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A B S T R A C T   

In this work, a novel method to evaluate the nonlinear bearing forces is introduced. The method depends on 
using polynomial surface fitting to evaluate the bearing forces as a function of the journal center position. Then, 
these forces are used to investigate the stability and bifurcations of an elastic rotor-bearing model. The Hopf 
bifurcation analysis and limit cycle continuation are investigated using the proposed analysis for obtaining the 
bearing forces for un-grooved bearing with L/D = 0.5. The stability results are compared with short bearing 
approximation at several shaft flexibilities. In addition, the present obtained threshold speed is compared with 
that computed using bearing coefficients method. The present method time response results are compared with 
the numerical solution of Reynolds equation and a good agreement is recorded.   

1. Introduction 

Bearings are one of the main components of dynamical systems. 
There are two main categories of bearings which are rolling element 
bearings and journal bearings. Each type has its advantages and disad
vantages. For example, rolling element bearings have the advantage of 
less axial space, combined loading conditions, less maintenance and 
gradual failure. However, journal bearing has advantage in high load- 
carrying capacity, low noise and can operate at very high speeds [1]. 
The industries which require high speed and high power, such as gas 
turbines and turbochargers motivate the research in the dynamics of 
journal bearings, and this is the main topic of the current paper. 

To investigate the dynamics of journal bearing, it is important to 
evaluate the nonlinear dynamic forces at the bearing. The fluid film 
pressure distribution inside the journal bearing can be described by 
Reynolds equation [2]. This generalized Reynolds equation can be 
simplified in case of short bearings or long bearings. For these cases, 
analytical solutions for the bearing forces are available, see for example 
[3,4] for short bearings [5–8] and [9,10] for long bearings. Direct so
lution of generalized Reynolds is important in case of finite length 
bearings (FLB), because in that case both short bearing and long bearing 
approximations are not valid. The analytical solution for bearing forces 
is challenging, see for example [11]. In that case, either numerical 

methods or approximate analytical methods are used to solve the 
problem [12,13]. The numerical methods include finite difference 
methods [14,15], finite element method [16,17], meshless method [14], 
etc. In rotor-bearing dynamical analysis, the journal bearing forces have 
to be evaluated at each time step. In case of finite bearings, the nu
merical solution of Reynolds equation is required and this process is 
computationally expensive especially if fine mesh is used. This moti
vates a lot of researchers to use approximate methods to evaluate the 
journal bearing forces in such cases. 

Using bearing coefficients is one of the common methods used to 
evaluate the bearing forces based on the rotor displacement and veloc
ity. First order bearing coefficient was introduced in the middle of the 
last century and it is currently used till now due to its simplicity, see for 
example [18–21]. The analysis based on first order bearing coefficients 
is accurate up to the rotor threshold speed or in other words until the 
speed at which Hopf bifurcations occurs [22,23]. Higher than this speed 
the first order approximation indicates the system become unstable 
while in reality this is not generally the case. Several authors reported 
stable operation higher than threshold speed [24,25]. Therefore, much 
research work considered the evaluation of journal bearing forces using 
higher order bearing stiffness and damping coefficients. For the second 
order bearing stiffness and damping coefficients, see [23,26,27] and for 
the higher order bearing stiffness and damping coefficients, see [22,28, 
29]. The analysis based on higher order bearing coefficient gives better 
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approximation than the analysis based on first order approximation, in 
terms of dynamic response and stability analysis [22]. However, in 
certain conditions higher than the threshold speed, there is a deviation 
between the analysis based on nonlinear stiffness and damping bearing 
coefficients and the analysis based on direct solution of Reynolds 
equation [20,29]. 

There are several attempts to evaluate an approximate form for 
Reynolds equation in case of finite length bearing 0.5 ≤ L/D ≤ 2 which 
enable the analytical solution of this equation [13,30]. Fedor [30] 
introduced an approximate analytical solution for finite length journal 
bearing based on the complete oil solution of [31]. Barrett et al. [32] 
introduced a correction factor which modifies the nonlinear forces ob
tained from short bearing analysis. They showed that the analysis is 
valid up to L/D equals to 1.25. The disadvantage of this method is that it 
is only applicable to circular bearing without any grooves [33]. Hirani 
et al. [34] introduced a closed-form pressure distribution to finite 
bearing using a combination of short and long bearing approximation. 
Falkenhagen et al. [35] investigate the stability of finite journal bearing 
using approximate method and using direct solution of Reynolds equa
tion using finite difference method (FDM). They showed that the 
response results based on the approximate are acceptable compared 
with that of FDM and 100 times faster. Bastani and de Queiroz [13] 
introduced a method for determining an approximate analytical form to 
the finite length journal bearing based on either short bearing approx
imation or long bearing approximation. The correction function is 
evaluated based on the comparison between the short or long bearing 
with numerical solution. Database method is another method that is 
used to evaluate the bearing nonlinear forces, see for example [36–38]. 
In this method,the oilfilm nonlinear forces are evaluated at several 
points in four-dimensional bearing domain to evaluate a database. Then, 
linear interpolation method is used to evaluate the force based on this 
database.This method is faster than the direct solution of Reynolds 
equation. 

Miraskari et al. [23] investigated the response of flexible 
rotor-journal bearing system based on four approaches. These are, first 
order bearing coefficients, second order bearing coefficients, short 
bearing analysis and finite bearing using FDM. They investigated two 
different Sommerfeld number cases where the first case is located in 
supercritical bifurcation region and the second case is located in 
subcritical bifurcation region. Their results showed that below the 

supercritical bifurcation the results obtained from the four methods are 
matched together. Elsayed and Sayed [29] investigated the response of 
flexible rotor-bearing system using two cases the first is supercritical and 
the second is subcritical. They used four methods to evaluate the system 
response which are, first, second and third order bearing coefficient and 
direct solution of Reynolds equation using FDM. Their results show that 
the four methods produce the same results before the threshold speed 
limit. However, there is considerable deviations between these methods 
higher than the threshold speed. This deviation is more persistent in case 
of subcritical bifurcation regions. 

Smolík et al. [39] investigated the stability of rotor-bearing system in 
which the bearing type is journal bearings. They used four approaches to 
evaluate the hydrodynamics forces which are infinitely short bearing 
(ISB) approximation, finite length journal bearing approximate solution 
based on short bearing analysis (ISCOR), finite difference method and 
finite element method. They concluded that ISCOR is not recommended 
in evaluating the system threshold stability. Chasalevris et al. [40] 
investigated. Stability and Hopf bifurcations in rotor-bearing- 
foundation systems of turbines and generators. They used Hopf bifur
cation theory for investigating the rotor stability. Wang and Khonsari 
[41] investigated the effect of rotor stiffness on the bifurcation region of 
a flexible rotor. They also used Hopf bifurcation theory to investigate the 
rotor stability. In another publication [42], they investigated the bearing 
stability while considering turbulent effects on the bearings. Wang and 
Khonsari [43] introduced a method for Predicting of the stability en
velope of rotor-bearing systems. 

