions for some popular non-

linear time series models. Numerical results and real data examples presented here show

marked improvement over linear predictions in many cases.
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Higher-order spectra (or polyspectra), defined as the Fourier Transform of a stationary

process’ autocumulants, are helpful in the analysis of nonlinear and non-Gaussian pro-

cesses. Polyspectral means are weighted averages over Fourier frequencies of the polyspec-

tra, and estimators can be constructed from analogous weighted averages of the higher-

order periodogram (a statistic computed from the data sample’s discrete Fourier Trans-

form). In Chapter 3, We derive the asymptotic distribution of a class of polyspectral mean

estimators, obtaining an exact expression for the limit distribution that depends on both

the given weighting function and higher-order spectra. Secondly, we use bispectral means

to define a new test of the linear process hypothesis. Simulations document the finite sam-

ple properties of the asymptotic results. Two applications illustrate our results’ utility: we

test the linear process hypothesis for a Sunspot time series and the Gross Domestic Prod-

uct, and we conduct a clustering exercise based on bispectral means with different weight

functions. Chapters 2 and 3 is joint work with Prof. Soumendra Lahiri from Washington

University in St. Louis and Prof. Tucker McElroy from the U.S. Census Bureau.

1.2 Data Analysis

Chapters 4 and 5 mainly focus on real-world data analysis, particularly social media data.

In this section, we worked on social media data; the social media platform considered be-

ing Twitter due to the ease of data collection. The influence and impact of social media

campaigns on democratic elections is a crucial research topic for modern big-data analytics.

Since the 2016 U.S. presidential election, much attention has been devoted to retrospec-

tively identifying influence efforts by malign state actors deployed through common social

media platforms like Facebook, Twitter, Instagram, etc. Much of this work focused on

identifying perpetrators, techniques used to propagate damaging content, and the possible

connections between malign external action and domestic individuals or parties. Studies

3



examining how this influence affects elections have received less attention. While several

studies in the political and social science literature have questioned the use of social me-

dia data for forecasting the results of political races, Chapter 4 proposes a novel modeling

approach to predicting electoral outcomes by combining public opinion polls and Twitter

data and by incorporating key summary features of the network structure of the Twitter

data to produce accurate predictions. Application to real data from Ireland’s 36th amend-

ment referendum and the United States’ 2018 Congressional elections exhibits promising

results. This work was done in collaboration with Dr. William Boettcher, Dr. Rob John-

ston and Dr. Michele Kolb from North Carolina State University, and Prof. Soumendra

Lahiri from Washington University in St. Louis.

Inorganic users, or bots, play a significant role in social media activities. Often, these bots

are used to propagate malicious propaganda and influence public opinion. These can have

substantial impacts on electoral outcomes or military conflicts. Hence, it is vital to identify

inorganic accounts as fast as possible. Chapter 5 deals with identifying these inorganic

accounts and discusses how we can efficiently identify these accounts through machine

learning techniques. We have used two real data sources, one from Botometer and one

from Social Sifter Dataset, collected using inorganic accounts from different influence cam-

paigns. This work was done in collaboration with Dr. William Boettcher and Dr. Rob

Johnston from North Carolina State University, and Prof. Soumendra Lahiri from Wash-

ington University in St. Louis.

1.3 Extreme Value Bootstrap

Chapter 6 deals with extreme value bootstrap. Efron’s Bootstrap is known to be ineffi-

cient in specific scenarios, one of them being the extremes of independent and identically

4



distributed random variables when the resample- and the sample sizes are equal. In such

cases, the m out of n Bootstrap is used, with m = o(n). The consistency of the m out of n

Bootstrap with m = o(n) has been widely investigated. However, the choice of m is critical

in ensuring the optimal performance of the method. We studied the convergence rate of

the m out of n Bootstrap for extremes of i.i.d. random variables and derived formulae for

the optimal resample size m in a univariate framework. An extension of the results to mul-

tivariate random variables is also given in the chapter. Results from a simulation study are

presented as well. For the real data analysis, we have applied our methods to AQI data

from several cities around the world and demonstrated the dire air quality condition in

some of these cities. This work was done in collaboration with Prof. Soumendra Lahiri

from Washington University in St. Louis.
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Chapter 2

Quadratic Prediction of Time Series

via Auto-Cumulants

2.1 Introduction

The prediction problem can often be parsed as an attempt to find an excellent “estima-

tor”of a target random variable Y given an available data random vector X. Typically a

joint distribution is posited, and the broader prediction problem involves determining the

conditional distribution Y ∣X. The mean (when it exists) of this conditional distribution

is the conditional expectation E[Y ∣X], and is known to minimize the mean square error

(MSE) between Y and all functions of X. This general problem has received much atten-

tion since it can be used for many other prediction problems. When the joint distribution

is Gaussian, the conditional expectation is a linear function of X. This linear function is

completely computable in terms of the first and second moments of the joint vector (Y,X),

as discussed in [24](Chapter 2).
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Even when the joint vector is non-Gaussian, a practitioner still might use the linear so-

lution – knowing that this solution has the minimal MSE among all linear estimators –

because it is simple to compute. Nevertheless, there can be a substantial predictive loss

when non-Gaussian features are present in the data, such as asymmetry and excess kur-

tosis [85], [23]. Nonlinearity in financial data has been documented in [64] and [2]; [104]

discuss time irreversibility (i.e., nonlinearity) in macroeconomic data, whereas [59] dis-

cuss the implications of skewness in asset pricing. [98] discuss the importance of obtaining

phase information for applications to image and speech reconstruction. [92] provides auto-

cumulant calculations for popular econometric models, motivated by known nonlinearities

in consumption and interest rate data. [130] provides an overview of the benefits of nonlin-

ear time series analysis.

One can formulate nonlinear prediction by generalizing the linear minimizer of prediction

MSE to a nonlinear solution, leading to the search for a “universal predictor”([73]). One

approach to finding a universal predictor involves the Kolmogorov-Gabor (KG) polynomial,

a finite-lag version of the universal predictor’s truncated Volterra expansion ([138], [118],

[22]), which is discussed in [134] and [127]). Recent work in econometrics utilizing the KG

approach include [76] and [28]. There is also a substantial literature on bilinear processes

([107], [102], [105], [64], [83], [82], and [128]) and the uses of bi-spectral analysis ([51] and

[108]). In this chapter, we formulate this universal predictor in terms of higher-order mo-

ments of a time series, which potentially could be estimated nonparametrically, avoiding

the need to specify a model.

To fix ideas, let {Xt} be a zero mean stationary time series with autocovariance function

γ(⋅), and suppose that we observe a finite stretch X1, . . . ,XT of the time series. The pre-

diction target is a future value Y = XT+L of the {Xt} process (for some given L ≥ 1, the
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forecast lead) on the basis of the past P observations X = [XT−P+1, . . . ,XT ]
′ (where ′ de-

notes the transpose). In the case that P = T we use all the available sample for prediction,

but it may be advantageous to take P < T when a large value of P necessitates the estima-

tion of many parameters.

As a first step, one might consider predictors that are quadratic functions of X, with the

understanding that first and second moments will no longer be sufficient to describe the

solution – as established in (2.3.3) below. Such a quadratic predictor could be computed

with either parametric or nonparametric approaches: if a particular parametric model is

supposed that specifies the needed auto-cumulants (but perhaps is agnostic about other

auto-cumulants not needed to describe the solution), then one can simply plug into the

formula once the model has been fitted. A nonparametric approach would forego modeling,

and instead proceed with consistent estimation of the auto-cumulants. Adequate estima-

tion of polyspectra has already been addressed in the statistics literature: see [21], [111],

[81], [10], and [12]. In the signal processing literature there is also much attention given

to the subject: [96], [91], and [95]. See also [63] which investigate the cross bi-spectrum in

spatial data.

Given that much is already known about polyspectral estimation and the properties of

specific kinds of nonlinear models, our focus in this chapter is instead on the properties

of nonlinear predictors, elicited through the analysis of polyspectra and the development

of recursive computational algorithms. With a deeper understanding of the properties of

nonlinear predictors (of the multivariate polynomial type), we aim to facilitate the appli-

cation of nonlinear prediction to time series data. We remark that the use of polynomials,

and the quadratic basis in particular, is not canonical, but is merely a convenient, agnostic

choice that is motivated by the Volterra expansion of the optimal predictor; this also indi-

cates that taking cubic and quartic terms will further improve the MSE. One can utilize
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different bases, but in order to do calculations one must either know the type of nonlinear

process or have resort to auto-cumulant computations. Our proposal is useful in contexts

where the exact specification of the nonlinear process is not known, or there are computa-

tional difficulties associated with finding its optimal predictor.

We now briefly describe the specific findings and main contributions of the chapter. For

the mean corrected random variates Y = XT+L and X = [XT−P+1, . . . ,XT ]
′, the class of

quadratic predictors we consider here has the generic form:

g(X) = a + b′X +X ′BX

for some constant a, coefficient vector b for the linear part, and (symmetric) coefficient

matrix B for the quadratic part. The zero mean condition on Y and unbiasedness con-

siderations suggest taking a = −E[X ′BX] = −tr.(BΣX,X), leaving b and B as the free

parameters of the quadratic predictor; here ΣX,X = Var[X] is the covariance matrix of

X with jkth entry γ(j − k), and tr. is the trace operator. Using some suitable vectoriza-

tion steps, we develop below a generalized version of the Yule-walker equations for the

quadratic prediction problem, and derive an explicit expression for the optimal choices of

b and B under the squared error loss. We also derive necessary and sufficient conditions

under which the quadratic prediction approach improves upon linear prediction, providing

a complete characterization – see Theorem 2.4.1. We call a stochastic process second order

forecastable if it satisfies these necessary and sufficient conditions. Thus, there is benefit in

using the quadratic prediction approach only for such second order forecastable processes.

We also give examples of some popular nonlinear time series models, such as ARCH and

GARCH models (which are shown to have some strange behavior) and nonlinear Hermite

processes that are second order forecastable. On computational aspects of the proposed
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methodology, we give an outline of an algorithm for computing the higher order auto-

cumulants and associated polyspectra that yield the coefficients in the optimal quadratic

predictor. Numerical results reported in the chapter show nontrivial improvements over

linear prediction, with relative gains in mean squared (prediction) error being as high as

25%; See Table 1 in Section 6 below. To summarize, the key contributions of the chapter

are to develop a new quadratic prediction methodology, provide results for identification

of second order forecastable processes (where the quadratic prediction method can offer

improvements over classical linear prediction theory), and develop necessary computing

tools to make the methodology applicable in practice.

The rest of the chapter is organized as follows. In Section 2.2, we describe the quadratic

prediction methodology. In Section 2.3, we quantify potential gains from using the quadratic

prediction approach over the traditional linear prediction methodology. In Section 2.4 we

provide a complete characterization of the class of second order forecastable processes

under some regularity conditions, and Section 2.5 gives some examples of such processes

arising from nonlinear time series models. Computational aspects and results from a nu-

merical study are reported in Section 2.6. In Section 2.7 we provide two real data exam-

ples involving the Unemployment Rate and the Wolfer Sunspots data. The quadratic

predictors give reductions of 16.5% and 29.2% in the mean squared errors in the two cases

respectively. The Appendix 2.8 contains proofs of the main results, as well as some techni-

cal details related to derivation of the auto-cumulants of Hermite processes.
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2.2 The Quadratic Yule Walker Equations and the Best

Quadratic Predictor

To state the formula for the quadratic predictor, we require the notion of auto-moment.

With Z denoting the set of all integers and with t0 = 0, for r ≥ 2, let

γr(t1, . . . , tr−1) = E
r−1
∏
j=0
Xtj , t1, . . . , tr−1 ∈ Z

denote the rth order auto-moment function of the stationary process {Xt}. In particular,

for r = 2, γ2(t) ≡ γ(t) = EX0Xt is the autocovariance function of {Xt}.

Next, recall that Y = XT+L and X ′ = [XT−P+1, . . . ,XT ] have mean zero. The entire ran-

dom vector consisting of X with Y as the final component is denoted Z. If Z is Gaussian,

E[Y ∣X] = b′X with b′ = Cov[Y,X]Var[X]−1. Moreover, even when Z is non-Gaussian this

same solution minimizes the linear prediction problem

E[(Y − b′X)2] = Var[Y ] − 2 b′Cov[X,Y ] + b′Var[X] b,

which is verified by computing the gradient and Hessian with respect to b. Whereas the

generic nonlinear prediction problem minimizes the MSE difference between Y and all

functions g(X), the quadratic problem posits a predictor of the form

g(X) = b′X +X ′BX −E[X ′BX]

=
P

∑
t=1
btXT+1−t + ∑

1≤s≤u≤P
Bsu (XT+1−sXT+1−u − γ(u − s)) , (2.2.1)
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where b = (b1, . . . , bP )′ ∈ RP and B is a P × P real matrix with entries Bsu. The second

term of (2.2.1) is a bilinear form, involving a two-dimensional array (i.e., the matrix B).

The centering of this bilinear form is needed to ensure that the predictor g(X) has mean

zero, as otherwise a bias is introduced. It is important to specify that B is (weakly) lower-

triangular, as we seek to identify the coefficients of B that minimize MSE, and these will

not be identifiable unless we restrict the bilinear form. The entries of the linear form are

not constrained. The optimal quadratic predictor is obtained by choosing the coefficients b

and B such that E[(Y − g(X))2] is minimized. This can be done by taking partial deriva-

tives of the quadratic form with respect to the free coefficients {bt ∶ 1 ≤ t ≤ P} and

{Bsu ∶ 1 ≤ s ≤ u ≤ P}. Setting these partial derivatives equal to zero, one obtains the

equations

P

∑
t′=1

bt′ γ(t − t
′) + ∑

1≤s′≤u′≤P
Bs′u′ γ3(t − s

′, t − u′) = γ(L + t − 1)

∑
1≤s′≤u′≤P

Bs′u′ (γ4(u − s
′, u − u′, u − s) − γ(u − s)γ(u′ − s′))

+
P

∑
t′=1

bt′ γ3(u − t
′, u − s) = γ3(L + u − 1, u − s). (2.2.2)

These are the generalized Yule-Walker equations for the quadratic prediction problem.

Note that in addition to the autocovariance function, it involves the third and fourth order

auto-moments of the {Xt} process.

The equations in (2.2.2) can be expressed in a compact form and solved for the coefficients

by recasting them using suitable matrix notation. To that end, note that the bilinear form

can be expressed in the following two alternative ways :

X ′BX = tr.{XX ′B} = vec[B]′ vec[XX ′],
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where recall that for an m × n matrix A, vec[A] is the mn × 1 vector obtained by stacking

the columns of A. The lower-triangular structure of B ensures that we can without loss

of generality consider the (weak) vech (where only the elements on or below the diagonal

are included in the column-wise vectorization of B) in lieu of vec in the above. Let W =

vech[XX ′], set β′ = [b′,vech[B]′], and let ΣA,B = Cov[A,B] for any random vectors A and

B. Then, we have the following result on the best quadratic predictor (BQP) of Y :

Proposition 2.2.1. Suppose that ΣX,X and S ≡ ΣW,W − ΣW,X Σ−1
X,X ΣX,W are invertible.

Then, the BQP of Y is given by [X ′,W ′
]β̂ where

β̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σ−1
X,X ΣX,Y −Σ−1

X,X ΣX,W S−1 (ΣW,Y −ΣW,X Σ−1
X,X ΣX,Y )

S−1 (ΣW,Y −ΣW,X Σ−1
X,X ΣX,Y )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Note that the optimal weights β̂ depend on the autocovariance function as well as the

third and fourth order auto-moments of the {Xt} process, as expected from the general-

ized Yule-Walker equations (2.2.2). In the next section we explore the benefits of using

the quadratic predictor over its linear counterpart, leading to the quadratic prediction

principle that gives a criterion for establishing superiority of the BQP over the best linear

predictor (BLP).

2.3 Improvement over the linear predictor

Clearly, the quadratic portion of the solution disappears entirely if and only if

ΣW,Y −ΣW,X Σ−1
X,X ΣX,Y = 0, (2.3.1)
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in which case b̂ (the first component of β̂) also reduces to the linear solution Σ−1
X,X ΣX,Y .

An important observation here is that condition (2.3.1) involves the third auto-cumulant,

but not the fourth (and higher) order auto-cumulants. The quantity on the left of (2.3.1)

can also be viewed as

ΣW,Ê(1) , (2.3.2)

where, with Ŷ (1) denoting the BLP of Y =Xt+L, the random variable Ê(1) = Y − Ŷ (1) gives

the error in the linear predictor. Hence it follows that there is no benefit to quadratic pre-

diction if and only if the error in the linear predictor is uncorrelated with W = vech[XX ′].

This is certainly the case for Gaussian Z, where all third auto-moments are zero; even

though S is invertible (it is now given by ΣW,W ), the condition (2.3.1) is true. In general,

the full expression for the BQP, Ŷ (2), is

Ŷ (2) = Ŷ (1) +ΣÊ(1),W S−1 [W −ΣW,X Σ−1
X,XX] . (2.3.3)

This expresses the quadratic estimator as the linear estimator plus a modification that

is only present if (2.3.1) is violated. Also, this modification is based on the difference be-

tween W and its linear projection upon X. It is easy to check that the minimum mean

squared prediction error (attained by the BQP, Ŷ (2)) is

ΣY,Y −ΣY,X Σ−1
X,X ΣX,Y −ΣÊ(1),W S−1 ΣW,Ê(1) ,

where the first two terms correspond to the prediction error for a linear problem. In other

words, the efficiency loss of using a linear estimator when a quadratic is warranted is the

non-negative quantity

ΣÊ(1),W S−1 ΣW,Ê(1) , (2.3.4)
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which is non-negligible when (2.3.1) is violated. We summarize this discussion in the fol-

lowing result.

Theorem 2.3.1. Suppose that Σ−1
X,X and S−1 exist. Then,

(i) the optimal quadratic predictor of Y under the squared error loss function is given by

(2.3.3).

(ii) The minimal quadratic prediction error is given by

ΣY,Y −ΣY,X Σ−1
X,X ΣX,Y −ΣÊ(1),W S−1 ΣW,Ê(1) .

(iii) The quadratic predictor improves upon the linear predictor if and only if (2.3.1) fails

or equivalently,

ΣÊ(1),W S−1 ΣW,Ê(1) ≠ 0.

Theorem 2.3.1 gives the formulae for the best quadratic predictor and the minimal predic-

tion error of a quadratic predictor. It also precisely describes situations where quadratic

prediction may improve upon linear prediction. Thus, Theorem 2.3.1 leads us to the fol-

lowing general quadratic prediction principle:

“There is no benefit to quadratic prediction if and only if the linear prediction error is or-

thogonal to quadratic functions of the data, i.e., when quantity (2.3.2) equals zero.”

2.4 Second Order Forecastable Processes

In this section, we present a characterization of time series models where the quadratic

prediction improves on linear prediction. For definiteness, we shall restrict attention to

the case where the goal is to predict Y = Xt+1 based on an infinite past {Xt,Xt−1, . . . ,}.

We say a time series is a second order forecastable processes if and only if the MSE of its
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one-step ahead BQP is less than the MSE of its one-step ahead BLP; this generalizes the

classical set of linear processes, for which the one-step ahead BLP is the conditional ex-

pectation. Below, we develop some key results on linear projections of quadratic terms,

and provide a characterization of second order forecastable processes. A stationary pro-

cess with moments of all orders can be described in terms of its polyspectra; this is the

approach to a frequency domain analysis of time series advocated by [18]. We proceed

by describing these results and relating them to the familiar case of a linear process. Any

strictly stationary time series {Xt} with moments of all orders has auto-cumulant func-

tions κ of order r + 1 (for r ≥ 1) defined via

κr+1(h) = cum[Xt+h1 ,Xt+h2 , . . . ,Xt+hr ,Xt],

where h = [h1, h2, . . . , hr]
′ is a r-vector of lags. Note that the order of the auto-cumulant

corresponds to the number of variables included (r + 1), not the number of lags (r). Strict

stationarity – or more generally, stationarity of order (r + 1) – guarantees that κr+1 is only a

function of the lags, and hence t is immaterial.

Recall the standing assumption that E[Xt] = 0, and also recall the definition of the auto-

moment functions γ of order (r + 1):

γr+1(h) = E[Xt+h1 Xt+h2 . . .Xt+hr Xt].

For r = 1,2, we have κr+1 = γr+1, but for r ≥ 3 the auto-cumulant and auto-moment

functions are distinct.

For the discussion below, we fix r ≥ 1 and assume that the order (r + 1) auto-cumulant

function, denoted simply by κr+1(h) = κ(h) for ease of exposition, is absolutely summable

over h ∈ Zr. With such an assumption, the polyspectrum of order (r+1) is well-defined. The
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corresponding polyspectral density of order (r + 1) is given by

f(λ) = ∑
h∈Zr

κ(h) exp{−i λ′h},

where i =
√
−1 and where λ = [λ1, . . . , λr]

′ denotes a r-vector of frequencies. [21] pro-

vides an elegant discussion as to why it is preferable to consider the Fourier transform of

auto-cumulants rather than that of auto-moments. When applying a linear filter Ψ(B) =

∑j∈ZψjB
j to such an {Xt}, yielding a new {Yt} defined by Yt = Ψ(B)Xt, one can relate the

polyspectra of the filter output to the polyspectra of the filter input. Let fy and fx denote

polyspectra of order (r + 1) for the {Yt} and {Xt} processes; then by Theorem 2.8.1 of [18],

fy(λ) =
r

∏
j=1

Ψ(e−iλj)Ψ(ei∑r
j=1 λj) fx(λ). (2.4.1)

Recall that it follows from the Wold decomposition ([90]) that a purely non-deterministic

stationary time series {Xt} can be expressed as Xt = Ψ(B)Zt, where Ψ(z) is a power

series such that Ψ(0) = 1, and {Zt} is a white noise process, with its rth cumulant denoted

by µr. When {Zt} is i.i.d., we say the process {Xt} is linear; this appellation is connected

to the fact that the minimal MSE one-step ahead forecast function is linear in the past

data. In such a case, the polyspectrum of order (r + 1) is given by

f(λ) = µr+1

r

∏
j=1

Ψ(e−iλj)Ψ(ei∑r
j=1 λj), (2.4.2)

which follows from (2.4.1) and the fact that all polyspectra for an i.i.d. sequence are equal

to the constant cumulant µr+1. If we relax the assumption that {Zt} is i.i.d., the above

formula will no longer be valid; potentially the {Zt} has a non-constant polyspectra. Con-

versely, given a polyspectrum it is possible to factorize it under certain conditions; see
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[126]. For the case r = 1, the well-known spectral factorization theorem ([90]) yields

f(λ) = µ2 Ψ2(e
−iλ)Ψ2(e

iλ), (2.4.3)

where Ψ2(z) is a power series such that Ψ2(0) = 1. This factorization is possible when the

process is invertible, i.e., the spectral density is strictly positive.

Within the above context we now provide an equivalent characterization of second order

forecastable processes. The endeavor to predict Xt+1 in terms of both linear and quadratic

functions of past data can be re-expressed as a linear function of both {Xt−ℓ}ℓ≥0 and

{Xt−jXt−k}j,k≥0. Using Lemma 2 of [9] the forecast only depends on the linear portion

if and only if

Cov[Xt+1,Xt−jXt−k − ̂Xt−jXt−k] = 0 (2.4.4)

for all j, k ≥ 0, where ̂Xt−jXt−k denotes the linear prediction of Xt−jXt−k on the basis of

{Xt−ℓ}ℓ≥0. In other words, if the above covariance is non-zero for some j and k, the process

is second order forecastable – following the ideas discussed in Sections 2 and 3. To under-

stand this condition better, we first derive ̂Xt−jXt−k; this is expressible as the mean γ(k − j)

plus some causal filter Π(j,k)(B) applied to Xt, i.e.,

̂Xt−jXt−k = γ(k − j) +Π(j,k)(B)Xt ≡ γ(k − j) +∑
h≥0

π
(j,k)
h Xt−h. (2.4.5)

To state the formula for this filter, we need new notations. Let the order (r + 1) auto-

cumulant generating function be denoted as

fr+1(z) = ∑
h∈Zr

κ(h) zh1
1 ⋯z

hr
r ,
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which reduces to the polyspectral density fr+1(λ) when zj = e−iλj for j = 1, . . . , r. Next, for

any function g(z) that is analytic on an open annulus containing the unit circle of C, let

(g(z))z =
1

2π ∫
π

−π
g(e−iλ)dλ.

Also, for any Laurent series Ψ(z) (see [3]), let [Ψ(z)]sr = ∑
s
j=r ψjz

j for integers r ≤ s. The

following result gives the linear projection of the quadratic term Xt−jXt−k for any j, k ≥ 0.

Proposition 2.4.1. Let {Xt} be strictly stationary with third moments, and absolutely

summable auto-cumulants of order 2 and 3. Suppose the spectral density is positive, so

that the factorization (2.4.3) exists. Then for any j, k ≥ 0, the power series in z defined by

Π(j,k)(z) = 1
µ2
[zj(yk−jf3(zy, y))y/Ψ2(z

−1)]
∞

0
Ψ2(z)

−1

yields the filter Π(j,k)(B) that generates the optimal linear estimate of Xt−jXt−k via (2.4.5).

Using Proposition 2.4.1, we can now prove our main result about the characterization of

the property of being a second order forecastable process. The main assumption is that

there are no zeroes in the spectral density. This is not a substantially new restriction,

because if the spectral density is not positive then linear forecasting is also impossible.

Theorem 2.4.1. Let {Xt} be strictly stationary with fourth moments, and absolutely

summable auto-cumulants of order 2, 3, and 4. Suppose the spectral density is positive, so

that the factorization (2.4.3) exists. Then {Xt} is second order forecastable if and only if

the expression

((zj+1yk+1f3(z, y)/Ψ2(zy))y)z
(2.4.6)

is nonzero for some j, k ≥ 0.
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Remark 2.4.1. The condition (2.4.4) is also equivalent to

Cov[Xt+1 − X̂t+1,Xt−jXt−k] = 0

for all j, k ≥ 0, and therefore by Theorem 2.4.1 condition (2.4.6) says that the linear fore-

cast error is orthogonal to all quadratic functions of the past, i.e., the quadratic prediction

principle holds.

Remark 2.4.2. As a consequence of Theorem 2.4.1, we shall say that any process {Xt}

satisfying those hypotheses is by definition a second order forecastable process if and only

if (2.4.6) is nonzero for some j, k ≥ 0. It is immediate that Gaussian processes and causal

linear processes are not second order forecastable: in the former case, f3(z, y) ≡ 0, and in

the latter case, using (2.4.2),

f3(z, y)/Ψ2(zy) = µ3 Ψ2(z)Ψ2(y),

on the unit circle, so that (2.4.6) equals zero for all j, k ≥ 0.

To check whether a given nonlinear process is second order forecastable, one needs the

spectral factorization Ψ2 (see [89] for algorithms) and an expression for the bi-spectral

density, so that (2.4.6) can be directly calculated. However, a process that is second or-

der forecastable may also be third order forecastable – this just says that the best cubic

predictor has lower MSE than the BQP. In fact, writing Fd for the class of dth order fore-

castable processes, we see that F2 ⊂ F3 ⊂ . . ., since trivially any BQP can be written as

a cubic predictor where the third order terms are zero. In order to partition the space of

nonlinear processes, we take the intersection of each Fd with the complement of all higher

order classes, i.e., Ad is the set of order d augurable processes, defined as processes in Fd

such that the best order k predictor, for all k > d, gives no reduction to the MSE. This
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is a stronger condition, so we refer to an augury rather than a forecast; it follows that Ad

consists of all processes for which the Volterra expansion of the one-step ahead conditional

expectation truncates to order d. Although the augurable classes are more elegant, since

they form a partition, it is more difficult to check membership.

2.5 Illustrations of Second Order Forecastable Processes

We present results for two classes of second order forecastable processes, each of which is

simple to simulate and study.

2.5.1 Hermite Processes

A class of nonlinear processes for which the auto-moments can be calculated fairly directly

is the Hermite class. Let {Zt} be a mean zero, stationary Gaussian with autocovariance

c(h) such that c(0) = 1. The Hermite polynomials are defined for k ≥ 1 (H0 ≡ 1) as

Hk(x) =
(−1)k
√
k!

ex
2/2 ∂kxe

−x2/2.

For a sequence of coefficients {Jk}k≥1 that are square summable, let g(x) = ∑∞k=1 JkHk(x)

and define a Hermite process via Xt = g(Zt). This is a zero mean nonlinear process; see

[67] for more details. We describe a general method for computing the auto-moments in

the Appendix. The derivation involves the Hermite generating function and some combina-

torial concepts, and may be of independent interest; see the Appendix for details.
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Exponential Hermite Process

Here we set g(x) = ex − µ for µ = ec(0)/2, so that {Xt} is a lognormal process. The auto-

moments are:

γ(h1) = µ
2 (exp{c(h1)} − 1)

γ3(h1, h2) = µ
3 (exp{c(h1) + c(h2) + c(h1 − h2)}

− exp{c(h1)} − exp{c(h2)} − exp{c(h1 − h2)} + 2)

γ4(h1, h2, h3) = µ
4 (exp{c(h1) + c(h2) + c(h3) + c(h1 − h2) + c(h1 − h3)

+c(h2 − h3)} − exp{c(h1 − h2) + c(h1 − h3) + c(h2 − h3)}

− exp{c(h2) + c(h3) + c(h2 − h3)}

− exp{c(h1) + c(h3) + c(h1 − h3)}

− exp{c(h1) + c(h2) + c(h1 − h2)}

+ exp{c(h2 − h3)} + exp{c(h1 − h3)} + exp{c(h1 − h2)}

+ exp{c(h3)} + exp{c(h2)} + exp{c(h1)} − 3) ,

which are easily derived using the formula for the expectation of the lognormal distribu-

tion. For such a process, the minimal MSE predictor among all function classes is known

to be the exponential of the sum of the linear estimator plus half its MSE; hence we know

there is a benefit to nonlinear prediction, and the lognormal process will generally be a

second order forecastable process.

Of course, in practice we may not know that our data follows such a lognormal process,

or may have difficulty fitting the model; if we use nonparametric estimation of the auto-

moments (see below) and utilize quadratic prediction, we can expect a benefit even when

the exact model specification is unknown. For example, if {Zt} is an MA(q) then the third
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auto-moment function is zero whenever ∣h1∣, ∣h2∣ > q, or ∣h1∣, ∣h1 − h2∣ > q, or ∣h2∣, ∣h1 − h2∣ > q.

In the case q = 1, we obtain

γ3(0,0) = µ3 (e3 − 3e + 2)

γ3(±1,0) = γ3(0,±1) = γ3(1,1) = γ3(−1,−1) = µ3 (e1+2c(1) − 2ec(1) − e + 2)

γ3(2,1) = γ3(1,2) = γ3(−2,−1) = γ3(−1,−2) = µ3 (e2c(1) − 2ec(1) + 1),

all other values being zero. Hence the bi-spectrum is

f(z, y) = µ3 ((e3 − 3e + 2)

+ (e2c(1) − 2ec(1) + 1) (z2y + z−2y−1 + zy2 + z−2y−2)

+ (e1+2c(1) − 2ec(1) − e + 2) (z + z−1 + y + y−1 + zy + z−1y−1)).

However, the autocovariance function corresponds to an MA(1) process, and hence Ψ2(z) =

1 − θz for some θ determined from γ(0) and γ(1) via spectral factorization. It follows that

(2.4.6) equals ∑∞ℓ=0 θℓγ3(ℓ − j − 1, ℓ − k − 1) , which is nonzero in general.

Squared Hermite Process

Another case is given by assuming that only J1 and J2 are non-zero, so that the process is

expressed as:

Xt = J1H1(Zt) + J2H2(Zt) = J1Zt + J2Z
2
t − J2.

