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ABSTRACT
Spatially homogeneous batch reactor systems are characterized by the simultaneous presence of a wide range of time scales.
When the dynamics of such reactive systems develop very-slow and very-fast time scales separated by a range of active time
scales, with large gaps in the fast/active and slow/active time scales, then it is possible to achieve multi-scale adaptive model
reduction along-with the integration of the governing ordinary differential equations using the G-Scheme framework. The G-
Scheme assumes that the dynamics is decomposed into active, slow, fast, and when applicable, invariant subspaces. We computed
the contribution to entropy production by the four subspaces, with reference to a constant volume, adiabatic reactor. The numer-
ical experiments indicate that the contributions of the fast and slow subspaces are much smaller than that of the active subspace.

INTRODUCTION

The numerical solution of mathematical models for reaction
systems in general, and reacting flows in particular, is a chal-
lenging task because of the simultaneous contribution of a wide
range of time scales to the systems’ dynamics. However, it is
typical that the dynamics can develop very-slow and very-fast
time scales separated by a range of active time scales.

An opportunity to reduce the complexity of the problem
arises when the gaps in the fast/active and slow/active time
scales become large. In [1], we provided an asymptotic analysis
and proposed a numerical technique consisting of an algorith-
mic framework, named the G-Scheme, to achieve multi-scale
adaptive model reduction along-with the integration of ordinary
differential equations (ODEs) using objective criteria. In the
G-Scheme, it is assumed that the dynamics is (locally) decom-
posed into active, slow, fast, and when applicable, invariant sub-
spaces. The method is directly applicable to initial-value ODEs
and (by using the method of lines) to partial differential equa-
tions (PDEs).

For irreversible (non-equilibrium) multi-scale processes,
such as a detailed kinetic model (DKM), one question not ad-
dressed in [1] is how does the entropy production relate to
the decomposition into fast, active, slow, and invariant sub-
spaces. A quick qualitative answer could be obtained by es-
tablishing a correspondence among fast, active, slow, and in-
variant subspaces with near-equilibrium, non-equilibrium, near-
frozen, and isentropic processes. Indeed, near-equilibrium and
near-frozen processes are expected to be nearly isentropic (and
quasi-linear), the algebraic invariants (linear and nonlinear) cor-
respond to isentropic processes, and non-equilibrium processes
are expected to be non-isentropic (and nonlinear). As a con-
sequence, the entropic contributions of the fast and slow sub-
spaces are expected to be small with respect to that of the active
subspace. In this paper, we will analyze this aspect of the G-
Scheme with the help of illustrative examples in the context of
auto-ignition in a spatially homogeneous batch reactor.

Einstein’s treatment [2] of the propagation of small-
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disturbances in a monochromatic reacting gas showed that the
limiting values of frozen and equilibrium sound speeds arise as
the limits for the high and low frequencies of the acoustic ve-
locity of the linearized (about the state of thermodynamic equi-
librium) wave equation with a single relaxation process.

To this regard, our discussion can be considered as an attempt
at generalizing this classic finding to the case of an unlimited
number of nonlinear relaxation processes, where the concepts of
high and low frequencies in oscillatory phenomena are replaced
by those of fast and slow subspaces of dissipative/explosive phe-
nomena.

Theory

We would like to verify empirically the contributions of the
slow, active, and fast subspaces to the overall rate of entropy
production in a system featuring chemical non-equilibrium. To
this end, we resort to the standard model of a constant volume,
adiabatic, batch reactor, where the mixture’s temperature is ini-
tially set above the auto-ignition temperature.

Batch Reactor

The set of ODEs describing the time evolution of the state of
the system is:

dT
dt

=− 1
ρCp

N

∑
j=1

h j(T )Wjω̇ j (T,Yj) ,

dYj

dt
=

Wj ω̇ j (T,Yj)

ρ
, j = 1, . . . ,N

(1)

where T and Yj are the temperature and composition (expressed
in terms of mass fractions) of the mixture, t is time, ρ is the con-
stant mixture density, Cp is the mixture constant pressure spe-
cific heat, N is the number of species, h j is the species enthalpy,
Wj is the species molecular weight, and ω̇ j is the molar rate of
formation/destruction of the j-th species. The set of ODEs is
closed by the thermal equation of state for a mixture of ideal
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gases

p = ρR(Yj)T, (2)

where p is the pressure, R is the mixture’s gas constant, and the
caloric equation of state

Cp (T,Yj) =
N

∑
j=1

Cp, j(T )Yj, (3)

where Cp, j is the constant pressure specific heat of the j-th
species.