The previous literature shows the importance of finding an accurate 
close form solution to the problem of finite-length bearings, because 
such solution will inherently speed up the dynamical analysis solution 
and enables deeper understanding of the dynamical system. This moti
vates the authors of this paper to investigate a new method to approx
imate the nonlinear bearing forces in case of finite length bearings. After 
this introduction, the steps of the present analysis and the flexible rotor- 
bearing model are presented in the analytical section. Then, the verifi
cation results and the validity range of the present method are discussed 
in the results Section. Finally, the main findings of the present analysis 
are listed in the conclusion Section. 

Nomenclature 

c the radial clearance [m] 
CXX, CYX, CXY, CYY the bearing damping coefficients 
e the eccentricity between the rotor center and the bearing 

center [m] 
Fx, Fy the forces resulted from the oil film pressure in x and y 

directions [N] 
FX, FY dimensionless bearing forces components FX =

Fx
W =

FX
W
,

FY =
Fy
W = FY

W 
h the oil film thickness [m] 
H the dimensionless oil film height H = h

c 
ks the rotating shaft lateral stiffness [N/m] 
KS dimensionless shaft stiffness KS = ks c

W 
m the total mass of the disc and the shaft m = md + 2mj [kg] 
md disc mass and shaft around it [kg] 
mj mass of the journal and shaft around it [kg] 
M dimensionless mass M = m c Ω2

W 

Mth threshold mass Mth =
m c Ω2

th
W 

p the oil film pressure [Pa] 
P the dimensionless pressure P =

p
6μΩ

( c
R
)2 

PP(X,Y) the dimensionless pressure at ∂H
∂τ = 0 

PX′ ,PY′ the dimensionless pressure gradients 
r the journal radius [m] 
R the bearing radius [m] 
S the Sommerfeld number S =

μΩrL
πW

( r
c
)2 

t the time [s] 
W the static applied load on the bearing [N] 
W the dimensionless load for finite bearing W =

L∕D
3π S 

xd, yd the geometrical center for the rotating disc 
xj, yj the geometrical center for the journal mass 
XJ, YJ the dimensionless position of the journal center 
X′

J,Y
′

J,X
′′
J ,Y

′′
J dimensionless velocities and accelerations of Journal 

center. 
z the coordinate in the axial direction [m] 
Z the dimensionless axial location Z = z

R 
ε eccentricity ratio ε = e/c 
θ the attitude angle [rad] 
μ the oil film viscosity [Pa s] 
τ the dimensionless time τ = Ωt 
ϕ the circumference coordinate [rad] 
Ω the angular velocity of the rotor [rad/s]  
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2. Analytical models 

2.1. Proposed approximation of journal bearing model 

The model used in this work is a full circular journal bearing as 
shown in Fig. 1-a. The pressure distribution of the oil film inside the 
journal bearing can be described by the differential Reynolds equation. 
To evaluate the bearing forces, this equation should be solved. 

The bearing center is Ob and the journal center is Oj. The oil film 
thickness is h and it is a function of eccentricity e, the circumference 
coordinate ϕ measured from the vertical line and the attitude angle θ, 
see Eq. (3). The bearing radius is R, the journal radius is r and the dif
ference between them is the radial clearance c = R − r. The angular 
velocity of the rotor is Ω. 

Assuming that the lubricant is Newtonian, isoviscous and incom
pressible, the Reynolds equation which describes the oil film pressure 
can be written as 

1
r2

∂
∂ϕ

(
h3

12μ
∂p
∂ϕ

)

+
∂
∂z

(
h3

12μ
∂p
∂z

)

=
Ω
2

∂(h)
∂ϕ

+
∂h
∂t
, (1)  

for which p, t, z are the pressure of the oil film, the time and the coor
dinate in the axial direction respectively, see Fig. 1b for axial co
ordinates. The oil film viscosity is represented by μ. The Reynolds 
equation Eq. (1) can be written in the dimensionless form as follows 

∂
∂ϕ

(

H3∂P
∂ϕ

)

+
∂

∂Z

(

H3∂P
∂Z

)

=
∂H
∂ϕ

+ 2
∂H
∂τ , (2)  

where the dimensionless height is H = h
c, the dimensionless pressure P =

p
6μΩ

( c
R
)2and the dimensionless axial location is Z = z

R as shown in Fig. 1- 
b. The dimensionless time is τ = Ωt. 

The dimensionless height H and its derivative with dimensionless 
time ∂H

∂τ can be written as 

H = 1 + εcos(ϕ − θ) = 1 + XJsinϕ + YJcosϕ, (3)  

∂H
∂τ = X′

Jsinϕ + Y ′

Jcosϕ, (4)  

for which XJ, YJ are the dimensionless position of the journal center. X′

J 

= ∂XJ
∂τ and Y′

J =
∂YJ
∂τ are the components of dimensionless velocity of 

journal center in x and y directions. 
As shown in Eqs. (2)–(4), the pressure distribution inside the journal 

bearing is dependent on four parameters P = f(XJ,YJ,X
′

J,Y
′

J). The first 
two parameters are for the position of journal center XJ, YJ and the 
remaining two parameters are for the velocity of journal center X′

J,Y
′

J. 
This pressure distribution can be approximated around the surface P =

f(XJ,YJ,X
′

J = 0,Y′

J = 0) by using Taylor expansion as 

P
(
XJ ,YJ ,X

′

J ,Y
′

J

)
=PP(XJ ,YJ)+

∂P
(
XJ ,YJ ,X

′

J ,Y
′

J

)

∂X ′

J

X′

J +
∂P

(
XJ ,YJ ,X

′

J ,Y
′

J

)

∂Y ′

J

Y ′

J

=PP(XJ ,YJ)+PX′ (XJ ,YJ)X
′

J +PY ′ (XJ ,YJ)Y
′

J ,

(5)  

for which PP(XJ,YJ) depends only on the position of the journal center 
and can be calculated using the direct solution of Reynolds Eq. (2) when 
∂H
∂τ = 0. PX′ and PY′ can be calculated by differentiation of Eq. (2) with 
respect to X′

J and Y′

J respectively, as follows 

∂
∂ϕ

(

H3∂PX′

∂ϕ

)

+
∂

∂Z

(

H3∂PX′

∂Z

)

= 2sinϕ, (6)  

∂
∂ϕ

(

H3∂PY ′

∂ϕ

)

+
∂

∂Z

(

H3∂PY ′

∂Z

)

= 2cosϕ. (7) 

The pressure gradients PX′ ,PY′ can be evaluated through integration 
of Eqs. (6)–(7). To solve Eqs. (2), (6)–(7), the bearing surface is dis
cretized as shown in Fig. 1-b, then integrated using finite difference 
method. By evaluation of PP,PX′ ,PY′ , the bearing forces can be evaluated 
using the relation 

FX =

∫ L
R

0

∫ 2π

0
− Psinϕ dϕ dZ

=

∫ L
R

0

∫ 2π

0
−
(
PP + PX′ X

′

J + PY ′ Y
′

J

)
sinϕ dϕ dZ = FXP + CXXX

′

J + CXY Y
′

J ,

(8)  

Fig. 1. Full circular journal bearing (a) schematic of the journal bearing coordinates (b) journal bearing mesh.  
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FY =

∫ L
R

0

∫ 2π

0
− Pcosϕ dϕ dZ

=

∫ L
R

0

∫ 2π

0
−
(
PP + PX′ X ′

J + PY ′ Y ′

J

)
cosϕ dϕ dZ = FYP + CYXX ′

J + CYY Y ′

J .

