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Particulate flows have mainly been studied under the simplifying assumption of a
one-way coupling regime where the disperse phase does not modify the carrier fluid.
A more complete view of multiphase flows can be gained calling into play two-way
coupling effects, i.e. by accounting for the inter-phase momentum exchange, which
is certainly relevant at increasing mass loading. In this paper we present a new
methodology rigorously designed to capture the inter-phase momentum exchange for
particles smaller than the smallest hydrodynamical scale, e.g. the Kolmogorov scale
in a turbulent flow. The momentum coupling mechanism exploits the unsteady Stokes
flow around a small rigid sphere, where the transient disturbance produced by each
particle is evaluated in a closed form. The particles are described as lumped point
masses, which would lead to the appearance of singularities. A rigorous regularization
procedure is conceived to extract the physically relevant interactions between the
particles and the fluid which avoids any ‘ad hoc’ assumption. The approach is suited
for high-efficiency implementation on massively parallel machines since the transient
disturbance produced by the particles is strongly localized in space. We will show
that hundreds of thousands of particles can be handled at an affordable computational
cost, as demonstrated by a preliminary application to a particle-laden turbulent shear
flow.
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1. Introduction

Multiphase flows represent the cornerstone of many fields of science and technology
ranging from microscale devices to the large-scale cyclonic separators of industrial
plants. In the context of micro/nanotechnologies, the transport of small particles or
bubbles by a carrier fluid is fundamental in designing microdevices where particles
must be separated, mixed or advected towards the sensible regions of the apparatus
for detection purposes, see e.g Stone, Stroock & Ajdari (2004). With respect to larger-
scale devices, the turbulent transport of a disperse phase is relevant for the dynamics
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of small fuel droplets in combustion chambers (Post & Abraham 2002) or in the
spatial evolution of sprays employed for surface coating (Pawlowski 2008).

Important aspects of multiphase flows are related to the intrinsic coupling between
the motion of the disperse phase and the carrier fluid, which involves mass,
momentum and energy exchange between the two phases. Hydrodynamic interactions
among the particles or inter-particle collisions might also occur. The regime where
all these interactions take place is known as the four-way coupling regime, see e.g.
Elgobashi (2006) and Balachandar & Eaton (2010). The straightforward method to
capture such complex physics is represented by numerical simulations where the
fluid flow around each particle is fully resolved. This means that the actual particle
boundary has to be resolved on the computational grid, and the coupling with the
fluid occurs via the non-slip boundary conditions imposed on the particle surface.
The hydrodynamic force on each particle can be directly computed by integrating
the pressure and shear stress distribution on the boundary. Even though this approach
captures the physics entirely, it is computationally demanding and limited to the
simulation of a relatively small number of ‘large’ particles. The adjective ‘large’
means that the typical size of the particle, the diameter dp, is larger than the smallest
physically relevant hydrodynamical scale η. For instance, η could be either the
Kolmogorov dissipative scale in a turbulent flow or the smallest spatial scale in
a microfluidic apparatus. In the context of so-called resolved particle simulations
many approaches are available, ranging from finite-volume techniques (Burton &
Eaton 2005) to immersed boundary methods (Lucci, Ferrante & Elghobashi 2010)
or approaches based on the lattice Boltzmann equations (Cate et al. 2004; Gao,
Li & Wang 2013). Alternative approaches are however available. For instance, the
smoothed-profile method (SPM) by Luo, Maxey & Karniadakis (2009) represents
the actual particle in terms of a smooth phase field which is used to construct a
body force in the Navier–Stokes equations that accounts for the effects of finite-size
particles on the fluid. The PHYSALIS technique, see e.g. Zhang & Prosperetti (2005)
and references therein, has been recently adopted to address the interaction of solid
particles and a turbulent flow (Naso & Prosperetti 2010). Homann & Bec (2010)
adapted the pseudo-penalization spectral method proposed by Pasquetti, Bwemba &
Cousin (2008) to account for the coupled dynamics of neutrally buoyant particles in a
turbulent flow. The force coupling method (FCM) proposed by Maxey and coworkers,
see e.g. among many others the papers by Maxey & Patel (2001) and Lomholt &
Maxey (2003), is certainly worth mentioning in detail. In the FCM the effect that each
particle exerts on the fluid is approximated by a multipole expansion of a regularized
steady Stokes solution where the concentrated delta-function forces are mollified to
a Gaussian. The basic method has been continuously improved by including several
physical effects such as lubrication forces for closely packed particles (Dance &
Maxey 2003) or the effects of elongated particles (Liu et al. 2009). Recently, a
numerical simulation of homogeneous isotropic turbulence laden with thousands of
relatively large particles (dp/η= 6–12) has been reported by Yeo et al. (2010).