The customary relations between mass fractions Yj, molar
fractions X j, and molar concentrations c j read:

c j = ρ
X j

W
= ρ

Yj

Wj
Yj, (4)

where W is the mean molecular weight of the mixture. The
molar rate of formation/destruction of the j-th species reads:

ω̇ j (T,Yj)=
K

∑
k=1

∆ν j,k rk (T,Yj) (5)

where ννν′k = ν′j,k and ννν
′′
k = ν

′′
j,k are the forward and reverse sto-

ichiometric coefficients of the j-th species in the k-th reaction
out of K total reactions, and ∆νννk =∆ν j,k = ννν

′′
k−ννν′k is the net sto-

ichiometric coefficient. The net rate of the k-th reaction reads:

rk (T,Yj) = rk
f − rk

b = Kk
f

N

∏
j=1

c
ννν′k
j −Kk

b

N

∏
j=1

c
ννν
′′
k

j , (6)

where rk
f and rk

b are the forward and backward reaction rates,
and Kk

f and Kk
b are the forward and backward reaction con-

stants, which depend exponentially on temperature according
to the standard Arrhenius form.

The definition of entropy of a mixture of N ideal gases used
in this paper is:

s(T, p,X j)=
N

∑
j=1

s0
j(T )X j−R(Yj) log

(
p

pref

)
−R(Yj)

N

∑
j=1

X j log(X j) ,

s0
j(T ) = ∆s0

f , j +
∫ T

Tre f

Cp, j(T )
T

dT.

(7)

Entropy production

If the system is spatially homogeneous, the following ODE
describes the time evolution of entropy (per unit mass):

ds
dt

=− 1
ρT

N

∑
j=1

µ j (T,Yj)Wj ω̇ j (T,Yj) (8)

where µ j = h j−T s j is the chemical potential (per mole unit) of
the j-th species.

The net rate of the k-th reaction is usually re-written by tak-
ing advantage of the relation between the equilibrium coeffi-
cient, and the forward and backward reaction coefficients

Kk
c =

Kk
f

Kk
b

(9)

to obtain

rk = Kk
f

(
N

∏
j=1

c
ννν′k
j −

1
Kk

c

N

∏
j=1

c
ννν
′′
k

j

)
. (10)

Finally, introducing the affinity (per unit mass) of the k-th
reaction,

Ak=−
N

∑
j=1

µ j Wj ∆ν j,k, (11)

allows us to cast the time evolution of entropy in the final form:

ds
dt

=
1

ρT

K

∑
k=1

AkKk
f

(
N

∏
j=1

c
ννν′k
j −

1
Kk

c

N

∏
j=1

c
ννν
′′
k

j

)
. (12)

Canonical form

The set of ODEs for the batch reactor is simply a dynamical
system defined by

dx
dt

= f(x), x(0) = x0, with

x ∈ RN+2, t ∈ (0,T )⊂ R, and f : E ⊂ RN+2→ RN+2.

(13)

where the state of the system is defined as x =
{

Yj,T,s
}

and the
vector field is defined by

f(Yj,T,s) =
{

Wj ω̇ j (T,Yj)

ρ
,− 1

ρCp

N

∑
j=1

h j Wj ω̇ j (T,Yj) ,

− 1
ρT

N

∑
j=1

µ j (T,Yj)Wj ω̇ j (T,Yj)

}
.

(14)

Note that for a constant volume system, the entropy equation is
slaved to the other ODEs.

Basic Concepts for the G-Scheme

We have assumed that the dynamics is decomposed into ac-
tive, slow, fast, and when applicable, invariant subspaces. The
G-Scheme introduces a local curvilinear frame of reference, de-
fined by a set of orthonormal basis vectors with corresponding
coordinates, attached to this decomposition. The evolution of
the curvilinear coordinates associated with the active subspace,
∆ξa, is described by non-stiff ODEs, whereas those associated
with the slow, ∆ξh, and fast, ∆ξt , subspaces are accounted for



by applying asymptotic approximations of the original problem
to provide ∆ξh

FF , and ∆ξt
SIM , respectively. Adjusting the active

ODEs dynamically during the time integration is the most sig-
nificant feature of the G-Scheme, since the numerical integra-
tion is accomplished by solving a number of ODEs, typically
much smaller than the dimension of the original problem, with
corresponding savings in computational work.