(9) 

Using Eqs. (8)–(9), we can find the following coefficients 

FXP =

∫ L
R

0

∫ 2π

0
− PPsinϕ dϕ dZ, (10)  

FYP =

∫ L
R

0

∫ 2π

0
− PPcosϕ dϕ dZ, (11)  

CXX =

∫ L
R

0

∫ 2π

0
− PX′ sinϕ dϕ dZ, (12)  

CYX =

∫ L
R

0

∫ 2π

0
− PX′ cosϕ dϕ dZ, (13)  

CXY =

∫ L
R

0

∫ 2π

0
− PY ′ sinϕ dϕ dZ, (14)  

CYY =

∫ L
R

0

∫ 2π

0
− PY ′ cosϕ dϕ dZ. (15) 

In this approach, the journal bearing surface is divided into number 
of points that covers all the possible rotor geometrical center locations 
XJ and YJ. The bearing forces FXP , FYP and the damping coefficients 
CXX, CYX, CXY, CYY are evaluated at these points. Then, polynomial sur
face fitting is used to evaluate the bearing forces as a function of XJ and 
YJ positions. The surface function FXP can be simply used to evaluate the 
journal equilibrium position at any load or eccentricity ratio accurately. 
Considering the fact that x1 = εsin(θ) and x3 = εcos(θ), the equilibrium 
position can be evaluated by equating FXP (x1, x3) = 0. Then, at any 

Fig. 2. Flow chart for present PFFLB analysis.  
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eccentricity ratio the attitude angle which validate FXP = 0 can be ob
tained using Newton-Raphson technique. Moreover,the corresponding 
FYP is the bearing load. Through the rest of the paper, this proposed 
method will be called polynomial fit-finite length bearing (PFFLB). A 
flow chart for the steps adopted in the PFFLB analysis is presented in  
Fig. 2. 

2.2. Dynamical model 

Here, the elastic rotor bearing model shown in Fig. 3 is selected to 
present the applicability of the proposed PFFLB journal bearing model. 
This elastic rotor bearing model consists of two equal journal masses mj 
and single disc mass md. These masses are allowed to move in x and y 
directions. Therefore, the model can be approximated as four-degree of 
freedom model. The disc is located in the middle of the rotor, therefore 
the disc gyroscopic effect can be ignored. 

The equations of motion for the elastic rotor bearing system can be 
described as follows: 

2mjẍj + ks
(
xj − xd

)
= − 2Fx,

2mjÿj + ks
(
yj − yd

)
= − 2Fy,

mdẍd + ks
(
xd − xj

)
= 0,

mdÿd + ks
(
yd − yj

)
= 2W,

(16)  

where Fx and Fy are the forces resulted from the oil film pressure in x and 
y directions respectively. The rotating shaft lateral stiffness is ks and the 
applied static load is 2W. The geometrical center for the journal mass is 
xj, yj and the geometrical center for the rotating disc is xd, yd and these 
positions are evaluated with respect to the journal bearing geometric 
center Ob in Fig. 3-a. The total mass of the disc and the shaft is m = md 
+ 2mj. Eq. (16) can be transformed to the dimensionless form as follows: 

2MJX′′
J + KS(XJ − XD) = − 2FX ,

2MJY ′′
J + KS(YJ − YD) = − 2FY ,

MDX′′
D + KS(XD − XJ) = 0,

MDY ′′
D + KS(YD − YJ) = 2,

(17)  

where XJ 

=
xj

c
, YJ =

yj

c
, XD =

xd

c
, YD =

yd

c
,

′

=
d
dτ,

′′ =
d2

dτ2, τ = Ωt,

X′′
J =

ẍj

Ω2c, Y′′
J =

ÿj

Ω2c, X′′
D = ẍd

Ω2c, Y′′
D =

ÿd
Ω2c, FX = Fx

W = FX
W
, FY =

Fy
W = FY

W
, KS =

ks c
W , MJ =

mjΩ2c
W , MD = mdΩ2c

W , for which W =
L∕D
3πS is the dimensionless 

load for finite bearing, S =
μΩrL
πW

( r
c
)2 is the Sommerfeld number. 

The following mass ratios are considered in the current paper  
MJ = 0.05M and MD = 0.9M for which M = m Ω2c

W is the total dimen
sionless mass of the rotor. Then, Eq. (17) can be written in the state space 
form as follows 

x′

1 = x2,

x′

2 =
Ks(x5 − x1)

2MJ
−

FX

MJ
,

x′

3 = x4,

x
′

4 =
Ks(x7 − x3)

2MJ
−

FY

MJ
,

x′

5 = x6,

x′

6 =
Ks(x1 − x5)

MD
,

x′

7 = x8,

x′

8 =
2 + Ks(x3 − x7)

MD
,

(18)  

where x1 

= XJ, x2 = X′

J, x3 = YJ, x4 = Y′

J, x5 = XD, x6 = X′

D, x7 = YD, x8 = Y′

D.

. 
Eq. (18) can be written as 

x′

= f(x, M), (19)  

where x = [ x1 x2 x3 x4 x5 x6 x7 x8 ]. Fourth/fifth Runge- 
Kutta direct numerical integration method is used to solve the coupled 
differential equations and to evaluate the response of the dynamical 
system Eq. (18). 

3. Results and discussions 

The results Section is divided into four main subsections. In the first 
subsection, the bearing mesh sensitivity and the number of points used 
to evaluate the force and damping coefficients are investigated. In the 
second subsection, the bearing forces and damping coefficients surface 
fit results are presented. Then, a perturbation analysis is presented to 
investigate the accuracy of the present model in evaluating the bearing 
nonlinear forces against that evaluated using direct solution of Reynolds 

Fig. 3. (a) Elastic rotor supported on two symmetric journal bearings. (b) Dimensionless bearing coordinates.  
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equation. In the last section, the present bearing model is used to analyze 
the dynamics of rotor supported in two symmetric journal bearings 
which is presented in the Section 2.2. Rotor- bearing stability analysis, 
numerical continuation and time response results are discussed. The 
bearing model adopted in the results section is based on L/D = 0.5 to 
allow the comparison of the results with short bearing results. However, 
the present analysis is not limited to specific L/D ratio. 

