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ABSTRACT 

Celiac disease (CD) is an autoimmune enteropathy induced by the ingestion of gluten in genetically predisposed 

individuals who carry the HLA-DQ2 or -DQ8 alleles. The immune response is abnormal in celiac disease with small 

intestinal epithelial damage via CD8+CD4- intraepithelial lymphocytes. The etiology is multifactorial involving genetic 

and environmental factors, an abnormal immune response, and intestinal dysbiosis. The innate and acquired T-cell 

mediated immunity play important roles in the pathogenesis of this disease, particularly CD4+ Th17 cells, which have 

been shown to have critical functions in host defense against bacterial pathogens and in the inflammatory responses to 

deamidated gluten peptides. We review what is known about the interaction between immune system and intestinal 

microbiota in the pathogenesis of celiac disease.  
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Introduction  

  
1 Celiac disease (CD) is a chronic autoimmune 

disorder induced by the ingestion of gluten 

proteins of wheat (gliadins) and other related 

cereals (rye and barley) proteins (hordeins and 

secalins) in genetically predisposed individuals 

(1). This autoimmune disorder affects the small 

bowel and often produces symptoms as diarrhea, 

malabsorption, and extraintestinal symptoms (1). 

The HLA locus is the main genetic influence. For 

example the HLA-DQA1*05:01 and DQB1*02:01 

alleles forming the particular DQ2.5 haplotype 

confer high susceptibility to CD (2). A recent 

study also reveals that the HLA-DQ2 genotype 
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strongly influences the intestinal colonization of 

infants at family risk of developing CD. Infants 

with high genetic risk of developing the disease 

(HLA-DQ2 carriers) show reduced abundance of 

Actinobacteria (Bifidobacterium species) and 

increased abundance of Firmicutes (3). The typical 

histological features of CD include atrophy of the 

small intestinal villi, hyperplasia of the crypts, and 

a marked infiltration of the lamina propria and 

intraepithelial compartments with inflammatory 

cells (4).  

The prevalence of CD in adults in the United 

States ranges from 0.7% to 2.3%, and 1.3% in 

Italian school-age children (5). In addition, several 

studies have shown that, despite a prevalence 

comparable to those of European nations, CD 

remains underdiagnosed in the United States (6,7). 
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The only treatment for CD is lifelong adherence to 

a gluten-free diet. It has been demonstrated to 

improve the symptoms, reduce the risk of 

malignancy, and impart other health benefits such 

as an improvement in bone mineral density (8,9).  

Recently, oats have been receiving increasing 

interest as food to celiac patients. The 

incorporation of oats into a gluten-free diet 

provides high fiber and vitamin B. However, it is 

recommended that individuals with CD should 

have both initial and long-term assessments by a 

health professional when introducing pure oats 

into a gluten-free diet (10). Real A et al., indicates 

that some cultivars of oats can be a safe part of a 

gluten free diet suggesting that there is wide range 

of variation of potential immunotoxicity of oat 

cultivars (11). 

 

Immunopathology of celiac disease 

and role of IL-17 

 

It is well known that innate and acquired T-cell 

mediated immunity play important roles in the 

pathogenesis of the disease. In CD, the T-cell 

mediated adaptive response is mediated by CD4+ 

Th1 lymphocytes in the lamina propria. 

Deamidated gluten peptides are presented to 

CD4+ Th cells with subsequent release of 

inflammatory cytokines. We know that the lamina 

propria of the small intestine contains large 

numbers of two homeostatically regulated and 

developmentally related populations of CD4 T 

cells, IL-17+ helper Th17 cells and Foxp3+ 

regulatory T cells (Treg) (14-15). Th17 cells 

produce the cytokines IL-17 (also known as IL-

17A), IL-17F, and IL-22. Among these, IL-17 has 

been the most thoroughly studied and is 

considered the signature effector cytokine for this 

subset. In humans and mice, the IL-17 cytokine 

family consists of six members: IL-17A (also 

referred to as IL-17), IL-17B, IL-17C, IL-17D, IL-

17E (also known as IL-25) and IL-17F (16-18).  