The Adaptive Reduced Model

The G-Scheme involves two main stages:

1. Evolution of the active modes described by NA non-stiff
ODEs;

2. Corrections associated with the slow/fast dynamics.

The active ODEs evolve in subspace A which is freed from
fast scales, i.e., they are non-stiff. They can be solved by resort-
ing to any explicit scheme of integration (e.g., explicit Runge-
Kutta). When compared to a standard BDF implicit scheme
for stiff problems, the G - Scheme requires the solution of NA
explicit ODEs instead of N + 2 implicit ODEs. However, the
scheme requires the identification of the tangent space decom-
position.

Adjusting the active ODEs dynamically is the most signif-
icant feature of the G-Scheme, because the numerical integra-
tion of a state vector x ∈ N +2 is obtained by solving a number
(� N) non-stiff ODEs with the corresponding saving in CPU
work.

Tangent Space Decomposition

Ideal decomposition of the tangent space Tx at any point x
∈ C ⊂ RN+2 involves the identification of N +2 invariant sub-
spaces, a difficult task. The G-Scheme decomposes the tangent
space in four subspaces having time scales of comparable mag-
nitude, Tx= E ⊕ H ⊕ A ⊕ T, where E is the linear subspace
spanned by directions associated with invariants, if any exists
(conservation laws). All scales slower than the active ones are
confined to the slow subspace H(ead) (dormant/near-frozen pro-
cesses). The active subspace A contains all the current interme-
diate dynamic time scales (active/non-equilibrium). All scales
faster than the active ones are confined in the fast subspace
T(ail) (exhausted/near-equilibrium). Thus, the basic concept in
the G-Scheme is to ‘distill’ the Heart, and ‘cut’ the Head and
Tail in a generic multi-scale dynamical system.1

Basis Vectors and Time Scales

The most important decision to be taken in the implemen-
tation of the G-Scheme framework is the choice of a curvilin-
ear frame of reference, i.e., a basis matrix yielding a maximal
degree of slow/fast decoupling. In fact, the basis vectors used
to define the matrix might be found, in principle, by different
means, if they can provide the ideal block-diagonalization of
the eigenvalue matrix in a cost efficient way. The Computa-
tional Singular Perturbation [3] method offers a computational
algorithm to achieve this goal. The CSP refinements converge
to the right/left eigenvectors of J (x(tn)) if nonlinearities are ne-
glected. In this case, we can rank the basis vectors according to

1G stands for Grappa, an Italian liquor produced by distillation.

the magnitude of the corresponding eigenvalues, to obtain

0 = λ1 = · · ·= λE < |λE+1| ≤ · · · ≤ |λH−1| � |λH | ≤
· · · ≤ |λT | � |λT+1| ≤ · · · ≤ |λN+2|,

(15)

where

0 = λ1 = · · ·= λE identify the scales in E,
|λE+1| ≤ · · · ≤ |λH−1| identify the scales in H,

|λH | ≤ · · · ≤ |λT | identify the scales in A,
|λT+1| ≤ · · · ≤ |λN+2| identify the scales in T.

(16)

As estimate of the time scale associated to an eigendirection, we
take the inverse of the magnitude of the corresponding eigen-
value.

Asymptotics of Fast and Slow Time Scales

The G-Scheme exploits the two archetypes for reduction,
slow-invariant-manifold (SIM) and fast-fibers (FF), to define the
adaptive reduction: SIM and FF concepts are invoked to define
the T(ail) and H(ead) subspaces, respectively. The concepts of
SIM and FF are invoked on a local basis. Differently from other
approaches, for the G-Scheme to be applicable it is not required
that a global SIM exist, nor that the SIM dimension be constant
or prescribed in advance. Similar comments apply for the ex-
ploitation of the FF. The contributions of fast and slow scales are
accounted for with SIM and FF algebraic corrections obtained
through asymptotic analysis.