23



Using the general method in the Appendix, the auto-moments are given in terms of J1 and

J2 as follows:

γ(h1) = J
2
1 c(h1) + J

2
2 c(h1)

2

γ3(h1, h2) = J
3
2 81/2 c(h1) c(h2) c(h1 − h2)

γ4(h1, h2, h3) = J
4
2 (c(h3)

2
c(h1 − h2)

2
+ c(h2)

2
c(h1 − h3)

2
+ c(h1)

2
c(h3 − h2)

2
)

+ 4J4
2 (c(h1) c(h2) c(h1 − h3) c(h2 − h3) + c(h2) c(h3) c(h1 − h2) c(h1 − h3)

+c(h1) c(h3) c(h1 − h2) c(h2 − h3))

+ J4
1 (c(h3) c(h1 − h2) + c(h1) c(h2 − h3) + c(h2) c(h1 − h3))

+ J2
1 J

2
2 (c(h3) c(h1 − h2)

2
+ c(h1 − h2) c(h3)

2
+ c(h1 − h3) c(h2)

2

+c(h2 − h3) c(h1)
2
+ c(h1) c(h2 − h3)

2
+ c(h2) c(h1 − h3)

2
)

+ 2J2
1 J

2
2 (c(h1) c(h1 − h2) c(h2 − h3) + c(h1) c(h2) c(h1 − h3)

+c(h2) c(h1 − h2) c(h1 − h3) + c(h1) c(h1 − h3) c(h2 − h3)

+c(h3) c(h1 − h2) c(h2 − h3) + c(h2) c(h1 − h3) c(h2 − h3)

+c(h3) c(h1 − h2) c(h1 − h3) + c(h1) c(h3) c(h2 − h3)

+c(h2) c(h3) c(h1 − h3) + c(h2) c(h3) c(h1 − h2)

+c(h1) c(h2) c(h2 − h3) + c(h1) c(h3) c(h1 − h2)) .

So long as J2 ≠ 0, such squared Hermite processes can be second order forecastable. For

example, if {Zt} is an MA(q), then γ3(h1, h2) = 0 if ∣h1∣ > q or ∣h2∣ > q or ∣h1 − h2∣ > q. In the

case that q = 1, we find

γ3(0,0) = J3
2 81/2

γ3(±1,0) = γ3(0,±1) = γ3(1,1) = γ3(−1,−1) = J3
2 81/2 c(1)2,
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and is zero otherwise. Hence the bi-spectrum is

f(z, y) = J3
2 81/2 (1 + c(1)2 (z + z−1 + y + y−1 + zy + [zy]

−1
)) ,

and the autocovariance function corresponds to an MA(1) process. With Ψ2(z) = 1 − θz for

some θ determined from γ(0) and γ(1), we find that (2.4.6) equals

J3
2 81/2 (θj+1 1{k=j} + c(1)2 [(θj+2 + θj+1)1{k=j+1}

+(θj+2 + θj)1{k=j} + (θj+1 + θj)1{k=j−1}]) .

Therefore, in many cases the squared Hermite processes are second order forecastable.

2.5.2 ARCH and GARCH Processes

The class of ARCH and GARCH processes is extremely popular in modeling the log re-

turns of stocks and indices in the financial sector. The market efficiency axiom indicates

that any forecasts of such a process should have MSE equal to the variance, i.e., there

is no benefit to be gained by prediction. Technically this phenomenon is explained by

the fact that the GARCH process is a white noise with non-trivial serial dependence; the

squared process has non-trivial correlation, which allows the volatility to be forecasted

with some success. Moreover, the conditional expectation formula for the one-step ahead

forecast is linear for a GARCH process, so the best predictor (in the MSE sense) is linear

and there can not be any further advantages in using the quadratic prediction. In particu-

lar, (2.4.6) must be zero for all j, k ≥ 0; we verify this below. This example shows that the

quadratic prediction need not always improve upon the linear prediction even for certain
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nonlinear processes. We also show, on the contrary, that backcasts of the GARCH process

are nonlinear and hence, there is potential advantage if we use the quadratic approach for

backcasting. We now provide details of the arguments needed to establish these claims.

Conventionally, GARCH processes are defined in terms of driving input {Zt} that are sym-

metric, the first cases being studied having involved Gaussian distributions ([16]). This

was generalized to fat-tailed and asymmetric inputs – see [74], [132] and [70]. These adap-

tations were driven by empirical considerations; here, we can show directly how kurtosis

and asymmetry in the inputs impact the auto-cumulants and polyspectra of the GARCH

process, and use them to verify (2.4.6).

The GARCH(p,q) process is given by

Xt = σtZt

σ2
t = a0 +

p

∑
j=1
ajX

2
t−j +

q

∑
j=1
bj σ

2
t−j,

where Zt ∼ i.i.d.(0, 1). Let ω(x) = ∑pj=1 ajxj and θ(x) = 1−∑qj=1 bjxj . Set π(z) = 1−ω(z)/θ(z)

and ϕ(z) = θ(z) − ω(z), so that π(z) = ϕ(z)/θ(z). This power series will be written with a

minus convention, i.e., π(z) = 1 −∑ℓ≥1 πℓzℓ. Because the GARCH is a white noise, f(λ) ≡

f2(λ) = E[X2] for all λ , and

f3(z, y) = E[X3] (π(zy)
−1
+ π(z−1)

−1
+ π(y−1)

−1
− 2) .

The expression for the fourth auto-cumulant function is omitted because it is extremely

complicated, although the special case of the autocovariance for {X2
t } has a nice formula

due to [16]. Because Ψ2(z) ≡ 1 (i.e., the GARCH process is a white noise), it follows that

(2.4.6) equals zero for all j, k ≥ 0. Thus, the forecast function is linear (and equals zero).
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Although the GARCH process is not a linear process, contrary to our intuition, there is no

advantage in using the quadratic prediction in this case.

If instead we examine one-step behind backcasts, the quadratic predictor has an advantage

over the linear. To see this, observe that backcasting is equivalent to forecasting the time-

reversed GARCH process, for which we obtain (see Ch. 11, [90]):

f3(z, y) = E[X3] (π([zy]−1)
−1
+ π(z)

−1
+ π(y)

−1
− 2) , and

((zj+1yk+1f3(z, y)/Ψ2(zy))y)z
= E[X3]1{j=k} π̃j+1,

where ∑h≥0 π̃hxh = π(x)
−1. As a result, the BQP for the time reserved process will be

better than its linear counterpart.

2.6 Computational Matters and Numerical Examples

We have implemented the methodology of this chapter and applied it to various nonlinear

processes, including the numerical examples reported below. In this section we describe

how the computations are done, and summarize the results. Recall that W = vech[XX ′].

Construction of the matrix ΣW,W proceeds by first building a larger 4-array out of the co-

variance of vec[XX ′] with itself, allowing for redundancies. The indices i,j,k,ℓ for the four

dimensions of the array each range from 1 to P . In R, applying the matrix operator to a

4-array constructs a block matrix, whereby j and ℓ are row and column block indices, and

i and k are row and column indices within each block. For example, 3,1,4,1 represents

the 3,4 entry in the upper left block of the matrix. In this ordering, the indices i and j

correspond to various entries in the vector vec[XX ′], conceived of as the transpose of

[X ′XT−P+1,X
′XT−P+2, . . . ,X

′XT ],
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or the collection of X ′XT−P+j with i giving the index within each X. It follows that the

i, j, k, ℓ entry of the array equals

Cov[XT−P+iXT−P+j,XT−P+kXT−P+ℓ] = γ4(i − ℓ, j − ℓ, k − ℓ) − γ(i − j)γ(k − ℓ).

(Note that auto-moment functions have many symmetries in their arguments, so there

are many ways of writing the same quantity.) Once the entries of the 4-array have been

filled in (inefficiently, by utilizing 4 nested loops over T elements), then certain row and

column entries corresponding to the lower triangular entries of XX ′ are omitted from the

matrization of the array. In a similar fashion, we construct ΣX,W .

Hence the formulas for the BQP and its prediction error can be applied once the auto-

moments are known. In practice, these can be obtained by fitting nonlinear models and

plugging in the parameter estimates; alternatively, in cases where it is not practical to fit

a nonlinear model, we can use nonparametric estimators. As described in [21], simple esti-

mators of auto-moments and auto-cumulants can be constructed as follows: for a sample

of size T and given a lag vector h = [h1, h2, . . . , hr]
′, define the index set

Th = ∩
r
ℓ=0{1 − hℓ, . . . , T − hℓ}

with h0 = 0. Note that if any hℓ is greater than T or less than 1, then Th = ∅. Then define

the sample auto-moment of lag h as

γ̂r+1(h) = T
−1
∑
t∈Th

(Xt+h0 −X)(Xt+h1 −X)⋯(Xt+hr −X),

where X = T −1 ∑
T
t=1Xt, and the sum is extended to be zero in cases where Th = ∅. For any

fixed h, these estimators are asymptotically unbiased, with variance O(T −1) assuming that
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all auto-cumulant functions are absolutely summable – see (2.6.1) of [18]. However, values

of h such that Th is small imply that there will be some bias in finite samples; note that

∣hj ∣ < P for 1 ≤ j ≤ r, so by restricting P to be much smaller than T we can ensure that

bias is minimized. However, we reckon that there is an efficiency loss to taking P small.

In the simulations below, we set P to be a moderately large value to balance the trade

off, following the choices considered in existing literature for other nonlinear prediction

methods (cf. [46]).

For the simulation study, we consider the five different models as listed below (with the

Innovation distributions are given in parentheses):

• Model IA: Xt = Aϵt +Bϵ2
t−1 −B (Unif(-1,1))

• Model IB: Xt = Aϵt +Bϵ2
t−1 −B (Exp(1)-1)

• Model IIA: Xt = J1H1(Zt) + J2H2(Zt) = J1Zt + J2Z2
t − J2. (Gaussian(0,1))

• Model IIB: Xt = J1H1(Zt) + J2H2(Zt) = J1Zt + J2Z2
t − J2. (Exp(1)-1)

• Model IIIA: Xt = ∑j≥0 β
j ∏

j−1
n=0 et−nk−ℓ et−jk (Exp(1)-1)

• Model IIIB: Xt = ∑j≥0 β
j ∏

j−1
n=0 et−nk−ℓ et−jk (Gaussian(0,1))

Three subcases of each of these models are taken using different choices of parameters.
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Table 2.1: MSE Comparison for T = 100 and P = 20. The values in the parentheses rep-
resent relative percentage improvements in MSE when Quadratic Prediction is used com-
pared to the respective competing methods.

Model Parameters Quad Pred Fan &Yao Linear

IA

A = −0.235, B = 0.376 0.15 0.22 (31.81) 0.32 (53.12)

A = −0.350, B = 0.100 0.14 0.18 (22.22) 0.24 (41.67)

A = 0.350, B = −0.100 0.18 0.21 (14.29) 0.28 (35.71)

IB

A = −0.235, B = 0.376 0.59 1.28 (53.91) 1.12 (47.32)

A = −0.350, B = 0.100 0.20 0.32 (37.50) 0.42 (52.38)

A = 0.350, B = −0.100 0.27 0.16 (−68.75) 0.27 (1.09)

IIA

ρ = 0.8, J1 = 0.1, J2 = 2 0.77 1.22 (36.89) 1.32 (41.67)

ρ = 0.8, J1 = 0.5, J2 = 0.5 0.43 0.85 (49.41) 0.73 (41.09)

ρ = 0.8, J1 = 0.5, J2 = 10 1.14 15.80 (92.78) 1.58 (27.84)

IIB

ρ = 0.8, J1 = 0.1, J2 = 2 2.50 8.65 (71.09) 7.19 (65.23)

ρ = 0.8, J1 = 0.5, J2 = 0.5 1.04 3.97 (73.81) 1.38 (24.63)

ρ = 0.8, J1 = 0.5, J2 = 10 3.42 14.86 (76.98) 7.98 (57.14)

IIIA

k = 1, l = 2, β = 0.3 1.05 3.25 (67.69) 3.89 (73.01)

k = 2, l = 5, β = 0.3 1.15 1.39 (17.27) 3.14 (63.37)

k = 5, l = 2, β = 0.3 0.83 1.56 (46.79) 2.47 (66.39)

IIIB

k = 1, l = 2, β = 0.3 0.92 1.26 (26.98) 2.02 (54.45)

k = 2, l = 5, β = 0.3 0.52 1.06 (50.94) 2.57 (79.76)

k = 5, l = 2, β = 0.3 0.83 1.56 (46.79) 2.47 (66.39)

Table 2.1 gives MSE for 5 different models for linear and Quadratic prediction, and also

MSE obtained by using a nonparametric approach proposed in Chapter 10 of [46]. The

sample size is taken to be T = 100 and the past window length is taken to be P = 20. More
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tables are given in the Supplement for different choices of sample size (T) and past window

length (P). From the tables, we find significant improvement in almost in all of the cases

over the competing approaches. For the nonparametric method of [46], the improvement

obtained by the quadratic approach can be as high as 92% although there are cases where

the nonparametric approach is superior (cf. Model IB, subcase 3). On the other hand,

the quadratic prediction always provided improvements over the linear prediction, with

the amount of improvement ranging from modest (e.g., 1.09% for Model IB, case 3) to

substantial (79.76% for Model IIIB, case 2). Hence, while quadratic prediction may not

always provide substantially better results than linear prediction (say, when the process is

Gaussian), it is always at least as good as and performs better than its linear counterpart

under the presence of nonlinearity. Of course, when the sample size is not reasonably large,

the improvement in MSE (2.3.4) of using the BQP over the BQL could be offset by addi-

tional error due to parameter estimation uncertainty, in view of the fact that quadratic

filters require the estimation of more filter coefficients.

2.7 Data Analysis

We consider two applications. The first example treats the case of forecasting the Wolfer

sunspots, and the second example examines nonlinear forecasts of unemployment data.

2.7.1 Wolfer Sunspots

The time series of Wolfer sunspots has been heavily studied. We consider a monthly vin-

tage starting in 1749. Examination of the series shows large cyclical movements due to

the known solar behavior, and the oscillations have an asymmetric shape. As the period

is roughly 11 years, or 132 time units, longer-term forecasts should use auto-cumulants
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containing this many lags. We instead examine the one-step ahead forecast, which should

not be greatly impacted by the solar oscillation. With P = 30 as the size of the predictor

set used in the quadratic prediction problem, and with the whole sample used to estimate

the auto-moments nonparametrically, we determine the one-step ahead prediction MSE

resulting from both the linear and quadratic estimators: there is a 29.2 % reduction in

MSE.

2.7.2 Unemployment Rate

We also examined unemployment rate data from the Bureau of Labor Statistics. This

series is the monthly Seasonally Adjusted Unemployment Rate (16 years and over, se-

ries id LNS14000000), covering the period January 1948 through July 2019, of the Labor

Force Statistics from the Current Population Survey. This was downloaded from the Bu-

reau of Labor Statistics on 4:30 PM, August 8, 2019 (Data Source). The series is of con-

siderable interest to economists and policy-makers, and is fairly smooth with occasional

bursts of activity. A crude autoregressive fit indicates an AR(13) may be adequate from

the standpoint of linear time series modeling, and hence we will use P = 13 as the size of

the predictor set (though with the entire sample used to nonparametrically estimate the

auto-moments). As a result, the one-step ahead prediction MSE is 16.5 % reduced for

the quadratic estimator as compared to the linear.
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2.8 Proofs

2.8.1 Proof of Proposition 2.2.1

Write X ′ = [X ′,vech[XX ′]
′
] for the complete data vector, and set β′ = [b′,vech[B]′].

Then, we can express a generic predictor g(X) = b′X + X ′BX − EX ′BX as g(X) =

β′ {X − E[X ]}. Next recall that ΣA,B = Cov[A,B] for random vectors A and B. Hence,

the quadratic MSE can be expressed as

Q(β) ≡ E[(Y − g(X))2] = Var[Y ] − 2 [ΣY,X , ΣY,W ]β + β
′M β,

where

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ΣX,X ΣX,W

ΣW,X ΣW,W

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Now setting ∂Q(β)
∂β = 0, we get the matrix equivalent of the generalized Yule-Walker equa-

tions in (2.2.2):

Mβ = [ΣY,X , ΣY,W ].

Note that when both ΣX,X and the Schur complement S are invertible, the matrix M is

invertible. The proposition now follows by expressing M−1 in terms of Σ−1
X,X and S−1 and

simplifying the resulting expression. 2

2.8.2 Proof of Proposition 2.4.1

Without loss of generality suppose that E[Xt] = 0. Take j, k ≥ 0 as fixed integers through-

out the proof. First we note that the linear estimator ̂Xt−jXt−k has to take the form (2.4.5)

by basic linear projection theory ([24]), given that E[Xt−jXt−k] = γ(k − j). The error process
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for the optimal linear estimator needs to be uncorrelated with Xt−ℓ for all ℓ ≥ 0, which

yields the equations

γ3(ℓ − j, ℓ − k) =∑
h≥0

π
(j,k)
h γ(ℓ − h), which holds if and only if

((zj−ℓyk−ℓ f3(z, y))y)z
= (Π(j,k)(z) z−ℓf(z))

z
, which holds if and only if

(zj−ℓ (yk−j f3(zy, y))y)z
= µ2 (Π(j,k)(z) z−ℓΨ2(z)Ψ2(z))z .

The last line is obtained by using the change of variable z ↦ zy (this amounts to shift-

ing the frequency λ in z = e−iλ, so there is no impact from the chain rule), and apply-

ing the spectral factorization (2.4.3). Consider summing this last equation against βℓ for

ℓ ≥ 0, where we define these coefficients for any desired h ≥ 0 via βℓ = ψ̃(2)ℓ−h for ℓ ≥ h,

and zero otherwise. Here ψ̃(2)k is the kth coefficient of Ψ2(z)
−1. This definition means that

∑ℓ≥0 βℓz
ℓ = Ψ2(z)

−1
zh, and we can provide this construction for any h ≥ 0. The application

of these coefficients yields a new system of equations, which hold for all h ≥ 0:

(zj−h (yk−j f3(zy, y))y /Ψ2(z))
z
= µ2 (Π(j,k)(z) z−hΨ2(z))z .

Note that Π(j,k)(z)Ψ2(z) is a power series (i.e., it corresponds to some causal filter), and

hence the right hand side of the above equation is just µ2 times the hth coefficient of this

power series. It follows that there can be no anti-causal portion of the left-hand side of the

equation, i.e.,

[zj (yk−j f3(zy
−1, y))

y
/Ψ2(z

−1)]
−1

−∞
= 0, and

[zj (yk−j f3(zy
−1, y))

y
/Ψ2(z

−1)]
∞

0
= µ2 Π(j,k)(z)Ψ2(z).

Note that µ2 ≠ 0, so dividing by µ2Ψ2(z) yields the stated formula. 2
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2.8.3 Proof of Theorem 2.4.1

The theorem claims that (2.4.4) holds (for all j, k ≥ 0) if and only if (2.4.6) equals zero (for

all j, k ≥ 0). Fixing arbitrary j, k ≥ 0, (2.4.4) holds if and only if

γ3(−j − 1,−k − 1) =∑
h≥0

π
(j,k)
h γ(−1 − h).

Utilizing the result of Proposition 2.4.1, (2.4.4) holds if and only if

((zj+1yk+1 f3(z, y))y)z
= (Π(j,k)(z) zf(z))

= (zΨ2(z)[z
j (yk−j f3(zy, y))y /Ψ2(z)]

∞

0
)

= (zΨ2(z)z
j (yk−j f3(zy, y))y /Ψ2(z))

− (zΨ2(z)[z
j (yk−j f3(zy, y))y /Ψ2(z)]

−1

−∞
) .

To obtain the last equality, we have used the fact that a Laurent series Θ(z) can be writ-

ten as [Θ(z)]∞0 = Θ(z) − [Θ(z)]−1
−∞

. Next, note that

(zΨ2(z)z
j (yk−j f3(zy, y))y /Ψ2(z))

z
= (((zy

j+1
yk+1 f3(zy, y))y)z

.

Therefore, (2.4.4) holds if and only if

0 = (zΨ2(z)[z
j (yk−j f3(zy, y))y /Ψ2(z)]

−1

−∞
)

= (Ψ2(z)[z
j+1 (yk−j f3(zy, y))y /Ψ2(z)]

0

−∞
) ,

which uses the fact that for any Laurent series Θ(z), z[Θ(z)]−1
−∞
= [zΘ(z)]0

−∞
. The final

expression is the integral of the product of two power series, and hence the product of
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their index-zero coefficients must be zero; because Ψ2(0) = 1, (2.4.4) holds if and only if

0 = (zj+1 (yk−j f3(zy, y))y /Ψ2(z))
z
.

Now applying the transformation z ↦ zy, we obtain (2.4.6) equals zero for all j, k ≥ 0. 2

2.9 Computing Auto-cumulants of Hermite Processes

Define the generating function h(x, t) = exp{xt − t2/2}, which is related to the Hermite

polynomials via

h(x, t) =
∞

∑
k=0

tk
√
k!
Hk(x).

It is known that the autocovariance function is given by

γ(h) =∑
ℓ≥0
J2
ℓ c(h)

ℓ
,

and we generalize this below. It can be shown that the formula for the order (r + 1) auto-

moment is

γr+1(h) =∑
ℓ≥0
Jℓ0 ⋅ Jℓ1⋯Jℓr

r

∏
j=0
(ℓj!)−1/2

×
∂ℓj

∂s
ℓj
j

E [exp{
r

∑
i=0
siZt+hi

−
r

∑
i=0
s2
i /2}] ∣sj=0,

where h0 = 0, and ℓ = [ℓ0, ℓ1, . . . , ℓr]
′. The expectation can be expanded as follows: let

K = {(m,n) ∶ 0 ≤ m,n ≤ r,m ≠ n}. Then it follows from the formula for the mean of the

lognormal distribution that

E [exp{
r

∑
i=0
siZt+hi

−
r

∑
i=0
s2
i /2}] = exp

⎧⎪⎪
⎨
⎪⎪⎩

∑
(m,n)∈K

smsn c(hm − hn)

⎫⎪⎪
⎬
⎪⎪⎭

,
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and by differentiation the auto-moments can be determined. We now consider the cases of

the third and fourth auto-moments. For r = 2 we compute

∂ℓ0

∂sℓ00

∂ℓ1

∂sℓ11

∂ℓ2

∂sℓ22
exp{s0s1 c(h1) + s0s2 c(h2) + s1s2 c(h1 − h2)}∣

s0=s1=s2=0

=
∂ℓ0

∂sℓ00

∂ℓ1

∂sℓ11

∂ℓ2

∂sℓ22
∑

n0,n1,n2≥0
[
sn0+n1

0 sn0+n2
1 sn1+n2

2
n0!n1!n2!

× c(h1)
n0 c(h2)

n1 c(h1 − h2)
n2]∣

s0=s1=s2=0
,

which is nonzero only if ℓ0 = n0 + n1, ℓ1 = n0 + n2, and ℓ2 = n1 + n2. The integer solution to

this system is unique, and is given by

n0 = (ℓ0 + ℓ1 − ℓ2)/2, n1 = (ℓ0 − ℓ1 + ℓ2)/2, n2 = (−ℓ0 + ℓ1 + ℓ2)/2, (2.9.1)

so long as ℓ0, ℓ1, and ℓ2 are even integers. Therefore

γ3(h1, h2) = ∑
ℓ0,ℓ1,ℓ2∈2N+

Jℓ0 ⋅ Jℓ1 ⋅ Jℓ2

√
ℓ0!ℓ1!ℓ2!

n0!n1!n2!
c(h1)

n0 c(h2)
n1 c(h1 − h2)

n2 ,

where n0, n1, and n2 satisfy (2.9.1) and N+ = N ∪ {0}. For r = 3 we have

∂ℓ0

∂sℓ00

∂ℓ1

∂sℓ11

∂ℓ2

∂sℓ22

∂ℓ3

∂sℓ33
exp{s0s1 c(h1) + s0s2 c(h2) + s0s3 c(h3)+

s1s2 c(h1 − h2) + s1s3 c(h1 − h3) + s2s3 c(h2 − h3)} ∣s0=s1=s2=s3=0

=
∂ℓ0

∂sℓ00

∂ℓ1

∂sℓ11

∂ℓ2

∂sℓ22

∂ℓ3

∂sℓ33
∑

n0,n1,n2,n3,n4,n5≥0

sn0+n1+n2
0 sn0+n3+n4

1 sn1+n3+n5
2 sn2+n4+n5

3
n0!n1!n2!n3!n4!n5!

c(h1)
n0 c(h2)

n1 c(h3)
n2 c(h1 − h2)

n3 c(h1 − h3)
n4 c(h2 − h3)

n5 ∣s0=s1=s2=s3=0,

which is nonzero only if ℓ0 = n0+n1+n2, ℓ1 = n0+n3+n4, ℓ2 = n1+n3+n5, and ℓ3 = n2+n4+n5.

Given ℓ0, ℓ1, ℓ2, and ℓ3, finding solutions for n0, . . . , n5 is an under-determined system. If
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we allow n4 and n5 to be free variables (non-negative integers), then

n0 = (ℓ0 + ℓ1 − ℓ2 − ℓ3)/2 + n5

n1 = (ℓ0 − ℓ1 + ℓ2 − ℓ3)/2 + n4

n2 = ℓ3 − n4 − n5

n3 = (−ℓ0 + ℓ1 + ℓ2 + ℓ3)/2 − n4 − n5,

and subject to these constraints

γ4(h1, h2, h3)

= ∑
ℓ0,ℓ1,ℓ2,ℓ3∈2N+

Jℓ0 ⋅ Jℓ1 ⋅ Jℓ2 ⋅ Jℓ3

3
∏
j=0
(ℓj!)−1/2

∑
n4,n5≥0

ℓ0!ℓ1!ℓ2!ℓ3!
n0!n1!n2!n3!n4!n5!

c(h1)
n0 c(h2)

n1 c(h3)
n2 c(h1 − h2)

n3 c(h1 − h3)
n4 c(h2 − h3)

n5 .

Table 2.2: Configurations of ℓ and n indices. Left column gives values for ℓ0, ℓ1, ℓ2, and ℓ3,
and right column gives corresponding possible values for n0, n1, n2, n3, n4, and n5.

ℓ n

1 1 1 1 [0 0 1 1 0 0], [1 0 0 0 0 1], [0 1 0 0 1 0]

1 1 2 2 [0 0 1 1 0 1], [0 1 0 0 1 1], [1 0 0 0 0 2]

1 2 1 2 [0 0 1 1 1 0], [1 0 0 0 1 1], [0 1 0 0 2 0]

1 2 2 1 [0 0 1 2 0 0], [1 0 0 1 0 1], [0 1 0 1 1 0]

2 1 1 2 [0 0 2 1 0 0], [1 0 1 0 0 1], [0 1 1 0 1 0]

2 1 2 1 [0 1 1 1 0 0], [1 1 0 0 0 1], [0 2 0 0 1 0]

2 2 1 1 [1 0 1 1 0 0], [2 0 0 0 0 1], [1 1 0 0 1 0]

2 2 2 2 [0 0 2 2 0 0], [1 0 1 1 0 1], [2 0 0 0 0 2],

[1 1 0 0 1 1], [0 1 1 1 1 0], [0 2 0 0 2 0]
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We can now apply these formulas to the case of a quadratic Hermite process. For r = 2,

the only nonzero terms occur when ℓ0 = ℓ1 = ℓ2 = 2, which implies n0 = n1 = n2 = 1,

and we obtain the stated formula. For r = 3, there are sixteen configurations for the sum

over the ℓ indices, as each can take the value one or two. It turns out that eight of these

configurations can yield solutions in terms of n0, . . . , n5, which in turn are each constrained

to be zero or one. These configurations are described in Table 2.2. By carefully organizing

the results, we obtain the stated expression for the fourth-order auto-moment.
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2.10 Supplemental Tables

Table 2.3: MSE Comparison for T = 100 and P = 20. The values in the parenthesis rep-
resent the relative percentage improvement in MSE when Quadratic Prediction is used
compared to the corresponding column.

Model Parameters Quad Pred Fan &Yao Linear

IA

A = −0.235, B = 0.376 0.15 0.22 (31.81) 0.32 (53.12)

A = −0.350, B = 0.100 0.14 0.18 (22.22) 0.24 (41.67)

A = 0.350, B = −0.100 0.18 0.21 (14.29) 0.28 (35.71)

IB

A = −0.235, B = 0.376 0.59 1.28 (53.91) 1.12 (47.32)

A = −0.350, B = 0.100 0.20 0.32 (37.50) 0.42 (52.38)

A = 0.350, B = −0.100 0.27 0.16 (−68.75) 0.27 (1.09)

IIA

ρ = 0.8, J1 = 0.1, J2 = 2 0.77 1.22 (36.89) 1.32 (41.67)

ρ = 0.8, J1 = 0.5, J2 = 0.5 0.43 0.85 (49.41) 0.73 (41.09)

ρ = 0.8, J1 = 0.5, J2 = 10 1.14 15.80 (92.78) 1.58 (27.84)

IIB

ρ = 0.8, J1 = 0.1, J2 = 2 2.50 8.65 (71.09) 7.19 (65.23)

ρ = 0.8, J1 = 0.5, J2 = 0.5 1.04 3.97 (73.81) 1.38 (24.63)

ρ = 0.8, J1 = 0.5, J2 = 10 3.42 14.86 (76.98) 7.98 (57.14)

IIIA

k = 1, l = 2, β = 0.3 1.05 3.25 (67.69) 3.89 (73.01)

k = 2, l = 5, β = 0.3 1.15 1.39 (17.27) 3.14 (63.37)

k = 5, l = 2, β = 0.3 0.83 1.56 (46.79) 2.47 (66.39)

IIIB

k = 1, l = 2, β = 0.3 0.92 1.26 (26.98) 2.02 (54.45)

k = 2, l = 5, β = 0.3 0.52 1.06 (50.94) 2.57 (79.76)

k = 5, l = 2, β = 0.3 0.83 1.56 (46.79) 2.47 (66.39)
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Table 2.4: MSE Comparison for T = 100 and P = 10. The values in the parenthesis rep-
resent the relative percentage improvement in MSE when Quadratic Prediction is used
compared to the corresponding column.

Model Parameters Quad Pred Fan &Yao Linear

IA

A = −0.235, B = 0.376 0.08 0.11 (27.27) 0.18 (55.55)

A = −0.350, B = 0.100 0.12 0.13 (7.69) 0.23 (47.82)

A = 0.350, B = −0.100 0.12 0.18 (33.33) 0.25 (52.01)

IB

A = −0.235, B = 0.376 0.32 2.55 (87.45) 4.17 (92.32)

A = −0.350, B = 0.100 0.08 0.15 (46.67) 0.31 (74.19)

A = 0.350, B = −0.100 0.11 0.19 (42.11) 0.44 (75.01)

IIA

ρ = 0.8, J1 = 0.1, J2 = 2 2.23 11.38 (80.41) 7.14 (68.76)

ρ = 0.8, J1 = 0.5, J2 = 0.5 0.30 0.61 (50.81) 0.83 (63.85)

ρ = 0.8, J1 = 0.5, J2 = 10 7.91 38.84 (79.63) 18.39 (56.98)

IIB

ρ = 0.8, J1 = 0.1, J2 = 2 2.50 8.65 (71.09) 7.19 (65.23)

ρ = 0.8, J1 = 0.5, J2 = 0.5 1.04 3.97 (73.80) 1.38 (24.63)

ρ = 0.8, J1 = 0.5, J2 = 10 4.90 56.26 (91.29) 21.87 (77.59)

IIIA

k = 1, l = 2, β = 0.3 0.93 1.30 (28.46) 1.83 (49.18)

k = 2, l = 5, β = 0.3 0.97 0.75 (−29.33) 2.41 (59.75)

k = 5, l = 2, β = 0.3 0.73 1.71 (57.31) 2.65 (72.45)

IIIB

k = 1, l = 2, β = 0.3 1.26 1.41 (10.64) 2.71 (53.51)

k = 2, l = 5, β = 0.3 0.52 1.06 (50.94) 2.57 (79.76)

k = 5, l = 2, β = 0.3 0.90 1.48 (39.18) 2.24 (59.82)
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Table 2.5: MSE Comparison for T = 500 and P = 10. The values in the parenthesis rep-
resent the relative percentage improvement in MSE when Quadratic Prediction is used
compared to the corresponding column.

