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P.le A. Moro 5, 00185 Roma, Italy
∗E-mail: teta@mat.uniroma1.it

We discuss the stability problem for a system of N identical fermions with unit mass

interacting with a different particle of mass m via zero-range interactions in dimension
three. We find a stability parameter m∗(N) > 0, increasing with N , such that the

Hamiltonian of the system is self-adjoint and bounded from below for m > m∗(N).
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1. Introduction

A system of n quantum particles in R3 with two-body zero-range interactions is

described by the formal Hamiltonian

H = −
n∑
i=1

1

2mi
∆xi

+

n∑
i,j=1
i<j

µij δ(xi − xj), (1)

where xi ∈ R3, i = 1, . . . , n, mi is the mass, ∆xi is the Laplacian relative to xi,

and µij ∈ R are coupling constants. We set ~ = 1. In recent years these class of

Hamiltonians have been extensively used in the physical literature to describe the

dynamics of ultra-cold quantum gases (see e.g. Ref. 2). From the mathematical

point of view, the definition of H as a self-adjoint operator in L2(R3n) is usually

given in the following way. Let us consider the operator

Ḣ0 = −
n∑
i=1

1

2mi
∆xi

, D(Ḣ0) = C∞0 (R3n \ ∪i<j{xi = xj}) (2)

where {xi = xj} denotes the hyperplane characterized by the coincidence of the

coordinates xi and xj . The operator (2) is symmetric but not self-adjoint. Then,

any self-adjoint extension of Ḣ0, different from the free Hamiltonian, is by defi-

nition a Hamiltonian of n quantum particles in R3 with two-body zero-range in-

teractions. Roughly speaking, such Hamiltonians act as the free Hamiltonian in

R3 \ ∪i<j{xi = xj} and the elements of the domain satisfy a sort of generalized

boundary condition on each hyperplane {xi = xj}. The explicit construction of the

self-adjoint extensions is not trivial and a general characterization is not known,

except in the simpler case n = 2. Indeed, for n = 2 and extracting the center of

mass motion, the domain of each extension consists of ψ ∈ L2(R3) ∩H2(R3 \ {0})
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satisfying the boundary condition at the origin

ψ(x) =
q

|x|
+ αq + o(1) (3)

for |x| → 0, where x is the relative coordinate, q ∈ C and α ∈ R is the strength

of the interaction characterizing each extension (see Ref. 1 for details). In the

general case n > 2, proceeding by analogy, one introduces the so-called Skornyakov-

Ter-Martirosyan (STM) extension Hα, defined on elements of L2(R3n) ∩H2(R3n \
∪i<j{xi = xj}) satisfying the boundary condition

ψ(x1, . . . ,xn)=
qij

|xi − xj |
+ αqij + o(1) (4)

for |xi−xj | → 0, where qij are functions defined on {xi = xj} and α is the strength

of the interaction. As a matter of fact, the STM extension Hα is a symmetric

operator but, in general, it is not self-adjoint. This happens, for instance, in the

cases of three identical bosons and three different particles. In such cases, it is

known that any self-adjoint extension of Hα is unbounded from below (see Refs. 8

and 10). Such instability effect is known in the literature as Thomas effect.

On the other hand, there is an important physical situation where one can expect

absence of the Thomas effect, i.e., the case of a two groups of particles made of

identical fermions. This is due to the fact that the antisymmetry constraint makes

the zero-range interaction ineffective for fermions of the same type. In this generality

the stability problem is open. Here we consider the particular case of N identical

fermions, with unit mass, interacting via zero-range interactions with a different

particle of mass m.

In the physical literature (see e.g. Refs. 2, 3, 4, 5) the case N = 2 and N = 3 has

been studied using analytical and numerical arguments. In both cases it is found

that for m larger than a critical mass, depending on N , the STM extension Hα is

self-adjoint and bounded from below, while for m smaller the Thomas effect occurs.

Rigorous proofs of the above results for N = 2 have been obtained in Refs. 13, 14,

12, while in Ref. 11 a stability result for N < 5 and m sufficiently large is found.

In the next section we discuss a stability result recently obtained in Ref. 6 (see also

Ref. 9) valid for any N . In particular we find a stability parameter m∗(N) > 0 (see

definition below) such that stability holds for m > m∗(N). The result has been

obtained exploiting a quadratic form method along the line developed in Ref. 7.

2. Result

In order to explain the result, we introduce the following function

Λ(m,N) =
2

π
(N − 1)(m+ 1)2

[
1√

m(m+ 2)
− arcsin

(
1

m+ 1

)]
(5)

It is easy to see that, for each N , the function Λ(m,N) is positive, decreasing with

m and satisfies limm→0 Λ(m,N) = ∞, limm→∞ Λ(m,N) = 0. Therefore we can

introduce the following definition.
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Definition 2.1. (Stability parameter m∗(N)). For any N fixed, m∗(N) is the

unique solution of the equation

Λ(m,N) = 1 (6)

Notice that m∗(N) is increasing with N . Moreover the condition Λ(m,N) < 1 is

equivalent to m > m∗(N), which is precisely our stability condition for the system

expressed in the following theorem.

Theorem 2.1. For m > m∗(N) the STM extension Hα is self-adjoint and bounded

from below. In particular Hα is positive for α ≥ 0 and

inf σ(Hα) ≥ − α2

4π4(1− Λ(m,N))
(7)

for α < 0.