Similar to Th1 or Th2 cells, in vivo, differentiation 

of naıve CD4+ T cells into Th17 cells requires T 

cell receptor recognition of its cognate antigen 

presented on major histocompatibility complex 

(MHC) class II by professional antigen-presenting 

cells (APCs), such as dendritic cells (Dcs).  

 Th17 cell differentiation in vitro from naïve T 

cells requires furthermore, the coordinated action 

of multiple cytokines including TGF-β (17-20) 

and also has been proved in vivo, that certain 

bacterial species are potent immune stimulators 

(21,22). 

Functionally, IL-17A participates in inflammatory 

responses inducing neutrophil granulopoiesis by 

stimulating epithelial cells to secrete granulocyte 

colony-stimulating factor (G-CSF). Furthermore, 

IL-17A and IL-17F can directly recruit and 

activate neutrophil cellular responses at sites of 

inflammation (14). Given the expanding roles of 

IL-17A and IL-22 in mediating innate barrier 

responses, it is not surprising that the IL-17A IL-

22 axis is emerging as a central element of 

mucosal immunity to microbial challenge. In fact, 

Th17 cells have been shown to have critical 

functions in host defense against bacterial and 

fungal pathogens, particularly those encountered 

at mucosal surfaces (23-25). Recent studies 

confirmed that mucosal IL-17A response was 

elevated at the late stage of CD when villous 

atrophy has developed. Mucosal IL-17A displayed 

elevated expression in children with untreated CD 

when compared to GFD-treated children and 

children with potential CD (26-29). 

Another study revealed elevated interleukin IL-17 

responses after exposure to wheat gliadin in acute 

CD, but not in potential CD, thus indicating the 

association of upregulated IL-17 pathway with 

villous atrophy. However, T-cell clones reactive 

with deamidated gliadin peptide did not show IL-

17 secretion, which suggests that activation of IL-

17 may not be induced directly by dietary gluten 

but rather develops at later stage of mucosal 

inflammation (30,31). 
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IL-17 in mucosal antimicrobial defense has been 

shown to contribute to the gut barrier function and 

upregulation of IL-17 decrease the dissemination 

of pathogens from the intestinal lumen (32). On 

the other hand, commensal bacteria can induce 

mucosal IL-17 response (33-34) and it is possible 

that changes in microbiota could be responsible 

for the upregulation of IL-17 when villous atrophy 

develops. 

The cytokine profile can be different in patients 

with refractory CD (RCD) or active CD. In the 

RCD the symptoms/signs of malabsorption and 

villous atrophy persist or recur despite a strict 

GFD for more than 12 months and in the absence 

of other disorders (35). 

A recent study (36) have analyzed on duodenal 

biopsies, inflammatory cytokines by real-time 

PCR and ELISA in patients with RDC, and active 

CD. IFN (interferon)-γ and IL (interleukin)-21 

transcripts were increased in active CD patients 

but not in RCD patients as compared to normal 

controls, whereas IL-17A RNA was upregulated 

in both active CD and RCD. The findings indicate 

that the profile of mucosal effector cytokines 

differs between RCD and active CD and suggest 

that TNF-α, IL-6 and IL-17A, but not Th1-type 

cytokines, could drive the detrimental response in 

this condition. 

 

Intestinal microbiota, immune 

system and celiac disease 

The composition of intestinal microbiota and 

intestinal dysbiosis has been implicated in the 

pathogenesis of celiac disease (36,37). The 

intestinal microbiota is the collection of microbes 

that reside in the gastrointestinal (GI) tract and is 

comprised of over 1000 different species that 

contributes 3.3 million unique microbial genes in 

the GI tract of humans (38,39). This intricate 

microbial system includes bacteria, which live in a 

symbiotic relationship with their host, and some 

microbes, which have potentially pathogenic 

characteristics. There are four dominant phyla: 

Firmicutes, Bacteroidetes, Actinobacteria and 

Proteobacteria (38). Firmicutes and Bacteroidetes 

account for >90% of the bacterial population in the 

colon while Actinobacteria and Proteobacteria 

(which includes Enterobacteriaceae) are regularly 

present but are scarce (<1%–5%) (36). 