The opposite limit of particles much smaller than the smallest hydrodynamical
scale is also relevant in many applications. For instance, the hybrid direct numerical
simulation (HDNS) approach by Ayala, Grabowski & Wang (2007), see also Wang,
Ayala & Grabowski (2005a), was able to account for the inter-particle hydrodynamic
interactions in dilute suspensions when the particles are in close proximity on the
scale of their diameter. In this approach, the carrier fluid is not modified by the
disperse phase (one-way coupling). However, the local disturbance flow produced by
all the particles is taken into account via a steady Stokes solution when the force
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on the particles is evaluated. The approach, by including inter-particle hydrodynamic
interactions, is of relevance for any application where collision phenomena are crucial,
as in droplet collisions in clouds, see e.g. Wang et al. (2005b).

Turbulent sprays are certainly another technological application where small
particles are involved. Here, the mixing and combustion of the spray after the
primary atomization phase take place in the presence of significant momentum
coupling among the carrier fluid and the fuel droplets, see e.g. the recent review
by Jenny, Roekaerts & Beishuizen (2012). In fact, in dilute suspensions the volume
fraction of the particles is small enough to neglect hydrodynamic interactions and
collisions among particles. However, for large values of the particle-to-fluid density
ratio, significant mass loads (ratio between the masses of the disperse phase and
the fluid) may occur. In such a regime, the so-called two-way coupling regime, the
momentum exchange between the two phases is significant and must be accounted for.
The particle in cell (PIC) method (Crowe, Sharma & Stock 1977) is still a valuable
tool to model the momentum coupling. Such an approach needs great care, however,
due to technical issues associated with the injection of the pointwise forcing of the
particles on the computational grid where the continuous fluid phase is resolved.
Indeed, the force that the particles exert on the fluid is regularized by averaging on
the volume of the computational cell. Hence, the coupling term results to be strongly
grid-dependent unless the number of particles per cell, Np/Nc, exceeds a certain
threshold, see e.g. the numerical results in Gualtieri et al. (2013), the discussion by
Balachandar (2009) and the comments in Jenny et al. (2012).

As alternatives to the PIC approach, other methods that are able to work irrespective
of particle number density do indeed exist. For instance, Pan & Banerjee (2001)
modelled the disturbance flow produced by each point particle in terms of the steady
Stokeslet. Although interesting, this approach has several potential shortcomings.
The disturbance flow decays in space away from the particle as slowly as the
inverse distance, and the perturbation induced by a single particle affects the whole
domain. In these conditions, any truncation is undoubtedly bound to strongly alter
the dynamics. Additionally, the disturbance flow presents the singularity associated
with the steady Stokeslet. Moreover, the steady Stokes solution used to model the
fluid–particle interaction is not uniformly valid and fails away from the particle. The
Oseen correction consistently accounts for the unavoidable far-field convective effects,
see classical textbooks like Lamb (1993) and Batchelor (2000). Numerical approaches
based on this improved modelling can be found, e.g. in Subramanian & Koch (2008)
and Pignatel, Nicolas & Guazzelli (2011).