The G-Scheme Step-by-Step

The following section is illustrated in full detail in [1], and
is reported here for the reader convenience. For time interval
t0,and for the state vector x(t0), initialize the integration as:

1. Compute:
T (x(t0)) = N,J (x(t0)) , λi (x(t0)) , A(x(t0)) , B(x(t0))
where J is the Jacobian matrix of the vector field of
Eq. (13), λi is the eigenvalue of the i-th eigenmode of J,
and the matrix A/B collect all the right (row)/left(column)
eigenvectors of J; T is a scalar value denoting the fastest of
the active modes..
For each time interval tn (τ = 0), and for the state vector
x(tn), with n = 0, 1, 2, . . , proceed as follows:

2. Define Time Step as : ∆t = γ/
∣∣λT (x(tn))

∣∣ γ≈ O(1);
3. Update Time : tn+1 = tn +∆t;
4. Identify the Head Subspace dimension, H (x(tn)) on the ba-

sis of a user specified accuracy vector defined as εacc =
rtol|y j|+atol;

5. Solve the set of non-stiff Active ODE’ s:

d∆ξa(τ)

dτ
= Ba (tn) f [x(tn)+Aa (tn)∆ξ

a(τ)] (17)

with ∆ξa(0)≡ 0a a = H,T .
6. Update state vector: xa (tn+1) = x(tn)+Aa (tn)∆ξa(∆t)
7. Apply Head Correction:

xh (tn+1) = xa (tn+1)+Ah (tn)∆ξh
FF(∆t)



∆ξ
s
FF(∆t)≈ ∆t

[
I +

1
2

Λ
s
s (x(tn) ,0)∆t

]
Bs(0) f (x(tn))

≈ ∆tBs(0) f (x(tn))
(18)

8. Apply First Tail Correction:
xt (tn+1) = xh (tn+1)+At (tn)∆ξt

SIM(tn)
(∆t)

∆ξ
r
SIM (x∗) =−(B(x∗)J(x∗)Ar(x∗))−1B(x∗) f (x∗) (19)

9. Update
J(xt (tn+1)), λi (xt (tn+1)), and A(xt (tn+1)), B(xt (tn+1))

10. Apply Second Tail Correction
x(tn+1) = xt (tn+1)+At (tn+1)∆ξt

SIM(tn+1)
(∆t)

∆ξ
r
SIM (x∗) =−(B(x∗)J(x∗)Ar(x∗))−1B(x∗) f (x∗) (20)

11. Identify the Tail Subspace dimension, T (x(tn+1)) on the
basis of the user specified accuracy vector εacc;

12. Update counter n=n+1
13. If[ tn+1 < t f ]go to Step (1)

The numerical solution generated by the G-Scheme approxi-
mates the trajectory of the original system by patching together
trajectories obtained with reduced order models, each lying on
the corresponding SIM (Fig.1). All the trajectories describing

Activ
e O

DEs

Head Correction

1st Tail Correction

NT(x(tn))-dim Subspace 

based on A(xt(tn))

x(tn)

xa(tn+1)

xh(tn+1)

x(tn+1)

xt(tn+1)

NT(x(tn+1))-dim Subspace 

based on A(xt(tn+2))

2nd Tail Correction

NT(x(tn))-dim Subspace 

based on A(xt(tn+1))

NT(x(tn+1))-dim Subspace 

based on A(xt(tn+1))

Figure 1. Sketch of the G-Scheme algorithm (reprinted from [1]).

the transients between different SIMs in the original system (to-
gether with the associated fast scales) are not represented by the
G-Scheme-generated solution, since their overall contribution
to the system dynamics are accounted for by projection opera-
tions.

Entropy Production and the G-Scheme

We are now ready to analyze qualitatively the contributions
of the slow and fast subspaces to the overall rate of entropy
production in a system featuring chemical non-equilibrium. To

simplify the illustration of the concept, let us consider (i) the
contribution of a single, say the k-th, reaction to the rate of en-
tropy production:

ds
dt

=
Ak

ρT
Kk

f

(
N

∏
j=1

c
ννν′k
j −

1
Kk

c

N

∏
j=1

c
ννν
′′
k

j

)
, (21)

and (ii) that the basis vectors used to define the matrix A returns
a simple identity matrix.