Model Parameters Quad Pred Fan &Yao Linear

IA

A = −0.235, B = 0.376 0.03 0.13 (76.92) 0.14 (78.57)

A = −0.350, B = 0.100 0.19 0.23 (17.39) 0.33 (42.42)

A = 0.350, B = −0.100 0.11 0.28 (60.71) 0.35 (68.57)

IB

A = −0.235, B = 0.376 0.12 1.55 (92.25) 4.23 (97.16)

A = −0.350, B = 0.100 0.03 0.25 (46.67) 0.41 (74.19)

A = 0.350, B = −0.100 0.11 0.19 (88.00) 0.44 (92.68)

IIA

ρ = 0.8, J1 = 0.1, J2 = 2 1.23 8.17 (84.94) 6.31 (80.51)

ρ = 0.8, J1 = 0.5, J2 = 0.5 0.23 0.41 (43.91) 0.53 (56.61)

ρ = 0.8, J1 = 0.5, J2 = 10 4.33 28.32 (84.71) 16.91 (74.39)

IIB

ρ = 0.8, J1 = 0.1, J2 = 2 3.45 9.16 (62.33) 8.49 (59.36)

ρ = 0.8, J1 = 0.5, J2 = 0.5 2.04 4.67 (56.31) 7.23 (71.78)

ρ = 0.8, J1 = 0.5, J2 = 10 3.90 36.17 (89.21) 11.89 (67.19)

IIIA

k = 1, l = 2, β = 0.3 1.42 2.31 (38.52) 2.43 (41.56)

k = 2, l = 5, β = 0.3 0.67 0.55 (−21.81) 3.31 (79.75)

k = 5, l = 2, β = 0.3 0.92 1.31 (29.01) 3.45 (73.45)

IIIB

k = 1, l = 2, β = 0.3 1.34 1.93 (30.56) 3.71 (63.88)

k = 2, l = 5, β = 0.3 1.23 1.97 (37.56) 2.31 (46.75)

k = 5, l = 2, β = 0.3 1.31 2.03 (35.47) 2.91 (54.98)
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Table 2.6: MSE Comparison for T = 500 and P = 20. The values in the parenthesis rep-
resent the relative percentage improvement in MSE when Quadratic Prediction is used
compared to the corresponding column.

Model Parameters Quad Pred Fan &Yao Linear

IA

A = −0.235, B = 0.376 0.16 0.20 (20.03) 0.37 (56.76)

A = −0.350, B = 0.100 0.12 0.16 (25.02) 0.28 (57.14)

A = 0.350, B = −0.100 0.15 0.12 (−25.01) 0.28 (46.43)

IB

A = −0.235, B = 0.376 0.64 1.62 (60.49) 2.31 (72.29)

A = −0.350, B = 0.100 0.18 0.27 (33.33) 0.58 (68.96)

A = 0.350, B = −0.100 0.16 0.24 (33.33) 0.49 (67.35)

IIA

ρ = 0.8, J1 = 0.1, J2 = 2 5.16 8.11 (36.37) 9.09 (43.23)

ρ = 0.8, J1 = 0.5, J2 = 0.5 0.42 0.53 (20.75) 0.56 (25.02)

ρ = 0.8, J1 = 0.5, J2 = 10 8.69 37.38 (76.76) 14.79 (41.24)

IIB

ρ = 0.8, J1 = 0.1, J2 = 2 4.53 11.16 (59.41) 13.43 (66.27)

ρ = 0.8, J1 = 0.5, J2 = 0.5 0.37 0.54 (31.48) 0.62 (40.32)

ρ = 0.8, J1 = 0.5, J2 = 10 12.84 88.46 (85.49) 34.93 (63.24)

IIIA

k = 1, l = 2, β = 0.3 0.31 0.91 (65.94) 1.38 (77.54)

k = 2, l = 5, β = 0.3 0.59 1.12 (47.32) 1.70 (65.29)

k = 5, l = 2, β = 0.3 0.67 1.45 (53.79) 1.01 (33.67)

IIIB

k = 1, l = 2, β = 0.3 0.19 0.53 (64.15) 1.41 (86.52)

k = 2, l = 5, β = 0.3 0.94 2.06 (54.37) 4.67 (79.87)

k = 5, l = 2, β = 0.3 0.96 2.35 (59.15) 3.74 (74.33)
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Table 2.7: MSE Comparison for T = 50 and P = 10. The values in the parenthesis represent
the relative percentage improvement in MSE when Quadratic Prediction is used compared
to the corresponding column.

Model Parameters Quad Pred Fan &Yao Linear

IA

A = −0.235, B = 0.376 0.20 0.23 (13.04) 0.39 (48.72)

A = −0.350, B = 0.100 0.23 0.22 (−4.54) 0.27 (14.82)

A = 0.350, B = −0.100 0.29 0.21 (−38.09) 0.30 (3.33)

IB

A = −0.235, B = 0.376 0.18 6.94 (97.40) 5.08 (96.45)

A = −0.350, B = 0.100 0.24 0.27 (11.11) 0.35 (31.43)

A = 0.350, B = −0.100 0.20 0.25 (20.03) 0.56 (64.28)

IIA

ρ = 0.8, J1 = 0.1, J2 = 2 3.71 7.68 (51.69) 7.22 (48.61)

ρ = 0.8, J1 = 0.5, J2 = 0.5 0.46 0.61 (24.59) 0.62 (25.81)

ρ = 0.8, J1 = 0.5, J2 = 10 10.23 47.11 (78.29) 26.36 (61.19)

IIB

ρ = 0.8, J1 = 0.1, J2 = 2 4.32 25.85 (83.29) 12.66 (65.88)

ρ = 0.8, J1 = 0.5, J2 = 0.5 0.58 2.53 (77.07) 1.16 (50.05)

ρ = 0.8, J1 = 0.5, J2 = 10 9.27 64.19 (85.58) 38.52 (75.93)

IIIA

k = 1, l = 2, β = 0.3 1.59 1.58 (−0.63) 1.94 (18.04)

k = 2, l = 5, β = 0.3 1.19 1.93 (38.34) 1.45 (17.93)

k = 5, l = 2, β = 0.3 0.94 1.31 (28.24) 1.51 (37.75)

IIIB

k = 1, l = 2, β = 0.3 1.39 1.63 (14.73) 2.06 (35.25)

k = 2, l = 5, β = 0.3 1.64 1.66 (1.21) 2.09 (21.53)

k = 5, l = 2, β = 0.3 1.57 2.19 (28.32) 1.58 (0.63)
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Chapter 3

Polyspectral Mean Estimation of

General Nonlinear Processes

3.1 Introduction

Spectral Analysis is an important tool in time series analysis. The spectral density pro-

vides important insights into the underlying periodicities of a time series; see [24], [90].

However, when the stochastic process is nonlinear, higher-order auto-cumulants [18] can

furnish valuable insights that are not discernible from the spectral density, as argued in

[20]. In particular, three- and four-way interactions of a nonlinear process can be measured

through the third and fourth order polyspectra; see [21], [20], [23], [51], [85], [91], and [12].

Linear functionals of higher-order spectra (here referred to as polyspectral means) are of-

ten encountered in the analysis of nonlinear time series and are therefore a serious object

of inference. Whereas there is an existent literature on estimation of polyspectra ([20],

[137], [103], [121]), inference for polyspectral means remains a gap. This chapter aims to
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fill this gap by developing asymptotic distributional results on polyspectral means, and by

developing statistical inference methodology for nonlinear times series analysis.

Let {Xt} be a (k + 1)th order stationary time series, that is, E[∣Xt∣
k+1
] < ∞ and

EXtXt+h1 . . .Xt+hr = EX1X1+h1 . . .X1+hr for all integers t, h1, . . . hr and for all 1 ≤ r ≤ k,

for given k ≥ 1. The most commonly used case is k = 1, yielding the class of second or-

der stationary (SOS) processes. Thus, for a SOS process {Xt}, EXt = EX1 is a constant

and its cross-covariances depend only on the time-difference Cov(Xt,Xt+h) = γ(h) for all

t, h ∈ Z, where Z = {0,±1,±2, . . .} denotes the set of all integers. When the autocovari-

ance function γ(h) ≡ γh is absolutely summable, {Xt} has a spectral density, given by

f(λ) = ∑h∈Z γ(h)e
−ιhλ, λ ∈ [−π,π], where ι =

√
−1. Important features of a stochastic pro-

cess can be extracted with a spectral mean, which is defined as ∫[−π,π] f(λ)g(λ)dλ, where

g(⋅) is a weight function. Spectral means can provide us important insight about the time

series, based on different g functions. For example, a spectral mean with g(λ) = cos(hλ)

corresponds to the lag h autocovariance, whereas g(λ) = 11(−a, a) gives the spectral content

in the interval (−a, a), where 11(⋅) denotes the indicator function.

Analogous definitions can be made for higher order spectra. The (k + 1)th order auto-

cumulant is defined as γ(h1, . . . , hk) = Cum(Xt,Xt+h1 , . . . ,Xt+hk
) for all t, where

Cum(X,Y, . . . , Z) denotes the cumulant of jointly distributed random variables {X,Y, . . . , Z}

(cf. [18]) and where h1, . . . , hk are integer lags. If the auto-cumulant function is absolutely

summable, then we can define the polyspectra of order k as the Fourier transform of the

(k + 1)th order auto-cumulants:

fk(λk) = ∑
h∈Zk

γ(h)e−ιh
′λ ,
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where h = [h1, . . . , hk]
′, λ = [λ1, . . . , λk]

′ and A′ denotes the transpose of a matrix A. A

polyspectral mean with weight function g ∶ [−π,π]k → R is defined as

Mg(fk) = ∫
[−π,π]k

fk(λ)g(λ)dλ. (3.1.1)

Thus, spectral means correspond to the case k = 1, in which case we drop the subscript

k (and write f1 = f). Polyspectral means give us important information about a time se-

ries that can not be obtained from the spectral distribution, e.g., when the time series is

nonlinear or the innovation process is non-Gaussian. Additionally, we can extract several

features from a time series by obtaining the polyspectral mean from different weight func-

tions. These features can play an important role in identifying (dis-)similarities among

different time series (cf. [31], [99], [44], [139]). For an illustrative example, we consider

the Gross Domestic Product (GDP) data from 140 countries over 40 years. Our goal is

to obtain clustering of the countries based on patterns of their GDP growth rates. The

left panel of Figure 3.6 below gives the raw time series and the right panel gives their dif-

ferenced and scaled versions. As a part of exploratory data analysis, we carried out test

checks for Gaussianity and for linearity. Based on the tests, a significant proportion of

the time series are non-Gaussian, and some of them are nonlinear. Hence, using spectral

means alone to capture relevant time series features may be inadequate. Here we use (esti-

mated) higher order polyspectral means with different weight functions to elicit salient fea-

tures of the GDP data, in order to capture possible nonlinear dynamics of the economies.

See Section 3.6 for more details.

Estimation of spectral and polyspectral means can be carried out using the periodogram

and its higher order versions, which are defined in terms of the discrete Fourier transform

of a sample {X1, . . . ,XT} (described in Section 3.2). However, distributional properties

of the polyspectral mean estimators are not very well-studied. In an important work, [38]
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proved the asymptotic normality of spectral means, i.e., the case k = 1; however, in the

general case (k > 1), there does not seem to be any work on the asymptotic distribution of

polyspectral mean estimators. One of the major contributions of this chapter is to estab-

lish asymptotic normality results for the polyspectral means of general order. We develop

some nontrivial combinatorial arguments involving higher order auto-cumulants to show

that, under mild conditions, the estimators of the kth order polyspectral mean parameter

Mg(fk) in (3.1.1) are asymptotically normal. We also obtain an explicit expression for the

asymptotic variance, which is shown to depend on certain polyspectral means of order 2k + 1.

This result agrees with the known results on spectral means when specialized to the case

k = 1, where the limiting variance is known to involve the trispectrum f2k+1 = f3. In par-

ticular, the results of this chapter provide a unified way to construct studentized versions

of spectral mean estimators and higher order polyspectral mean estimators, which can be

used to carry out large sample statistical inference on polyspectral mean parameters of any

arbitrary order k ≥ 1.

The second major contribution of the chapter is the development of a new test procedure

to assess the linearity assumption on a time series. Earlier work on the problem is typi-

cally based on the squared modulus of the estimated bispectrum ([106], [29], [11], [8]). In

contrast, here we make a key observation that under the linearity hypothesis (i.e., the null

hypothesis) the ratio of the bispectrum to a suitable power transformation of the spectral

density must be a constant at all frequency pairs in [−π,π]2. This observation allows us

to construct a set of higher order polyspectral means that must be zero when the process

is linear. On the other hand, for a nonlinear process, not all of these spectral means can

be equal to zero. Here we exploit this fact and develop a new test statistic that can be

used to test the significance of these polyspectral means. We also derive the asymptotic
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distribution of the test statistic under the null hypothesis, and provide the critical values

needed for calibrating the proposed test.

The rest of the chapter is organized as follows. Section 3.2 covers some background ma-

terial, and provides some examples of polyspectra and polyspectral means. Section 3.3

gives the regularity conditions and the asymptotic properties of the polyspectral means of

a general order. The linearity test is described in Section 3.4. Simulations are presented

in Section 3.5, and two data applications, one involving the Sunspot data and the other

involving the GDP growth rate (with a discussion of clustering time series via bispectral

means), are presented in Section 3.6. The proofs of the theoretical results are given in

Section 3.7.

3.2 Background and examples

First we will define estimators of the polyspectral mean Mg (fk) of (3.1.1) corresponding

to a given weight function g. Following [20], we define an estimator of Mg (fk) by replac-

ing fk by the kth order periodogram.

Specifically, given a mean zero sample {X1, . . . ,XT} from the time series {Xt}, the kth

order periodogram is defined as

f̂k(λ) = T
−1d(λ1)⋯d(λk)d(−[λ])

where, with ι =
√
−1), d(λ) = ∑Tt=1Xte−ιλt is the Discrete Fourier Transform (DFT) of

{X1, . . . ,XT} at λ ∈ [−π,π], and where [λ] is a shorthand for ∑k λk. We also define the

Fourier frequencies as λj = 2πj
T , where j runs from −⌊T2 ⌋ to ⌊T2 ⌋. Then letting ∑λ denote a
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shorthand for a summation over −⌊T2 ⌋ ≤ j1, . . . , jk ≤ ⌊
T
2 ⌋, we can define the estimator of the

polyspectral mean Mg (fk) as

M̂g(f) ≡ (2π)kT −k∑
λ

f̂k(λ)g (λ)Φ(λ)

= (2π)kT −k−1
∑
λ

d (λ1)⋯d (λk)d (−[λ]) g (λ)Φ(λ),

where Φ(λ) is an indicator function that is non-zero only when the λ’s do not lie in any

sub-manifold, i.e., ∑j λij /≡ 0 (mod 2π) for any subset λi1 , . . . , λim of λ. We further assume

that the weighing function g is continuous in λ and it satisfies the symmetry condition

g(λ) = g(−λ) (3.2.1)

for all λ. Moreover, assume that ∫λ∣g (λ)∣ <∞.

Note that for the polyspectral mean we can ignore the sub-manifolds, since they form a

measure zero set; hence we can only use estimates when λ are not contained in such sub-

manifolds. This is a significant issue, since in [21] the estimator of the polyspectral density

is given by a kernel-weighted average of the kth order periodogram, where the average is

taken by avoiding the sub-manifolds. Such an estimator introduces a bandwidth term,

which in general makes the convergence rate much slower. Since we are working with

polyspectral means, it is not necessary to smooth the kth order periodogram, and hence we

can ignore the bandwidth problem and focus on regions that avoid the sub-manifolds.

In the following, we provide some examples of polyspectral means, which demonstrate how

diverse features of a nonlinear process can be extracted with different weighting functions.

The sample is considered to be mean-centered.
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Example Let g(λ1, λ2) =
eιλ1h1+ιλ2h2

4π2 . Then it follows that:

Mg(f2) = ∫
π

−π
∫

π

−π
f2(λ)g(λ)dλ

= γ(h1, h2),

where γ(⋅, ⋅) is the third order autocumulant function.

M̂g(f2) = T
−3
∑

λ1,λ2≠0
d(λ1)d(λ2)d(−λ1 − λ2)e

ιλ1h1+ιλ2h2

∼ T −1
∑
t3

Xt3Xt3+h1Xt3+h2 = γ̂(h1, h2)

Hence the estimate of the polyspectral mean gives the sample autocumulant of third order.

Example Let g(λ1, λ2) =
cos(h1λ1)cos(h2λ2)

4π2 for h1 > h2 > 0. Then it follows that

Mg(f2) = ∫
π

−π
∫

π

−π
f2(λ)g(λ)dλ

= (4π2)−1
∫

π

−π
∫

π

−π
∑

k1,k2∈Z
γ(k1, k2)e

ιλ1k1+ιλ2k2cos(λ1h1)cos(λ2h2)dλ1dλ2

=
1
4{γ(h1, h2) + γ(h1,−h2) + γ(−h1, h2) + γ(−h1,−h2)}
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M̂g(f2) = (2π)2T −2
∑

λ1,λ2≠0
T −1d(λ1)d(λ2)d(−λ1 − λ2)g(λ1, λ2)

= T −1T −2
∑
λ1,λ2

∑
t1,t2,t3

Xt1Xt2Xt3e
−ιλ1t1−ιλ2t2+ι(λ1+λ2)t3cos(λ1h1)cos(λ2h2)dλ1dλ2

− 2πT −1T −2
∑
λ1

∑
t1.t2,t3

Xt1Xt2Xt3e
−ιλ1(t1−t3)cos(λ1h1)dλ1

− 2πT −1T −2
∑
λ2

∑
t1.t2,t3

Xt1Xt2Xt3e
−ιλ2(t2−t3)cos(λ2h2)dλ2

=
1
4{γ̂(h1, h2) + γ̂(−h1, h2) + γ̂(h1,−h2) + γ̂(−h1,−h2)}

where γ̂(⋅, ⋅) denotes the sample autocumulant of third order. The last line is true since we

considered the sample to be location centered. This result is similar to the spectral mean

case, where g(λ) = cos(hλ)/(2π) gives the lag h autocovariance.

Example Consider the trispectral mean with the weight function

g(λ1, λ2, λ3) = e
ι(λ1h1+λ2h2+λ3h3)/(8π3)

In this case:

Mg(f3) = ∫
π

−π
∫

π

−π
∫

π

−π
f3(λ)g(λ)dλ

= (8π3)−1
∫

π

−π
∫

π

−π
∫

π

−π
∑

k1,k2,k3∈Z
{γ(k1, k2, k3) − γ(k1)γ(k3 − k2) − γ(k2)γ(k3 − k1) − γ(k3)γ(k2 − k1)}

eιλ1(h1−k1)+ιλ2(h2−k2)+λ3(h3−k3)dλ1dλ2dλ3

= γ(h1, h2, h3) − γ(h1)γ(h3 − h2) − γ(h2)γ(h1 − h3) − γ(h3)γ(h2 − h1),

where γ(⋅, ⋅) is the third order autocumulant function.
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Suppose S = {λ1, λ2, λ3 ≠ 0 ∶ λ1 + λ2 ≠ 0, λ2 + λ3 ≠ 0, λ1 + λ3 ≠ 0}. Then,

M̂g(f3) = (2π)3T −3
∑
λ∈S

T −1d(λ1)d(λ2)d(λ3)d(−λ1 − λ2 − λ3)g(λ1, λ2, λ3)

= T −4
∑
λ∈S

∑
t1,t2,t3,t4

Xt1Xt2Xt3Xt4e
−ιλ1(t1−t4−h1)−ιλ2(t2−t4−h2)−ιλ3(t3−t4−h3)

If λi = 0 for some i, as seen earlier we will get a X̄ term which will be zero under the zero

mean assumption. Consider the case for λ1 + λ2 = 0:

T −4
∑
λ1,λ2

∑
t1,t2,t3,t4

Xt1Xt2Xt3Xt4e
−ιλ1(t1−t2−h1+h2)e−ιλ2(t3−t4−h3)

= γ̂(h1 − h2)γ̂(h3)

Hence, the estimate takes the form:

M̂g(f3) = γ̂(h1, h2, h3) − γ̂(h1)γ̂(h2 − h3) − γ̂(h2)γ̂(h3 − h1) − γ̂(h3)γ̂(h2 − h1)

Example g(λ1, λ2) = I(λ1 ∈ (−h1, h1), λ2 ∈ (−h2, h2))

M̂g(f) = T
−2
∑
λ1,λ2

T −1d(λ1)d(λ2)d(−λ1 − λ2)g(λ1, λ2)

= (2π)−2
∫

h1

−h1
∫

h2

−h2
I2(λ1, λ2)dλ1dλ2

which will give an estimate of the content of the bispectra in the rectangular region (−h1, h1)∪

(−h2, h2). Here I2(λ1, λ) is the 2nd order periodogram.
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Example g(λ1, λ2) = I(λ1 ∈ (−h1, h1), λ2 ∈ (−h2, h2))

Here Mg(f2) gives the bispectral content in the rectangular region (−h1, h1) ∪ (−h2, h2).

M̂g(f) = T
−2
∑
λ1,λ2

T −1d(λ1)d(λ2)d(−λ1 − λ2)g(λ1, λ2)

= (2π)−2
∫

h1

−h1
∫

h2

−h2
I2(λ1, λ2)dλ1dλ2

which will give an estimate of the content of the bispectra in the rectangular region (−h1, h1)∪

(−h2, h2). Here I2(λ1, λ) is the 2nd order periodogram.

Example g(λ1, λ2) = (π − ∣λ1∣)(π − ∣λ2∣)

M̂g(f) = (2π)2T −2
∑

λ1,λ2≠0
T −1d(λ1)d(λ2)d(−λ1 − λ2)g(λ1, λ2)

∼ T −1
∫

π

−π
∫

π

−π
∑

t1,t2,t3

Xt1Xt2Xt3e
−ιλ1t1−ιλ2t2+ι(λ1+λ2)t3(π − ∣λ1∣)(π − ∣λ2∣)

= T −1
∑

t1,t2,t3

Xt1Xt2Xt3 ∫

π

−π
∫

π

−π
(π − ∣λ1∣)e

−ιλ1(t3−t1)(π − ∣λ2∣)e
−ιλ2(t3−t2)

Now,

∫

π

−π
(π − ∣λ∣)e−ιλ(t3−t1)dλ

= π2
∫

1

−1
(1 − ∣z∣)e−ιπz(t3−t1)dz

= π2
∫

1

−1
Π(z) ∗Π(z)e−ιπz(t3−t1)dz

= π2
sin (π(t3−t1)2 )

π(t3−t1)
2
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where Π(t) = I(∣t∣ ≤ 0.5), and ∗ denote the convolution function. Hence, the final expres-

sion would be:

M̂g(f) = π
2T −1

∑
t1,t2,t3

Xt1Xt2Xt3

sin (π(t3−t1)2 )

π(t3−t1)
2

sin (π(t3−t2)2 )

π(t3−t2)
2

The terms are non-zero only when t3 = t1 + (2N − 1) and t3 = t2 + 2N − 1, if we consider the

ti’s to be ordered.

Figure 3.1: Heatmap for different g functions ((a) g(λ) = cos(2λ)cos(3λ), (b) g(λ) = I(λ1 ≤

0.2)I(λ2 ≤ 0.2), (c) g(λ) = I(0.1 ≤ λ2
1 + λ

2 ≤ 0.2)

3.3 Asymptotic Results for Polyspectral Means

The spectral means is classical in the time series literature. For example, in [17] it was

shown that the sample spectral mean converges to a Gaussian distribution with a trispec-

trum appearing in the asymptotic variance. A particular case is the sample autocovariance

function, which is asymptotically Gaussian with variance involving a trispectral mean. In

this section we prove that the kth polyspectral mean estimate proposed in Section 3.2 is

asymptotically normal, showing that cumulants of order higher than 2 tend to zero asymp-

totically. We will also compute the asymptotic variance term, which involves polyspectra

of order 2k + 1.
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We will need the following summability assumption on kth order auto-cumulants, as stated

in [21].

Assumption A:

∞

∑
v1,...,vk−1=−∞

∣vjCum(v1, . . . , vk−1, vk)∣ <∞, for j = 1, . . . , k − 1. (3.3.1)

Assumption A is directly related to the smoothness of the kth order polyspectra.

Proposition 3.3.1. Suppose that, for some k ≥ 1, {Xt} is a (k + 1)th order stationary time

series with finite (2k + 1)th order moment that satisfies Assumption A. Let g be a weight

function satisfying the symmetry condition (3.2.1) and has finite integral in (−π,π). Then

as T →∞,

EM̂g(f) =Mg (f) +O (T
−1) . (3.3.2)

Proposition 1 shows that the expectation goes to the theoretical polyspectral mean asymp-

totically, at a rate of T −1. The proof is quite simple, and is given in Section 3.7.1. This

result shows that the estimate defined for polyspectral mean is asymptotically unbiased

and hence a valid estimate for polyspectral mean. Next, we want to compute the variance,

or second cumulant of the polyspectral mean. Since polyspectral mean is a potentially

complex value, we need to take cumulant for complex valued processes here. We can con-

sider the cumulant in different directions, viz. Cum(X,X),Cum(X, X̄) or Cum(X̄, X̄).

All the cases will have similar proofs, and we will only look at the circular cumulant [34]

Cum(X, X̄) in this chapter. Here we will briefly go over the outline of the proof (Details
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given in 3.7.2). We can write:

Cum(Mg (f̂) ,Mg (f̂)) = E {Mg (f̂)Mg (f̂)} −Mg (f)Mg (f) (3.3.3)

Now,

E {Mg (f̂)Mg (f̂)}

= E

⎧⎪⎪
⎨
⎪⎪⎩

T −2kT −2
∑
λ,ω

(2π)−2k
d (λ1) . . . d (λk)d (−[λ])d (−ω1) . . . d (−ωk)d ([ω]) g (λ) g(ω)Φ(λ)Φ(ω)

⎫⎪⎪
⎬
⎪⎪⎭

= T −2k−2 (2π)−2k
∑
λ,ω

g (λ) g(ω)E

⎧⎪⎪
⎨
⎪⎪⎩

∏
λ∈λ′

d (λ)∏
ω∈ω′

d(−ω)Φ(λ)Φ(ω)
⎫⎪⎪
⎬
⎪⎪⎭

where λ′ = (λ1, . . . , λk,−∑
k
i=1 λi) (and with a similar definition for ω′).

Considering only the part inside expectation of the equation, we can see:

E {d (λ1) . . . d (λk)d (−[λ])d (−ω1) . . . d (−ωk)d ([ω])} (3.3.4)

= ∑
σ∈I2k+2

∏
b∈σ

Cum(b) (3.3.5)

where σ is a partition of {1, . . . ,2k + 2} and Cum(b) is the joint cumulant of the set of

indices in b which is an element of σ. In other words, the elements Cum(b) are the joint

cumulants of the Discrete Fourier Transforms at the λj’s whose subscripts belong to the

set b of partition σ. From Lemma 1 of [20], under Assumption A (3.3.1), this term is non-

zero iff the sum of the frequencies within the set is 0. The Φ(⋅) ensures that the mass is

concentrated only on the principal manifold ∑kj=1 ωj ≡ 0 (mod 2π) of k-dimensional wave

and ∑lj=1 ωj /≡ 0 (mod 2π) for all l ≠ k. In other words, the Fourier frequencies do not lie in

any sub-manifold, i.e. no subset of λ or ω has their sum equal to 0. Hence, the terms will

be non-zero in two possible ways:
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• There are two partitions of {λ,−ω}, which is {λ} and {−ω}.

• The partitions contain a mixture of λ and ω.

The first case will give the second term of 3.3.3, so the only remaining terms will be those

arising from the second case. Now suppose we have m such mixture partitions of {λ1, . . . , λk,−[λ]}

and {−ω1, . . . ,−ωk, [ω]}, which we shall call constraints. Then all such combinations can

be compactly written as:

{Aλ′ −Bω′ = 0m×1∣ A and B are m × k + 1 binary matrices such that:

every row must be non-empty and (3.3.6)

every column must have exactly one 1}

where λ′ = {λ1, . . . , λk,−[λ]}. Same for ω′. This is because all the partitions must be dis-

joint and the union of all partitions must contain all the individual λ’s. For example, for

bispectra k = 2 and m = 2, we will have the following set of possible choices of A and B:

⎛
⎜
⎜
⎝

1 1 0

0 0 1

⎞
⎟
⎟
⎠

,

⎛
⎜
⎜
⎝

1 0 1

0 1 0

⎞
⎟
⎟
⎠

,

⎛
⎜
⎜
⎝

0 1 1

1 0 0

⎞
⎟
⎟
⎠

,

⎛
⎜
⎜
⎝

1 0 0

0 1 1

⎞
⎟
⎟
⎠

,

⎛
⎜
⎜
⎝

0 1 0

1 0 1

⎞
⎟
⎟
⎠

,

⎛
⎜
⎜
⎝

0 0 1

1 1 0

⎞
⎟
⎟
⎠

Hence taking A =
⎛
⎜
⎜
⎝

1 1 0

0 0 1

⎞
⎟
⎟
⎠

and B =
⎛
⎜
⎜
⎝

1 1 0

0 0 1

⎞
⎟
⎟
⎠

, we will have the constraint λ1+λ2 = ω1+ω2,

i.e. one partition contains {λ1, λ2, ω1, ω2} while the other partition contains {−λ1 − λ2,−ω1 −

ω2}. Note that we also have two additional constraints in the form ∑j λ′j = ∑j ω′j = 0.

Suppose: Lm = {l1, . . . , lm} be such that ∑mj=1 lj = k + 1, lj > 0. For example, for m = 2 and
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k = 2, Lm = {(1,2), (2,1)}. Additionally, suppose:

ζLm =

⎧⎪⎪
⎨
⎪⎪⎩

Am×(k+1)

RRRRRRRRRRR

Ai⋅ has li 1’s and every column has exactly one 1
⎫⎪⎪
⎬
⎪⎪⎭

(3.3.7)

Let us define fα(λα) to be the polyspectra of order α (λα is a vector of length α), r(s)Aj
and r

(s)
Bj denote the sum of the jth row of A and B respectively, r(s)j = r

(s)
Aj + r

(s)
Bj − 1, and

λrAj
denotes the subset of λ′ which contains the elements corresponding to the non-zero

positions of rth row of A. Similarly, define ωrBj
. Let Lm and L′m be the set of all possible

rows of A and B. Using the matrices from (3.3.6), and some combinatorial arguments, it

can be shown that:

V =
k+1
∑
m=1

∑
lm,l

′

m∈Lm

∑
A∈ζlm ,B∈ζl′m

∫

π

−π
. . .∫

π

−π

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Aλ′−Bω′=0

g(λ)g(ω)
m

∏
j=1
f̃
r
(s)
j
(λrAj

, ωrBj
)dλdω

where V is the asymptotic variance of the polyspectral mean estimate, f̃k(λ′) = fk(λ) is

the kth order polyspectra, and r
(s)
j = r

(s)
Aj
+ r
(s)
Bj
− 1 denote the sum of the jth row of A

and B subtracted by 1. It is to be noted that the case when all the λ′ and ω′ lie in the

same partition is covered in the case m = 1, and is simply the polyspectral mean of order

2k + 1 with weight function g(λ)g(ω), as mentioned in the introduction. Therefore, we have

arrived at the next proposition, on the expression of the asymptotic variance (Detailed

proof given in 3.7.2).

Proposition 3.3.2. Suppose X1, . . . ,XT satisfies the zero-mean stationarity conditions, and

the weight function g satisfies the symmetry condition. Furthermore, suppose Assumption
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1 is satisfied. Then, the second cumulant is of the form T −1V +O(T −2), where:

V =
k+1
∑
m=1

∑
lm,l

′

m∈Lm

∑
A∈ζlm ,B∈ζl′m

∫

π

−π
. . .∫

π

−π

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Aλ′−Bω′=0

g(λ)g(ω)
m

∏
j=1
f̃
r
(s)
j
(λrAj

, ωrBj
)dλdω

Now that we have derived the mean and variance of the polyspectral mean estimate, all

that remains to prove asymptotic normality is to show that the higher order autocumu-

lants goes to 0 at a rate faster that T −1. To do that we would need Theorem 2.3.3 of [19],

which states:

Cum(
J1

∏
j=1
X1j, . . . ,

JI

∏
j=1
XIj) =∑

ν

Cum(Xij; ij ∈ ν1) . . .Cum(Xij; ij ∈ µp)

where the summation is over all indecomposible partition ν = ν1 ∪ . . . ∪ νp of the table.