3.1. Effect of mesh size and data-points on the evaluated forces 

In this section, the effect of the mesh size used for solving the Rey
nolds equation on the evaluated force and damping coefficients are 
investigated. Also, the number of selected points, in the bearing domain, 
used to evaluate the fitting polynomial function is investigated. 

3.1.1. Effect of mesh size 
The mesh size used to solve the Reynolds equation is one of the 

important parameters. Very fine mesh results in computationally 
expensive solution and coarse mesh results in inaccurate solution. 

Therefore the effect of mesh size on the evaluated forces and damping 
coefficients are investigated. Four mesh sizes ranges from coarse to fine 
are selected as (20 × 90, 30 × 180, 100 × 400 and 200 × 800). The 
force components and the bearing coefficients are evaluated using these 
mesh sizes at two lines in the bearing physical domain (ε ∈ 0–1, 
θ ∈ 0–2π). The first line is selected at constant attitude angle of 
(θ = π∕6) and variable eccentricity ratio(ε ∈ 0–1). This is plotted in  
Fig. 4 (a, c) in the left column. The second line is evaluated at constant 
eccentricity ratio (ε = 0.5) and an attitude angle (θ ∈ 0–2π). This is 
plotted in Fig. 4 (b, d) in the right column. From the results of Fig. 4, it 
can be concluded that both mesh sizes of 100 × 400 and 200 × 800 
results are approximately coincident. Therefore, a mesh size of 
100 × 400 are considered during the present work. 

3.1.2. Effect of size of data points 
In the present analysis the physical journal bearing domain is dis

cretized into several points in both eccentricity ratio ε and attitude angle 
θ. At these points, the force and damping coefficients are evaluated using 
Eqs. (10)–(15). The effect of changing the number of points used to 

Fig. 4. Semi-log plot for the dimensionless force components FXP and FYP (a, b) and bearing coefficients (c, d) versus eccentricity ratio (a, c) and attitude angle (b, d). 
The Figure is prepared using four mesh sizes as (20 × 90, 30 × 180, 100 × 400 and 200 × 800). 
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create this dataset is investigated. This is done by using three datasets of 
size (19 × 24, 32 × 40 and 95 × 120). The computational time for 
evaluating these datasets are 1615, 4480 and 40,353 s respectively. 
These datasets are then processed to obtain the polynomial surface 
fitting for the force components and damping coefficients as will be 
shown in the following section. Here, fitting equations are evaluated 
based on different size of these datasets. The results of these obtained 
fitting equations are evaluated along with the original data-points in the 
domain (ε ∈ [0–0.95] and θ ∈ [0–2π]). Two line cases are selected, the 
first line case is at constant attitude angle of (θ = π/6) and ε ∈ [0–0.95]  
Fig. 5 left column and the second line case is at constant eccentricity 
ratio ε = 0.5 and θ ∈ [0–2π] Fig. 5 right column. Fig. 5 show that using 
datasets of 95 × 120 results in very close proximity between polynomial 
fitting and the original data results. It is worth noting that the fitting 
surface for each parameter is done in two steps, the first step is 
ε ∈ [0–0.8] and the second step is ε ∈ [0.8–0.95]. This is because the 
gradient of force is very steep in the boundaries of the clearance circle 
which make it difficult to reach a single polynomial to accurately fit the 
whole domain. 

3.2. Polynomial fit of bearing forces 

From the analytical section Eqs. (8)–(9), it can be found that the total 
bearing forces are functions in the state variables XJ,YJ,X

′

J,Y
′

J which 
represent the journal center position and velocity, respectively. In 
addition, the bearing forces depend on the bearing parameters such as 
the slenderness ratio L/D ratio and groove angle. In this section, the 
bearing forces FXP , FYP and the bearing damping coefficients CXX, 
CYX, CXY, CYY are evaluated at all possible journal geometrical center 
locations. These coefficients are evaluated for the ungrooved circular 
bearing with L/D = 0.5 and they are presented in Fig. 6. The surface 
polynomial fit for the bearing forces FXP , FYP and damping co
efficients CXX, CYX, CXY, CYY as functions of journal position are evalu
ated for the present case. The eccentricity ratio ε is divided into 95 
points and the circumference coordinate ϕ is divided into 120 points to 
perform 11,400 points as discussed in the previous section. Then the 
cartesian positions XJ = εsinϕ and YJ = εcosϕ are evaluated at each 
point. After that the bearing forces FXP , FYP and damping coefficients 

Fig. 5. Semi-log plot for the dimensionless force components FXP and FYP (a, b) and bearing coefficients (c, d) versus eccentricity ratio (a, c) and attitude angle (b, d). 
The Figure is prepared using the evaluated data (solid line) and the polynomial surface fit based on 95 × 120 points, 32 × 40 points and 19 × 24 points. 
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Fig. 6. Three dimensional plot for the bearing forces and damping coefficients data points and polynomial fitting surfaces (a) FXP , (b) FYP , (c) CXX, (d)CYY, (e) CXY, (f) 
CYX. The fitting polynomial surface are evaluated as functions of journal position XJ, YJ, for ungrooved circular bearing with L

D = 0.5. 
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Fig. 7. Semi-log plot for the dimensionless force components FX and FY versus Sommerfeld number. These forces are resulted from journal perturbation from the 
equilibrium position in X and Y directions for ungrooved journal bearing with L/D = 0.5 (a) (δX = 0.01, δX′

= 0.01, δY = 0.01 and δY ′

= 0.01), (b)(δX = 0.1, δX′

= 0.01, δY = 0.1 and δY ′

= 0.01) and (c) (δX = 0.1, δX′

= 0.1, δY = 0.1 and δY ′

= 0.1). 
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CXX, CYX, CXY, CYY are calculated at these 11,400 points. Then surface 
polynomial fits are used for these parameters as functions of the journal 
position. In addition, the surface fittings for these points and for each 
parameter are plotted in the same figure as shown in Fig. 6(a–f). The 
results of Fig. 6 show that both the surface fitting and data points are 
matched very well. The six polynomial surface equations for the two 
force components and the four damping parameters when ε ∈ [0–0.8] 

are listed in Appendix A. 

3.3. Force perturbation 

In this section, a perturbation analysis is done to investigate the 
accuracy of the proposed analysis in evaluating the nonlinear bearing 
forces. The results are evaluated based on three methods which are 
direct solution of Reynolds equation (RNL), linear bearing coefficients 
and the present PFFLB method. The results are evaluated for three 
perturbation cases from the equilibrium position as shown in Fig. 7 
which are (a) (δX = 0.01, δX′

= 0.01, δY = 0.01 and δY′

= 0.01), (b) 
(δX = 0.1, δX′

= 0.01, δY = 0.1 and δY′

= 0.01) and (c) (δX = 0.1,
δX′

= 0.1,δY = 0.1 and δY′

= 0.1). The figure results show that at low 
perturbations the forces evaluated using all the four methods are 
approximately the same as shown in Fig. 7 (a). The figure results show 
that for the investigated cases the PFFLB results are closer to RNL results 
compared with linear bearing coefficients method. In case (b) smaller 
velocity perturbation is used compared with that used in case (c). 
Comparing case(b) and case (c) results, the reader can realize that the 
deviation of the present PFFLB from RNL increases in case (c). However, 
the final evaluated forces are better than that based on traditional linear 
bearing coefficients. 