Entropy Production from Head

The contribution to the rate of entropy production of the k-th
reaction evaluated using Eq.(18) reads:

∆ξ
h
FF (∆tr) ≈ ∆t f (x(tn))

≈−
(

Kk
f ∆t
) Ak

ρT

(
N

∏
j=1

c
ννν′k
j −

1
Kk

c

N

∏
j=1

c
ννν”

k
j

)
(22)

The product Kk
f ∆t is small when the k-th reaction is slow, i.e.,

when Kk
f � 1, that is τk

slow=1/Kk
f � 1. Note that the cur-

rently active scale is given by τT ∼ 1/|λT |, and we take ∆t ∼
τT . Subsequently, we have that Kk

f ∆t ∼ O(τT/τslow)� 1 =⇒
∆ξh

FF (∆tr) ∼ O(τT/τslow)� 1, that is the contribution to the
rate of entropy production of the k-th reaction on the slow sub-
space is of the order of the ratio between the currently active
scale and the fastest of the slow scales, and thus:

sh (tn+1) = sa (tn+1)+∆ξ
h
FF(∆t)∼ sa (tn+1)+O(τT/τslow).

Entropy Production from Tail

Suppose that the k-th reaction is in near-equilibrium, so that
the law of mass action is approximately valid to yield:

(
N

∏
j=1

c
ννν′k
j −

1
Kk

c

N

∏
j=1

c
ννν
′′
k

j

)
� 1. (23)

Next, consider the contribution to the rate of entropy production
of the k-th reaction evaluated using Eqs.(19-20) reads.

∆ξ
r
SIM (x∗) =−(B(x∗)J(x∗)Ar(x∗))−1 f (x∗)

∼− 1
|λ(x∗)|

f (x∗)

∼−
Kk

f

|λ(x∗)|
Ak

ρT

(
N

∏
j=1

c
(ν′)k
j − 1

Kk
c

N

∏
j=1

c
(ν")k
j

) (24)

As a consequence, the contribution of the tail to the rate of en-
tropy production becomes

∆ξ
t
SIM (x∗) =−

(
Kk

f ∆t
) Ak

ρT

(
N

∏
j=1

c
ννν′k
j −

1
Kk

c

N

∏
j=1

c
ννν”

k
j

)
, (25)



that is the contribution to the rate of entropy production of the k-
th reaction on the fast subspace is negligible because of Eq. (23)
even if Kk

f � 1, as is the case for fast reactions, and therefore:

st (tn+1) = sh (tn+1)+∆ξ
t
SIM(tn) ∼ sh (tn+1)

s(tn+1) = st (tn+1)+∆ξ
t
SIM(tn+1)

∼ st (tn+1) .
(26)

RESULTS

The specific test case considered refers to a methane/air sys-
tem, using GRI 3.0 kinetics (53 species). The batch reactor
model is adiabatic and at constant volume. The initial condi-
tions for the test case are defined by prescribing the initial tem-
perature T0 = 1000 K and pressure p0 = 1 atm of a stoichiomet-
ric mixture of reactants. The constant density in Eq. (1) is set
on the basis of the thermal equation of state.

Figure 2 shows the evolution of temperature (solid, black
line) as a function of the number of iteration steps (to avoid
the compression of the plot about the reaction time). On the
same figure, we plot the evolution of the dimension A of the ac-
tive subspace (green solid line) obtained by subtracting H (blue
line) from T (red line), where H and T are the mode numbers
corresponding to |λH | and |λT |, respectively. The dimension of
the active subspace also corresponds to the number of non-stiff
ODEs solved by the G-Scheme. The modes comprised between
5 and H-1 span the slow subspace, those between H and T the
active subspace, and those between T+1 and N+2 the fast sub-
space.
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Figure 2. Time evolution of the dimension of the active (green), slow
(blue), and fast (red) subspaces; temperature (solid black line); rtol =
10−3.