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(1,1) ⋯ (1, J1)

⋅ ⋅

⋅ ⋅

⋅ ⋅

(I,1) ⋯ (I, JI)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Using this result, it can be shown that in our case, cumulants of order r goes to 0 at a rate

T −r+1 (Detailed Proof given in 3.7.3). Hence we can finally write our theorem:

Theorem 3.3.1. Suppose X1, . . . ,XT is a sample from a stationary time series, and

Mg(f) and M̂g(f) be as defined earlier. Let g be a Hermitian weight function such that

∫λ∣g (λ)∣dλ <∞. Let A and B are m × (k + 1) binary matrices as defined in (3.3.6).
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Then, we can write:

√
T (M̂g(f) −Mg(f))⇒ N (0, V )

where

V =
k+1
∑
m=1

∑
lm,l

′

m∈Lm

∑
A∈ζlm ,B∈ζl′m

∫

π

−π
. . .∫

π

−π

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Aλ′−Bω′=0

g(λ)g(ω)
m

∏
j=1
f̃
r
(s)
j
(λrAj

, ωrBj
)dλdω (3.3.8)

The case m = 1 in the sum is given by:

∫

π

−π
. . .∫

π

−π
g(λ)g(ω)f2k+1(λ1, . . . , λk,−[λ], ω1, . . . , ωk)dλdω

.

Therefore, we have obtained the asymptotic distribution of estimate polyspectral mean for

general weight function. A simple extension the the above proof shows that the correlation

between polyspectral mean of different orders goes to 0 at a rate of T −1.

Corollary 3.3.1. Suppose we have a stationary time series satisfying all the conditions in

the previous theorem. Suppose we consider the polyspectral mean of order k and k + 1 as

M̂g1(fk) and ̂Mg2(fk+1) respectively. Then it can be shown that

Cov(M̂g1(fk),
̂Mg2(fk+1))

goes to 0 at a rate of T −1. More precisely:

Cov(M̂g1(fk),
̂Mg2(fk+1)) =T

−1
⎧⎪⎪
⎨
⎪⎪⎩

k+1
∑
m=1

∑
lm,l

′

m∈Lm

∑
A∈ζlm ,B∈ζl′m

∫

π

−π
. . .∫

π

−π

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Aλ′−Bω′=0

m

∏
j=1
g1 (λk) g2(ωk+1)

m

∏
j=1
f
r
(s)
j
(λrAj

, ωrBj
)

⎫⎪⎪
⎬
⎪⎪⎭
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The proof follows from the fact that:

Cov(M̂g1(fk), M̂g1(fk))

= E

⎧⎪⎪
⎨
⎪⎪⎩

T −k∑
λk

f̂k(λk)g1(λk)T
−k−1
∑
λk+1

f̂k+1(λk+1)g2(λk+1)

⎫⎪⎪
⎬
⎪⎪⎭

−Mg1(fk)Mg2(fk+1)

= T −2k−3(2π)2k+1
∑

λk,ωk+1

g1(λk)g2(λk+1) ∑
σ∈I2k+3

∏
b∈σ

Cum(b) −Mg1(fk)Mg2(fk+1)

In this case, the proof would be similar, except the A matrix will be of dimension m × (k +

1) and B matrix will be of dimension m × (k + 2). The proof can be easily extended to

covariance between polyspectral means of any two orders. The next corollary gives the

joint distribution of polyspectral mean estimates of different weight functions. It can be

shown that the polyspectral mean estimates of different weight functions asymptotically

follow a multivariate normal distribution with a non-diagonal covariance matrix, given by

3.3.9. The proof is disussed in the first part of Section 3.7.4.

Corollary 3.3.2. Under the assumptions of Theorem 3.3.1 and the given definitions,

suppose we consider the polyspectral means of order k for two different weight functions g1

and g2. Then it can be shown that the covariance can be written as:

Cov (M̂g1(fk), M̂g2(fk)) =
k+1
∑
m=1

∑
lm,l

′

m∈Lm

∑
A∈ζlm ,B∈ζl′m

∫

π

−π
. . .∫

π

−π

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Aλ′−Bω′=0

g1(λ)g2(ω)
m

∏
j=1
f̃
r
(s)
j
(λrAj

, ωrBj
)dλdω

(3.3.9)

Also, if we take multiple weight functions, then the d-dimensional vector (M̂g1(fk), . . . , M̂gd
(fk))

will converge to a multivariate normal distribution with mean 0 and covariance matrix

given by (3.3.9).
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Corollary 3.3.2 will be useful in devising the linearity test of time series that we will pro-

pose in the next section.

3.4 Testing of Linear Process Hypothesis Using Bispec-

trum

As discussed earlier, it is often of interest to determine if a process is linear. [88] showed

that it is possible to use quadratic prediction instead of the widely used linear predic-

tor to get significant improvement in prediction error. In this section we will provide a

novel test of linearity using bispectrum. As we know, if {Xt} is a linear process of the

form Xt = ψ(B)ϵt, for some known ψ, then the bispectrum will be of the form f2(λ,ω) =

µ3ψ(e−ιλ)ψ(e−ιω)ψ(eι(λ+ω)). Therefore, we construct a statistic:

T (λ,ω) =
f(λ,ω)

ψ(e−ιλ)ψ(e−ιω)ψ(eι(λ+ω))
=
f(λ,ω)

Ψ(λ,ω)

then T (λ,ω) will be constant under the null hypothesis that Xt = ψ(B)ϵt. Hence, for any j

and k, the integral

∫

π

−π
∫

π

−π
T (λ,ω)eιλjeιλkdλdω

should be 0 whenever one of j and k is non zero. Hence, we can construct the following

test statistic:

TBLT = ∑
(j,k)≠(0,0),0≤j,k≤M

T ∣⟨⟨T̂ (λ,ω)⟩j⟩k∣
2

where ⟨f⟩k = ∫
π

−π f(λ)e
ιλkdλ. The choice of M is considered to be arbitrary. Now, if we

consider gj,k(x1, x2) =
eιjx1+ιkx2
Ψ(x1,x2)

, then the test statistic, after scaling by Vj,k (the asymptotic

variance corresponding to the weight function gj,k), becomes:
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TBLT = ∑
(j,k)≠(0,0),0≤j,k≤M

T ∣Mgj,k
(f̂)∣2

Vj,k

Note that under H0, Vj,k is known, (cf. (3.3.8)). Hence, TBLT is a legitimate test statistic.

As discussed in Corollary 3.3.2, the asymptotic distribution of a vector of polyspectral

means with different choice of g function is a multivariate normal with covariance term

given by (3.3.9). Hence, suppose we consider the functions gj,k(x1, x2) =
eιjx1+ιkx2
Ψ(x1,x2)

, where

j and k runs from 0 to M , such that both are not zero. Let us construct the a vector of

tuples (i,j):

ϑ = {(0,1), (0,2) . . . (0,M)(1,0) . . . (1,M) . . . (M,0) . . . (M,M)}

. Then the vector of polyspectral means {M̂gv(f)∣v ∈ ϑ} converges in distribution to a mul-

tivariate normal variable with known covariance matrix, say CV(M)BLT . There are many ap-

plications where researchers have used linear processes to model time series data, and this

test is useful to identify deviations from the linear models they proposed. For example in

Section 3.4 we considered the Sunspot Data. [1] fitted an AR(1) model to the dataset, and

this test can be used to verify to check whether the model is reasonable for this dataset.

The test considers ψ(⋅) to be known, and as such the limiting distribution under H0 is

completely known. Then we can state the following theorem.

Theorem 3.4.1. Suppose {Xt} be a stationary time series satisfying Assumption A. Sup-

pose gj,k, ϑ and CV(M)BLT be as defined earlier. To test H0 ∶ Xt = ψ(B)ϵt for some known ψ,
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we can construct the test statistic:

TBLT = ∑
(j,k)≠(0,0),0≤j,k≤M

T ∣⟨⟨T̂ (λ,ω)⟩j⟩k∣
2

where T̂ (λ,ω) = f̂(λ,ω)

ψ(e−ιλ)ψ(e−ιω)ψ(eι(λ+ω))
, and ⟨f⟩k = ∫

π

−π f(λ)e
ιλkdλ. Then the asymptotic

distribution of TBLT is ∑M
2−1

j=1 λjζj, where ζj are iid χ2
1 random variables, and λ1, . . . , λM2−1

are the eigen values of CV(M)BLT . The exact expression of CV(M)BLT is given in (3.7.9).

3.5 Simulation

We will consider the following models for simulation:

• AR(2): Xt = Xt−1 − 0.9Xt−2 + ϵt, where ϵt ∼ Exp(1) − 1 (r =1.1, n=100) (Similar to

Example 4.7 of [119]).

In this case, ϕ(z) = 1 − z + 0.9z2, θ(z) = 1, where ϕ(z)Xt = θ(z)ϵt. Also,

∣ϕ(e−2πιω)∣2 = 2.81 − 3.8cos(2πω) + 1.8cos(4πω)

Hence, the spectral density is of the form:

f(ω) =
1

ϕ(e−2πιλ)ϕ(e2πιλ)
=

1
2.81 − 3.8cos(2πω) + 1.8cos(4πω)

Similarly the bispectra and trispectra are of the form:

f(λ,ω) =
2

ϕ(e−2πιλ)ϕ(e−2πιω)ϕ(e2πι(λ+ω))

f(λ1, λ2, λ3) =
9

ϕ(e−2πιλ1)ϕ(e−2πιλ2)ϕ(e−2πιλ3)ϕ(e2πι(λ1+λ2+λ3))
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• ARMA(2,1): Xt −Xt−1 + 0.9Xt−2 = ϵt + 0.8ϵt−1, where ϵt ∼ Exp(1) − 1 i.e. ϕ(z) =

1− z + 0.9z2 and θ(z) = 1+ 0.8z, where ϕ(B)Xt = θ(B)ϵt. Hence, Ψ(z) = θ(z)
ϕ(z) =

1+0.8z
1−z+0.9z2 .

The spectra, bispectra and trispectra are:

Figure 3.2: Bispectra of ARMA(2,1) Process

f(ω) = ∣Ψ(e−2πιλ)∣2

f(λ,ω) = 2Ψ(e−2πιλ)Ψ(e−2πιω)Ψ(e2πι(λ+ω))

f(λ1, λ2, λ3) = 9Ψ(e−2πιλ1)Ψ(e−2πιλ2)Ψ(e−2πιλ3)Ψ(e2πι(λ1+λ2+λ3))

The bispectra of the ARMA(2,1) process is depicted in Figure 3.2.

• Squared Hermite: Xt = J1H1(Zt)+J2H2(Zt) = J1Zt+J2Z2
t −J2 where J1 = 2, J2 = 5

and Zt is a MA(1) process such that Zt = ϵt + 0.4ϵt−1, ϵt ∼ Exp(1) − 1.
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The spectra, bispectra, trispectra are as follows:

f(λ) = σ2
ϵ (J

2
1 + J

2
2 )(1 + θ2 + 2θcos(2πλ))

= 29(1.16 + 0.8cos(2πλ))

f(λ1, λ2) = J
3
2
√

8(1 + θ2) {(1 + θ2)2 + 2θ2 {cos(2πλ1) + cos(2πλ2) + cos(2π(λ1 + λ2))}}

= 410.12{1.3456 + 0.32{cos(2πλ1) + cos(2πλ2) + cos(2π(λ1 + λ2))}}

f(λ1, λ2, λ3) = 15J4
2 (1 + θ2)4 + 3J4

1 (1 + θ2)2 + 30J2
1J

2
2 (1 + θ2)3+

{15J4
2 (1 + θ2)2θ2 + 3J4

1 (1 + θ2)θ + 15J2
1J

2
2 (1 + θ2)θ(1 + θ + θ2)}2cos(2πλ1)+

{15J4
2 (1 + θ2)2θ2 + 3J4

1 (1 + θ2)θ + 15J2
1J

2
2 (1 + θ2)θ(1 + θ + θ2)}2cos(2πλ2)+

{15J4
2 (1 + θ2)2θ2 + 3J4

1 (1 + θ2)θ + 15J2
1J

2
2 (1 + θ2)θ(1 + θ + θ2)}2cos(2πλ3)+

{J4
2 {(1 + θ2)4 + 6θ4 + (1 + θ2)2θ2} + J4

1 {(1 + θ2)2 + 2θ2}+

J2
1J

2
2 {2(1 + θ2)3 + 12θ3 + 8(1 + θ2)2θ + 8θ2(1 + θ)}}{2cos(2π(λ1 + λ2))+

2cos(2π(λ2 + λ3)) + 2cos(2π(λ3 + λ1))} + {15J4
2 (1 + θ2)2θ2 + 3J4

1 (1 + θ2)θ+

6J2
1J

2
2 {3θ(1 + θ2)2 + 2θ2(1 + θ2)}}2cos(2π(λ1 + λ2 + λ3))

Additionally, for each of these models we will consider the following weight functions:

• g1(λ1, λ2) = cos(3λ1)cos(λ2)

• g2(λ1, λ2) = I[−0.2,0.2](λ1)I[−0.5,0.5](λ2)

• g(λ1, λ2) = 1 −
√

λ2
1+λ

2
2

2

The results of the simulation are given in Table 3.1. As we can see for all these cases the

computed asymptotic variance in 3.3.8 is close to the simulated ones in all the cases.
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Figure 3.3: 3d Plot of the Weight Functions

Table 3.1: Simulation of different Models and different weight functions (Sample Size: 100)

Model g(λ) Scaled MSE MAPE

Model 1: AR(2) with Exp(1) - 1
g1(λ1, λ2) 0.12 0.27
g2(λ1, λ2) 0.19 0.37
g3(λ1, λ2) 0.26 0.39

Model 2: AR(2) with χ2
4 − 4

g1(λ1, λ2) 0.07 < 0.05
g2(λ1, λ2) 0.26 0.41
g3(λ1, λ2) 1.06 0.82

Model 3: ARMA(2,1) with
Exp(1) − 1

g1(λ1, λ2) 0.39 0.48
g2(λ1, λ2) 0.40 0.42
g3(λ1, λ2) 0.14 0.32

Model 4: ARMA(2,1) with χ2
4 − 4

g1(λ1, λ2) 0.15 0.34
g2(λ1, λ2) 0.28 0.46
g3(λ1, λ2) 1.07 0.82

Model 5: Sq. Hermite Process
g1(λ1, λ2) 0.27 0.38
g2(λ1, λ2) 0.14 0.27
g3(λ1, λ2) 0.95 0.91

We also conducted a simulation study for the power of the linearity test we proposed. In

this case we took the process Xt be be generated from:

Xt = ϵt + 0.4ϵt−1 + θϵ
2
t−1 − θ

68



We then changed the value of θ and computed the power curve for the different choices.

Ideally, the θ will control the non-linearity of the process, and as such increasing it should

increase the power of the test, which can be seen in Figure 3.4. We have taken the sample

size to be 100, and the choices of θ ranging from 0 to 10.

Figure 3.4: Power Curve for different choices of θ

3.6 Real Data Analysis

3.6.1 Sunspot Data Linearity Test

Sunspots are temporary phenomena on the Sun’s photosphere that appear as spots rel-

atively darker than surrounding areas. Those spots are regions of reduced surface tem-

perature arising due to concentrations of magnetic field flux that inhibit convection. It is
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already known that the solar activity follows a periodic pattern repeating every 11 years.

Figure 3.5 shows the time series of the sunspot data collected in a monthly interval.

Figure 3.5: Sunspot Data Collected Monthly (Source: [120])

[88] depicted that it is possible to gain significant improvement in prediction in sunspot

data by using quadratic prediction instead of linear prediction. This shows that there

is high possibility of presence of nonlinearity in the sunspot data. Here we will use the

test statistic proposed in Section ?? to test whether the sunspot data follows a particular

linear process, namely Xt = 0.976Xt−1 + ϵt which was used in [1]. In this case:

∑
(j,k)≠(0,0),0≤j,k≤M

TMgj,k
(f̂)2

Vj,k
= 3740.057

with the p-value < 0.005.
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Hence, our proposed test rejects the null hypothesis that the sunspot data follows the

linear process proposed by [1].

3.6.2 GDP Trend Clustering

An application of the polyspectral mean can be for time series clustering. As we have

discussed earlier, we can extract different types of information from a time series by using

different weight functions for the polyspectral mean. In this section, we have analyzed the

Gross Domestic Product (GDP) of 136 countries for past 40 years, and have attempted

to classify them based on the bispectral mean taken with different weight functions. The

time series of the GDP is first differenced to ensure stationarity, and then scaled in order

to extract just the trend information (shown in Figure 3.6). Hence, the clustering is based

solely on how the GDP varied over time, and not the actual value of GDP. The weight

functions considered are as follows:

Figure 3.6: Original and Differenced GDP trend for the countries over 40 years (1980-
2020)
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• g(λ1, λ2) = I(a < λ2
1 + λ

2
2 < b), where a and b are taken such that the interval (0,1) are

split into 10 segments. Hence, we have 10 such bispectral means for each annulus.

• g(λ1, λ2) = (1 − ∣λ1∣)(1 − ∣λ2∣)

• g(λ1, λ2) = cos(3λ1)cos(λ2)

Figure 3.7: World Map GDP Clustering

The computed bispectral means are then used to classify the countries into 5 classes, as

shown in Figure 3.7. As we can see, the developed EU countries all fall under the same

category.The South Asian and South-East countries form another category, while all types

of categories are found in Africa and South America. Some developed countries like USA

and least developed countries like Benin seems to fall under same category, since both

their time series seem to have similar ascending structure.
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3.7 Proofs

3.7.1 Proof of Proposition 3.3.1

Proof.

E (M̂g(fk))) = (2π)kT −k−1
∑
λ

E (d (λ1) . . . d (λk, )d (−[λ])) g (λ)

Now, using results from [20]:

E (d (λ1) . . . d (λk)d (−[λ])) = ∑
σ∈τn

∏
b∈σ

Cum(b)

the term Cum(b) will be non-zero only when the sum inside is 0, which can only occur

when the partition contains all the λ’s, since the Fourier Frequencies are assumed not to

lie in any sub-manifold. Thus:

E (d (λ1) . . . d (λk)d (−[λ])) = ∑
σ∈τn

∏
b∈σ

Cum(b)

= Cum (d (λ1) , . . . , d (λk) , d (−[λ]))

= Tf (λ) +O(1)

The last equality is a direct outcome of Lemma 1 of [20].
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Hence, using sum to integral and properties of the weight function:

EM̂g(f) = (2π)kT −k−1
∑
λ

{Tf(λ) +O(1)} g(λ)

=Mg (f) +O (T
−1)

3.7.2 Proof of Proposition 2

Proof. For the second cumulant, we can consider Cum(X,X),Cum(X, X̄) or Cum(X̄, X̄).

All the cases will have similar proofs, and we will only look at the circular cumulant ([34])

Cum(X, X̄) in this paper. We can write:

Cum(M̂g (f), M̂g (f)) = E {M̂g (f)M̂g (f)} −Mg (f)Mg (f) (3.7.1)

Now,

E {M̂g (f)M̂g (f)}

= E

⎧⎪⎪
⎨
⎪⎪⎩

T −2kT −2
∑
λ,ω

(2π)2k d (λ1) . . . d (λk)d (−[λ])d (−ω1) . . . d (−ωk)d ([ω]) g (λ) g (ω)

⎫⎪⎪
⎬
⎪⎪⎭

= T −2k−2 (2π)2k∑
λ,ω

g (λ) g (ω)E

⎧⎪⎪
⎨
⎪⎪⎩

∏
λ∈λ′

d (λ)∏
ω∈ω′

d(−ω)

⎫⎪⎪
⎬
⎪⎪⎭

where λ′ = (λ1, . . . , λk,−∑
k
i=1 λi). Same for ω′.
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Looking only at the expectation:

E {d (λ1) . . . d (λk)d (−[λ])d (−ω1) . . . d (−ωk)d ([ω])} (3.7.2)

= ∑
σ∈I2k+2

∏
b∈σ

Cum(b) (3.7.3)

where σ is a permutation of {1, . . . ,2k + 2} and Cum(b) is the joint cumulant of the set

of indices in b which is an element of σ. From Lemma 1 of [20], under the assumption

that ∑∣vjc′a1,...,ak
(v1, . . . , vk−1)∣ <∞, this term is non-zero iff the sum of the frequencies is 0.

Hence, the terms will be non-zero in three possible ways:

• There are two partitions of {λ′,−ω′}, (where λ′ is {λ1, . . . , λk,−[λ]}) which is {λ′}

and {−ω′}. Let us call this partition σ0. Since, sum of elements of both partitions

is zero, both of them will contribute non-zero values to the product, rendering the

product to be non-zero. It can be written as:

∏
b∈σ0

Cum(b)

= Cum (d(λ1), . . . , d(λk), d (−[λ]))Cum (d(−ω1), . . . , d(−ωk), d ([ω]))

= (Tf(λ) +O(1)) (Tf(−ω) +O(1))

= T 2f(λ)f(−ω) +O(T )
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Hence, entering it in the sum:

T −2k−2(2π)2k∑
λ,ω

g(λ)g(ω) {T 2f(λ)f(−ω) +O(T )}

= T −2k (2π)2k∑
λ,ω

g(λ)g(ω)f(λ)f(−ω) + (2π)2kT −2k
∑
λ,ω

g(λ)g(ω)O (T −1)

Thus, the final expression will be:

Mg(f)Mg(f) +O (T
−1) (3.7.4)

which would cancel the second term of (3.3.3), leaving a O(T −1) term.

• A second case would be where all the λ′ and ω′ fall in the same partition.

∏
b∈σ0

Cum(b)

= Cum (d(λ1), . . . , d(λk), d (−[λ]) , d(−ω1), . . . , d(−ωk), d ([ω]))

= (Tf2k+1(λ,−[λ],−ω) +O(1))

Hence, entering it in the sum:

T −2k−2(2π)2k∑
λ,ω

g(λ)g(ω) {Tf(λ,−[λ],−ω) +O(1)}

= T −2k−1(2π)2k∑
λ,ω

g(λ)g(ω)f2k+1(λ,−[λ],−ω) + (2π)2kT −2k
∑
λ,ω

g(λ,ω)O (T −2)

∼ T −1
∫

π

−π
. . .∫

π

−π
g(λ)g(ω)f2k+1(λ,−[λ],−ω)dλdω +O(T

−2)
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Hence, the final expression will be a polyspectral mean of order 2k + 1, with a weight

function depending on the original weight function. This case is in particular a spe-

cial case of the third case, which we will discuss next.

• The other cases where the term would be non-zero are when the sums of all the

elements within a block of a partition are 0, i.e. if the blocks of a partition σ are

b1, b2, . . . , bp, and bi block contains elements λbi1 , . . . , λbil
,−ωbi1 , . . . ,−ωbim

, then the

sums of all those elements must be 0 for all the blocks bi. This is because if any of

the blocks has elements which does not add up to 0, the corresponding Cum(b) will

be zero, and hence ∏b∈σ Cum(b) will become zero for that partition. Now, we have

ensured that no subset of the Fourier frequencies lies in a sub-manifold, i.e. for no

subset of λ1, . . . , λk, the sum would be 0. Hence, for one partition to have a non-zero

value, all of it’s blocks must contain at least one element from each of λ and ω.The

only other case is covered in the first case, where the partition contains all elements

of λ and ω. Now that we know that every block of the partition contains a mixture

of λ′ and ω′, let us call each mixture a constraint, since each mixture should have a

sum 0, and hence would produce a constraint and thereby reducing the degrees of

freedom by 1. Suppose we have m such constraints, i.e. m linear combinations of λk

and ωk are 0. This also means we have m blocks. Then we will have Tm from the

integrand, since every block would contribute a T from the cumulant, and a O(1)

from the residual. The sum will hence run for only the above cases, i.e. only when

the linear combinations of the elements of partitions are equal to 0. In other words,

only when there exists m × (k + 1) matrices A and B such that:

Aλ′ −Bω′ = 0m×1

where λ′ = {λ1, . . . , λk,−[λ]}. Same for ω′.
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Also, every row of A (and B) must be disjoint (this means that the rows of A (and

B) cannot have 1 in the same position) and contain 1 or 0, and not all 0. Also, every

column must have exactly one 1. This is because:

– A Fourier Frequency λ can be only in one partition, and hence the rows of A

must be disjoint

– All columns must have at least one 1, since a Fourier frequency λ must be in at

least one partition.

– Also, a column cannot have more than one 1, since that would violate the dis-

joint row property. Hence, every column must have exactly 1 “1”.

An example would be:

Am,k+1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 ⋯ 1

0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 1 ⋯ 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
m×k

where m is the number of constraints. Suppose fα(λα) be the polyspectra of order α

(λα is a vector of length α). Also, assume r(s)Aj and r
(s)
Bj denotes the sum of the jth row

of A and B respectively. Let r(s)j = r
(s)
Aj + r

(s)
Bj − 1. Let λrAj

denotes the subset of λ′

which contains the elements corresponding to the non-zero positions of rth row of A.

Similarly, define ωrBj
. Then for each term we have (f̃(λ′) = f(λ)):

Tm
m

∏
j=1
f̃
r
(s)
j
(λrAj

, ωrBj
) +O (Tm−1)
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Now, for each of these quantities, we have m − 1 constraints, m from the matrices, and

1 is subtracted because the sum is 0. Then, we have for each of the term:

T −2k−2
∑
λ,ω

g (λ) g (ω){Tm
m

∏
j=1
f̃
r
(s)
j
(λrAj

, ωrBj
) +O (Tm−1)}

= T −1T −2k+m−1
∑
λ,ω

g (λ) g (ω)
m

∏
j=1
f̃
r
(s)
j
(λrAj

, ωrBj
) +O (T −2)

This goes to 0 at a rate of T −1. Suppose: Lm = {l1, . . . , lm} be such that ∑mj=1 lj = k + 1,

lj > 0. For example, for k = 2 and m = 2, L2 = {(1,2), (2,1)}. Suppose:

ζLm =

⎧⎪⎪
⎨
⎪⎪⎩

Am×(k+1)

RRRRRRRRRRR

Ai⋅ has li 1’s and every column has exactly one 1
⎫⎪⎪
⎬
⎪⎪⎭

(3.7.5)

Then for every choice of m, we will have a corresponding Lm, and for each elements

lm ∈ Lm, we will have corresponding sets ζlm . Then we will have the sum running

over all possible choices of matrices A and B within the sets ζlm for all choices of

lm ∈ Lm such that Aλ′ −Bω′ = 0. Then each of the summands will be of the form:

T −2k−2Tm ∑
λ,ω∣Aλ′−Bω′=0

g (λ) g (ω)
m

∏
j=1
f̃
r
(s)
j
(λrAj

, ωrBj
)

= T −1T −2k+m−1
∑

λ,ω∣Aλ′−Bω′=0
g (λ) g (ω)

m

∏
j=1
f̃
r
(s)
j
(λrAj

, ωrBj
) (3.7.6)
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Then, the second cumulant would be of the form T −1V +O (T −2), where:

V =
k+1
∑
m=1

∑
lm∈Lm

T −2k+m−1
∑

λ,ω∣Aλ′−Bω′=0
g (λ) g (ω)

m

∏
j=1
f̃
r
(s)
j
(λrAj

, ωrBj
)

∼ V =
k+1
∑
m=1

∑
lm,l

′

m∈Lm

∑
A∈ζlm ,B∈ζl′m

∫

π

−π
. . .∫

π

−π

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Aλ′−Bω′=0

g(λ)g(ω)
m

∏
j=1
f̃
r
(s)
j
(λrAj

, ωrBj
)dλdω

The case m = 1 is the second case mentioned earlier, which would give a polyspectral

mean of order 2k + 1.

3.7.3 Proof of Theorem 3.3.1

Proof. Proposition 1 and 2 gives the mean and variance of the limiting distribution. The

only thing remaining to prove asymptotic normality is to show that the higher order cumu-

lants of the scaled transformation goes to zero as n goes to ∞. Suppose (λ′ = (λ1, . . . , λk,−[λ])),

then we can write (κr be the rth order joint cumulant):

κr(M̂g(f)) = Crκ(M̂g(f), . . . , M̂g(f)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r times

)

= Crκ
⎛

⎝
T −k−1

∑
λ1

g(λ1)∏
j

d(λ′1j), . . . , T
−k−1
∑
λr

g(λr)∏
j

d(λ′rj)
⎞

⎠

= CrT
−rk−r

∑
λ1

. . .∑
λr

g(λ1) . . . g(λr)κ(∏
j

d(λ′1j), . . . ,∏
j

d(λ′rj))

From Theorem 2.3.3 of [19], we know:
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κ(
J1

∏
j=1
X1j, . . . ,

JI

∏
j=1
XIj) =∑

ν

κ(Xij; ij ∈ ν1) . . . κ(Xij; ij ∈ µp)

where the summation is over all indecomposible partition ν = ν1 ∪ . . . ∪ νp of the table.

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(1,1) ⋯ (1, J1)

⋅ ⋅

⋅ ⋅

⋅ ⋅

(I,1) ⋯ (I, JI)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

In our case:

κ(
k+1
∏
j=1
d(λ′1j), . . . ,

k+1
∏
j=1
d(λ′rj)) =∑

ν

κ (d(λ′ij) ∶ ij ∈ ν1) . . . κ (d(λ
′
ij) ∶ ij ∈ νp)

and the table is:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(1,1) ⋯ (1, k + 1)

⋅ ⋅

⋅ ⋅

⋅ ⋅

(r,1) ⋯ (r, k + 1)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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From the expression of cumulants, we know that each of those κ’s are non zero only when

their sum is equal to zero, and can give at most T for each of the partitions, i.e. the high-

est order from each of these elements is T p. Hence, to get the leading term, we would need

to take maximum number of such partitions such that the sum of λ’s in the partitions is

zero. By our definition of M̂g(f), no subset of the λi’s fall in a sub-manifold. Hence, each

of these partitions must contain either all distinct λ′s, or a mixture of λ’s. However, all

distinct will not be an indecomposable partition. Hence, we are left with only mixture of

λ’s. Also indecomposable would mean that we don’t have any single λ, i.e. all the parti-

tions must be a mixture of all the λ’s. This is same as the matrix notation we described

earlier. Here we just have r matrices A1, . . .Ar such that A1λ1 + . . .Arλr = 0p×1 Hence, p

partitions would give p constraints. thereby giving an order of T p, and with these comes

p − 1 constraints. Therefore, the sum would need T −rk+p−1. The remainder term would be

T −r+1. Thus, the cumulants of order higher than r will go to 0 at a rate faster than T −1,

thereby proving the asymptotic normality of the scaled transformation.

3.7.4 Proof of Theorem 2

Proof. We defined the following test statistic:

TBLT = ∑
(j,k)≠(0,0),0≤j,k≤M

T ∣⟨⟨T̂ (λ,ω)⟩j⟩k∣
2

Now, suppose gj,k = (x1, x2) =
eιjx1+ιkx2
Ψ(x1,x2)

, then the test statistic after scaling by Vj,k (the

asymptotic variance obtained in Theorem 3.3.1) becomes:
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TBLT = ∑
(j,k)≠(0,0),0≤j,k≤M

T ∣Mgj,k
(f̂)∣2

Vj,k
. (3.7.7)

First, we need to show that under this gj,k, Mg(f) is 0, which is trivial since under the

null hypothesis f(λ) is a constant multiple of the denominator of gj,k(x). Hence, when

(j, k) ≠ (0,0), the integral will always be 0. Hence, in this case, the asymptotic distribu-

tion of
√

TM̂g(f)
V is N (0,1) for any given function g„ where V is the corresponding asymp-

totic variance.

Let us first consider the joint distribution of ( ̂Mgj1,k1
(f), ̂Mgj2,k2

(f)). Suppose we want to

find the limiting distribution of υ = a1
̂Mgj1,k1
(f) + a2

̂Mgj2,k2
(f). We can write:

υ = a1(2π)−kT −k ∑
λ(a1)

T −1d (λ
(a1)
1 ) . . . d (λ

(a1)
k )d(−

k

∑
j=1
λ
(a1)
j ) gj1,k1 (λ

(a1))

+ a2(2π)−kT −k ∑
λ(a2)

T −1d (λ
(a2)
1 ) . . . d (λ

(a2)
k )d(−

k

∑
j=1
λ
(a2)
j ) g(j2,k2) (λ

(a2))

= (2π)−kT −k∑
λ

T −1d (λ1) . . . d (λk)d(−
k

∑
j=1
λj)h(λ)

where h(λ) = a1g(j1,k1)(λ) + a2g(j1,k1)(λ), and since we have already established the asymp-

totic normality of polyspectral mean for any function, it follows that any linear combina-

tion is asymptotically normal. Therefore, the joint distribution is asymptotically normal.