3.4. Dynamical results 

3.4.1. Stability analysis 
In this section, the stability analysis of the elastic Jeffcott rotor- 

bearing system, which is shown in Fig. 3, is investigated. At the begin
ning, the Hopf bifurcation of the autonomous dynamical system, which 
is presented in Eq. (18), is studied using the proposed PFFLB approxi
mation of bearing forces for ungrooved bearing with L/D = 0.5. The 
same case is solved based on infinitely short bearing (ISB) approxima
tion, see for example [8,44]. Both solutions are compared together. 

From Eq. (18), it can be realized that the parameters which influence 
the present dynamical system are the dimensionless mass M, the 
dimensionless stiffness Ks and Sommerfeld number S. Therefore, the 
dynamical system Eq. (19) can be written as ẋ = f(x, M, S,Ks). 

The Hopf bifurcation of the dynamical system which is modeled by 
Eq. (18), is investigated using numerical continuation. When Hopf 
bifurcation occurs, limit cycle starts to be formed and numerical 
continuation can also be used for the identification of whether these 
limit cycles are stable or not. Here, continuation analysis is performed 
using MATCONT toolbox which is written using MATLAB software [45]. 
Initially, the equilibrium position is identified at conditions below the 
threshold speed for a specific condition with constant Sommerfeld 
number S and dimensionless stiffness Ks. Then, one variable M contin
uation is performed to evaluate the Hopf bifurcation point. After that, 
the Hopf bifurcation line is identified using two parameters (M, S)
continuation analysis and at constant Ks. The type of Hopf bifurcation 
whether supercritical or subcritical can be identified using the MAT
CONT toolbox based on the first coefficient of Lyapunov exponent. 
When the first coefficient of Lyapunov has positive sign, the bifurcation 
type is subcritical Hopf bifurcation and when the first coefficient of 
Lyapunov has negative sign, the bifurcation type becomes supercritical 
Hopf bifurcation. Fig. 8 a, b show the results of Hopf bifurcation analysis 
for flexible rotor model using PFFLB and ISB methods respectively. The 
vertical axis of the figure represents the threshold mass M and the 
horizontal axis represents the Sommerfeld number. The stability results 
are evaluated using several values of dimensionless shaft stiffness co
efficients ranges from Ks ∈ [0.5–100] which covers the range between 
flexible to rigid rotor. As presented in Fig. 8 a and b, there is a good 
agreement between the stability results that obtained based on the 
polynomial approximation and that obtained based on short bearing 
approximation at L/D = 0.5. Fig. 8-c presents the results of selected case 
of KS = 4. For this case, the stability curve for the dynamical system is 

Fig. 8. Flexible rotor-bearing stability curves: (a) Threshold dimensionless- 
mass versus Sommerfeld No. analysis based on PFFLB at L/D = 0.5. (b) 
Threshold dimensionless mass versus Sommerfeld No. based on ISB. (c) 
Threshold mass versus Sommerfeld No. for KS = 4 based on PFFLB, ISB and 
bearing linear coefficients. 
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evaluated using three methods. In these methods the bearing forces are 
evaluated using PFFLB, ISB and first order bearing coefficients [29]. The 
results show that the values of the threshold speed evaluated based on 
present PFFLB are very close to that evaluated based bearing coefficients 
and there is minor deviations from that evaluated based on ISB 
approximation. 

3.4.2. Continuation results 
In this section, the dynamics of the flexible rotor supported on two 

symmetric journal bearings are investigated using numerical continua
tion. The dynamical model equations of motion in Eq. (18) are used for 
the continuation analysis. The PFFLB and ISB approximations for 
bearing forces are used for the continuation analysis. Continuation 
analysis is performed using the MATCONT toolbox [45] in MATLAB 
language. 

Fig. 9. Continuation results of the dynamic model using present PFFLB force approximation, Ks = 4, L∕D = 0.5, using different Sommerfeld numbers (a) S = 2.5 ( 
first column), (b) S = 0.7 (second column), (c) S = 0.25 (third column). The 3D presentation of limit cycles is shown first row, section plot of the limit cycles is 
displayed in the second row and the top view of the limit cycles is displayed in the third row. 
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Using the continuation analysis, the equilibrium point is initially 
identified numerically at a point below the threshold speed with con
stant Sommerfeld number S and dimensionless stiffness Ks. Then, the 
threshold mass is identified by applying one variable M continuation 
analysis where the threshold mass represents the commence of Hopf 
bifurcation. From the Hopf bifurcation point, the rotor dynamics are 
investigated using the limit cycle continuation analysis. Fig. 9 and  
Fig. 10 represent the limit cycle continuation analysis for Ks = 4 and 
Sommerfeld numbers S = 2.5, 0.7 and 0.25 (different static loads). In 

Fig. 9, the continuation analysis is based on PFFLB force approximation. 
Fig. 10 displays the results using ISB approximation. The results of both 
figures show that the continuation results of the limit cycles based on 
both PFFLB and ISB force approximation are similar. 

The continuation analysis is applied at three different values of 
Sommerfeld number and at constant rotor stiffness as shown in Fig. 9 
and Fig. 10 respectively. In Both Figs. 9, 10, the first column and the 
third column represent subcritical bifurcations at S = 2.5 (Case a), 
S = 0.25 (case c) respectively. This can be identified by the unstable 

Fig. 10. Continuation results of the dynamic model using ISB approximation, Ks = 4, and using different Sommerfeld numbers (a) S = 2.5 ( first column), (b) S = 0.7 
(second column), (c) S = 0.25 (third column). The 3D presentation of limit cycles is shown first row, section plot of the limit cycles is displayed in the second row and 
the top view of the limit cycles is displayed in the third row. 
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Fig. 11. Orbit plots of the journal center at different operating points, I, II, III and IV. For all cases PFFLP is shown in the first column, ISB is shown in the second and 
RNL is shown in the last column, Ks = 4; Init = [XJ0 0 YJ0 0.1 XD0 0 YD0 0.1] for which XJ0, YJ0, XD0, YD0 are the equilibrium positions for the journal and central disc 
respectively. 
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limit cycles growth with the decrease of the non-dimensional mass M. 
However, for case b in the second column of Figs. 9, 10 a stable limit 

cycle is shown with the increase of the non-dimensional mass M above 
the Hopf bifurcation point at M = (7.48,7.391) respectively. At M =
(8.09,7.959) in Figs. 9, 10 respectively, a limit cycle point is detected 
where the stable limit cycle converts to unstable limit cycle. It is worth 
noting that these limit cycles represent the basin of attraction for the 
journal center. 