In the present paper we propose a new approach able to provide a physically
consistent and numerically convergent solution for the flow disturbance produced by
a huge number of small massive particles coupled to a generic, possibly turbulent,
carrier flow. Hereafter, this new formulation will be referred to as the exact regularized
point particle (ERPP) method. As will be shown in detail, this approach presents
several advantages. The most significant one is related to the physical accuracy of
the momentum coupling modelling. In a nutshell, in the relative motion with respect
to the fluid, the particle generates a vortical field. Even though the relative Reynolds
number is small, the local flow is dominated by unsteady viscous effects, as discussed
by Eckhardt & Buehrle (2008). Vorticity production is a localized process that takes
a finite elapsed time εR since generation to reach the relevant hydrodynamic scales
of the flow. It is indeed this transient process of localized generation and finite-time
diffusion that introduces the actual momentum coupling with the carrier flow. The
model here envisaged reproduces this physical process by addressing the velocity
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field, rather than vorticity. The finite time delay εR automatically provides the
regularization of the disturbance field. Instead of being a purely mathematical or
numerical ingredient, the regularization featured by ERPP is intrinsically associated
with the actual physical process of vorticity generation and viscous diffusion. A
distinguishing aspect of ERPP is that all of the vorticity generated by the particle is
properly transferred to the fluid phase, entailing momentum conservation. A crucial
concern is the small-scale component of the disturbance field associated with the
instantaneously generated vorticity not yet diffused up to the hydrodynamic scales.
This localized inner-scale part of the disturbance exhibits a 1/r local singularity and
vanishes altogether at the relevant hydrodynamic scales. Although, in principle, this
field should contribute locally to the convective term of the Navier–Stokes equations,
its effect is proportional to the (small) particle Reynolds number based on the
slip velocity. Consistently, it contributes negligibly to the dynamics of the relevant
hydrodynamic scales.

Concerning the hydrodynamic force acting on the particles in the two-way coupling
regime, the expression provided by Maxey & Riley (1983) is easily adapted to the
present context. A crucial issue is the fluid-to-particle slip velocity appearing in the
expression of the Stokes drag which should be understood as the undisturbed fluid
velocity (i.e. the relative fluid–particle velocity in the absence of the particle). In ERPP
the self-induced velocity disturbance can be evaluated in a closed form, allowing its
contribution to be explicitly removed. It follows a consistent evaluation of slip velocity
and hydrodynamic force.

Although the underlying theoretical aspects may look complicated at first sight, the
practical implementation of the ensuing algorithm is remarkably simple and efficient.
Indeed, the coupling algorithm can be embedded in any available discretization scheme
and implemented in one’s favourite Navier–Stokes solver. This flexibility allows
hundreds of thousands of particles to be easily handled at affordable computational
cost.

The paper is organized as follows. Section 2 forms the main theoretical body of
the paper. Along with its subsections, it introduces the physical model and discusses
the inter-phase momentum coupling. In § 3 the proposed approach is validated against
available analytical results. Section 4 reports preliminary results concerning a turbulent
particle-laden shear flow. Finally, § 5 summarizes the main findings. To smooth out the
reading, several appendices are devoted to lengthy technical issues whose description
inside the main text would have hampered a clear exposition of the main material.

2. Methodology

In this section we present the physical model used to achieve the momentum
coupling between the carrier fluid and the disperse phase in view of describing the
algorithm for the simulation of particle-laden flows in the two-way coupling regime.
In doing so, we assume that we know the state of the system at time t and propagate
the solution for one time step Dt which is assumed to be small enough to resolve
all the relevant time scales of the problem and to satisfy numerical stability criteria.
Clearly, reiteration of the procedure allows us to proceed in time, as in standard time
integration algorithms. During the generic time step of length Dt= tn+1 − tn the state
of the system will propagate from tn to tn+1.

For the sake of simplicity hereafter we shall often address the generic step as the
step n = 0. In this case the running time will be 0 6 t 6 Dt in all the differential
equations to be addressed. In the discussion, a quantity εR with dimension of time
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and the role of a regularization parameter will play a central role. In this case,
having dubbed the current time as the instant t0 = 0, it could well occur that certain
time-delayed variables (i.e. t − εR) could be negative: we would like to assure the
reader beforehand that this will be harmless. Integral representation of the solution
may represent an exception to this rule. Indeed, such an integral representation
will be used to derive a systematic regularization procedure from which we obtain
by differentiation the regularized partial differential equations to be solved in the
algorithm. In such cases the time extrema will typically range in the interval [0, t],
with t arbitrary, and typically larger than εR.

In this framework, the short time evolution of the overall flow (fluid and particles)
in a time step Dt is conceptually split into a (modified) Navier–Stokes evolution
of the carrier fluid and a superimposed disturbance flow produced by the relative
motion of the particles, here assumed spherical, with respect to the fluid. Relying
on the small Reynolds number of the particle–fluid relative motion, the disturbance
flow is described by the linear unsteady Stokes equations. In fact, we will rearrange
the equation in such a way that the exact solution of the particle disturbance field
is consistently embedded into the carrier phase Navier–Stokes solver, allowing us to
reconstruct the actual fluid–particle coupled solution in the limit of vanishing time
step and grid spacing for small particle Reynolds number.