We remark that the result is optimal for N = 2, in the sense that, according to

the previously mentioned results, for m < m∗(2) the three-particle system exhibits

the Thomas effect. On the other hand, for N > 2 our stability condition is only

sufficient and, in order to improve the result, the role of the antisymmetry must be

more carefully taken into account. The numerical value of m∗(N) can also be easily

computed. For example

m∗(2) = 0.0735, m∗(3) = 0.1890, ..... , m∗(8) = 0.9473, m∗(9) = 0.1215, .....

We notice that in the special case of equal masses we find stability up to N = 8.

The proof of the theorem can be found in Ref. 6. Here we only outline the method

based on the quadratic form naturally associated to Hα. Limiting ourselves to the

simpler case N = 2, we introduce relatives coordinates y1 = x1−x0, y2 = x2−x0,

where x1, x2 are the coordinates of the two fermions and x0 the coordinate of the

different particle. Moreover we denote by k1, k2 the corresponding coordinates

in the Fourier space. Neglecting the center of mass motion, the Hilbert space is

L2
f (R6), where the subscript f denotes the restriction to antisymmetric functions,

and the free Hamiltonian in the Fourier space reads

Ĥ0 = k2
1 + k2

2 +
2

m+ 1
k1 · k2 (8)

The quadratic form associated to H0 is F0(u) = (u,H0u) and it is closed and

positive on the domain D(F0) = H1
f (R6). The quadratic form associated to Hα

turns out to be a singular perturbation of F0, defined on a domain larger than

H1
f (R6), which can be derived using a renormalization procedure (explained in Ref.

6). The procedure leads to the following definition

Definition 2.2. For any α ∈ R, the quadratic form Fα, D(Fα) is given by

D(Fα) =
{
u ∈ L2

f (R6) |u = w + Gξ, |∇w| ∈ L2
f (R6), ξ ∈ H1/2(R3)

}
(9)

Fα(u) = F0(w) + 2
(

Φ(ξ) + α ‖ξ‖2
)

(10)
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where Gξ in the Fourier space is

Ĝξ(k1,k2) =
ξ̂(k1)− ξ̂(k2)

k2
1 + k2

2 + 2
m+1 k1 · k2

(11)

and

Φ(ξ) = 2π2

√
m(m+ 2)

(m+ 1)2

∫
dp |p||ξ̂(p)|2 +

∫
dpdq

ξ̂(p)ξ̂(q)

p2 + q2 + 2
m+1p · q

(12)

We remark that Gξ is locally in L2
f (R6) and |∇Gξ| /∈ L2

f (R6). We also notice that

in Ref. 6 the definition of the quadratic form is given in a slightly different form,

but it is easily seen that the two definitions are equivalent.

The proof of the theorem is essentially based on the analysis of the above quadratic

form. In particular, we show that for m > m∗(2) the form is closed and bounded

from below and that the associated self-adjoint and bounded from below operator

coincides with the STM extension Hα.

The key point of the proof is to show that Φ(ξ) ≥ 0 for m > m∗(2). Since such

a result can be obtained using elementary methods, in the remaining few lines we

summarize the main steps.

- We introduce the expansion in spherical harmonics ξ̂(p) =
∑
lm ξlm(p)Y ml (θ, φ)

and we have

Φ(ξ) = 2π2

√
m(m+ 2)

(m+ 1)2

∑
lm

∫ ∞
0

dp p3|ξlm(p)|2

+2π
∑
lm

∫ ∞
0

dp

∫ ∞
0

dq p2ξlm(p) q2ξlm(q)

∫ 1

−1
dy

Pl(y)

p2 + q2 + 2
m+1pqy

(13)

- Using the map M : ξlm → ξ]lm defined as

ξ]lm(k) =
1√
2π

∫
R
dx e−ikxe2xξlm(ex) (14)

and performing explicit integrations, one obtains

Φ(ξ) =
∑
lm

∫
R
dk

(
2π2

√
m(m+ 2)

(m+ 1)2
+ Sl(k)

)
|ξ]lm(k)|2 (15)

where

Sl(k) = 2π2

∫ 1

−1
dy Pl(y)

sinh
(
k arccos y

m+1

)
sin
(

arccos y
m+1

)
sinh(πk)

(16)

- By an explicit study of the function Sl one sees that

Sl(k) ≥ 0 for l even (17)

Sl(k) ≥ S1(k) ≥ S1(0) for l odd (18)
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for any k ∈ R, where

S1(0)≡−4π(m+1)
√
m(m+2)

[
1√

m(m+2)
− arcsin

(
1

m+1

)]
< 0 (19)

- Taking into account of the above bounds one has

Φ(ξ) ≥
∑
lm

∫
R
dk

(
2π2

√
m(m+ 2)

(m+ 1)2
+ S1(0)

)
|ξ]lm(k)|2

= 2π2

√
m(m+ 2)

(m+ 1)2

∑
lm

∫
R
dk
(
1− Λ(m, 2)

)
|ξ]lm(k)|2 (20)

where Λ(m, 2) has been defined in (5). Since Λ(m, 2) < 1 is equivalent to m >

m∗(2), formula (20) implies positivity of Φ(ξ) for m > m∗(2).
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