For unstable limit cycles if the initial condition is inside the basin of 
attraction, the solution will be attracted to the equilibrium point or limit 
cycle. Meanwhile, the solution will diverge if the initial condition is 
located out the basin of attraction. For stable limit cycles, the solution 
will be attracted to these limit cycles whether the initial condition is 
inside or outside the basin of attraction. 

3.4.3. Time response results 
In this section, selected orbit plots of the dynamical system shown in 

Eq. (18) are investigated. These orbit plots are displayed in Fig. 11. 
Three models of the bearing forces are used in this section. The first 
model is using PFFLP and shown in the first column. The ISB is the 
second model, and it is displayed in the middle column. The last model is 
the Reynolds nonlinear bearing model (RNL). Finite difference method 
with mesh 180 × 30 is used in the solution of this model. The RNL model 
results are presented in the last column. Four cases are selected to 
investigate the orbit plots of the journal center. These cases are shown in 
Fig. 8 (c) with points I, II, III and IV. All the cases are investigated at 
constant L/D = 0.5 and Ks = 4. Cases I and III are below the threshold 
speed and cases II and IV are above the threshold speed. Cases I and II 
are in the supercritical Hopf bifurcation region and cases III and IV are in 
the subcritical Hopf bifurcation region according to both PFFLP and ISB 
bearing models. The initial conditions for all response results are[XJ0 
0 YJ0 0.1 XD0 0 YD0 0.1] for which XJ0, YJ0, XD0, YD0 are the equilibrium 
positions for the journal and central disc respectively. 

The first row displays the results of case I for which S = 0.7 and M =
7. As shown in Fig. 11, the three models of bearing forces give similar 
results for case I. Case II is displayed in the second row of Fig. 11 where 
S = 0.7 and M = 7.6. Both PFFLP and ISB bearing force analyses give 
stable limit cycles as shown in the first two columns of the second row of 
Fig. 11. RNL analysis of case II gives initially similar limit cycle which 
then grows to a larger limit cycle. 

Case III is introduced in the third row of Fig. 11 for which S = 0.25 
and M = 8.5. In case III, RNL and PFFLP give similar orbit plots where 
the journal center is stabilized in the equilibrium position. The orbit plot 
based on ISB for case III is stabilized in longer time where the threshold 
speed based on ISB is less than the threshold speed based on both PFFLP 
and RNL as shown in Fig. 8-c. 

The last row of Fig. 11 displays the orbit plot of case IV where 

S = 0.25 and M = 10.2. This case is subcritical Hopf bifurcation based 
on both PFFLP and ISB. The orbit plots of case IV show unstable limit 
cycles using the three models. Table 1 displays the calculation time for 
the four cases investigated. Runge-Kutta ODE45 MATLAB function is 
used in the solution of the dynamic system equations. As observed in 
Table 1, RNL requires larger computational time compared with PFFLP 
and ISB. ISB model shows the shortest computational time in cases I, II 
and III. For case IV, PFFLP model records smaller computational time 
compared with ISB. In case IV, the solution based on ISB is reached near 
the clearance circle before the solutions based on PFFLP and RNL 
because ISB has lower threshold speed at S = 0.25. Near the clearance 
circle the stiffness of the oil film becomes very high and this leads to 
longer computational time which explains why ISB requires longer time 
in case IV. 

In general, the computational time for PFFLP method is relatively 
larger than that of ISB. However, PFFLP model has more advantage in 
that it can be used to model any bearing whether short, finite or long 
bearings. In addition, PFFLP method can be used for modeling the cases 
grooved and un-grooved bearing. 

4. Conclusion 

The present paper introduces a new analysis to evaluate the bearing 
non-linear forces. This analysis is introduced as start to solve the 
drawbacks of evaluating the bearing forces based on bearing coefficients 
where these coefficients are evaluated in the vicinity of the bearing 
static equilibrium position. In the bearing coefficient method, the so
lution accuracy is reduced above the threshold speed because limit cy
cles are started to form. Although the accuracy of coefficient method can 
be increased by increasing the order of coefficient but still a reasonable 
reduction in accuracy is monitored with increase of the size of the limit 
cycle and the journal center becomes far away from the equilibrium 
point. 

In the present method, polynomial functions are evaluated to cover 
the bearing forces on all possible journal center locations. This enables 
more accurate evaluation of the bearing forces in any location. 
Furthermore, this analysis is possible for short, finite and long bearings. 
Moreover, the results of present polynomial fit-finite length bearing 
(PFFLP) method consume less computational time compared with RNL 
method while solving rotor-bearing dynamics as shown in Table 1. The 
limitation of the present model is that the polynomial fitting equations 
are suitable for a specific bearing geometry. Changing the bearing L/D 
ratio or adding internal grooves requires reevaluating of the polynomial 
function. However, for the same bearing geometry the polynomial 
equations are valid for different loading conditions. Moreover, The 
analysis can not be used for mixed and boundary lubrication conditions 
when the bearing supposed to contact with the journal clearance circle. 
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Appendix A. Polynomial fit equations 

The fitting equation for the bearing forces FXP, FYP and four damping coefficients, CXX, CYX, CXY and CYY in terms of x = XJ, y = YJ are given by, 

Table 1 
Computational time for numerical integration and evaluation of the time 
response results.  

Case S M τ Calculation time (s)     

PFFLP ISB RNL 

I  0.7 7  1000 1.248 0.786 431.77 
II  0.7 7.6  3000 10.133 2.617 3444.32 
III  0.25 8.5  1000 1.98 0.712 367.2 
IV  0.25 10.2  5700 27.164 77.917 6913.64  
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FXP = 0.07624 x12 + 4.508 x11 y + 11.39 x11 − 1.093 x10 y2 − 2.17 x10 y − 0.1189 x10 + 2.44 x9 y3 + 60.6 x9 y2 − 7.71 x9 y
− 14.44 x9 − 0.3763 x8 y4 − 13.02 x8 y3 + 1.7 x8 y2 + 2.179 x8 y + 0.06595 x8 + 3.735 x7 y5 + 117.0 x7 y4 − 2.871 x7 y3

− 62.55 x7 y2 + 4.931 x7 y + 8.579 x7 + 1.866 x6 y6 − 25.92 x6 y5 − 0.3252 x6 y4 + 11.34 x6 y3 − 0.8481 x6 y2 − 1.272 x6 y
− 0.01277 x6 − 1.367 x5 y7 + 117.7 x5 y6 − 1.262 x5 y5 − 90.0 x5 y4 + 0.798 x5 y3 + 27.98 x5 y2 − 1.442 x5 y − 2.019 x5