The detailed derivation of the coupling model needs a gradual illustration better
achieved starting from a schematic description divided into five conceptual steps:

(i) carrier flow–disperse phase interaction and disturbance flow equation (§ 2.1);
(ii) solution of the disturbance flow equation (§ 2.2);

(iii) regularization (§ 2.3);
(iv) embedding of the disturbance flow into the Navier–Stokes equations (§ 2.4);
(v) evaluation of the hydrodynamic force on the particles in the two-way coupling

regime and removal of the self-induced velocity disturbance (§ 2.5).

2.1. Interaction between the two phases
In the presence of a disperse phase, the carrier fluid fills the domain D\Ω , where D
is the flow domain and Ω(t)=∪pΩp(t) denotes the region occupied by the collection
of Np rigid particles, with Ωp(t) the time-dependent domain occupied by the pth
particle, see the sketch in figure 1. The set theoretic notation ∪p denotes the union of
sets indexed by p and A\B denotes the complement in A of set B. The motion of the
carrier fluid is assumed to be described by the standard incompressible Navier–Stokes
equations endowed with the no-slip condition at the particle boundaries:

∇ · u= 0,
∂u
∂t
+ u · ∇u=− 1

ρf
∇p+ ν∇2u,

 x ∈D\Ω(t),

u|∂Ωp(t) = V p(x)|∂Ωp(t), p= 1, . . . ,Np,

u|∂D = uwall,

u(x, 0)= u0(x), x ∈D\Ω(0).


(2.1)

In (2.1), u0(x) is the velocity field at time t= 0, ρf denotes the fluid density, ν is the
kinematic viscosity, ∂Ωp is the boundary of the pth particle and ∂D is the boundary
of the overall flow domain, see figure 1. In this microscopic description, the particles
affect the carrier fluid through the no-slip condition at the moving particle surface
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FIGURE 1. (Colour online) Sketch of the flow domain. The fluid fills the domain D\Ω ,
with Ω(t) = ∪pΩp(t) the region occupied by the Np rigid particles and Ωp(t) the time-
dependent domain of the pth particle; ∂D denotes the boundary of D . The fluid velocity at
the generic point x ∈D\Ω is decomposed as u=w+v, to be understood as the definition
of w given the fluid velocity u and the solution v of the unsteady Stokes problem (2.4).

∂Ωp(t), where the fluid matches the local rigid-body velocity of the particle V p(x)=
vp+ωp× (x− xp), with vp the velocity of the particle geometric centre xp(t) and ωp(t)
the angular velocity. The equations of rigid-body dynamics need be coupled to the
equation for the fluid velocity field to determine the particle motions, where the fluid
stress vectors acting at the particle boundary provide the relevant forces and moments.

In principle, the system (2.1) can be numerically integrated at the price of resolving
all the particle boundaries on the computational grid. When the suspension is formed
by a huge number of small particles their direct solution is unaffordable. In any
case, (2.1) still provides the basic description of the flow in terms of the interaction
between the two phases. The purpose of the present subsection is to manipulate and
approximate the basic equations to derive a viable model for the suspension.

As a starting point, for small time intervals 0 6 t 6 Dt, the carrier flow velocity is
decomposed into two parts, u(x, t) = w + v. The field w(x, t) is assumed to satisfy
the equations

∇ ·w= 0,
∂w

∂t
+ F=− 1

ρf
∇π+ ν∇2w,

w|∂D = uwall − v∂D,
w(x, 0)= ū0(x),


(2.2)

where x ∈D and

F=
{

u · ∇u, for x ∈D\Ω(t),
V p · ∇V p, for x ∈Ω(t), (2.3)

is a field reproducing the complete convective term of the Navier–Stokes equation in
the carrier fluid domain D\Ω , which is prolonged inside Ω using the solid particle
velocity field. Other choices are possible, but the actual shape of the field inside the
particle domains is irrelevant to our present purposes. In this respect, the solid body
motion provides an elegant example given the continuity of the fluid velocity field u
at the particle boundaries. In problem (2.2), apart from the prolongation of the field F,
the particles disappear altogether from the domain, and the convective term, retaining
its complete nonlinear nature in the fluid domain, is treated as a prescribed forcing
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term. The initial field ū0 is prolonged inside the particle domains by the same rule,
i.e. the same rule as the solid body motion.