Figure 3 shows the time evolution of the reciprocal of the
modulus of the (complex) eigenvalues of the 55 modes as a
function of the number of iteration steps. On the same figure, we
plot the evolution of the characteristic scales of the G-Scheme,
namely, the reciprocal of |λH−1| (green), |λH | (red), |λT | (cyan),
|λT+1| (blue), and |λN+2| (black). The blue solid line reports the
entropy evolution. The slow/active scale gap is is visually com-
prised between the green and red lines, while the active/fast gap

is between the cyan and blue lines. The black line marks the
fastest time scale at all times. The spectral width of the fast
subspace is between the black and blue lines. The width of the
active subspace is between the cyan and red lines. The width
of the slow subspace is above the red line. The invariant sub-
space is associated with the randomly scattered markers visible
at very large time scales.

Figure 3. Reciprocal of the modulus of the (complex) eigenvalues (light
grey markers); reciprocal of |λH−1| (green), |λH | (red), |λT | (cyan),
|λT+1| (blue), and |λN+2| (black); the red solid line reports the entropy
evolution; rtol = 10−3.

The quantitative assessment of the relative contribution to
the rate of entropy production from the slow, active, and fast
subspaces is carried out by considering that the entropy of the
mixture is a state function of temperature and composition.
Therefore, during the numerical integration of the batch reactor
model, we evaluated the entropy of the mixture before and after
each of the changes of the system state due to the slow (∆sh),
active (∆sa), and fast (∆st ) subspaces. With these definitions,
we introduced the following:

sa(tn) = sa(tn−1)+∆sa(tn)

sh(tn) = sh(tn−1)+∆sh(tn)

st(tn) = st(tn−1)+∆st(tn)

s(tn) = sa(tn)+ sh(tn)+ st(tn)

(27)

where sα(t0) = s(T0, p0,Yj,0),α = a,h, t. Figure 4 shows the
time evolution of the contribution to the entropy of the mixture
from the slow, active, and fast subspaces as obtained using three
different accuracy levels (rtol = 10−3,10−4,10−5), while Fig. 5
shows the entropy contribution of each subspace scaled with re-
spect to the overall contribution (sα(tn)/s(tn), with α = a,h, t).
It is apparent that the active subspace contribution is always
very close to 100%, while the slow contribution is generally
larger than the fast contribution.

The sensitivity to the accuracy level of the contribution to the
entropy of the mixture can be appreciated with the help of Fig 6,
which indicates that the magnitude of the overall entropy con-
tribution, that is, evaluated at large times, of the fast subspace
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is of the same order of the accuracy level specified by the user.
Instead the overall entropy contribution of the slow subspace is
always smaller than the active contribution, but it does not seem
to depend much on the accuracy level specified by the user.

Figure 7 shows that the relative contribution to the rate of
entropy production (∆sα(tn)/∆s(tn)) of the slow and fast sub-
spaces are approximately 10−3 and 10−4, respectively, whereas
that of the active subspace is always of order one. This indicates
that the contribution to the rate of entropy production of the fast
subspace is always negligible with respect to that of the active
subspace, whereas that of the slow subspace can occasionally
becomes comparable to that of the active subspace within the
reaction period of the auto-ignition process.

CONCLUSIONS

Reaction systems are characterized by the simultaneous pres-
ence of a wide range of time scales. When the dynamics of
reactive systems develop very-slow and very-fast time scales
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Figure 7. Contribution to the rate of change of entropy of the mixture
from the slow (∆sh(tn)/∆s(tn), green), active (∆sa(tn)/∆s(tn), red),
and fast (∆st(tn)/∆s(tn), blue) subspaces (rtol = 10−3).

separated by a range of active time scales, with large gaps in
the fast/active and slow/active time scales, then it is possible
to achieve multi-scale adaptive model reduction along-with the
integration of the ODEs using the G-Scheme framework. The
G-Scheme assumes that the dynamics is decomposed into ac-
tive, slow, fast, and invariant subspaces. To calculate the contri-
bution to entropy production related to the four subspaces, we
resorted to a standard model of a constant volume, adiabatic,
batch reactor, where the mixture temperature of the reactants is
initially set above auto-ignition temperature. The specific test
case considered refers to a methane/air system, using GRI 3.0
kinetics. The numerical experiments indicate that the contribu-
tions of the fast and slow subspaces are typically much smaller
(of the order of the user defined accuracy of the numerical in-
tegration) both locally and globally than the contribution of the
active subspace. A preliminary analysis of the relevant theory
is offered to indicate why this conclusion might be of general
validity.
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