+3.041 x4 y8 − 26.21 x4 y7 − 2.234 x4 y6 + 16.5 x4 y5 + 0.6755 x4 y4 − 4.836 x4 y3 + 0.1704 x4 y2 + 0.08377 x4 y
+0.003298 x4 + 1.814 x3 y9 + 56.37 x3 y8 + 0.357 x3 y7 − 59.24 x3 y6 + 0.03698 x3 y5 + 26.51 x3 y4 + 0.103 x3 y3

− 4.502 x3 y2 + 0.2089 x3 y + 0.5728 x3 + 1.677 x2 y10 − 13.19 x2 y9 − 1.708 x2 y8 + 10.9 x2 y7 + 0.8439 x2 y6

− 4.566 x2 y5 − 0.1403 x2 y4 + 0.2623 x2 y3 + 0.01757 x2 y2 − 0.1863 x2 y + 0.004552 x2 − 0.06636 x y11

+11.47 x y10 + 0.181 x y9 − 14.56 x y8 − 0.2714 x y7 + 8.75 x y6 + 0.1005 x y5 − 2.075 x y4 − 0.03111 x y3 + 0.6063 x y2

− 0.007499 x y + 0.009583 x − 0.01959 y12 − 2.364 y11 − 0.004447 y10 + 2.428 y9 + 0.008009 y8 − 1.329 y7 − 0.0102 y6

+0.08139 y5 − 0.0006003 y4 − 0.1667 y3 − 0.00164 y2 − 0.1192 y + 3.103e − 7,

(A.1)  

FYP = − 11.05 x12 − 0.6737 x11 y + 2.435 x11 − 16.64 x10 y2 + 5.316 x10 y + 21.96 x10 + 6.387 x9 y3 + 10.61 x9 y2 + 0.5989 x9 y
− 2.482 x9 − 26.65 x8 y4 + 54.95 x8 y3 + 24.32 x8 y2 − 4.709 x8 y − 16.82 x8 − 4.763 x7 y5 + 27.43 x7 y4 − 5.768 x7 y3

− 8.834 x7 y2 − 0.08673 x7 y + 1.345 x7 − 16.9 x6 y6 + 111.0 x6 y5 + 29.86 x6 y4 − 55.83 x6 y3 − 12.24 x6 y2 + 2.835 x6 y
+6.257 x6 + 3.039 x5 y7 + 22.37 x5 y6 + 3.012 x5 y5 − 17.21 x5 y4 + 1.658 x5 y3 + 3.906 x5 y2 − 0.03161 x5 y − 0.0801 x5

− 13.05 x4 y8 + 116.8 x4 y7 + 17.04 x4 y6 − 86.48 x4 y5 − 11.51 x4 y4 + 25.57 x4 y3 + 2.43 x4 y2 − 0.4715 x4 y − 1.184 x4

+4.952 x3 y9 + 8.553 x3 y8 − 2.669 x3 y7 − 8.348 x3 y6 − 0.03276 x3 y5 + 4.226 x3 y4 − 0.05424 x3 y3 − 0.2381 x3 y2

+0.02981 x3 y + 0.1628 x3 + 7.901 x2 y10 + 49.81 x2 y9 − 0.8073 x2 y8 − 54.93 x2 y7 − 1.562 x2 y6 + 24.59 x2 y5

+1.677 x2 y4 − 4.266 x2 y3 + 0.005071 x2 y2 + 0.3172 x2 y + 0.1369 x2 + 7.568 x y11 − 3.267 x y10 − 7.186 x y9

+2.128 x y8 + 3.245 x y7 − 0.5304 x y6 − 0.2658 x y5 − 0.04752 x y4 + 0.1502 x y3 + 0.07727 x y2 + 0.05167 x y + 0.09831 x
+0.9013 y12 + 10.5 y11 − 0.7346 y10 − 13.54 y9 + 0.1165 y8 + 8.197 y7 + 0.1423 y6 − 1.996 y5 − 0.02657 y4 + 0.567 y3

+0.01282 y2 + 0.008132 y + 0.0005587,

(A.2)  

CXX = 177.2 x12 + 231.6 x11 y − 4.85 x11 + 872.5 x10 y2 + 1.796 x10 y − 238.7 x10 + 1222.0 x9 y3 − 26.34 x9 y2

− 519.6 x9 y + 9.187 x9 + 1634.0 x8 y4 + 13.1 x8 y3 − 911.3 x8 y2 − 3.647 x8 y + 139.1 x8 + 2386.0 x7 y5 − 7.116 x7 y4

− 2148.0 x7 y3 + 32.32 x7 y2 + 428.7 x7 y − 6.448 x7 + 1579.0 x6 y6 − 5.404 x6 y5 − 1220.0 x6 y4 − 10.06 x6 y3

+378.6 x6 y2 + 2.45 x6 y − 33.36 x6 + 2363.0 x5 y7 + 12.55 x5 y6 − 3157.0 x5 y5 − 1.75 x5 y4 + 1308.0 x5 y3

− 12.29 x5 y2 − 172.8 x5 y + 2.061 x5 + 738.3 x4 y8 − 1.204 x4 y7 − 731.3 x4 y6 + 6.304 x4 y5 + 311.2 x4 y4

+1.502 x4 y3 − 51.87 x4 y2 − 0.6299 x4 y + 6.162 x4 + 1157.0 x3 y9 + 23.64 x3 y8 − 2075.0 x3 y7 − 22.14 x3 y6

+1282.0 x3 y5 + 6.615 x3 y4 − 346.7 x3 y3 + 1.229 x3 y2 + 33.03 x3 y − 0.2878 x3 + 125.9 x2 y10 + 1.089 x2 y9

− 132.9 x2 y8 + 1.447 x2 y7 + 69.36 x2 y6 − 1.891 x2 y5 − 12.06 x2 y4 + 0.3594 x2 y3 + 4.222 x2 y2 + 0.06411 x2 y
+0.7774 x2 + 229.3 x y11 + 6.496 x y10 − 512.0 x y9 − 10.57 x y8 + 421.4 x y7 + 6.252 x y6 − 170.1 x y5 − 1.565 x y4

+32.69 x y3 + 0.1172 x y2 − 4.247 x y + 0.01662 x − 5.304 y12 − 0.01646 y11 + 15.82 y10 + 0.1838 y9 − 13.83 y8

− 0.2268 y7 + 6.189 y6 + 0.1314 y5 − 0.8599 y4 − 0.02268 y3 + 0.3956 y2 + 0.004385 y + 0.237,

(A.3)  

CXY = − 95.5 x12 + 157.4 x11 y + 0.4255 x11 − 609.2 x10 y2 + 61.96 x10 y + 221.4 x10 + 956.9 x9 y3

− 18.91 x9 y2 − 216.7 x9 y − 0.2467 x9 − 639.0 x8 y4 + 13.2 x8 y3 + 985.9 x8 y2 − 92.96 x8 y − 187.1 x8

+1941.0 x7 y5 + 6.846 x7 y4 − 1104.0 x7 y3 + 22.78 x7 y2 + 134.1 x7 y − 0.1764 x7 − 121.9 x6 y6 + 53.21 x6 y5