Hence, finally, we now need to find the asymptotic covariance between ̂Mgj1,k1
(f) and

̂Mgj2,k2
(f).
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E { ̂Mgj1,k1
(f) ̂Mgj2,k2

(f)} −Mgj1,k1
(f)Mgj2,k2

(f)

As we saw earlier, one term that would come out is when the partition is λ and ω, there

complete disjoint partitions. We only need to show that other partitions will not exist

in this case. The covariance will be similar to form of V established in Theorem 3.3.1 as

mentioned in Corollary 3.3.2:

Cov (M̂g1(fk), M̂g2(fk)) =
k+1
∑
m=1

∑
lm,l

′

m∈Lm

∑
A∈ζlm ,B∈ζl′m

∫

π

−π
. . .∫

π

−π

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Aλ′−Bω′=0

g1(λ)g2(ω)
m

∏
j=1
f̃
r
(s)
j
(λrAj

, ωrBj
)dλdω

(3.7.8)

Hence, now we have established the joint distribution of (Mgj1,k1
,Mgj2,k2

) is a multivariate

normal with covariance matrix:

⎛
⎜
⎜
⎝

Vj1,k1 CV(j1,k1),(j2,k2)

CV(j1,k1),(j2,k2) Vj2,k2

⎞
⎟
⎟
⎠

for any arbitrary j1, j2, k1, k2. Therefore υ is a multivariate normal distribution with a

covariance matrix, say VΥ.

Suppose we have a M2 − 1 vector where each element correspond to a set (i, j)∣i, j ≤

M, (i, j) ≠ (0,0), defined as earlier. Then, the asymptotic distribution of statistic TBLT
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under null distribution can be written as XTX, where X ∼ NM2−1(0,CV(M)BLT ), where:

CV(M)BLT (a, b) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 if a = b
Cov(Mgja

(fk),Mgjb
(fk))

√
Vja,kaVjb,kb

if a ≠ b
(3.7.9)

Suppose CV(M)BLT = P
TΛP , where Λ = (λ1, . . . , λM2−1) are the eigen values of CV(M)BLT . Let

U = PY , so that U ∼ NM2−1(0, I).Then, XTX = UTΛU = ∑M
2−1

j=1 λjU2
j . Hence, the asymp-

totic distribution under null can be given by a weighted sum of χ2
1 random variables where

the weights are given by the eigen values of the covariance matrix CV(M)BLT .
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Chapter 4

THANOS: A Predictive Model of

Electoral Campaigns using Twitter

Data and Opinion Polls

4.1 Introduction

The rise of social media has been one of the most critical events in this century. Social

media has given the common people a platform to share their views with local, state, na-

tional, and international community members. Ideas, political speeches, and social com-

mentary are now readily available in every corner of the world. Not long after its incep-

tion, social media proved helpful in marketing, politics, and social relations. Political cam-

paigns in democratic countries worldwide have become heavily dependent on social media

to promote citizen engagement. For example, the U.S. presidential campaigns of Barrack
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Obama extensively used different social media platforms, like Twitter, Facebook, and MyS-

pace. The Trump campaign in 2016 and 2020 deployed sophisticated social media efforts

tailored to targeted audiences. Thus, it has become possible to analyze social media posts

to forecast political and societal events, including electoral outcomes, and build effective

influence campaigns. While a skeptic may note here that many voters do not maintain ac-

tive accounts on social media platforms and are unaware of this online discourse, we would

note that the media often includes citations to social media in print and online reporting.

Many “conventional” media sources have adopted graphics that enable them to duplicate

Twitter and Facebook content in their articles, extending the reach of these campaigns.

Several studies have been conducted regarding this new realm of social interaction. There

exists a train of thought that social media data do no better than chance in predicting

electoral campaigns ([53]). Social media discourse and debate may not be representative of

the broader electorate and/or eligible voters that will turn out on election day. However,

the fact that social media has immense potential to influence political campaigns cannot

be refuted. The 2016 U.S. election served as a wake-up call for the American political

elite and intelligence community. In a U.S. national election, the intervention by a ma-

lign foreign actor, Russia, was unprecedented in scope and impact [60]. A flurry of studies

and analyses have since focused on the Russian influence campaign in the U.S. ([35], [60],

[116], [140], [112]) and campaigns to alter outcomes in other countries—Eastern Europe

([61]), Sweden ([75]), and Romania & Hungary ([124]). Other studies have more generally

explored the impact of social media on the 2016 election ([5]), specifically examined the

mechanics of the Russian influence campaign ([94]), or tried to explain the causal mecha-

nisms behind the electoral outcome ([93], [57]). Despite such widespread research on the

influence of social media, less attention has been devoted to the underlying general mech-

anisms for generating influence on these platforms and the degree to which this influence
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translates into real-world voting behavior. One such study was done on the electoral cam-

paigns in Germany ([136]) for the federal election of the national parliament, which took

place on September 27th, 2009. In another study, [4] performed a sentiment analysis on

Facebook during the 2016 U.S. Presidential Election and examined the dynamics between

candidate posts and comments received on Facebook.

However, works on using social media to successfully forecast elections is sparse ([27],

[133], [65], [26]). Our work considers the application of statistical analysis using Twit-

ter data to predict the outcomes of recent elections in Ireland and the United States. For

the first analysis, this chapter will aim to forecast the outcome of the voting for the 36th

Amendment of the Irish Constitution referendum (May 25, 2018) using a model built from

Twitter data and several opinion polls conducted during that period. The second analysis

involves forecasting the electoral outcomes of the 2018 mid-term election in the United

States, again using only Twitter Data and opinion polls conducted during that period.

The primary differences in our attempt from earlier works, are (i) to combine the opin-

ion polls conducted during the campaigns with the Twitter data, and (ii) to incorporate

the dynamic network structure in our time series model. For (i), we note that the opinion

polls, representing the traditional source of information, suffer from time-lags in tracking

effects of influence campaigns in quickly evolving scenarios and are often less sensitive in

predicting electoral outcomes. On the other end, social media data, such as Twitter posts,

lack fair representation of the entire voting population and may not be very effective by

themselves for prediction purposes. However, we show that by cleverly combining the two

sources of information, it is possible to generate very accurate predictions of the election

outcome, even in cases where the races are very close. We do this by building suitable sta-

tistical models based on some crucial network features of the Twitter data. For campaigns
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where the margins of wins are reasonably large, we show that predictions based on a sim-

ple model referred to as the THOS (Twitter Hashtag-based Opinion Survey) predictions

adequately predict the campaign outcomes. However, the simple model is ineffective for

predicting the outcomes when the margin of win is small. For such cases, we develop a

more complex model and the corresponding predictor, referred to as the THANOS (Twit-

ter Hashtag and Network-based Opinion Survey) model/predictor incorporates additional

network features to yield better prediction accuracy. An essential contribution of the chap-

ter is constructing the feature variables, including one that uses the Harmonic centrality

measures of the associated networks. Applied to the 2018 US Elections, the THANOS

model correctly predicted the winning candidates in 11 out of the top 12 closest Senate

races; The remaining one (Florida) was the closest race where the margin of the winning

candidate was only 0.12% and the THANOS prediction was ”undecided.” In particular, the

predictions generated by the THANOS model compare favorably with competing predic-

tive modeling approaches, including those of FiveThirtyEight.com. See Section 5 for more

details.

The rest of the chapter is organized as follows. Section 4.2 describes the data sets used

in the chapter for predicting election campaign outcomes. It also describes relevant back-

ground information on Network analysis used in our modeling approach. Section 4.3 de-

velops the two predictive models, the THOS and the THANOS, combining opinion polls

with Twitter data. Sections 4.4 and 4.5 respectively describe predictions from our models

for the Irish referendum on 36th constitutional amendment and the 2018 US Senate elec-

tions, respectively. Section 4.6 gives a brief discussions of the results and some concluding

remarks.
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4.2 Background

4.2.1 Descriptions of Data Examples

To illustrate the predictive modeling approaches of the chapter, we considered two recent

electoral campaigns where results of several opinion polls and social media data were read-

ily available. The first of these is the Ireland Vote on the 36th constitution referendum.

Abortion has been subjected to criminal penalty in Ireland by the Offences against the

Person Act since 1861. The Eighth Amendment of the Constitution Act 1983 inserted

a subsection recognizing the equal right to life of the pregnant woman and the unborn.

The Pro-Life Amendment Campaign instigated this for fear that liberal legislators might

weaken the 1861 prohibition. In 1992, the X case ruled that abortion is permitted where

pregnancy threatens a woman’s life, including by risk of suicide. However, no regulatory

framework existed till 2013, until the introduction of the Protection of Life During Preg-

nancy Act 2013, which defined the circumstances and processes within which abortion

in Ireland could be legally performed. Two famous events drove this: The A, B, and C

vs. Ireland case in the European Court of Human Rights in 2010 and the death of Savita

Halappanavar after a miscarriage in 2012. The 1983 referendum is commonly viewed to

equate the life of a pregnant woman with the fetus, making abortion unavailable in almost

all circumstances. It is also seen as affecting maternal healthcare because a woman loses

her right to refuse consent to medical treatment during pregnancy. Even though the Pro-

tection of Life During Pregnancy Act 2013 defined the circumstances under which abortion

could be legally performed, it still prohibited legal abortion in many cases. The proposed

36th amendment, also known as the repeal of the 8th amendment, allows the government

to legislate on abortion. The proposed legislation aligned Ireland with most European
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Figure 4.1: Opinion Polls For Ireland Voting

countries, allowing for abortion on request up to the 12th week of pregnancy (subject to

medical regulation). After 12 weeks, abortion would only be available in cases of fatal fetal

anomaly, if the pregnant woman’s life was at risk, or if her health was at risk of serious

harm. Cases after 12 weeks would have to be approved by two doctors. The dataset for

this example consists of Twitter data collected during the campaign and opinion polls

conducted by various organizations from December 2017 through May 2018, as shown in

Figure 4.1. We will combine the two data sources to predict the referendum’s outcome

using the (simpler) THOS model, as described in Section 3. In this case, the actual propor-

tion of votes in favor of the amendment was 66.4%.

The second example we consider here involves the outcomes of the 2018 US Election. The

election was conducted on November 6, 2018, for 35 of the 100 seats in the US Senate and

all 435 seats in the US House of Representatives. Figure 4.2 gives the list of states/senate

seats, the winning party, and the margins of win for the top 12 closest races.

The Twitter Data in this study was obtained from [143] and consisted of 1,387,688 tweets

from 708,916 users, over the time period of November 20,2017 to March 1,2019. We also

used opinion polls from several US organizations for predictive modeling. For races where
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Figure 4.2: Close Races in US 2018 Election

the margin of win was more than 5%, the simpler THOS model performed well. As a

result, we primarily concentrated on the senate races with winning margins below 5% to

illustrate the predictive accuracy of the THANOS model. See Section 5 for the detailed

analyses and results.
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4.2.2 Construction of a Network for Twitter data and its relation

to influence campaigns

Social media has emerged as a potential platform for political campaigns to gain momen-

tum. Propaganda from political campaigns can reach a vast audience, primarily owing to

mentions and retweets on Twitter. To better understand how influence propagates through

social media, the growth of the underlying network is of primary interest. Figure 4.3 ex-

hibits the network structure developing over time for one particular case (Ireland 2018

Campaign). The network is created using retweets and with four “influencers” (Users with

top retweets), two from each campaign (“yes” and “no”). The nodes in the graph repre-

sent the users in the data, with a directed edge existing from node A to node B if a tweet

from user A was retweeted by user B. The “Influencers” form the central nodes in the four

clusters (or cliques). As we can see, the network initially started with four clusters and

dynamically expanded with interactions among all four clusters.

Figure 4.3: Network Growth in Ireland Dataset
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The growth pattern of the network in the bottom panel of Figure 4.3 suggests copious

interactions within and among the four cliques, which indicates that the influencers from

both campaigns influence the common audience. The next important question from this

discussion is, therefore, how much an “influencer influences a common user”, and what

is the social significance of an “influencer,” i.e., the extent to which they can influence

a campaign. A well-studied approach is to use centrality measures to define the amount

of influence a user has on a network. A centrality measure can be defined as a function

that assigns a score to a user, indicating the number of interactions the user has with

other nodes in the network. For example, the four influencers in Figure 4.3 will have high

centrality measures, while those on the fringes will have low scores. We can also obtain

a measure of the centrality score of the network using the graph centrality score ([48]),

which calculates the interaction level of a graph based on the centrality scores of its nodes.

This might indicate campaign effectiveness or enable classification between campaign and

non-campaign Twitter datasets. Here we will consider two popular measures of centrality

scores:

• Degree Centrality Score: The Degree Centrality Score of a given node v, denoted by

CD(v), is the number of edges incident upon v. It measures the first level interaction

experienced by user v. The graph centrality in this case is given by

∣V ∣

∑
i=1
{CD(v∗) −CD(vi)}

∣V ∣2 − 3∣V ∣ + 2 ,

where ∣V ∣ is the size of the Network and v∗ is the node with the highest degree cen-

trality score.
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• Harmonic Centrality (H(v)) [ [86]]: Let d(y, v) denotes the distance between nodes y

and v. The Harmonic Centrality of a node v is defined as H(v) = 1
∑y≠v d(y,v)

,

In the next section, we will use the (dynamic) network features to build our statistical

models.

4.3 Models

The statistical models developed in this chapter are time series regression models based

on appropriately chosen features from the Twitter database. The dependent variable (yt)

is a transformation of the outcome from the opinion polls conducted during the campaign

period. For our modeling purpose, we will only use a two-party system, which is a rea-

sonable assumption for both examples. For the Ireland case, there were only two parties

under consideration while, in the US election, the Democrats and the Republicans are the

only two major competitors of the elections, with the other political parties accounting for

negligible vote shares. Our first model is given by:

log yt
1 − yt

= β0 + β1x̄
(1)
t,h,l + β3x̄

(2)
t,h,l + β4

x̄
(2)
t,h,l

x̄
(1)
t,h,l

+ ϵt, (4.3.1)

where

• yt ∶= proportion of Votes obtained by Party 1 with respect to Party 2 in the opinion

polls,

• x̄
(k)
t,h,l ∶= proportion of 10 most popular Hashtags corresponding to Party k averaged

over the period of (t − h, t − l), k = 1,2, where h ≥ l determine the lagged time-window,

and
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• ϵt ∶= error variable at time t.

In this model, we use hashtag frequency to define the covariates. The underlying idea

is that tweets from users leaning towards a particular party will contain more hashtags

related to the corresponding party. The choice of top 10 hashtags is arbitrary and can

be tuned to get better predictions. The third feature x̄
(2)
t,h,l

x̄
(1)
t,h,l

gives the relative number of

Party 2 hashtags with respect to Party 1 hashtags that occur in the campaign dataset.

We avoided delving deeper into the tweets’ texts, primarily owing to the lack of reliable

sentiment analysis dictionaries in languages other than English, which is not always the

most dominant language of the datasets. For example, the most dominant language in the

Ireland dataset was French. However, if we consider the frequency of the most popular

hashtags, we can avoid the language barrier.

Figure 4.4: Choice of h and l

The logit transform is applied to the poll predictions to convert the support of the de-

pendent variables to the entire real line. The most popular hashtags are classified into

two groups from either campaign and are used in the model, along with their ratio. The

parameter h signifies how much of the history we need to predict the final outcome accu-

rately, and l determines how far ahead we can predict the outcome. A pictorial represen-

tation is given in Figure 4.4. We can provide predictions based on different choices of h

and l. Suppose that the prediction of the proportion of votes obtained by Party 1 obtained
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from (4.3.1) for one choice of h and l in Model 1 is defined as p̂THh,l , where TH stands for

Twitter Hashtag. The prediction is obtained by fitting the linear regression model and

using the inverse logit transform on the obtained prediction ( exp(x)
1+exp(x)). Using this model,

we can propose a prediction of the outcome, which will be henceforth called the THOS

(Twitter Hashtag-based Opinion Survey) forecast, defined as

p̄THh,l =
1

∣(h, l)∣∑
h,l

p̂THh,l .

Thus, the final forecast p̄THh,l is the average of all the predictions obtained by using different

choices of h and l. The averaging step makes the predictor stable and guards against the

effects of large and sudden changes in the polling numbers at isolated time points on the

final prediction.

The above model seems to work well for elections with wide victory margins, such as the

Ireland 36th amendment vote on legalizing abortion and the election for the senate seat

in Connecticut in US 2018 mid-term elections. In both of these cases, the winning party

got more than 60% of votes. However, for closely fought elections (e.g. the Arizona senate

seat in the 2018 US mid-term election), the THOS forecast seemed inadequate. Hence, we

introduced additional network features of the Twitter data into our model. We used the

number of retweets of the top influencer from either campaign (based on degree centrality)

and also the harmonic centrality for the most influential nodes in the Twitter dataset. The

introduction of centrality scores seemed to drastically improve our model predictions, and

also the adjusted R2 of the model. The modified model is given by:

log yt
1 − yt

= β0 + β1x̄
(1)
t,h,l + β3x̄

(2)
t,h,l + β4

x̄
(2)
t,h,l

x̄
(1)
t,h,l

+ β5ht + β6r
(1)
t + β7r

(2)
t + ϵt. (4.3.2)
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Here, yt, x̄(k)t,h,l and ϵt are as in (4.3.1), and the other quantities are defined as follows:

• ht ∶ Harmonic centrality score of the most influential user in the network at time t

(for example, for the 2018 US election, it was @realDonaldTrump);

• r
(k)
t ∶ Retweet Proportion of the most influential user from Party k at time t, k = 1,2

( for example, for the 2018 US election, @realDonaldTrump for Republicans and

@krassenstein for Democrats ) .

The aim of the second model is to improve upon the first with the use of additional net-

work features. To provide some insight, we now discuss consideration and motivation be-

hind the specific choices of features made in formulating model (4.3.2). Since the edges

in the network based on the Twitter data are formed by retweets and mentions, it read-

ily gives us an overview of the election campaign activities of the supporters of the two

parties. It was observed that the top “influencers” from the two parties formed a clique

around them, the size of which dynamically increased over time. The proportion at which

(the size of) a clique around an influencer from Party 1 increases with respect to that of an

influencer from Party 2 would give an indication to the public sentiment during the course

of the campaign. In this project, we considered a scaled degree centrality score (based only

on 1-step retweets) of the most influential user from either campaigns. Additionally, we

also took the Harmonic Centrality Score of the most retweeted “influencer” of the entire

dataset, which is expected to capture effectiveness of the lead influencer in influencing the

entire electorate (including the undecided voters). The time series using these network

features, added to the earlier hashtag features, are fitted against the time series of opin-

ion polls, to create the THANOS (Twitter Hashtag and Network based Opinion Survey)

model, given in (4.3.2).
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Next, suppose that the prediction obtained from this model is defined as p̂THNh,l , where we

use the superscript THN (a shorthand for Twitted Hashtags and Network) to refer to the

THANOS model. As in the case of the THOS model, we can provide a prediction for the

probability of winning the election (by Party 1) using p̂THNh,l -s for different h, l, as

p̄THNh,l =
1

∣(h, l)∣∑
h,l

p̂THNh,l .

In the next two sections, we will apply the models to the Ireland and US elections data,

and consider their accuracy in well-separated and closely fought races. We also compare

the our results with existing predictions put forward by some well known election predic-

tion websites.

4.4 Ireland Vote on the 36th constitution referendum

4.4.1 Data Description

In this section, we combine opinion polls and Twitter data to predict the outcome of Ire-

land vote on the Abortion Rights amendment. Opinion polls conducted by different organi-

zations over the period of December 2017 through May 2018 are summarized in Figure 4.1.

The sample sizes ranged from 900 to 1200, with one opinion poll having no sample size

information. However, for all the opinion polls, the date and the percentage of ’yes’/’no’

votes were recorded. The Twitter data was collected for one and a half months, from April

13, 2018 to May 25, 2018, during the campaign for the 36th amendment (Source: [143])

and the vote was conducted on May 25, 2018. The dataset contained 2,279,396 tweet ids,
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which reduced to 1,933,397 tweets after passing through the Hydrator to obtain the ac-

tual tweets; It was not possible to collect tweets from users who have deleted their twitter

accounts after the collection of the tweet ids.

Figure 4.5: Analysis of Time Series of Tweets. The first plot indicates the time distribu-
tion of the tweets with a granulation level of 3 hours. The second plot is a periodogram of
the differenced time series, indicating a peak at a frequency of 8, and thereby exhibiting
the daily periodic pattern of the tweets.

The time series of the times of tweets, aggregated over a 3-hour window, is given in the

top panel of Figure 4.5. The plot shows a sharp peak around May 25, the day of the vote,

and a couple of small peaks during the campaign. One such peak is seen around May 13,

after Facebook and Google disclosed that pro-life agencies from outside Ireland were trying

to influence the campaign. Additionally, the time series of the tweets exhibited a periodic

pattern. A periodogram analysis (cf. the bottom panel of Figure 4.5) reveals a sharp peak

around a frequency of 0.125, giving the period to be 8. Since we have taken a granularity

of 3 hours, this suggests a periodic pattern every 24 hours.
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4.4.2 Prediction of Outcome

For prediction of the outcome of the May 25 vote. we extracted information only on the

hashtags of the Twitter data. Although it might be tempting to use the actual text of the

tweets, it is extremely difficult to conduct a meaningful sentiment analysis. This is pri-

marily due to the fact that even though we can take bigrams and trigrams (i.e., two- and

three-word patterns) from the texts, it still might not give a clear indication as to which

side the user is leaning towards. Also, as indicated earlier, the absence of a “good” senti-

ment dictionary covering different languages used in the tweets makes it quite difficult to

use the text information; The most frequently occurring language of the tweets was French,

and surprisingly, not English. As a result, it is difficult to use standard sentiment analysis

tools for this case. By suitably choosing the hashtag information alone, we could generate

good predictions. An advantage of this approach is that the proposed methodology can be

applied more widely even in situations where the tweets are not in English.

To construct relevant network features using the hashtags, we collected the most fre-

quently occurring hashtags for the two campaigns and extracted the number of times they

occurred over time in the twitter dataset. The set of hashtags used are given in Table 1 -

with the “yes” hashtags being associated with the “vote yes” campaign and “no” hashtags

with the other campaign. Note that the referendum was in effect a choice between repeal

(“yes” campaign) and continuation “no” campaign) of the provisions of the 8th Amend-

ment of the constitution of Ireland which explains the hashtags containing ‘8th’ in Table

1.

Figure 4.6 shows that the time series of the number of hashtags for the two campaigns

and also the proportion of tweets in support of the “yes” campaign in 3 hour intervals

over the campaign period. Although the number of hashtags for the “yes” campaign was
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Table 4.1: Hashtags Chosen

“Yes” Hashtags “No” Hashtags
repealthe8th savethe8th

togetherforyes lovebothvoteno
voteyes voteno
repeal loveboth

repealedthe8th votenotoabortion
yes prolife

together4yes no

overwhelmingly larger for the “yes” campaign than the “no” campaign, there was an indi-

cation of “mood swing” in the Twitter database. The right panel shows that there was a

sharp decrease in the proportion of “yes” hashtags for the initial time period, which then

increased again from around the end of April. This is also seen in the proportion of sup-

porters of the “yes” campaign in the opinion polls. Thus, it seems logical to build a model

using this feature, i.e., the proportion of hashtags for the “yes” campaign in the Twitter

database.

Figure 4.6: Hashtag Frequency of Two Parties
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In an exploratory data analysis, the THOS model was fitted for different lags, ranging

from past 3 hours to the entire history, i.e. from the day the data was available. The ad-

justed R2 can be seen to flatten out after about 15 days. Thus, it was enough to consider

the Twitter data for past 15 days, since we wouldn’t lose any information if we ignored

the data before that. In other words, to predict today’s vote’s outcome using Twitter, it

is enough to look at the data for the last 15 days. The fit summary gives a high positive

β3 which implies that the proportion of “yes” hashtags is an important feature. The pre-

dicted THOS proportion of the final vote using this model is 0.6725, in comparison with

the actual value of 0.664. The close prediction shows that it might actually be possible to

predict the outcome of the vote using the Twitter data.

4.5 US Election 2018

In this section, we will use our models to predict the outcomes of the US 2018 election

using Twitter Data and opinion polling. The election was conducted on November 6, 2018

for 35 of the 100 seats in the US Senates and all 435 seats in the US House of Represen-

tatives. As indicated in Section 2, we will primarily concentrate on the senate election

for our prediction purposes using the THOS and the THANOS models and compare their

performance with existing predictions.

The Twitter Data in this study consist of 1,387,688 tweets from 708,916 users, over the

time period of November 20,2017 to March 1,2019. For each senate election, we have

subsampled further to select only those tweets that are relevant to the voting campaigns

for that seat. In the Ireland example, the victory margin was substantial but that was

not always the case for the US election. Hence, we would need a better model for efficient

predictions.
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For space consideration, we will report the results of our predictive analysis for 4 states

in particular – Connecticut (Democrats 59.53%), Montana (Democrats 50.33%), Arizona

(Democrats 50%) and Florida (Republicans 50.06%). The last three of these appear in

the list of top 12 close races in the US 2018 election as shown in Figure 4.2, Section 2.

Connecticut was a one-sided contest, similar to the Ireland referendum.

4.5.1 Connecticut

The Connecticut election experienced a clearly separated race, with the incumbent Demo-

crat Senator Chris Murphy winning with 59.53% votes. This election outcome is similar to

the Ireland votes, and we applied Model 1 to see the performance. In this case, the model

can be written as:

log yt
1 − yt

= β0 + β1x̄
(d)
t,h,l + β3x̄

(r)
t,h,l + β4

x̄
(r)
t,h,l

x̄
(d)
t,h,l

+ ϵt (4.5.1)

where, as in (4.3.1), yt is the proportion of votes obtained by Democrats in the opinion

polls and x̄
(d)
t,h,l and x̄

(r)
t,h,l are respectively the proportions of Democrat and Republican

Hashtags averaged over the period of (t − h, t − l). The opinion polls used in this model

are form multiple sources, conducted prior to the election. The hashtags used in x̄
(r)
t,h,l and

x̄
(d)
t,h,l are the top 10 hashtags from Republican and Democrat campaigns, respectively. The

predictions obtained from the model obtained from different choice of h and l are given in

Table 4.2.

Here the prediction target is the relative percentage of Democrat votes over Republican

votes, i.e. vd

vd+vr
(vd(vr): Votes obtained by Democrats (Republics)). In this case, the true

value was 0.6002. As we can see the predictions for all choices of h and l are pretty close

to the actual value. The THOS model forecast (i.e., the average of the entries in the ta-

ble) in this case is 0.5928, with relative error ( defined as []prediction - true]/true) as
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Table 4.2: p̂TH Forecast for Connecticut Senate in US 2018 Midterm Election for different
choices of h and l

l = 1 l = 2 l = 5 l = 10 l = 20
h = 5 0.5953305 0.5945630 - - -
h = 10 0.5954857 0.5957060 0.5980478 - -
h = 15 0.6059773 0.6077476 0.6063503 0.5646253 -
h = 20 0.6126172 0.6095569 0.5724295 0.5376829 -
h = 50 0.6133662 0.5975079 0.5889431 0.5826463 0.5912204

Table 4.3: p̂TH Forecast for Montana Senate in US 2018 Midterm Election for different
choices of h and l

l = 1 l = 2 l = 5 l = 10 l = 20
h = 5 0.5495463 0.5473994 - - -
h = 10 0.5318327 0.5268676 0.4984408 - -
h = 15 0.5219245 0.5148890 0.4898930 0.4736951 -
h = 20 0.5085644 0.4990497 0.4594693 0.4555957 -
h = 50 0.4927631 0.4970696 0.510152 0.5011334 0.5128071

1.23%. FiveThirtyEight.com, the popular website for predictions, gave a prediction of

0.609, which is comparable to our Model 1 predictions.

4.5.2 Montana

In Montana, incumbent Democrat Senator Jon Tester ran against Republican candidate

Matt Rosendale, keeping the seat with 50.33% votes compared to 46.78% for Rosendale.

The prediction outcomes for Model 1 in this case are given in Table 4.3. As we can see,

for many choices of h and l, we obtain correct predictions but there are some cases where

the individual predictions are wrong. The THOS forecast in this case is 0.5051, with a

relative error of 2.55%, the true value being 0.5183. Next, we test the performance of our

second model, using network structure of the Twitter data, to improve the prediction.
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Table 4.4: p̂THN Forecast for Montana Senate in US 2018 Midterm Election for different
choices of h and l

l = 1 l = 2 l = 5 l = 10 l = 20
h = 5 0.5222159 0.5227301 - - -
h = 10 0.5190015 0.5172068 0.5097920 - -
h = 15 0.5201558 0.5196510 0.5018776 0.5261745 -
h = 20 0.5195608 0.5191532 0.5019673 0.4899208 -
h = 50 0.4950174 0.5031124 0.5090309 0.4859780 0.5123795

Table 4.5: p̂TH Forecast for Arizona Senate in US 2018 Midterm Election for different
choices of h and l

l = 1 l = 2 l = 5 l = 10 l = 20
h = 5 0.4943676 0.4932947 - - -
h = 10 0.4997875 0.4997739 0.5043522 - -
h = 15 0.4962760 0.4939905 0.4847742 0.4615345 -
h = 20 0.4800426 0.4708316 0.4360083 0.4455570 -
h = 50 0.4962980 0.4934741 0.4974655 0.5107796 0.5011974

Model 2 predictions are given in Table 4.4 for different choices of h and l. The averaged

THANOS forecast in this case turns out to be 0.5118 with a relative error of 1.25%. In

comparison, the prediction given by FiveThirtyEight.com was 0.5246. Also, in the second

case, almost all choices of h and l predicts Democrats to be the winner in Montana, an

improvement from our first model. Hence, incorporation of network features has led to an

improvement of the forecast.

4.5.3 Arizona

In Arizona, incumbent republic senator Jeff Flake did not run for re-election. The Demo-

cratic candidate was Kyrsten Sinema, while the Republic candidate was Martha McSally.

It was a close fought election, with Sinema winning with 50% vote, compared to McSally’s

47.61%. The predictions from Model 1 and Model 2 are given given in Table 4.5 and Table

4.6, respectively.
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Table 4.6: p̂THN Forecast for Arizona Senate in US 2018 Midterm Election for different
choices of h and l

l = 1 l = 2 l = 5 l = 10 l = 20
h = 5 0.5048349 0.5112638 - - -
h = 10 0.5116958 0.5131329 0.5092351 - -
h = 15 0.5080966 0.5109581 0.5111811 0.5246686 -
h = 20 0.5073115 0.5055461 0.5021870 0.5474827 -
h = 50 0.5033984 0.5035030 0.5150762 0.5121114 0.5071346

As we can see, Model (4.3.1) is not sensitive enough in this case, giving wrong predic-

tions for many values of h and l. The averaged THOS forecast here is 0.4867 (true value:

0.5122), with a relative error of 4.98%. However, Model 2 gives a much better predic-

tion, with p̄THNh,l being 0.5116, with a relative error of 0.117%. The FiveThirtyEight.com

prediction in this case was 0.5087. Hence, in this case, Model 2 is performing decidedly

better than Model 1. In fact, the THANOS forecast performs better than existing election

prediction algorithms as shown in Figure 4.7.

4.5.4 Florida

The Florida election was the closest election in the US 2018 election, with incumbent

Democratic Senator Bill Nelson (49.33% votes) narrowly defeated by Republican Candi-

date Rick Scott (50.06% votes). Both our models gave very close predictions to the actual

outcome (0.4994). The value of p̄THh,l for Model 1 was 0.5035 (relative error: 0.821%),

while that for Model 2 was 0.5025 (relative error 0.621%). Since every prediction has

some variability associated with it, it is sensible to mark a contest Neutral if the predicted

value is so close to 0.5. FiveThirtyEight.com gave a close wrong prediction, with the pre-

diction value being 0.516 (relative error: 3.32%). Hence, our prediction method is in fact

out-preforming in this particular scenario.

107



Figure 4.7: Comparison of the result of our model with other existing prediction platforms

Figure 4.7 provides a graphical illustration comparing the results of the two models with

those of existing platforms, including FiveThirtyEight.com. It is evident that the THANOS

forecast provides closer approximation of the final outcome, compared to existing plat-

forms, including the FiveThirtyEight.com and PredictIt predictions.

4.5.5 Discussion

As we saw in the earlier section, the THOS and THANOS model both performed well

in the Connecticut election, where the difference in the victory margin was quite signifi-

cant. However, as the victory margin decreases, the advantage of including the network

structure in the model becomes apparent, with the THANOS model performing signifi-

cantly better than the THOS in the Arizona and Montana elections. Also both the models
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seem to perform better than existing poll based election prediction methods (cf. Figure

4.7), indicating that the addition of social media data along with polling data can lead to

remarkably improved predictions.