The field v(x, t) exactly satisfies the linear unsteady Stokes problem (the complete
nonlinear term has been retained in the equation for w)

∇ · v= 0,
∂v

∂t
=− 1

ρf
∇q+ ν∇2v,

 x ∈D\Ω(t),

v|∂Ωp(t) = V p(x) |∂Ωp(t) −w|∂Ωp(t), p= 1, . . . ,Np,

v(x, 0)= 0, x ∈D\Ω(0),


(2.4)

where the boundary conditions applied at the particle surfaces still couple the unsteady
Stokes problem (2.4) with (2.2). It should be observed that no boundary conditions are
applied to the field v at the flow domain boundary ∂D . In other words, the field v can
be regarded as a free-space solution in the whole R3 restricted the actual flow domain
D . Indeed, the value of v at the domain boundary is used to correct the boundary
condition for w. It is worth calling the reader’s attention to the initial conditions
for the two complementary problems: the initial velocity field is assigned as initial
condition for w, leaving homogenous initial data for v. As shown in a later section,
the homogeneous initial conditions for the perturbation field v will turn out to be a
crucial feature of the decomposition.

The solution of (2.4) can be expressed in terms of the boundary integral
representation of the unsteady Stokes equations which involves the unsteady Stokeslet
Gij(x, ξ , t, τ ), a second-order Cartesian tensor and the associated stresses in the form
of the third-order tensor T ijk(x, ξ , t, τ ), see §§ A.1 and A.2 and the classical textbooks
by Zapryanov & Tabakova (1998) and Kim & Karilla (2005). The unsteady Stokeslet
Gij(x, ξ , t, τ ) is readily interpreted as the fluid velocity (ith direction) at position x
and time t due to the singular forcing δ(x − ξ)δ(t − τ) (jth direction) applied at ξ
at time τ . Exploiting the vanishing initial condition, the solution of (2.4) is recast in
the boundary integral representation

vi(x, t)=
∫ t

0
dτ
∫
∂Ω

tj(ξ , τ )Gij(x, ξ , t, τ )− vj(ξ , τ )T ijk(x, ξ , t, τ )nk(ξ) dSξ . (2.5)

Equation (2.5) expresses v(x, t) in terms of a boundary integral on ∂Ω = ∪p∂Ωp
involving the (physical) stress vector tj(ξ , τ ) and the boundary condition on the
perturbation velocity vj(ξ , τ ) at each particle boundary. In principle, the stress vector
tj(ξ , τ ) can be determined by solving the boundary integral equation (indeed, a
system of coupled boundary integral equations, one for each particle) associated
with representation (2.5). Once the stress vector is known at each particle boundary,
representation (2.5) provides the perturbation field everywhere in the flow domain.
Moreover, the boundary integral of the stress vector tj would provide the forces acting
on the particles.

Since the present aim is to capture the effects of many small particles of
diameter dp, the interest is focused on the far-field particle disturbance which can
be approximated by a multipole expansion of (2.5). Substitution in (2.5) of the
first-order truncation of the Taylor series of Gij(x, ξ , t, τ ) and T ijk(x, ξ , t, τ ), centred
at the particle position xp, leads to the far-field expression for large rp/dp, where
rp = |x− xp|,

vi(x, t)=−
∑

p

∫ t

0
Dp

j (τ )Gij(x, xp, t, τ ) dτ , (2.6)
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showing that the far-field disturbance depends only on the hydrodynamic force Dp(τ ),
with Cartesian components Dp

j , which acts on the generic particle. Given the physical
interpretation of the unsteady Stokeslet Gij, the partial differential equation whose
solution is given by (2.6) follows as