+600.7 x6 y4 − 18.47 x6 y3 − 536.4 x6 y2 + 50.0 x6 y + 77.4 x6 + 1905.0 x5 y7 + 17.89 x5 y6 − 1646.0 x5 y5

− 14.57 x5 y4 + 511.3 x5 y3 − 8.21 x5 y2 − 36.35 x5 y + 0.1524 x5 + 579.3 x4 y8 − 6.85 x4 y7 − 456.5 x4 y6

− 23.18 x4 y5 − 29.54 x4 y4 + 4.619 x4 y3 + 111.3 x4 y2 − 11.44 x4 y − 15.13 x4 + 905.8 x3 y9 + 27.55 x3 y8

− 1047.0 x3 y7 − 22.82 x3 y6 + 489.3 x3 y5 + 9.067 x3 y4 − 90.65 x3 y3 + 0.7291 x3 y2 + 7.016 x3 y − 0.02406 x3

+431.4 x2 y10 + 23.4 x2 y9 − 749.3 x2 y8 − 12.97 x2 y7 + 408.1 x2 y6 + 6.482 x2 y5 − 81.94 x2 y4 + 0.0493 x2 y3

− 2.534 x2 y2 + 1.062 x2 y + 2.016 x2 + 177.1 x y11 + 7.842 x y10 − 251.0 x y9 − 9.557 x y8 + 154.2 x y7

+4.957 x y6 − 41.58 x y5 − 1.124 x y4 + 7.612 x y3 + 0.1089 x y2 + 0.3236 x y + 0.01035 x + 117.1 y12 + 0.4667 y11

− 259.0 y10 − 1.27 y9 + 212.2 y8 + 0.6678 y7 − 85.08 y6 − 0.2162 y5 + 16.28 y4 − 0.02 y3 − 2.059 y2 − 0.01685 y − 0.0001855,

(A.4)  

CYX = 177.2 x12 + 231.6 x11 y − 4.85 x11 + 872.5 x10 y2 + 1.796 x10 y − 238.7 x10 + 1222.0 x9 y3

− 26.34 x9 y2 − 519.6 x9 y + 9.187 x9 + 1634.0 x8 y4 + 13.1 x8 y3 − 911.3 x8 y2 − 3.647 x8 y + 139.1 x8

+2386.0 x7 y5 − 7.116 x7 y4 − 2148.0 x7 y3 + 32.32 x7 y2 + 428.7 x7 y − 6.448 x7 + 1579.0 x6 y6 − 5.404 x6 y5

− 1220.0 x6 y4 − 10.06 x6 y3 + 378.6 x6 y2 + 2.45 x6 y − 33.36 x6 + 2363.0 x5 y7 + 12.55 x5 y6 − 3157.0 x5 y5

− 1.75 x5 y4 + 1308.0 x5 y3 − 12.29 x5 y2 − 172.8 x5 y + 2.061 x5 + 738.3 x4 y8 − 1.204 x4 y7 − 731.3 x4 y6

+6.304 x4 y5 + 311.2 x4 y4 + 1.502 x4 y3 − 51.87 x4 y2 − 0.6299 x4 y + 6.162 x4 + 1157.0 x3 y9 + 23.64 x3 y8

− 2075.0 x3 y7 − 22.14 x3 y6 + 1282.0 x3 y5 + 6.615 x3 y4 − 346.7 x3 y3 + 1.229 x3 y2 + 33.03 x3 y − 0.2878 x3

+125.9 x2 y10 + 1.089 x2 y9 − 132.9 x2 y8 + 1.447 x2 y7 + 69.36 x2 y6 − 1.891 x2 y5 − 12.06 x2 y4

+0.3594 x2 y3 + 4.222 x2 y2 + 0.06411 x2 y + 0.7774 x2 + 229.3 x y11 + 6.496 x y10 − 512.0 x y9 − 10.57 x y8

+421.4 x y7 + 6.252 x y6 − 170.1 x y5 − 1.565 x y4 + 32.69 x y3 + 0.1172 x y2 − 4.247 x y + 0.01662 x − 5.304 y12

− 0.01646 y11 + 15.82 y10 + 0.1838 y9 − 13.83 y8 − 0.2268 y7 + 6.189 y6 + 0.1314 y5 − 0.8599 y4 − 0.02268 y3

+0.3956 y2 + 0.004385 y + 0.237;

(A.5)  
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CYY = − 95.5 x12 + 157.4 x11 y + 0.4255 x11 − 609.2 x10 y2 + 61.96 x10 y + 221.4 x10 + 956.9 x9 y3

− 18.91 x9 y2 − 216.7 x9 y − 0.2467 x9 − 639.0 x8 y4 + 13.2 x8 y3 + 985.9 x8 y2 − 92.96 x8 y − 187.1 x8 + 1941.0 x7 y5

+6.846 x7 y4 − 1104.0 x7 y3 + 22.78 x7 y2 + 134.1 x7 y − 0.1764 x7 − 121.9 x6 y6 + 53.21 x6 y5 + 600.7 x6 y4

− 18.47 x6 y3 − 536.4 x6 y2 + 50.0 x6 y + 77.4 x6 + 1905.0 x5 y7 + 17.89 x5 y6 − 1646.0 x5 y5 − 14.57 x5 y4

+511.3 x5 y3 − 8.21 x5 y2 − 36.35 x5 y + 0.1524 x5 + 579.3 x4 y8 − 6.85 x4 y7 − 456.5 x4 y6 − 23.18 x4 y5

− 29.54 x4 y4 + 4.619 x4 y3 + 111.3 x4 y2 − 11.44 x4 y − 15.13 x4 + 905.8 x3 y9 + 27.55 x3 y8 − 1047.0 x3 y7

− 22.82 x3 y6 + 489.3 x3 y5 + 9.067 x3 y4 − 90.65 x3 y3 + 0.7291 x3 y2 + 7.016 x3 y − 0.02406 x3 + 431.4 x2 y10

+23.4 x2 y9 − 749.3 x2 y8 − 12.97 x2 y7 + 408.1 x2 y6 + 6.482 x2 y5 − 81.94 x2 y4 + 0.0493 x2 y3 − 2.534 x2 y2

+1.062 x2 y + 2.016 x2 + 177.1 x y11 + 7.842 x y10 − 251.0 x y9 − 9.557 x y8 + 154.2 x y7 + 4.957 x y6 − 41.58 x y5

− 1.124 x y4 + 7.612 x y3 + 0.1089 x y2 + 0.3236 x y + 0.01035 x + 117.1 y12 + 0.4667 y11 − 259.0 y10 − 1.27 y9

+212.2 y8 + 0.6678 y7 − 85.08 y6 − 0.2162 y5 + 16.28 y4 − 0.02 y3 − 2.059 y2 − 0.01685 y − 0.0001855,

(A.6)  
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