4.6 Concluding Remarks

In this chapter, we have proposed two methods of forecasting elections, combining Twitter

data and opinion polls conducted during the campaigns. The basic idea is that social

media data can be used efficiently to improve upon traditional opinion polls, and can

provide an accurate forecast of election results. The simple THOS forecast, where we

only use the hashtag frequency of the Twitter data, proved to be effective for elections

where the victory margin was wide (viz., Ireland vote, Connecticut Election). However,

for close races with small victory margins, the THOS forecast seemed inadequate (e.g.

Arizona). In this scenario, we proposed the THANOS forecast, which also incorporates

network features of the Twitter dataset, in particular the centrality of the top influential

persons. This second model proved to be very efficient in predicting elections, even when

the victory margins were very small. For example, in Arizona election, the victory margin

was as low as 2.4%, which the second model predicted with a relative error of only 0.117%,

a prediction that proved to be even better than the widely acclaimed FiveThirtyEight.com

prediction.

A key contribution of our predictive modeling approach is to identify network features

that are critical for high accuracy of predictions using social media data. In particular, the

network centrality features used in our analysis indicate that the users who occupy central

or pivotal positions in a campaign, have significant influence and provide important clues

to the final outcome of an election.
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One potential concern with the use of social media data for forecasting purposes is whether

the social media users provide a representative sample of the voting community. [142] dis-

cusses the possibility of an inherent bias among the Twitter users towards the Democratic

ideology. While the issue of presence or absence of such bias among Twitter users needs

further investigation, by combining Twitter data with opinion polls, our prediction ap-

proach seems to be robust against such perceived bias and is able to provide accurate

predictions of the election results that are comparable to the best available competing

methods based on alternative data sources including site-specific historical election data.

There is significant scope of further research in this area. For example, finding an opti-

mum choice of the vector h and l is of theoretical interest. One can also consider adding

other features of the Twitter dataset that might improve the predictive power of the

model. Some such potential choices are sentiment analysis, other centrality measures,

local network features, etc. To summarize the contribution at this point, we have devised a

methodology to predict election outcomes by coupling opinion polls with social media data

which proves to be quite accurate in the real data applications considered in this work.
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Chapter 5

Bot Detection in Twitter

5.1 Introduction

The rise of social media has been one of the most critical events in this century. Social

media has given the common people a platform to share their views with the public. Infor-

mation is now readily available to every corner of the world. Not long after its inception,

social media started to prove influential in business, politics, society, and so on. Political

campaigns nowadays all over the world are heavily dependent on social media. For ex-

ample, the US presidential campaign of Barrack Obama extensively used different social

media platforms, like Twitter, Facebook, Myspace, etc. Inorganic accounts, also known as

bots, are an integral aspect of social media. Many companies and organizations use bots

to enable smooth functioning and better customer services. However, inorganic accounts

can also have negative consequences. They can be used to spread fake rumors or to pub-

licize malicious propaganda. Undisclosed bots are also a security threat to organizations,
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which can cause severe monetary and publicity losses. In a social network, inorganic ac-

counts controlled by a group can create and manipulate public opinions and can play a

prominent role in significant events, like elections or military conflicts. According to recent

findings, about 19% of Twitter traffic is created by bots. Bots can significantly magnify

some topics while downplaying other voices and influencing people to a considerable ex-

tent. Inorganic accounts often rely on the norm of reciprocity. Usually, these bots gain a

significant amount of followers through the follow-refollow policy and then start produc-

ing propaganda that real users then start to retweet, relying on the source to be accurate

due to the high number of followers. Often, there also exist other inorganic accounts that

start the retweeting process, and when a post has been retweeted or shared many times,

social media platforms tend to display them on the timeline of real users, who then start

to share or retweet them, resulting in exponential growth of the reach of the original tweet.

Bots that produce misinformation, or try to influence people’s political ideology, can have

harmful impacts on society. In this chapter, we will discuss two main bot detection meth-

ods. The first section is on static time bot detection, where we will use the tweet history

of users and apply machine learning algorithms on features extracted from them to classify

them as organic or inorganic accounts. The second section develops a dynamic classifica-

tion algorithm, where we will rely on a tweet-based classification to obtain a bot score of

users, which will give us an indication of the bot behavior of every user over time. Finally,

we will briefly scrutinize the network structures developed by inorganic accounts compared

to real-life networks.

Inorganic accounts or bots in social media has been extensively studied ([47], [122]). There

have been multiple attempts in the literature to identify inorganic social media accounts

to stop malicious propaganda campaigns as soon as possible. The BotOrNot [39] soft-

ware was made public in 2014 and uses several features from a Twitter user’s tweet history
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to classify them as bots or non-bots. [115] used Random Forest Classifier on thousands

of extracted features, [87] proposed RTBust in order to use the temporal distribution

of retweets for unsupervised bot classification, [37] introduced the concept of social fin-

gerprinting for bot detection techniques. However, bot detection remains an unsolved

problem [79], with a plethora of research still going on to perfect social bot detection tech-

niques.

5.2 Data Description

The data is obtained from the Bot Repository at Botometer [36] The repository provides a

list of identified organic and inorganic users, the tweet history of which users were scraped

from Twitter through R. The dataset used in the analysis contains the tweet history of 470

verified organic users and 373 verified inorganic users. The average number of tweets by

verified organic users was 3121.47, while that of inorganic users was 2598.21.

Figure 5.1: Time Series of Tweet History of Organic and Inorganic Users
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Figure 5.1 gives the time series of tweet history of selected organic and inorganic users,

using a granularity of three hours. The above sample demonstrates that the temporal

activity of inorganic users significantly differs from that of organic users. One noticeable

difference is that the inorganic users tend to be active uniformly for some fixed periods in

the day, while the activity of organic users is relatively random. Hence, taking temporal

features into our classification algorithm is essential. Following time-series features were

included in the analysis:

• Periodicity of the Time series of tweet activity. A fundamental characteristic of time

series is how frequently the observations are spaced in time, which is demonstrated

by the periodicity property. For example, in this particular case, a periodicity of 8

would indicate a period of 24 hours, i.e., one day. As we can see from Figure 5.2, for

most organic users, the periodicity was 8 or 4, indicating a daily or 12-hour recurring

activity. However, for inorganic users, the periodicity was relatively low, indicating

that the activity pattern drastically differed from the inorganic users.

• We also fitted the data to an ARIMA (Autoregressive Integrated Moving Average)

process and used the fit features in our classification model. In particular, the fea-

tures taken from the ARIMA fit were: log-likelihood, sum square of coefficients, error

variance, and fit length.

• Finally, we also included features to capture the shape of the periodogram. Periodic-

ity only identifies the peak of the periodogram. However, we might also be interested

in the shape of the periodogram, and hence we used local maxima to incorporate

those properties.
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Figure 5.2: Periodicity of Tweet Activity of Organic and Inorganic accounts

Apart from the temporal features mentioned above, we also included semantic features

from the tweet history. On inspection of the tweets, we found that apart from the signifi-

cant difference in the time series, there also appears to be a stark contrast in words used

by the organic and inorganic users. Inorganic users appear to use similar words repeti-

tively, a trait that was expectantly absent in the tweeting pattern of organic users. Follow-

ing are the semantic features used in the classification algorithm:

• Average number of words per tweet and it’s variance

• Number of unique words used (see Figure 5.3)

• Relative frequency of most used words

• Relative Hashtag Frequency

• Sentiment Score (the sentiment score is calculated using the three dictionaries avail-

able at R, namely, afinn, bing and nrc).
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Figure 5.3: Number of Unique Words used by Organic and Inorganic Accounts

5.3 Methodology

The features described above contain 19 features, a mixture of temporal and semantic

features. However, one or more of these features might be linearly related, resulting in

multicollinearity in the data, which is a nuisance in the classification problem. Hence, our

classification algorithm uses VIF (Variance Inflation Factor) to select 11 of these features.

We have used three main classification algorithms: k-means clustering, SVM, and logistic

regression-based clustering. K-means clustering is an unsupervised classification algorithm

that aims to cluster a given data into partitions of a given number of clusters based on

the features provided. The SVM (or Support Vector Machine) is a supervised algorithm

that creates a classifier based on a given training data, which can then be applied to get

the classification in the test dataset. Finally, the logistic regression-based algorithm in-

volves fitting a logistic regression model to our data, the dependent variable being the

labels of the training dataset and the independent variables being the extracted features.
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The prediction of the test dataset would then give a score between 0 and 1, which will be

clustered into two or more partitions. The output of the k-means clustering and SVM are

given in Figure 5.4.

Figure 5.4: Clustering Accuracy

We can see that both k-means and SVM provided moderately well classification accuracy.

SVM performs marginally better since it is a supervised machine learning algorithm com-

pared to k-means clustering. The Logistic regression-based clustering also gave around

97% accuracy.

Now that we have achieved significant classification accuracy, it might be interesting to

find out the importance of the features provided to the clustering algorithm. There are

multiple possible ways to measure the importance of the features. Here, we have defined

an Accuracy Score (AS) for the features:
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AS = 100 × Accuracy −Accuracyi

∑i (Accuracy −Accuracyi)
(5.3.1)

where Accuracyi is the accuracy of the classification algorithm when the ith feature is

removed.

Figure 5.5: Accuracy Score of Features

Figure 5.5 gives the accuracy score of the features under the two classification algorithms.

As we can see, for k-means, the relative frequency of words and word count variance are
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the most significant features, while for SVM, the Hashtag and word count are the most

important.

We can also assess the importance of the features by other machine learning techniques,

for example, Bagging and Boosting or LASSO. Figure 5.6 gives the output for these two

methods.

Figure 5.6: LASSO and Bagging And Boosting

5.4 Dynamic Time Bot Detection

The bot detection algorithm discussed above uses a static time algorithm, meaning that

we take a user’s tweet history at a particular time point and use that entire history to clas-

sify them as an organic or inorganic account. However, it is of significant importance to

identify these inorganic accounts as soon as possible in order to deactivate the accounts

and stop them from propagating malicious propaganda. Additionally, it is often noticed

that the same account might not always behave like an inorganic account. In other words,
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“bot behavior” might be observed in an account for a specific period of time, so it is im-

portant to identify that account in that window and deactivate it. In order to do that, we

have developed a dynamic algorithm that uses tweet-specific information of a group of

users and assigns them a “bot” score, and we update them over time. The algorithm is

given in Algorithm 1.

The algorithm provides a time series of “bot scores” for every user. The higher the score,

the higher the probability of an account being inorganic or paid. As we saw earlier, inor-

ganic accounts have a different way of tweeting, like using similar words a lot, using the

same tweets over and over again, etc. Using these distinctive features, we hope to identify

the inorganic accounts as soon as possible. We also update the dictionary every 30 days.

All users with a score higher than 0.7 are classified as bots. All users with a score lower

than 0.3 are classified as verified accounts, and the dictionary is updated accordingly.

We also used two scores: Score 1: y = p−p̄
√
ntest

and Score 2: y = p−0.5
√
ntest

. Here p̄ is the average

score of all users in the test set, and ntest is the number of users in the test set. It is of im-

portance that the two scores give different measures. For instance, the first score measures

the deviation of the score of a tweet from the sample mean, i.e., how likely is the tweet

coming from a bot based on the sample we have in hand, while the second score measures

the deviation from a pre-specified score of 0.5. Figure 5.7 and 5.8 gives the time series

of bot scores of three known bots and three verified users for the two scores. As we can

see, the score gradually decreases to zero for verified users, while for the bots, the score

increases gradually over time. It is also noticeable that for Score 2, the pattern is steeper

compared to score 1. It would be important to analyze the effect of different scores on this

algorithm.
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Algorithm 1: Dynamic Time Bot Detection
Data: Tweet Activity of several users, inorganic or organic over time
Result: A time series of “Bot Score” of a user that tracks the “botness” of the user

over time
score← 0.5;
N ← Total Remaining Time Period;
Initialization:

• Start with a base history of tweets, already labeled as 0 or 1. The base history is the
tweets of known organic and inorganic users, the users having tweeted at least 20
tweets.

• Obtain following features:

– Length of Tweet
– Number of Words Used
– Relative Frequency of most used Word.
– Number of hashtags

• Fit a logistic regression model using the features, the dependent variable being the
binary class.

while N ≠ 0 do

• Take the first 5 days, and provide a prediction (say, botp) of ”BOT” score for all the
tweets using features obtained in this period. Set N = N − 5.

• Higher this prediction, higher would be the chance of the tweet coming from an
inorganic user.

• Create a scaled variable, say scorep for every tweet (e.g. botp− ¯botp
√
n

, where the average
is over all predictions obtained in that 5-day period, and n is the total number of
tweets considered in that period).

• Take the mean of the above score of all tweets by an user to be the score of an user
in the time period.

• Add the score for that user to that of previous 5 days (“score” defined in the
beginning).

end
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Figure 5.7: Bot Score Of Six Users for Score 1

Figure 5.8: Bot Score Of Six Users for Score 2
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5.5 Conclusion

We have discussed two main types of bot detection, static and dynamic. While static bot

detection is more reliable since it uses many tweets from every user, it is time-consuming

and needs at least some tweet activity from the user before it can identify them as bots or

non-bots. On the other hand, the dynamic tweet classification creates a time series of bot

scores, which will indicate the bot behavior of a user from their very first tweet. We can

then devise a threshold, above or below which we can classify the user as a bot or non-bot.

Future works will include devising a score indicating how many inorganic accounts have

infiltrated a network. Also another approach would be to use graph partitioning to identify

different sources of these inorganic account activities so that the social media platform can

take corresponding actions. We are also working on a project to analyze to what extent

these inorganic bots in social media influence political campaigns worldwide.
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Chapter 6

Rate of convergence and optimal

choice of m in the m out of n

Bootstrap for sample extremes

6.1 Introduction

Theory of Extreme Value Distributions is quite popular in many real-life applications,

where the events of interest involve extremes and/or rare events. Some such applications

include financial risk modeling ([110]), weather anomalies like earthquake problems ([72],

[109]), Environmental Sciences ([113]) and so on. These widespread applications gener-

ate complicated analytical questions on unknown parameters of the underlying random

process. The Bootstrap and its variants provide a computer-intensive simple mechanism

to answer these questions. However, it is well-known that Efron’s ([45]) Bootstrap with a

resample size m that is equal to the sample size n fails drastically for the sample extremes
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(cf. [13], [7]). A remedy is given by the m out of n Bootstrap ([14], [50]). The choice of

m is of significant interest in the m out n Bootstrap as it determines the accuracy of the

resulting Bootstrap approximation. Although several authors have studied the problem of

choosing the resample size m and put forward various methods for its choice ([14], [15]), a

definitive answer to the issue of optimal choice of m has been elusive. In this chapter, we

first derive rates of convergence results

This chapter proposes an optimal block size m as an order of the sample size n, in univari-

ate i.i.d. framework, in order to minimize the convergence rate of the Bootstrap distribu-

tion to the actual distribution of the extremes. Additionally, we will give a small extension

of our work in univariate framework to multivariate set-up. In summary, this chapter pro-

vides the convergence rate of non-parametric Bootstrap, proposes an optimal Bootstrap

sample size, and gives a small extension of the work to multivariate framework. Section

6.2 is devoted to literature review in the field under consideration. The main results of this

chapter has been segregated into two different sections. Section 6.3 deals with the m out

of n non-parametric Bootstrap, it’s rate of convergence under known (Section 6.3.1) and

unknown (Section 6.3.2) normalizing constants, and a proposal for an optimal block size

(Section 6.3.3) as a function of the sample size n. In Section 6.4 will provide a compari-

son of the performance of m out of n Bootstrap with the traditional approach of fitting

by limit distribution. Section 6.6 gives the simulation results, and Section 6.9 contains

the proof of the main theorem of the chapter. Finally, Appendix 6.10 will contain further

discussions, and proofs of some results given in the chapter.
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6.2 Background

[55] first proposed that the extremes of univariate independent random variables can con-

verge to only three types of distributions, under suitable standardization. In particular,

suppose we have n independent and identically distributed random variables X1, . . . ,Xn

generated from some underlying distribution function F . Then there exists bn > 0 and

an ∈ R, such that the limiting distribution of P (b−1
n (Xn∶n − an) ≤ x) = F n(an + bnx) is one of

the three types: Type I or Gumbel (Λ(x) = exp(−e−x), x ∈ R), Type II or Fréchet (Φα(x) =

exp(−x−α)I(x > 0) for some α > 0) and Type III or Weibull (Ψα(x) = exp(−(−x)α)I(x ≤ 0)

for some α > 0). Here Xi∶n denotes the ith order statistics from a sample of size n. The

three types of extreme valued distribution can also be written in a compact form, Gγ(x) =

exp{− (1 + γx)−
1
γ } if γ ≠ 0, and exp(−exp(−x)) if γ = 0. The γ = 0 case provides the Type I

or Gumbel limit law distribution, while γ > 0 and γ < 0 indicates the Frechet and Weibull

limit laws respectively. It is to be noted that the α in Φα(x) and Ψα(x) are related to γ

through the relation γ = 1
α and γ = − 1

α respectively. Mathematically, we can write Gne-

denko’s theorem as:

P (b−1
n (Xn∶n − an) ≤ x) = F

n(an + bnx)→ Gγ(x) (6.2.1)

This central limit theorem like result helps in attaining asymptotic properties of statistical

methodologies concerned with extremes of random variables. Some such examples of appli-

cations include Financial Risk Modeling ([54]), Public Health ([129]), Reliability Theory

([58]), Environmental Data Analysis ([131]), etc. There are well established works on de-

termining the normalizing constants and the limit law of a distribution function. Suppose

ω(F ) = sup{x ∶ F (x) < 1}. The following guidelines for determining the limit law of the

maximum of random variables is by [52].
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• F ∈D(Λ) iff the following happens:

Suppose, for some finite a,

∫

ω(F )

a
(1 − F (y))dy < +∞

For α(F ) < t < ω(F ), define:

R(t) = (1 − F (t))−1
∫

ω(F )

t
(1 − F (y))dy

Then, we must have:

lim
t→∞

1 − F (t + xR(t))
1 − F (t) = e−x (6.2.2)

• F ∈ D(Φα) iff ω(F ) = +∞ and there exists constant γ > 0 such that, for all x > 0, as

t→ +∞,

lim
t→∞

1 − F (tx)
1 − F (t) = x

−γ (6.2.3)

• F ∈ D(Ψα) iff ω(F ) < ∞ and there exists constant γ > 0 such that, for all x > 0, as

t→ +∞,

lim
t→∞

1 − F ∗(tx)
1 − F ∗(t) = x

−γ (6.2.4)

where F ∗(x) = F (ω(F ) − 1
x)

For example, the Normal distribution belongs to D(Λ), the Cauchy distribution belongs

to D(Φα) and the Uniform distribution belongs to D(Ψα). The normalizing constants an

and bn depend on the underlying distribution of the random variables, and are unique to

an extent of perturbation . In particular, if the the maximum of random variables belong

in the domain of attraction of Gγ(x) for some choice of normalizing constants an and bn,
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then we can also choose a′n and b′n such that:

lim
n→∞

a′n − an
bn

= 0 and lim
n→∞

b′n
bn
= 1 (6.2.5)

[55] proposed a choice for the normalizing constants for three types of distributions:

• Type I: an = γn and bn = F −1(1 − 1
en) − γn.

• Type II: an = 0 and bn = γn.

• Type III: an = ω(F ) and bn = ω(F ) − γn.

where γn = F −1(1 − 1
n). Hence, if we know the underlying distribution, we can approxi-

mate the distribution of the standardized maximum of random variables generated from

the distribution, and can provide significant insights into the behaviour of the extremes

(known as Extreme Value Analysis). For example, if we consider the Air Quality Index

(AQI) of Mumbai, under known normalizing constants, we can provide the probability of

the maximum of the index over a period of time crossing a certain threshold. However,

in real life, these normalizing constants are unknown, and hence needs to be estimated

from the data. Multiple methods have been proposed, with some working better than oth-

ers in some scenario. [71] in his book discusses three such methods, regression estimate,

minimum variance unbiased estimate, and maximum likelihood estimates. [30] proposes

a simple estimate based on moments. However, all these methods is reliant on estima-

tion of γ, the tail index, when it is non-zero. [40] gives a detailed description of several

methods of obtaining an estimate for the tail index, under the second-order condition

lim
t→∞

logU(tx)−logU(tx)−γ logx
b(t) = xρ−1

ρ , where ρ ≤ 0, U = ( 1
1−F )

−1, and γ the tail-index. The popu-

lar methods for estimating γ include the Hill estimator ([62], γ > 0), Pickland Estimator

([100], γ ∈ R), Maximum Likelihood Estimator (γ > −1
2), Moment Estimator (γ ∈ R), and
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so on. However, all these estimator are
√
k(n) consistent, i.e.

√
k(n)(γ̂ − γ) follows a nor-

mal distribution, where k(n) is such that k(n) → ∞ and k(n)
n → 0. An optimal choice of

k(n), as given in [40], is n−
2ρ

1−2ρ , with suitable constants, and hence the convergence rate

is always slower than
√

1
n . When γ = 0, i.e. for Type III limiting law distributions, the

moment estimators of an and bn are
√
n consistent. Hence, in all three cases, estimation of

the normalizing constants would always have a convergence rate slower than
√

1
n .

In order to approximate the distribution of maximum of random variables, one would

also require the rate of convergence of the standardized extremes to the corresponding

limiting law. [41] determined the rate of convergence of the maximum of random variables

from distribution functions satisfying second order Von-Mises condition, and second order

regular variation condition.

Definition 6.2.1. A function f ∶ (0,∞) → R satisfies a second order Von-Mises condition

with first order parameter γ ∈ R and second order parameter ρ ≤ 0, in other words, f ∈

2-von Mises(γ, ρ) if f is twice differentiable, f ′ is eventually positive and the function

A(t) = tf ′′(t)
f ′(t) − γ + 1 has constant sign near infinity and satisfies lim

t→∞
A(t) = 0 and ∣A∣ ∈ RVρ.

Definition 6.2.2. Second-Order Regular Variation Condition:

• f ′(tx)/f ′(t)−xγ−1

A(t) → xγ−1(x
ρ−1
ρ ) =K

′
γ(x)

• If γ ≥ 0, [f(tx)−f(t)]/tf
′(t)−(xγ−1)/γ

A(t) → ∫
x

1 u
γ−1(u

ρ−1
ρ )du =Kγ(x)

Suppose

f = (
1

− log(F ))
←, h =

1
− logF , S = − log(− logF ) (6.2.6)

Consider the Uniform Distance (dn) and the Total Variance Distance Dn, defined by dn =

sup
x∈R
∣F n(anx + bn) −Gγ(x)∣ and Dn = sup

A∈B(R)
∣P (a−1

n (Mn − bn) ∈ A) −G(A)∣ =
1
2∫

∞

∞
∣ ddxF

n(anx +
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bn) −G′(x)∣dx. If f satisfies second order Von-Mises Condition, and second order regular

variation conditions, [41] showed that A(t) = ( 1
S′ )
′(f(t)) − γ and both uniform and total

variation metric converges to 0 at a rate of O(A(n)). Hence, computation of A(n) is of

significant interest. It can be shown that for absolutely continuous distributions,

A(t) =
c(t)2 (1 + f ′(t)) − c′′(t)f(t)2

(c(t) + c′(t)f(t))
2

e−
1
t

t (1 − e− 1
t )
− (1 + γ) + 1

t
(6.2.7)

where,

1 − F (t) = c(t)exp(−∫
t

t0

ds

f(s)
) (6.2.8)

Any distribution function in the domain of convergence of Gγ for any γ ∈ R must be of the

form given in equation 6.2.8 ([42]), with:

• lim
t→∞

f(t)
t = γ for γ > 0

• lim
t→x∗

f(t)
(x∗−t) = −γ for γ < 0

• f ′(t)→ 0 and f(t)→ 0 if x∗ <∞ for γ = 0.

One possible choice of the function f(t) is 1−F (t)
F ′(t) , or the Mill’s Ratio. The rate of decay

of A(n) is the same as the rate at which 1−F
F ′ and it’s derivative converges. This rate can

be as fast as 1
n (eg. Exponential, Pareto, etc.) or as slow as 1

logn (Normal, Skew Normal,

etc). Hence, estimating the extreme distribution using the limit law involves complicated

procedures, and the convergence rate is always slower than 1√
n
.

Another possible alternative method of estimating the distribution of the extreme is using

Bootstrap, which uses resampling procedure to provide estimates of higher order statistics.

[45] in 1979 introduced the Bootstrap method to estimate the sampling distribution of

statistics. Suppose, X1, . . . .Xn be iid random variables with cdf F , and χn = (X1, . . . ,Xn).
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Suppose we wish to estimate the sampling distribution of a specified random variable

R(χn, F ). Then, we first need to construct empirical distribution function from the avail-

able data. With the empirical distribution function Fn fixed, we have to draw a random

sample of size m = n with replacement from Fn, i.e. X∗i ∼ Fn, also known as the Bootstrap

sample, χ∗n = (X1, . . . ,Xn). The final step is to approximate the sampling distribution of

R(χn, F ) by the conditional distribution of R(χ∗n, Fn). [45] considered the Bootstrap sam-

ple size to be the same as the original sample size. [13] first proposed the possibility of tak-

ing m out of n samples, i.e choosing m Bootstrap samples from the empirical distribution

Fn. [13] showed that the Efron’s Bootstrap is inconsistent for maximum of i.i.d. uniform

random variables. [6] showed that the Bootstrap distribution of the maximum converges

in distribution to a random distribution, the form of which was given by [50]. However,

[50] showed that m out of n Bootstrap is consistent for extreme valued distribution, when

m = o(n), i.e. m
n → 0.

Given Xn = (X1,X2, . . .Xn), let X∗1 ,X∗2 , . . . ,X∗m be conditionally i.i.d. random variables

with the distribution:

P (X∗1 =Xj ∣Xn) =
1
n
, j = 1,2, . . . , n

i.e. a random sample generated from the empirical distribution of X. Now, let us define:

Gn(x) = P{b
−1
n (Xn∶n − an) ≤ x} (6.2.9)

Hn,m(x,ω) = P{b
−1
m (X

∗
m∶m − am) ≤ x∣Xn} (6.2.10)

Hn,m(x,ω) is the Bootstrap distribution of b−1
n (Xn∶n − an), n and m are called the sample

size and resample size respectively. The convergence of F n(an + bnx) to Gγ(x) is equivalent
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to n{1 − F (an + bnx)}→ c(x) ≡ − logGγ(x) for each x ∈ CG . Suppose

Tn,m(A,ω) =#{j ∶ 1 ≤ j ≤ n, b−1
m (Xj − am) ∈ A} (6.2.11)

It is easy to see that: Tn,m((x,∞), ω) = n{1 − Fn(am + bmx)}. [50] proved that if

P (b−1
n (Xn∶n − an) ≤ x)→ G(x)

for each x ∈ CG, and G is non-degenerate, then

sup
x∈Rd

∣Hn,m(x, ⋅) −G(x)∣
p
Ð→ 0 (6.2.12)

if m = o(n). In addition, if
∞

∑
n=1
λ

n
m <∞ for each λ ∈ (0,1), the convergence is with probabil-

ity 1.

Even though Bootstrap provides a simple method of approximating the extreme of random

variables, the convergence rate depends significantly on the choice of the Bootstrap sample

size m. In this work, we will derive the convergence rate of m out of n Bootstrap distribu-

tion of a sample X1, . . . ,Xn, and propose an optimal choice of sample size. We will show

that the convergence rate is of the order n− 1
3 under optimal choice of m, which in some

cases are better than the actual convergence rate, even for known normalizing constants.

Under unknown normalizing constants, the convergence rate of the actual normalized ex-

tremes is always slower than
√

1
n , with bias often arising with wrong choice of estimation

method. These hindrances can be easily overcome by applying Bootstrap, which will al-

ways give a convergence rate of the order of n− 1
3 . A convergence rate in multivariate set-up

is also provided, under certain assumptions on the dependence structure. Simulation study

is conducted on three distributions belonging to one of each three types of extreme value
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distribution, i.e. Gumbel, Frechet and Weibull. The three distributions were chosen such

that the unknown parameters of the distribution are also embedded in the parameters of

the limiting extreme value distributions, after normalizing with suitable constants an and

bn. The three chosen distributions are:

• Type I (Gumbel): SN(α) (SN implies Skewed Normal).

• Type II (Frechet): Pareto(α).

• Type III (Weibull): Beta(1,β).

As shown in [41], to determine the rate of convergence for the extreme of these random

variables, it is enough to compute A(n), where A(t) = tf ′′(t)
f ′(t) − γ + 1. The A(n) for the three

distributions under discussions are as follows:

• SN(α) ∶ O( 1
logn)

• Pareto(α) ∶ O(n−1)

• Beta(1, β) ∶ O(n−1)

In the subsequent sections, we will analyze the rates of convergence for these distributions,

and compare the rates under different choices of Bootstrap sample size.

6.3 Non-Parametric Bootstrap

The practice of using m out of n Bootstrap is particularly popular in extreme valued ran-

dom variables, due to the inconsistency of Efron’s Bootstrap in these scenario. [50] showed

that non-parametric Bootstrap works for extremes of random variables when m = o(n).
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However, using such low Bootstrap sample size can have detrimental effect to the rate of

convergence. Hence, it is of particular importance to find how well the m out of n Boot-

strap performs, in other words the rate of convergence of non parametric Bootstrap in

extreme valued random variables. Another important question in this area would be de-

termining an optimal Bootstrap sample size, in order to minimize the rate of convergence,

which has been discussed in Section 6.3.3.

6.3.1 Known Normalizing Constants

One important aspect of limiting distribution of extreme valued random variables is the

choice of normalizing constants an and bn. Theorem 6.3.1 gives the convergence rate for

non-parametric Bootstrap for extreme valued random variables under known normalizing

constants.

Theorem 6.3.1. Suppose (6.2.1) holds. Then, for the non-parametric Bootstrap case, we

can write:

Fm
n (am + bmx) −H(x) = ζ1(x,n,m) + ζ2(x,n,m) + ζ3(x,n,m) (6.3.1)

where, ζ1(x,n,m) is O ( 1
m
), ζ2(x,n,m) is Op (

√
m
n
), and ζ3(x,m) is O (A(m)) under

second-order regular variation condition. If we are only concerned with the rate of con-

vergence to the true distribution, then we can only concentrate on ζ1 and ζ2, in which case

the rate of convergence would be Op (max ( 1
m ,
√

m
n
)). Additionally, Eζ2

2 = O (
m
n
).

The detailed proof of Theorem 6.3.1 can be found in Section 6.9. Here we will discuss an

overview of the proof and the potential implications. The expression Fm
n (am + bmx) −H(x)

can be broken down into 3 parts, as given below:
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Fm
n (am + bmx) −H(x) = Ξ(zm) +Ξ′(zm)(z∗m − zm) +RΞ

2 (zm)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ζ∗1 (x,m,n)

+ e−z
∗

m − e−zm

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ζ∗2 (x,m,n)

+ e−zm −H(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ζ3(x,m,n)

(6.3.2)

In the above equation, Ξ(zm) is given by e−z∗mRg
2(x) where, z∗m =m(1 − Fn(am + bmx)) and

Rg
2(x) is a remainder term of a Taylor series expansion (see proof for details). Calculations

reveal that the first term is of the order 1
m , while [41] has proved that the last term goes to

0 at a rate of A(m), as given in equation 6.2.7. Finally, the second part can be proven to

be of the order m
n (see Proof). In particular,

P (∣z∗m − zm∣ > t) ≤
mc(x)

nt2
(6.3.3)

which in turn gives ∣z∗m − zm∣ = Op(
√

m
n ). In the coefficient term, c(x) is the limit of mpm,

which according to Lemma 2.1, is − log(G(x)) where G(x) is the limiting distribution.

The coefficient term c(x) will be of particular importance in determining the optimal re-

sample size. It can also be further proved that E(ẑn − zn)2 is of the order O(mn ), i.e.

E(ẑn − zn)
2 = O(

m

n
) (6.3.4)

Hence, we also have a L2 convergence rate for non-parametric Bootstrap in extreme valued

random variables.

Thus, we have seen that while ζ∗1 (x,m,n) is of the order 1
m , ζ∗2 and ζ∗3 are of the order

Op(
√

m
n ) and A(m) respectively. In practice, only the rate of convergence of the Bootstrap

distribution to the true value is of real interest , i.e. the rate of convergence of Hn,m(x) to
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Gn(x) This rate of convergence can be given by Op (max ( 1
m ,
√

m
n
)), which would always

be slower than n−
1
3 , the upper bound being attained under the optimal choice of sample

size, as given in Section 6.3.3. Furthermore, since this rate of convergence does not require

any distributional properties, the rate of convergence would be same for all three limit

distributions, differing only in the coefficients.