Molecular techniques have shown that, compared to 

the fecal and duodenal microbiota of healthy 

individuals, the fecal and duodenal microbiota of 

CD patients is characterized by the presence of 

higher numbers of gram-negative bacteria 

(bacteroides and enterobacteria) and lower numbers 

of gram-positive bacteria, like bifidobacteria. The 

differences between active and non-active CD seem 

to be associated with a decreased abundance of 

members of the family Streptococcaceae, 

specifically the S. anginosus and S. mutans groups. 

The active phase of the disease was also associated 

with increased proportions of Enterobacteriaceae 

and Staphylococcaceae and, in particular, the 

species Klebsiella oxytoca, S. epidermidis, and S. 

pasteuri. (37,40). 

These alterations are attenuated after long-term 

adherence to a gluten-free diet, but the microbiota is 

not completely restored; in particular, a reduced 

abundance of specific species of Streptococcus (S. 

anginosus and S. mutans) also characterizes the 

microbiota of CD patients with active and non-active 

disease. A recent study (41) showed that the treated 

celiac disease patients with persistent symptoms 

were colonized by different duodenal microbiota in 

comparison with patients without symptoms. The 

treated patients with persistent symptoms had a 

higher relative abundance of Proteobacteria (p=0.04) 

and a lower abundance of Bacteroidetes (p=0.01) 

and Firmicutes (p=0.05). The intestinal microbiota 

plays a crucial role in the development of local and 

systemic immunity, as well as in maintaining colonic 

homeostasis (42,43). For example, to drive the 

expansion of B and T cells in Peyer’s patches and 

mesenteric lymph nodes, especially CD4+ T cells 

(Fig.1) (44). 
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Besides segmented filamentous bacteria, which 

adhere closely to the intestinal epithelium, have 

been shown to induce Th17 responses (32) and 

increase the number of Treg cells in both the small 

intestine and colon (45). 

Although IL-17A and IL-22 secretion can be a 

hallmark of the adaptive phase response to infection, 

it is becoming increasingly clear that bacterial 

pathogens trigger rapid IL-17A- and IL-22-

dependent innate defense in the gut mucosa (46). 

Moreover, the production of these cytokines in the 

intestine seems to be regulated at the homeostatic 

level by the interaction between the host and the 

intestinal microbiota. In a recent study, Jose´ 

Moise´s Laparra and colleagues have demonstrated 

that the administration of Bifidobacterium longum 

CECT 7347, previously selected for reducing gliadin 

immunotoxic effects in vitro, could exert protective 

effects in an animal model of gliadin-induced 

enteropathy by increasing NFkB expression and IL-

10, but reducing TNF-a production. In sensitized 

gliadin-fed animals, CD4+, CD4+/Foxp3+ and 

CD8+ T cells increased, whereas the administration 

of B. longum CECT 7347 reduced CD4+ and 

CD4+/Foxp3+ cell populations and increased CD8+ 

T cell populations (47). These results confirmed and 

another study (48) that showed that Bifidobacterium 

strains with immunoregulatory properties have been 

shown to suppress the pro-inflammatory cytokine 

pattern induced by the altered colonic microbiota of 

CD patients. 

 

Conclusions 

In conclusions this review suggests that the IL-17A 

producing cells play a major role in the pathogenesis 

of CD, and that both gluten and bacteria provoke an 

IL-17A response in the intestinal mucosa of CD 

patients. The upregulation of IL-17 immunity is 

associated with untreated CD and especially villous 

atrophy, whereas mucosal IL-17 immunity is not 

 
Figure 1. Expansion of B and T cells in Peyer’s patches in response to gliadin. 
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present in potential or GFD treated CD. IL-17 is a 

marker of active CD and its role as a predictive 

biomarker of villous atrophy should be evaluated. 
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