Remark 6.3.1. Thus, we can see that for non-parametric case Fm
n (am + bmx) converges

to H(x) at a rate of max ( 1
m ,
√

m
n ,A(m)). Let’s consider the rates for Pareto(α) and

Beta(1, β) distribution. For both these cases, A(m) =m−1, and hence, max ( 1
m ,
√

m
n ,A(m))

becomes, max ( 1
m ,
√

m
n
). For the SN(α) case, the rate of convergence turns out to be

max (
√

m
n ,

1
logm). Again, if we consider convergence to F n(an + bnx) and not the limiting

distribution, then for all three distributions, the convergence rate would be max ( 1
m ,
√

m
n
).

6.3.2 Unknown Normalizing Constants

The previous section dealt with only known normalizing constants. However, in practice,

the normalizing constants are often unknown, and we might need to use estimates of the

normalizing constants. Suppose, ln = ⌊ nm⌋ and l′n = ⌊
n
em⌋. A possible estimate for the nor-

malizing constants for the subsamples, as given by [50] are:

• Type I: âm = F −1
n (1− 1

m) =X(n−ln) and b̂m = F −1
n (1− 1

em)−F
−1
n (1− 1

m) =X(n−l′n) −Xn−ln .

• Type II: b̂m = F −1
n (1 − 1

m) =X(n−ln).

• Type III: âm = ω(Fn) =X(n) and b̂m = ω(Fn) − F −1
n (1 − 1

m) =X(n) −X(n−ln).

[50] showed that the Bootstrap is consistent for choices of ân and b̂n such that b̂m

bm
→ 1 and

b−1
m (âm − am)→ 0. For the corresponding rate of convergence, it is enough to find the rate of
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convergences of b̂m

bm
and b−1

m (âm−am) to their corresponding limits. We will do this separately

for the three cases.

• Type III: In this case, we know:

– an = ω(F ), bn = ω(F ) − γn, where γn = F −1(1 − 1
n)

– âm = ω(Fn) and b̂m =X(n) −X(n−ln), where ln = ⌊ nm⌋.

[50] already showed that b̂m

bm
→ 1 and b−1

m (âm − am)→ 0. In the proof, it was shown that
ω(F )−γn

ω(F )−γm
→ 0, and X

(n−ln)−ω(F )

ω(F )−γn
→ −1, and since b̂m

bm
=

X
(n)−X(n−ln)

ω(F )−γm
=

X
(n)−ω(F )

ω(F )−γn
. ω(F )−γn

ω(F )−γm
−

X
(n−ln)−ω(F )

ω(F )−γn
, the first condition follows. Here, we will compute the convergence rate.

Building up on the proof by [50]:

P
⎛

⎝

RRRRRRRRRRR

X(n−ln) − ω(F )

ω(F ) − γn
− (−1)

RRRRRRRRRRR

> ϵ
⎞

⎠
= P (X(n−ln) > u

(1)
m (ϵ)) + P (X(n−ln) ≤ u

(2)
m (ϵ))

where u(1)m (ϵ) = ω(F ) − (1 − ϵ) (ω(F ) − γm) = am + bm(ϵ − 1), and u
(2)
m (ϵ) = ω(F ) − (1 +

ϵ) (ω(F ) − γm) = am + bm(−ϵ − 1). Suppose, Sn,m(x) =#{i∣1 ≤ i ≤ n,Xi ≤ x}. Then, we

can write:
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P (X(n−ln) > u
(1)
m (ϵ)) = P (Sn,m(u

(1)
m (ϵ)) > ln)

∼ P (
m

n

n

∑
i=1

I(Xi > u
(1)
m (ϵ)) > 1)

= P (m(1 − Fn(am + bm(ϵ − 1))) > 1)

= P (z∗m(ϵ − 1) > 1) , where z∗m(x) =m(1 − Fn(am + bmx))

= P (z∗m(ϵ − 1) − zm(ϵ − 1) > 1 − zm(ϵ − 1))

≤ P (∣z∗m(ϵ − 1) − zm(ϵ − 1)∣ > 1 − zm(ϵ − 1))

≤
E ∣z∗m − zm∣

2

(1 − zm)2

We already know, that zm(ϵ − 1) → c(ϵ − 1) = (1 − ϵ)α < 1. Hence, the denominator

is always positive, the rate of convergence being the same as of E(z∗m − zm)2 which is
m
n (See Proof). Similarly, we will obtain the same rate of convergence for P (X(n−ln) ≤

u
(2)
m (ϵ)). In that case, zm(−1 − ϵ)→ (1 + ϵ)α > 1.

Now, since F ∈D(Ψα), 1 − F (ω(F ) − t) = tαL(t) where L is a slowly varying function

at 0. Under this criterion, 1 − 1
n ∼ F (γn) ([50]). Hence:

m

n
∼

1 − F (γn)
1 − F (γm)

= (
ω(F ) − γn
ω(F ) − γm

)

α
L(ω(F ) − γn)

L(ω(F ) − γm)

⇒
ω(F ) − γn
ω(F ) − γm

= (
m

n
)

1
α

(
L(ω(F ) − γm)

L(ω(F ) − γn)
)

1
α

(6.3.5)
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Hence, we can state that the rate of convergence of ω(F )−γn

ω(F )−γm
to 0 is (mn )

1
α . Finally,

the rate of convergence of b̂m

bm
is max (mn , (

m
n
)

1
α). Hence, if α > 1, the rate would be

(m
n
)

1
α , while if it is a fraction, the rate would be simply m

n .

Next, we need the convergence rate of b−1
m (âm − am) =

X
(n)−ω(F )

ω(F )−γm
=

X
(n)−ω(F )

ω(F )−γn

ω(F )−γn

ω(F )−γm
.

The rate at which this converges to 0 is same as the rate at which ω(F )−γn

ω(F )−γm
goes to 0.

Hence, the final rate of convergence coming from unknown normalizing coefficients is

max (mn , (
m
n
)

1
α).

• Type II: In this case, we know:

– an = 0, bn = γn, where γn = F −1(1 − 1
n)

– âm = 0 and b̂m =X(n−ln), where ln = ⌊ nm⌋

We need to compute the convergence rate of X
(n−ln)

γm
to 1.

P
⎛

⎝

RRRRRRRRRRR

X(n−ln)

bm
− 1
RRRRRRRRRRR

> ϵ
⎞

⎠
= P (X(n−ln) > u

(1)
m (ϵ)) + P (X(n−ln) ≤ u

(2)
m (ϵ))

where u(1)m (ϵ) = γm(1 + ϵ) = am + bm(1 + ϵ), and u
(2)
m (ϵ) = γm(1 − ϵ) = am + bm(1 − ϵ).

Suppose, Sn,m(x) =#{i∣1 ≤ i ≤ n,Xi ≤ x}. Then, we can write:
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P (X(n−ln) > u
(1)
m (ϵ)) = P (Sn,m(u

(1)
m (ϵ)) > ln)

∼ P (
m

n

n

∑
i=1

I(Xi > u
(1)
m (ϵ)) > 1)

= P (m(1 − Fn(am + bm(1 + ϵ))) > 1)

= P (z∗m(1 + ϵ) > 1) , where z∗m(x) =m(1 − Fn(am + bmx))

= P (z∗m(1 + ϵ) − zm(1 + ϵ) > 1 − zm(1 + ϵ))

≤ P (∣z∗m(1 + ϵ) − zm(1 + ϵ)∣ > 1 − zm(1 + ϵ))

≤
E ∣z∗m − zm∣

2

(1 − zm)2

We already know, that zm(1 + ϵ) → c(1 + ϵ) = (1 + ϵ)−α < 1. Hence, the denominator

is always positive, the rate of convergence being the same as of E(z∗m − zm)2 which

is m
n (See Proof). Similar process follows with P (X(n−ln) > u

(2
m(ϵ). Hence, the rate of

convergence for Type I random variables is m
n .

• Type I: In this case, we know:

– an = γn, bn = F −1(1 − 1
en), where γn = F −1(1 − 1

n) − γn

– âm =X(n−ln) and b̂m =X(n−l′n) −X(n−ln), where ln = ⌊ nm⌋ and l′n = ⌊
n
em⌋.

Now, we have to find the rate of convergence for b̂m

bm
and b−1

m (âm − am). We can write
b̂m

bm
=
X
(n−l′n)−X

(n−ln)

F−1(1− 1
em
)−γm

=
X
(n−l′n)

−γm

F−1(1− 1
em
)−γm
−

X
(n−ln)−γm

F−1(1− 1
em
)−γm

. We can write:

P (∣
X(n−l′n) − γm

F −1(1 − 1
em) − γm

− 1∣ > ϵ) = P (X(n−l′n) > u
(1)
m (ϵ)) + P (X(n−l′n) ≤ u

(2)
m (ϵ))
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where u(1)m (ϵ) = γm + (F −1(1 − 1
em) − γm)(1 + ϵ)) = am + bm(1 + ϵ). Similarly, u(2)m (ϵ) =

am + bm(1 − ϵ). Then,

P (X(n−l′n) > u
(1)
m (ϵ)) = P (Sn,m(u

(1)
m (ϵ)) > l

′
n)

∼ P (
m

n

n

∑
i=1

I(Xi > u
(1)
m (ϵ)) >

1
e
)

= P (m(1 − Fn(am + bm(1 + ϵ))) >
1
e
)

= P (z∗m(1 + ϵ) >
1
e
) , where z∗m(x) =m(1 − Fn(am + bmx))

= P (z∗m(1 + ϵ) − zm(1 + ϵ) >
1
e
− zm(1 + ϵ))

≤ P (∣z∗m(1 + ϵ) − zm(1 + ϵ)∣ >
1
e
− zm(1 + ϵ))

≤
E ∣z∗m − zm∣

2

(1 − zm)2

Now, zm(1 + ϵ) → e−1−ϵ < 1
e , and hence 1

e − zm > 0. Thus, the rate of convergence

is m
n . The part for u(2)m (ϵ) is similar. We can again find the convergence rate of

X
(n−ln)−γm

F−1(1− 1
em
)−γm

.

Now, for the convergence rate of b−1
m (âm − am) =

X
(n−ln)−γm

F−1(1− 1
en
)−γm

. This we already found

out to be m
n . Hence the extra addition for using âm and b̂m in this case is m

n .

Remark 6.3.2. Hence, we have obtained the effect of using âm and b̂m in place of am and bm

on the rate of convergence of the distribution of extremes. While the rate of convergence

doesn’t change for Type I and Type II random variables, i.e. random variables in the

domain of attraction of Gumbel and Fréchet distribution, the rate changes for the Type

III (Weibull) random variables, particularly when α > 1 (if α ≤ 1, the rate will remain the

same). For α > 1 in Type III cases, the rate of convergence will be (mn )
1
α . However, the

rate of convergence we calculated for known am and bm, the rate was max( 1
m ,
√

m
n ). The
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additional rate obtained from the estimation of am and bm is (mn )
1
α which is slower than

√
m
n iff α > 2. Hence we can finally conclude, the rate of convergence for non-parametric

Bootstrap for extreme valued random variables, under unknown normalizing constants,

is max( 1
m ,
√

m
n ) for Type I, Type II and Type III (α ≤ 2) cases, and max( 1

m , (
m
n
)

1/α
) for

Type III case when α > 2.

Remark 6.3.3. We saw earlier, the rate at which the distribution of extremes converges

to the limit law is of the order n
ρ

2ρ−1 , ρ < 0, which is always slower than
√

1
n . Moreover,

using the limit law to approximate the extreme distribution involves estimating the nor-

malizing coefficients, and the tail index γ. Even though there exists multitude of methods

for these estimation procedures, none of them are consistently dominant over others, if

we take both efficiency and computational simplicity into perspective. Furthermore, most

of the estimation methods are applicable only to a restricted domain of the parameters.

For example, the Hill’s estimator works only when γ > 0. The moment estimator of the

normalizing coefficient works for Type II distribution only when α > 2. Hence, approxi-

mation by limit distribution involves efficient choice of estimation procedure, which is a

complicated task in itself. Conversely, the m out of n Bootstrap procedures provides an

easily computable approximation for the distribution of the extremes, with a convergence

rate of 1
n

1
3

for known normalizing constants. For unknown normalizing constants, this rate

would prevail for Type I, Type II and Type III(α ≤ 2) cases. For Type III case with α > 2,

the fastest rate would be n−(1+α). In many cases (for example, Normal, Skew Normal), this

rate will actually be faster than the rate of convergence to the limit law, and hence it is

always better to use Bootstrap in these cases. For other cases, where n
ρ

2ρ−1 is faster than

the Bootstrap convergence rate, it might be better to use the limiting distribution. But

even in these cases, the problem of choosing the appropriate estimation procedure per-

sists, and can give drastic errors under incorrect choice of estimates. Hence, even for these
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cases, it might be easier to use Bootstrap approximation, which would be of the rate n− 1
3 ,

compared to the maximum attainable rate of estimating the tail-index, which is
√

1
n .

Remark 6.3.4. Let’s consider the rate of convergence for the three example introduced in

Section 6.1 for unknown normalizing constants. As we saw in this section, the rates would

still be the same for Type I, Type II and Type III case with α ≤ 2, i.e. same as given in

Remark 6.3.1. However, if β > 2 in Beta(1, β) distribution, the rates of convergence will be

different. The rate of convergence in this case to both the real distribution and the limit

would be Op (max ( 1
m , (

m
n
)

1
β )).

6.3.3 Optimal Resample Size

As we have seen till now, for the non-parametric case, the rate of convergence to the limit

turns out to be max( 1
m ,
√

m
n ,A(m)). If we consider the convergence to the real distribu-

tion of the sample maximum for a given sample size, i.e. with e−zn , then we can ignore the

ζ3 term, and hence the A(m) term. This would reduce the rate of parametric Bootstrap

to
√

1
n and min( 1

m ,
√

m
n ). In either case, we can see that the rate of convergence depends

heavily of the Bootstrap sample size m. Hence, it is of significant interest to obtain an

optimal Bootstrap sample size, keeping in mind that we have to satisfy m = o(n) ([50]).

Since convergence to the actual distribution of the extremes is of primary importance,

let us at first only consider the rate of convergence to the true distribution, which would

be max ( 1
m ,
√

m
n
). As we can see in the proof (Section 6.9), the P (∣z∗m − zm) > t) ≤

mc(x)
nt2 ,

where c(x) = − logG(x), G(⋅) being the limiting distribution. The second term ζ∗2 (x,m,n)

consisted of e−z∗m − e−zm , which would give the convergence rate to be e−c(x)
√

mc(x)
n . Next, we

have to concentrate on the coefficients for the 1
m term. Calculations show this to be 2e−c(x)

(see proof for details). Hence, an optimal sample size can be obtained by equating these

two, which would give:
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e−c(x)

√
mc(x)

n
∼

2e−c(x)
m

c(x)
m

n
∼

4
m2

⇒m ∼ (
4n
c(x)
)

1
3

(6.3.6)

Hence, we have obtained an optimal Bootstrap sample size, depending only on the limiting

distribution of the extremes, which is of the order n 1
3 . However this rate depends on x, the

point at which the distance is being minimized. To get a universal choice of m, we might

approach in the following manner:

sup
x∈R

√
mc(x)

n
e−c(x) ∼ sup

x∈R

2e−c(x)
m

(sup
x∈R

√
c(x)e−c(x))

2 m

n
∼

4
m2 , ( since sup

x∈R
e−c(x) = 1)

⇒m ∼

⎛
⎜
⎜
⎜
⎜
⎝

4n

(sup
x∈R

√
c(x)e−c(x))

2

⎞
⎟
⎟
⎟
⎟
⎠

1
3

(6.3.7)

Lemma 6.3.1. Suppose H(⋅) be a distribution function with density f(⋅), and χ be it’s

support. Then:

sup
x∈χ

H(x)
√
− logH(x) =

√
1
2e (6.3.8)

Proof. Let g(x) =H(x)
√
− logH(x). Then we can write:

g′(x) = −
f(x)

2
√
− logH(x)

+ f(x)
√
− logH(x)
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Equating to 0, we can write:

f(x)
√
− logH(x) = f(x) 1

2
√
− logH(x)

⇒ − logH(x) = 1
2

⇒H(x) = e−
1
2

The function g′(x) clearly increases when − logH(x) > 1
2 and decreases for logH(x) < 1

2 .

Since H(x) is a distribution function and hence non-decreasing, − logH(x) is a decreasing

function of x. Hence, the function g(x) increases till {x∣H(x) = e− 1
2 , and then decreases,

thereby giving an unique maximum. The value of the maximum would be: e− 1
2

√
1
2 =
√

1
2e .

Hence Proved.

Using Lemma 6.3.1, we can now provide an unique optimal block size for all three types of

distributions. The expression would be (keeping in mind c(x) = − logG(x)):

m ∼ (
4n
1
2e
)

1
3

= (8en)
1
3 ∼ 2.8n 1

3

It is to be noted that this expression of optimal sample size is true for all three cases

when the normalizing constants are known. However, when they are unknown, the op-

timal choice would be different only in Type III cases with α > 2. In this particular, the

calculation of the optimal Bootstrap sample size is a little complicated, since we have to

compare the coefficient of 1
m with that of (mn )

1
α , as given in equation 6.3.5. In this case,

the coefficient of (mn )
1
α is L(ω(F )−γm)

L(ω(F )−γm)
. Since L is a slowly varying function at 0, this would

in turn converge to 1, and we can give an optimal sample size proposal by equating 2
m
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with (mn )
1
α . This would give an optimal sample size of 2 α

1+αn
1

1+α = (2αn)
1

1+α . Hence, higher

the α, smaller will be the sample size and slower will be the convergence rate.

If we want to obtain the optimal sample size to minimize the convergence rate to the limit,

we have to bring in A(n) as defined in equation 6.2.7. In this case, we have to use the

following result given by [41]:

lim
n→∞

F n(an + bnx) −Hγ(x)

A(n)
= (c(x))1+γGγ(x)fγ(− log c(x)) (6.3.9)

where Gγ(x) is the limiting distribution Gγ(x) = exp{− (1 + γx)
1
γ } with γ being the param-

eter for the generalized extreme value distribution, and

fγ(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∫
x

0 e
γu
∫
u

0 eρsdsdu, for γ ≥ 0

− ∫
∞

x eγu ∫
u

0 eρsdsdu, for γ < 0

where lim
t→∞

A(tx)
A(t) = x

ρ for x > 0. Let us denote (c(x))1+γGγ(x)fγ(− log c(x)) as ψ(x). Then:

• If A(m) is slower than 1
m , we have to equate e−c(x)

√
mc(x)
n with ψ(x) to obtain an

optimal value of m as a function of n.

• If A(m) is of the same order as 1
m , then we have compare the coefficients 2e−c(x) and

ψ(x) to see which one is smaller, and then equate e−c(x)
√

mc(x)
n with that multiplied

by 1
m .

• If A(m) decays faster than 1
m , then we can use the earlier obtained value of m as an

optimal Bootstrap sample size.

However, the convergence rate to the true distribution is of primary significance, and

hence it is advisable to use the optimal Bootstrap size of 2.8n 1
3 for all three cases, except
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for Type II case with α > 2, in which case the optimal size would be (2αn)
1

1+α . Finally, we

can summarize the discussion of this section in the following theorem:

Theorem 6.3.2. Suppose X1, . . . ,Xn are random variables from a distribution function F ,

in the domain of attraction of G, one of the three types of the extreme value distribution.

Then an optimal choice of m for conducting m out of n Bootstrap is (8en)
1
3 , for all three

types of distributions, except for distribution in the domain of convergence of Type III or

Weibull (Ψα) with α > 2, in which case, the optimal sample size would be (2αn)
1

1+α .

Remark 6.3.5. Let us now obtain the optimal sample size for the three distributions chosen

for example. Since, we are primarily interested in the optimal sample size for maximum

rate of convergence of the Bootstrap distribution to the real distribution of the extremes,

an optimal sample size for all three, Pareto, Beta and Skew Normal would be 2.8n 1
3 , ex-

cept the case when the shape parameter of the Beta random variable is greater than 2.

In that case, i.e. for Beta(1, β) distribution with β > 2, the optimal Bootstrap sample

size would be (2αn)
1

1+α . However, if we want to choose Bootstrap sample size such that

the convergence rate to the limiting law is minimum, then we have to take the rate A(n)

into consideration. As given in Appendix, the rate A(n) for Skew Normal is 1
logn , which is

slower than 1
m , and hence the optimal sample size would be 2.8n 1

3 . For Pareto and Beta,

A(n) = 1
n , and hence, we need to compare ψ(x) with 2e−c(x).

6.4 Comparison with Approximating by Limit Distribu-

tion

The traditional approach in Extreme Value Analysis involves approximating the distri-

bution of the maximum by the limit distribution, which is one of three types as proved

by [55]. The m out of n non-parametric Bootstrap proposes an alternative method, and
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hence comparison of the two procedure is of significant importance. [41] showed that un-

der known normalizing constants, the extremes of random variables converges to the limit

distribution at a rate of A(n) = nf ′′(n)
f ′(n) − γ + 1, where f(⋅) = ( 1

− logF )
−1

, and γ is the extreme

value index. Theorem 6.4.1 provides an outline of this rate of convergence.

Theorem 6.4.1. Suppose M(t) = 1−F (t)
F ′(t) be the Mill’s ratio of the underlying distribution.

Then the convergence rate A(t) can be summarised for the three cases as follows:

• Type I (Gumbel):

– ω(F ) < ∞ ∶ In this case, the Mill’s ratio will converge to 0, and so will it’s

derivative. A(n) will be the maximum of these two rates.

– ω(F ) =∞ ∶ The expression is complicated in this casewith A(n) being the rate at

which c(t)2−c′′(t)M(t)2

(c(t)+c′(t)M(t))2
converges to 1, where c(t) is as in 1−F (t) = c(t)exp(−∫

t

t0

ds
f(s))

([40]).

• Type II (Frechet, D(Φα)): The rate of convergence would be the maximum of the rate

of convergence of the derivative of Mill’s ratio, and that of L(tx)
L(t) , where 1 − F (t) =

t−αL(t)

• Type III (Weibull, D(Ψα)): The rate of convergence would be the maximum of

the rate of convergence of the derivative of Mill’s ratio, and that of L(tx)
L(t) , where

1 − F (ω(F ) − t) = tαL(t).

Therefore, the non-parametric Bootstrap using the proposed optimal block size mopt = 2.8n 1
3

will always perform better than the traditional method whenever the above mentioned rates

are slower than n−
1
3 .

148



In practical applications, the normalizing constants are often unknown. There exists nu-

merous estimation procedures of these normalizing constants, all of which involves esti-

mation of the tail-index γ, in Type II and Type III cases. There are multiple works on

the estimation of γ, some of them being Hill Estimator ([62]), Pickand’s Estimator ([100]),

MLE estimator, Moment Estimator, etc. Each of these estimators are consistent only in

some domain of γ, and choice of the most efficient method is still unknown. The rate of

convergence is given by n
ρ

1−2ρ , where ρ is the constant in the second order regular variation

condition, i.e. lim
t→∞

logU(tx)−logU(t)−γ logx
b(t) = xρ−1

ρ , U = ( 1
1−F )

−1, ρ ≤ 0 and γ is the tail index.

Hence the rate of convergence of the estimator is always slower than
√

1
n . The following

theorem can be proposed:

Theorem 6.4.2. Suppose lim
t→∞

logU(tx)−logU(t)−γ logx
b(t) = xρ−1

ρ , U = ( 1
1−F )

−1, ρ ≤ 0 and γ is the

tail index. Let the normalizing constants be unknown. Then:

• Type I, Type II and Type III (α > 2): In these cases, the rate of convergence of non-

parametric Bootstrap is n− 1
3 . The rate of convergence of the conventional method

of approximating by limiting distribution is the maximum of n
ρ

1−2ρ and A(n), which

was discussed in Theorem 6.4.1 for the three cases. Hence m out n non-parametric

Bootstrap with optimal Bootstrap sample size m = 2.8n 1
3 performs better than approxi-

mating by limiting distribution, whenever the maximum of n
ρ

1−2ρ and A(n) is slower

than n−
1
3 .

• Type II (α > 2): In this case rate of convergence of non-parametric Bootstrap is

n−
1

1+α . Hence, the m out n Bootstrap will perform better if the maximum of n
ρ

1−2ρ and

A(n) is slower than n−
1

1+α

It is to be noted that approximating by limiting distribution has a convergence rate, which

is always slower than
√

1
n . Contrarily, the m out n Bootstrap provides a convergence rate
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of n− 1
3 in most cases, except for Type III with α > 2. Additionally, the traditional method

involves the efficient choice of estimation procedure, and also testing procedure for correct

choice of limiting distribution. The m out of n Bootstrap, is much simpler to apply, and

doesn’t involve any parameter estimation.

6.5 Multivariate Extreme Values

Let X = (X(1), . . . ,X(d)) be from a d-dimensional random variable. Suppose, we have n

observations X1, . . . ,Xn. Then, the distribution function can be written as:

F (x) = P (X(1) ≤ x1, . . . ,X
(d) ≤ xd) = C(F1(x1), . . . , Fd(xd))

where Fi is the ith marginal distribution, and C is the dependence function, or the copula.

In this work, we will investigate the asymptotic thoery of non-parametric Bootstrap of

component-wise maximum of random variables. Let Hn(z) = P (Z1,n < z1, . . . Zd,n < zd) =

F n(z), Zi,n be the maximum of the i − th marginal, and z = (z1, . . . , zd). Galambos proved

that if we consider an and bn to be the vectors (a(1)n , . . . , a
(d)
n ) and (b(1)n , . . . , b

(d)
n ), where

a
(i)
n and b

(i)
n are the scalings corresponding to the ith marginal distribution, then:

P (B−1
n (zn − an) ≤ z)→H(z) (6.5.1)

where Bn is the diagonal matrix with ith diagonal elements b(i)n , z the d-dimensional ran-

dom variable with maximum of the marginals, and H is the non-degenerate limiting distri-

bution. The above result is true if and only if each marginal of F belongs to the domain of
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attraction of one of the three types of distributions (Gumbel, Frechet, Weibull), and

Cn
F (y

1/n
1 , y

1/n
2 , . . . , y

1/n
d )→ CH(y1, . . . , yd)

It can be shown that the marginals of H are the limiting distribution of the corresponding

marginal of F. Additionally, if F(x) be such that, with some sequence an and bn, Hn(an +

bnx)→H(x), then

Ck
H(y

1/k
1 , . . . , y

1/k
m ) = CH(y1, . . . , yd), for any k ≥ 0 (6.5.2)

Let Fn be the empirical cdf of {X1, . . . ,Xn}. Let Y ∗i , i = 1, . . . ,m be m iid random vectors

in Rd with the cdf Fn and let MY = (Y 1∗
(m)

, . . . , Y d∗
(m)
). Define

Hm,n(x) = P (b−1
m (MY − am) ≤ x∣X1, . . . ,Xn)

. Then [50] showed that sup
x∈Rd

∣Hm,n(x) − G(x)∣ → 0 in probability. In this section, we will

determine the rate of convergence.

Empirical copula, as defined by Deheuvels, can be written as:

Cn(u) = Fn(F
−1
n1 (u1), . . . , F

−1
nd (ud)), u ∈ [0,1]d (6.5.3)

where Fn is the empirical cdf and Fni is the empirical cdf of the ith marginal. In other

words, we can write the empirical cdf of the multivariate distribution F as

F (x) = Cn(F1(x1), . . . , Fd(xd))
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[117] proves that, under some regularity conditions, the process Cn =
√
n(Cn −C) converges

weakly to α(u) −∑dj=1C ′j(u)αj(uj) where αj is a C-Brownian Bridge, i.e. a tight centered

Gaussian process with covariance function: Cov(α(u), α(v)) = C(u ∧ v) −C(u)C(v). Here,

we will assume the regularity conditions proposed by [117]. If we further assume continuity

of second order partial derivatives of C, then [135] showed that:

sup
u∈[0,1]d

∣Cn(u) − C̃n(u)∣ = O(n
− 1

4
√

logn(log logn) 1
4 ) (6.5.4)

where C̃n(u) = αn(u) −∑
d
j=1C

′
j(u)αj,n(uj), αn converging to α, the C-Brownian Bridge.

To obtain the rate of convergence in multivariate set-up, we would also need the rate of

convergence for dependence functions (or Copula), as given by [97]. Suppose

rn = sup
u∈[0,1]k

∣Cn(u
1
n
1 , . . . , u

1
n

k ) −CH(u1, . . . , uk)∣ (6.5.5)

By using transformation x = − 1
logu , we can rewrite rn as:

sup
x∈[0,∞)k

∣Kn(nx1, . . . , nxk) −G(x1, . . . , xk)∣ (6.5.6)

where each of the marginals of K and G has the distribution function ϕ1(x) = e
− 1

x (x ≥

0), and G is max-stable. [97] defined weighted Kolmogorov metric between two random

variables V and W as follows:

ρψ(V,W ) = sup
x∈[0,∞)k

ψ(x)∣FV (x) − FW (x)∣ (6.5.7)

where ψ is a continuous function, increasing to ∞ in each component. Let ϕ(x) = ψ(x, . . . , x),

and ρϕ(V,W ) = sup
x∈[0,1]k

ψ(∥x∥)∣FV (x) − FW (x). Suppose, g(a) = sup
x≥0

ϕ1(xa)
ϕ(x , R(n) = ng( 1

n−1),

and V and W be random variables with distribution function K and G respectively, then
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[97] proved that if ρψ(V,W ) < ∞, then for each n ≥ 2, rn ≤ R(n)ρψ(V,W ). Also, if

ρϕ(V,W ) <∞, then for each n ≥ 2, rn ≤ R(n)ρϕ(V,W ).

Returning to our problem, we have to find the convergence rate of:

Fm
n (am +Bmx) −H(x) = Cm

n (F1(a
(1)
m +B

(1)
m x1), . . . , Fd(a

(d)
m +B

(d)
m xd)) −CH(H1(x1), . . . ,Hd(xd))

= Cm
n (y

1
m
1 ,⋯, y

1
m

d ) −CH(H1(x1), . . . ,Hd(xd)) (6.5.8)

where yi = Fm
1 (a

(i)
m + b

(i)
m xi) for i = 1, . . . , d. We know from our results from univariate

framework, yi →Hi(xi). 6.5.8 can be further divided into 3 parts, say ν1, ν2 and ν3, where:

• ν1 = Cm
n (y

1
m
1 , . . . , y

1
m

d ) −C
m(y

1
m
1 , . . . , y

1
m

d )

• ν2 = Cm(y
1
m
1 , . . . , y

1
m

d ) −CH(y1, . . . , yd)

• CH(y1, . . . , yd) −CH(H1(x1), . . . ,Hd(xd))

Thus, we can write:

Fm
n (am +Bmx) −H(x) = ν1 + ν2 + ν3 (6.5.9)

The first term ν1 goes to zero at a rate of
√

1
n , according to the discussion above, based on

the results of [117]. The convergence rate of the second term has been discussed in [97]. Fi-

nally, rate of convergence of ν3 is same as the slowest rate of convergence of the marginals

to the limit distribution, multiplied by the derivative of the copula of the limiting distribu-

tion. Thus, the final rate of convergence would be the slowest of the three rates. We can

summarize the findings of this section in the following theorem:

Theorem 6.5.1. Suppose = (X(1), . . . ,X(d)) be a d-dimensional random vector. Suppose,

we have n observations 1, . . . ,Xn. Then, P (B−1
m (z∗n − am) ≤ z) converges to H(x) at a rate
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of max (
√

1
n ,

1
m ,
√

m
n ,R(m)) where Zn is the component-wise maximum of the marginals,

an is the vector containing the a(i)n of the ith marginal, and B is the diagonal matrix with

diagonal elements the b(i)n of ith marginal, H(x) is the limiting distribution, where each

marginal is the limiting distribution of the maximum of the corresponding component. The

rate R(n) is as described by [97].

6.6 Simulation

In this section, we will conduct simulation studies on one example from each of the three

types of distribution: Type I (SN(α)), Type II (Pareto(α)) and Type III (Beta(1, β)).

6.6.1 Pareto(α):

We know, the distribution function for Pareto(α) is given as: F (x) = 1 − x−α for x > 1. It

can be shown that under suitable normalization, it belongs to the domain of attraction of

D(Φα), i.e. the distribution of maximum converges to the distribution H1,α(x) = e−x
−α for

x > 0. The normalizing constants can be easily derived to be:

• an = 0

• bn = n
1
α

The maximum likelihood estimator of α based on n iid random variables X1, . . . ,Xn from

Pareto(α) distribution is given by:

α̂MLE =
n

n

∑
i=1

logXi
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Four our simulation study, we considered:

• α = 4

• Sample size from 20 to 10000

• Number of Bootstraps: 1000

(a) Performance of Parametric and Non-Parametric
Bootstrap for Pareto

(b) Comparison of Bootstrap for Pareto
under different Bootstrap sample size

Figure 6.1: Comparison of convergence rate of Non-Parametric Bootstrap under Pareto
distribution for different sample sizes

Since A(n) is of the order of 1
n (6.10.1), Bootstrap will not provide an improvement in con-

vergence rate under known an and bn. However, if we consider the normalizng constants to

be unknown, the rate of convergence of extremes to their limit law will always be slower

than
√

1
n . Figure 6.1 exhibits that the rate of convergence is quite close to the Bootstrap

rate of convergence attained under choice of optimal sample size, mopt, as proposed in Sec-

tion 6.3.3. Figure 6.1(b) gives the comparison of convergence rate under different choice of

sample size m = m(n), and we can see that the best rate of convergence is attained under

the optimal block size, (8en) 1
3 .
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6.6.2 Beta(1,β):

The distribution function of Beta(1,β) is given by: F (x) = 1 − (1 − x)β for x ∈ (0,1). It

can be shown that under suitable normalization, it belongs to the domain of attraction of

D(Ψα), i.e. the distribution of maximum converges to the distribution H2,α(x) = e−(−x)
−α

for x ≤ 0. The normalizing constants can be easily derived to be:

• an = 1

• bn = n
− 1

β

(a) Performance of Parametric and Non-Parametric
Bootstrap for Left Skewed Beta

(b) Comparison of Bootstrap for Beta
under different Bootstrap sample size

Figure 6.2: Comparison of convergence rate of Parametric and Non-Parametric Bootstrap
under Beta distribution

The maximum likelihood estimator of β based on n iid random variables X1, . . . ,Xn from

Beta(1,β) distribution is given by:

β̂MLE = −
n

∑
n
i=1 log(1 −Xi)
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We saw earlier that the optimal choice of m = mopt in this case depends on the value of β.

For β ≤ 2, we can choose the optimal sample size to be (8en)
1
3 as in other cases. However,

for β > 2, the optimal sample size would be (2αn)
1

1+α . In this simulation study, we will

consider α = 4, to observe the rate of converge when α > 2. As we can see in Figure 6.2,

in this case, the convergence rate for the optimum sample size is the fastest amongst the

chosen sample sizes. In this case, the convergence rate to the limiting law in this case is 1
n

(6.10.2), so Bootstrap will not be able to provide better approximation than the limiting

distribution, even though it performs rather similar to the limit law when the sample size

is relatively large. However, in the simulation we used maximum likelihood estimator of β.

The non-parametric estimates discussed in Section 6.3.3 brings more complexities in using

the limiting distribution as an approximation. Hence, Bootstrap might be able to provide

an easier to use alternative even in this scenario.

6.6.3 SN(α):

The density of SN(α) can be written as f(x) = 2ϕ(x)Φ(αx), with the distribution func-

tion being F (x) = Φ(x) − 2T (x,α), where T (⋅) is the Owen’s T-Function (T (x,α) =
1

2π ∫
α

0
e−

1
2 x2

(1+y2
)

1+y2 dy, which same as the probability of the event X > x and 0 < Y < αX

where X and Y are independent standard normal random variables). It can be shown ([80])

that the extreme of random variables from the skewed normal family belongs in the do-

main of attraction of Type I (D(Λ)) distributions. In this simulation study, we will only

use α < 0, for which the normalizing constants are given by (see 6.10.3):

• an = (1 + α2)−
1
2 (2 logn)− 1

2

• bn = (
2 logn
1+α2 )

1
2 −

log logn+logπ
(1+α2)

1
2 (2 logn)

1
2
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(a) Performance of Parametric and Non-Parametric
Bootstrap for Skew Normal Distribution

(b) Comparison of Bootstrap for Skew
Normal under different Bootstrap sam-
ple size

Figure 6.3: Comparison of convergence rate of Parametric and Non-Parametric Bootstrap
under Skew Normal distribution

There is no closed form expression for the maximum likelihood estimator of α. The MLE

would be a solution of the equation:

n

∑
i=1

ϕ(αXi)

Φ(αXi)
Xi = 0

We can find the MLE numerically in R, and use it for our simulation. In this case, we

considered α to be 0.2, and all other parametres are same as the earlier examples.

As we can see, in this case, the non-parametric Bootstrap actually performs better than

the actual case. This is owing to the fact that under the optimal Bootstrap sample size,

the rate at which non-parametric Bootstrap distribution converges to the actual distribu-

tion is of the order of ( 1
8en)

1
3 , which is significantly faster than the convergence rate of 1

logn

(6.10.3). Also, we can see from the Fig 6.3 that the optimal choice of Bootstrap sample

size gives better convergence rate than other choices of m taken in this example. Hence,
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in this case, Bootstrap always provides a better approximation of the distribution of the

extreme than the limiting distribution.

6.7 Real Data Analysis

Air Quality is an essential aspect of life. The quality of air we breathe in day to day has

immense influence on our health. We know that the air around us contain various pol-

lutants, ranging from completely harmless to particles that can be fatal above a certain

threshold. Some such examples of harmful pollutants present in our atmosphere include

particle pollution (or particulate matter), Ground-level ozone, Carbon monoxide, Sulfur

oxides, Nitrogen oxides and Lead. These pollutants can be extremely harmful on exces-

sive exposure, and abundance of these particles in the atmosphere can cause harm to the

inhabitants of an entire city. For example, excessive exposure to Ozone can cause vary-

ing levels of health problems, like irritation of respiratory system, reduced lung function,

lung infection, and may even cause permanent lung damage. Particulate Matters in high

concentration are known to be fatal for patients of heart or lung diseases and older adults,

and may lead to cardiac arrhythmia and heart attacks even in healthy individuals. [144]

demonstrated that particulate matters significantly increase the possibility of cardiovascu-

lar diseases, particularly in people above the age of 40. [123] discusses about the effect of

air pollution in children’s health. [77] gives an overview of the risk of air pollution in hu-

man population. Hence, it is imperative to control the level of these air pollutants in the

atmosphere, and keep their concentration under tolerable limits. The US Environmental

Protection Agency (EPA) collaborates with local environmental agencies in different coun-

tries, in order to provide information on the concentration of these air pollutants in cities

around the world. The Air Quality Index (AQI) provides an indicator of the concentra-

tions of four major air pollutants (ground level ozone, particle pollution, carbon monoxide,
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and sulfur dioxide), according to the Clean Air Act of 1963. EPA provides the tolerable

ranges of AQI, as given in Figure 6.4. As we can see, AQI level above 100 is considered

unhealthy for sensitive groups, for example patients of lung and heart diseases. AQI level

above 200 is considered extremely unhealthy for all groups, while that above 300 is de-

clared as hazardous. However, in India, the AQI level goes as high as 1000 (New Delhi in

September 2019), which can cause significant health problem for the people living in the

area.

Figure 6.4: Tolerable levels of AQI

AQI level should always be below a certain threshold. In other words, the maximum of

the AQI level should never exceed a certain limit, for which one would require an extreme

value analysis. This chapter provides an Extreme Value Analysis using Bootstrap, as pro-

posed in this work, to determine the probability of the extreme of the AQI level during

a certain period crossing a given threshold. The extreme value analysis using m out of

n bootstrap is conducted on the AQI data of 13 cities around the world, 5 Indian and 8
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outside India, to obtain the probability of the AQI level going above ceratin threshold in

these cities. The primary aim is to demonstrate the exigency of the air pollution crisis in

Indian cities, compared with other “highly polluted” cities in the world.

Data Description

We have used Air Quality Index (AQI) data from five metropolitan cities in India: Delhi,

Kolkata, Mumbai, Chennai and Hyderabad, and eight metropolitan cities outside India

(collected from airnow.gov). The aim is to compare the air pollution crisis in India with

other highly polluted metropolitan cities around the world. The data consists of hourly

Air Quality Indices collected over the year, for last 5 years. Since, this is a time series

data, we might expect temporal dependence within the data. To ameliorate issues aris-

ing from the dependence structure, we only considered the daily maximum of the AQI

values in a city, and have assumed that the maximum AQI per day follows a weakly de-

pendent structure, i.e. the dependence between the daily maximum Air Quality Index

decays exponentially with time. It is sensible to take the daily maximum, since we are

mainly concerned about the AQI crossing a particular threshold. Additionally, the data is

divided into two parts, the summer data (March to September) and winter data (August

to February). This is because in winter, air pollutants get trapped inside a warm layer of

air, created by temperature inversion. Additionally, the daily maximum AQI, is undergone

a transformation, primarily for computational simplicity.

The cities selected around the world for comparison with the Indian cities are: Lima

(Peru), Bogota (Colombia), Kampala (Uganda), Manama (Bahrain), Chengdu (China),

Colombo (Sri Lanka), Dhaka (Bangladesh) and Jakarta (Indonesia). Lima ranks first in

the list of top polluted cities of South America (according to WHO), while Bogota is cur-

rently at 15th, and is the second most polluted city in Colombia. Both cities experience
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high concentration of Particulate Matter in their atmosphere, which are extremely harmful

for human health. Air pollution in China has been a topic of discussion for a long time.

While Beijing, which used to be the most polluted city in China, has improved the air

condition recently owing to Air Pollution Prevention and Control Laws, the situation in

Chengdu has not improved over the years, with reports suggesting that the situation now

is even worse than that of Beijing. Dhaka and Jakarta also face major crisis in terms of

presence of particulate matters and ozone concentration in the air, and are among the top

polluted cities in Asia. The city of Manama is selected due to it’s location, being near the

largest industrial area in the world, the Jubail industrial city in Saudi Arabia. Manama

is the nearest city to Jubail where EPA collects the Air Quality Index Data. Finally, the

five metropolitan cities in India were selected, in order to assess the severity of the air

pollution problem in India compared to other regions of the world.

Figure 6.5 and Figure 6.6 provides an overview of the AQI levels in two cities (Bogota and

New Delhi). As we can see the AQI level in Bogota remains almost steady throughout

the year at a level of about 120 − 150. However, the AQI in New Delhi experiences a pe-

riodic pattern, the peaks occurring mainly during the time of November or December, i.e.

the time of Diwali. The AQI levels is seen to be drastically rising during this period, the

highest peak going as high as 1100. Also, the AQI throughout remains significantly high,

posing serious threat to the living population in the region.

Results and Discussion

Table 6.1, 6.2, 6.3 provides the estimates of the probability of the daily maximum AQI

crossing threshold: 200, 300 and 500 respectively. As we saw in Figure 6.4, AQI values of

above 200 are considered to be unhealthy for all people, above 300 are considered to haz-

ardous, and above 500 are not even listed in the AQI scale. Ideally, the probability of the
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Figure 6.5: Yearly AQI in Bogota

Air Quality Index crossing the threshold of even 200 should be extremely low, if not 0. As

we can see in Table 6.4, only Bogota, the second most polluted city in Colombia, achieves

a 0% chance of the AQI crossing the value of 200, in either season. In other words, the Air

Quality Index in Bogota, is always expected to be below the threshold of 200. Colombo

also fares relatively well, with only a 14% chance in Summer to have an AQI above 200.

The situation is relatively worse in Lima and Jakarta, with respectively 10% and 28.3%

chance of AQI over 200 in Summer, and 44.09% and 13.65% chance in winter. However,

all other cities are in terrible condition, with the predictions reaching as high as 100% in

Dhaka and New Delhi. In other words, the maximum daily Air Quality Index in Dhaka

and New Delhi are almost certain to be unhealthy for the entire population.
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Figure 6.6: Yearly AQI in New Delhi

Table 6.1: Estimate of the Probability of AQI going above 200 in some cities

City (Country) Estimated Probability of Estimated Probability of
AQI > 200 in Summer AQI > 200 in Winter

Lima (Peru) 10.39% 44.09%
Bogota (Colombia) 0% 0%
Kampala (Uganda) 99.06% 99.85%
Manama (Bahrain) 99.78% 98.87%
Chengdu (China) 85.18% 100%

Colombo (Sri Lanka) 14.62% 0%
Dhaka (Bangladesh) 100% 100%
Jakarta (Indonesia) 28.3% 13.65%

Chennai (India) 59.15% 81.41%
Mumbai (India) 94.26% 100%

Hyderabad (India) 88.67% 100%
Kolkata (India) 88.18% 100%

New Delhi (India) 100% 100%
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Table 6.2: Estimate of the Probability of AQI going above 300 in some cities

City (Country) Estimated Probability of Estimated Probability of
AQI > 300 in Summer AQI > 300 in Winter

Lima (Peru) 0% 0%
Bogota (Colombia) 0% 0%
Kampala (Uganda) 0% 21.92%
Manama (Bahrain) 90.94% 50.59%
Chengdu (China) 0% 78.82%

Colombo (Sri Lanka) 0% 0%
Dhaka (Bangladesh) 98.83% 100%
Jakarta (Indonesia) 0% 0%

Chennai (India) 36.04% 39.04%
Mumbai (India) 45.28% 96.82%

Hyderabad (India) 10% 78.64%
Kolkata (India) 10.4% 100%

New Delhi (India) 94.15% 100%

Table 6.2 provides the estimates of the probabilities of the AQI going above 300, the haz-

ardous zone according to EPA. Here, we can see only Dhaka and New Delhi show almost

100% chance of having the daily maximum value of AQI to be over 300. Kolkata, Mumbai

Hyderabad and Chengdu also display high chance of having AQI values higher than 300.

The probability of getting AQI above than 300 in Kolkata changes from 10% in Summer

to 100% in Winter. In table 6.3, we can see most of the cities show very small chance of

getting an AQI above 500, as it should be. However, even in this case, New Delhi attains

an estimate of 97.8% in winter, i.e. there is 97.8% chance that the AQI value in New Delhi

would exceed 500 in Winter, which is even beyond the hazardous zone in the EPA regu-

lation. Dhaka and Kolkata also indicates high probability of air pollution exceeding the

hazardous zone during the winter.

It is clear from the tables that cities like New Delhi and Dhaka experience considerable

air crisis throughout the year. If we compare only amongst the Indian cities, only Chennai

in Summer has a less than 50% chance of having AQI above 200. However, in winter, all
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Table 6.3: Estimate of the Probability of AQI going above 500 in some cities

City (Country) Estimated Probability of Estimated Probability of
AQI > 500 in Summer AQI > 500 in Winter

Lima (Peru) 0% 0%
Bogota (Colombia) 0% 0%
Kampala (Uganda) 0% 0%
Manama (Bahrain) 30.15% 13%
Chengdu (China) 0% 0%

Colombo (Sri Lanka) 0% 0%
Dhaka (Bangladesh) 9.75% 77.23%
Jakarta (Indonesia) 0% 0%

Chennai (India) 0% 27.74%
Mumbai (India) 0% 34.35%

Hyderabad (India) 0% 21.72%
Kolkata (India) 0% 81.2%

New Delhi (India) 32.19% 97.98%

Table 6.4: Empirical mean of the extreme value distribution

City (Country) Empirical Mean in Summer Empirical Mean in Winter
Lima (Peru) 190.32(9.83) 210.78(30.12)

Bogota (Colombia) 150.41(6.98) 156.09(4.25)
Kampala (Uganda) 252.25(26.67) 279.95(42.18)
Manama (Bahrain) 449.46(106.1) 364.05(134.79)
Chengdu (China) 228.01(21.15) 332.79(43.38)

Colombo (Sri Lanka) 172.95(14.62) 187.19(6.39)
Dhaka (Bangladesh) 422.74(54.54) 550.95(62.87)
Jakarta (Indonesia) 196.81(4.59) 188.52(8.25)

Chennai (India) 256.81(83.52) 342.58(180.37)
Mumbai (India) 312.96(92.47) 450.58(96.98)

Hyderabad (India) 243.61(53.93) 434.21(179.03)
Kolkata (India) 237.47(34.29) 540.86(41.91)

New Delhi (India) 424.01(89.87) 859.87(235.76)

the cities exhibit very high probability, with 4 of the 5 cities attaining the 100% level. The

probability of AQI going over 300 is also very low in all the cities in Summer, except New

Delhi, where there is also a 32.19% chance of AQI going even over 500. However, the sit-

uation changes during Winter, when all the cities exhibit high level of air pollution. This
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might primarily be due to the uncontrolled use of firecrackers, while celebrating the festi-

vals like Diwali. Cities like Chennai, Mumbai and Hyderabad, have relatively lower risk

of high air pollution, compared to New Delhi and Kolkata. However, Mumbai experiences

air pollution throughout the year, as shown by the high probability of the AQI level going

above 300, even in Summer. The situation in New Delhi is worse than any other city in

India, and maybe even the world. At present, thick gray smog are seen to engulf the city,

generated by a mixture of vehicular emissions, industrial pollution, construction dust and

crop burning in neighboring states. Table 6.2 and Table 6.3 shows that Diwali is only part

of the problem, and not the only cause for the air pollution problem in Delhi. As we can

see, the probability of getting high AQI persists in Delhi even in Summer. This might be

owing to the huge number of vehicles in the area, 3,172,842 as reported in 2017. The huge

population of 21.75 million, coupled with poor infrastructure, makes it extremely difficult

to control the air pollution problem in New Delhi. In Kolkata, however, the festivals in

winter seemed to be primary problem behind high levels of AQI, with a steep jump from

0% to 81.2% chance of having AQI level above 500.

6.8 Conclusion

Extreme value analysis is an integral aspect of many real -life applications. The conven-

tional approach to extreme value analysis involve complicated testing and estimation pro-

cedures. The m out of n non-parametric Bootstrap, first suggested by [13], provides a easy

to use alternative to the extreme value problem. This chapter proposes an optimal choice

for the Bootstrap sample size m, and the corresponding convergence rate to true distribu-

tion. The optimal block size is given by 2.8n 1
3 for distributions belonging in the domain

of attraction of Type I (Gumbel), Type II (Fréchet) and Type III (only for α ≤ 2). For
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Type III cases with α > 2, the optimal choice turns out to be (2αn)
1

1+α . The correspond-

ing optimal convergence rate is of the order n− 1
3 for Type I, Type II and Type III (α ≤ 2),

and n−
1

1+α for Type III with α > 2. The result can also be extended to multivariate set-up,

where there would be some additional terms corresponding to the convergence rate of the

dependence function. We have also established the cases when the non-parametric Boot-

strap performs better than approximation by the limit laws. It is to be noted that even

though for some cases, the conventional limit law approximation method might be faster

than the non-parametric Bootstrap, there exists myriad complications associated with the

conventional procedure. An extension of the work in this chapter would be to derive the

convergence rate of Bootstrap in dependent random variables. The m out of n Bootstrap

might not be an efficient in those cases, moving block Bootstrap being a better choice in

general in presence of dependence within the random variables.

6.9 Proof of Theorem 6.3.1

First, we will find an expansion for (1 − x
m)

m.

(1 − x
m
)m = em(−

x
m
− x2

m2 +R3(
x
m
))

= e−x[e−
x2
m
+R3(

x
m
)]

⇒ (1 − x
m
)m = e−xeg(x) (6.9.1)

where, g(x) = −x2

m +R3(
x
m).
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From the remainder term of Taylor Series Expansion, we can easily see,

R3(x) = −
x3(1 − θ)2
(1 − θx)3

where θ ∈ (0,1) is a constant.

Upon calculation, we get:

R′3(x) = −
3(1 − θ)2x2

(1 − θx)4 (6.9.2)

R′′3(x) = −
1 + θx
(1 − θx)5 6x(1 − θ)2 (6.9.3)

Now, since, g′(0) = 0 = g(0), a first order Taylor expansion gives:

eg(x) = eg(0) +Rg
2(x) (6.9.4)

where Rg
2(x) is the error term. Let f(x) = eg(x). Then, f ′′(x) = e

g(x)[g′(x)2+g′′(x)]

. We can

see:

g′(x) = −
2x
m
+

1
m
R′3(

x

m
) = −

2x
m
−

1
m3(

3(1 − θ)2x2

(1 − θ xm)4
)

g′′(x) = −
2
m
+

1
m2R

′′
3(
x

m
) = −

2
m
−

1
m3(

1 + θ xm
(1 − θ xm)5

6x(1 − θ)2)
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Thus,

Rg
2(x) = ∫

x

0
e−t

2/m+R3(t/m)[g′(t)2 + g′′(t)]dt

= e−
τ2x2

m
+R3(

τx
m
)[g′(τx)2 + g′′(τx)]x, where τ ∈ (0,1)

= e−
τ2x2

m
+R3(

τx
m
)[( −

2τx
m
−

1
m3 (

3(1 − θ)2τ 2x2

(1 − θ τxm )4
))

2

+ ( −
2
m
−

1
m3(

1 + θ τxm
(1 − θ τxm )5

6τx(1 − θ)2))]

(6.9.5)

Thus, using 6.9.1 and 6.3.1, we obtain:

(1 − x
m
)
m

= e−x{1 +Rg
2(x)} (6.9.6)

Hence,

Fm
n (am + bmx) = (1 −

m(1 − Fn(am + bmx))
m

)

m

= (1 − z
∗
m

m
)
m

, where z∗m =m(1 − Fn(am + bmx))

= e−z
∗

m + e−z
∗

mRg
2(z

∗
m) (6.9.7)
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Finally, we can write:

Fm
n (am + bmx) −H(x) = e

−z∗m + e−z
∗

mRg
2(z

∗
m) −H(x)

= e−z
∗

mRg
2(z

∗
m) + e

−z∗m − e−zm + e−zn −H(x), where zm =m(1 − F (am + bmx))

= Ξ(z∗m) + e−z
∗

m − e−zm + e−zm −H(x), where Ξ(x) = e−xRg
2(x)

= Ξ(zm) +Ξ′(zm)(z∗m − zm) +RΞ
2 (zm)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ζ∗1 (x,m,n)

+ e−z
∗

m − e−zm

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ζ∗2 (x,m,n)

+ e−zm −H(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ζ3(x,m,n)

(6.9.8)

First let us consider the terms under ζ∗1 (x,m,n). 6.9.5 shows us that Ξ(zm) goes to 0 at a

rate of m−1.

Now for the term Ξ′(zn). We can see Rg
2(x) = e

f(x) [f1(x)2 + f2(x)], where:

• f1(x) = ( −
2τx
m −

1
m3 (

3(1−θ)2τ2x2

(1−θ τx
m
)4 ))

2

= 1
m2( − 2τx − 3κ2

1x
2

m2(1−κ2x)4
)

2

• f2(x) = ( −
2
m −

1
m3(

1+θ τx
m

(1−θ τx
m
)5 6τx(1 − θ)2)) = 1

m( − 2 − 6κ3x(1+κ2x)
m3(1−κ2x)5

)

• f(x) = − τ
2x2

m +R3(
τx
m ) = −

τ2x2

m −
κ4x3

m3

In the above equations, κ1, κ2, κ3, κ4 ∈ (0,1). Thus,

d

dx
Rg

2(x) = e
f(x) [2f1(x)f

′
1(x) + f

′
2(x)] + e

f(x)f ′(x)[f1(x)
2 + f2(x)]

= ef(x)(f ′(x)f1(x)
2 + f ′(x)f2(x) + 2f1(x)f

′
1(x) + f

′
2(x)) (6.9.9)
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It can be easily observed that this is of the order m−2. Thus, Ξ′(zm) = e−zm d
dxR

g
2(x)
RRRRRRRRRRRx=zm

−

e−zmRg
2(zm) is of the order m−1.

We cam also see: e−z∗m − e−zm ∼ e−zm(z∗m − zm) and e−zm −H(x) =H(x)(e−ρn(x) − 1).

Finally, we have to look into the term RΞ
2 (zm). We can write, for some κ ∈ (0,1):

RΞ
2 (zm) = Ξ′′(κ(z∗m − zn))(z∗m − zm)2

Now,

d2

dx2R
g
2(x) = e

f(x)(2f1(x)f
′
1(x)f

′(x) + f ′′(x)f1(x)
2 + f ′′(x)f2(x)

+ f ′(x)f ′2(x) + 2f ′1(x)2 + 2f1(x)f
′′
1 (x) + f

′′
2 (x)

+ f ′(x)2f1(x)
2 + f ′(x)2f2(x) + 2f ′(x)f1(x)f

′
1(x) + f

′(x)f ′2(x))

We can see this is of the order m−2. However, Ξ′′(zm) = e−zm ∂
∂2x2R

g
2(x)
RRRRRRRRRRRx=zm

−2e−zm ∂
∂xR

g
2(x)
RRRRRRRRRRRx=zm

+

e−zmRg
2(zm) will again be of order m−1. Hence:

ζ∗1 (x,m,n) = Ξ(zm) +Ξ′(zm)(z∗m − zm) +RΞ
2 (zm)

where:

• Ξ(zm) is of the order m−1.
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• Ξ′(zm) is of the order m−1

• RΞ
2 (zm) = Ξ′′(κ(z∗m − zm))(z∗m − zm)2 where Ξ′′(zm) is of the order m−1

To get an order of ζ∗1 (x,m,n), we would also need the rate of z∗m − zm, which will also give

the rate of convergence for ζ2(x,m,n).

As we saw earlier, Tm,n(x) = n (1 − Fn(am + bmx)). Thus, m
n Tm,n(x) =m (1 − Fn(am + bmx)) =

z∗m.

P (∣Tm,n − npm∣ > t) ≤
V (Tm,n)

t2
=
npm(1 − pm)

t2
≤
npm
t2

⇒ P (∣
m

n
Tm,n −mpm∣ >

m

n
t) ≤

npm
t2

⇒ P (∣
m

n
Tm,n −mpm∣ > t) ≤

m2pm
nt2

∼
mc(x)

nt2
(6.9.10)

⇒ ∣
m

n
Tm,n −mpm∣ = Op(

√
m

n
) (6.9.11)

⇒ ∣z∗m − zm∣ = Op(

√
m

n
) (6.9.12)
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We can also get another inequality using the above procedure:

P (∣Tm,n − npm∣ > t) ≤
E(Tm,n − npm)4

t4
=
nµ4 + 3n(n − 1)σ4

t2

=
npm(1 − pm)4 + np4

m(1 − pm) + 3n(n − 1)p2
m(1 − pm)2

t4
(6.9.13)

⇒ P (∣
m

n
Tm,n −mpm∣ >

m

n
t) ≤

npm(1 − pm)4 + np4
m(1 − pm) + 3n2p2

m(1 − pm)2
t4

⇒ P (∣
m

n
Tm,n −mpm∣ > t) ≤

m4pm(1 − pm)4 +m4p4
m(1 − pm) + 3nm4p2

m(1 − pm)2
n3t4

∼
m3c(x) + c(x) + 3nm2c(x)2

4n3t4
(6.9.14)

⇒ P (∣
m

n
Tm,n −mpm∣ > t) ≤

1
t4
(c1(x)

m2

n2 + c2(x)
m3

n3 + c3(x)
1
n3) =

gm,n(x)

t4
(say) (6.9.15)

Now, let Z = z∗m − zm.

Then,

EZ2 = ∫
∞

0
P (Z2 > t)dt

= ∫

z

0
P (Z2 > t)dt + ∫

∞

z
P (Z2 > t)dt

≤ z + ∫
∞

z

gm,n(x)

t2
dt

= z +
gm,n(x)

z
≤ 2
√
gm,n(x)

⇒ E∣z∗m − zm∣
2 ≤ 2
√

(c1(x)
m2

n2 + c2(x)
m3

n3 + c3(x)
1
n3)

Hence, E(ẑn − zn)2 is of the order O(mn ).
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Additionally, if X1, . . . ,Xn are independent Bernoulli random variables with probability p,

then for p ≤ 1
4 , we know (using Chernoff’s tightness bounds):

P ((
n

∑
i=1
X1 − µ) > t) ≥

1
4e
− 2t2

µ

where µ = np (The proof involves use of Slud’s inequality). Using this, We can show that

the lower bound also depends on the rate of
√

m
n .

P ((Tm,n − npm) > t) ≥
1
4e
− 2t2

npm

⇒ P ((
m

n
Tm,n −mpm) > t) ≥

1
4e
− 2nt2

m2pm ∼
1
4exp

⎛

⎝
−(

√
2

c(x)

n

m
t)

2
⎞

⎠

Now, we can declare the rate of convergence:

• ζ∗1 (x,m,n): This term contains three parts:

– Ξ(zm) is of the order m−1.

– Ξ′(zm)(z∗m − zm) is of the order 1
m

√
m
n =

√
1
mn

– R′2(zm) = Ξ′′(κ(z∗m − zm))(z∗m − zm)2 is of the order 1
m

√
m
n
m
n =
√

m
n3

• ζ∗2 (x,m,n) is of the order Op(
√

m
n )

• ζ∗3 (x,m,n) is of the order A(m).

Hence, finally, the convergence rate of non-parametric Bootstrap for extremes of random

variables is given by Op(max( 1
m ,
√

m
n ,A(m))).
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6.10 Appendix section

6.10.1 Pareto Distribution

The distribution function of Pareto(α):

F (x) = 1 − x−α, for x > 1

We can get f = ( 1
−logF )

← from this. The function f can be easily obtained as follows:

f(x) = inf {y∣F (y) ≥ e− 1
x}

= inf {y∣yα ≥ 1
1 − e− 1

x

}

= (1 − e− 1
x )−

1
α

Hence,

f ′(x) =
e−

1
x

1 − e− 1
x

1
αx2f(x)

f ′′(x) = f ′(x)
⎛

⎝

e−
1
x

1 − e− 1
x

1
αx2 −

2
x
+

1
x2(1 − e− 1

x )

⎞

⎠

⇒ A(t) =
tf ′′(t)

f ′(t)
− γ + 1 = 1

t(1 − e− 1
t )

⎛

⎝
1 + e

− 1
t

α

⎞

⎠
− 1 − 1

α

Expanding e− 1
x , we get,

x(1 − e− 1
x ) = x

⎛

⎝

1
x
−

1
2x2 +

1
6x3 +⋯

⎞

⎠
= 1 − 1

2x +
1

6x2 +⋯
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Thus, the rate of convergence of the extreme for Pareto distribution is O(A(n)) = O(n−1).

6.10.2 Beta Distribution

Here, we are considering the distribution Beta(1, β), with density f(x) = β(1 − x)β−1 for

x ∈ (0,1). The distribution function can be written as:

F (x) = 1 − (1 − x)β

The function f then takes the form:

f(x) = inf {y∣F (y) ≥ e− 1
x}

= 1 −
⎛

⎝
1 − e− 1

x

⎞

⎠

1
β

⇒ f ′(x) =
e−

1
x

1 − e− 1
x

1
βx2(1 − f(x))

f ′′(x) = f ′(x)
⎛

⎝
−

e−
1
x

1 − e− 1
x

1
βx2 −

2
x
+

1
x2(1 − e− 1

x )

⎞

⎠

This gives a similar A(t) as for Pareto, which would give the rate of convergence to be

O(n−1).
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6.10.3 Skewed Normal

[80] calculated the rate of convergence of skewed normal distribution. The density of

SN(λ) is:

fλ(x) = 2ϕ(x)Φ(λx)

It was shown that 1−Fλ(x)
fλ(x)

∼ 1
x for λ > 0 and ∼ 1

(1+λ2)x for λ < 0. The normalizing constants

for λ > 0 and < 0 are as follows:

• λ > 0:

– an = (2 logn)−
1
2

– bn = (2 logn)
1
2 −

log logn+logπ
2(2 logn)

1
2

• λ < 0:

– an = (1 + λ2)
− 1

2 (2 logn)−
1
2

– bn = (
2 logn
1+λ2 )

1
2 −

log logn+logπ
(1+λ2)

1
2 (2 logn)

1
2

For the above normalizing constants, [80] showed that:

• For λ > 0,

F n
λ (an + bnx) −Λ(x) ∼ Λ(x)e−x

16
(log logn)2

logn

• For λ < 0,

F n
λ (an + bnx) −Λ(x) ∼ Λ(x)e−x

4
(log logn)2

logn

Hence the rate of convergence for extreme of skewed normal distribution is O( 1
logn), just as

for standard normal distribution.
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