∂v

∂t
− ν∇2v+ 1

ρf
∇q=− 1

ρf

∑
p

Dp(t) δ[x− xp(t)], v(x, 0)= 0, (2.7a,b)

as is directly verified by combining the time derivative of (2.6) with its Laplacian.
Consistently with the truncated multipole expansion (2.6) in (2.7), the fluid–particle
coupling occurs via the (singular) forcing term in the unsteady Stokes problem and
no boundary condition needs to be enforced at the particle surface. Actually, in the
limit of small particles, the truncation of the multipole expansion implicitly provides
for the boundary condition, which is rearranged as a forcing term in (2.7). Given the
linearity, hereafter we shall explicitly consider the single contribution of the generic
particle p, keeping in mind that a final summation over all the particles is required.
It is also clear that as the particle diameter gets smaller and smaller, the term F in
(2.2) reduces to the standard convective terms of the Navier–Stokes equation u · ∇u,
almost everywhere in D .

2.2. Disturbance flow due to a small particle
The vorticity equation associated with (2.7) is

∂ζ

∂t
− ν∇2ζ = 1

ρf
Dp(t)×∇δ[x− xp(t)], ζ (x, 0)= 0, (2.8a,b)

where ζ =∇×v. The solution can be expressed as a convolution with the fundamental
solution of the diffusion equation g(x− ξ , t− τ), given by (see § A.1)

g(x− ξ , t− τ)= 1
[4π ν(t− τ)]3/2 exp

[
− ‖x− ξ‖

2

4ν(t− τ)
]
, (2.9)

which is a Gaussian with time-dependent variance σ(t− τ)=√2ν(t− τ). We observe
that g is the fundamental solution of the diffusion equation in free space, since v is
itself a free-space field, as noted when discussing (2.4).

By rearranging the forcing on the right-hand side of (2.8) as a time convolution,

Dp(t)×∇δ[x− xp(t)] =
∫ t+

0
Dp(τ )×∇δ[x− xp(τ )]δ(t− τ) dτ ,

by
∫ t+

0
f (τ ) dτ we intend lim

ε→0

∫ t+ε

0
f (τ ) dτ , (2.10)

the solution of (2.8) follows at once as

ζ (x, t)= 1
ρf

∫ t+

0
Dp(τ )×∇g[x− xp(τ ), t− τ ] dτ . (2.11)

The original fluid velocity v(x, t) can be reconstructed from the vorticity using the
non-canonical decomposition

v(x, t)= vζ (x, t)+∇φ(x, t), (2.12)
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where

vζ (x, t)=− 1
ρf

∫ t+

0
Dp(τ )g[x− xp(τ ), t− τ ] dτ (2.13)

is a pseudo-velocity, such that its curl equals the vorticity, ∇×vζ = ζ , and the gradient
term is added to make the field solenoidal, as appropriate for incompressible flows,

∇2φ(x, t)=− 1
ρf

∫ t+

0
Dp(τ ) · ∇g[x− xp(τ ), t− τ ] dτ . (2.14)

The pseudo-velocity vζ obeys the equation

∂vζ

∂t
− ν∇2vζ =− 1

ρf
Dp(t)δ[x− xp(t)], vζ (x, 0)= 0. (2.15a,b)

2.3. Regularization of the disturbance field due to a small particle
Both the velocity v and the vorticity ζ are apparently singular, with singularity arising
from the contribution to the integral near the upper integration limit, τ ' t, where
g(x− ξ , t− τ) tends to behave as ‘badly’ as the Dirac delta function. On the contrary,
away from the upper integration limit, the integrand is nicely behaved since it involves
a Gaussian or its gradient.

In this subsection we define a regularization procedure based on a temporal cutoff
εR such that the fields are additively split into a regular and a singular component.
For instance, the decomposition of the vorticity reads

ζ (x, t)= ζR(x, t; εR)+ ζS(x, t; εR), (2.16)

with the smooth and singular parts respectively given by

ζR(x, t)= 1
ρf

∫ t−εR

0
Dp(τ )×∇g[x− xp(τ ), t− τ ] dτ (2.17)

and

ζS(x, t)= 1
ρf

∫ t+

t−εR

Dp(τ )×∇g[x− xp(τ ), t− τ ] dτ . (2.18)

As implied by the fundamental solution of the diffusion equation, the regular part of
the vorticity field is everywhere smooth and is characterized by the smallest spatial
scale σR = σ(εR) =

√
2νεR. Thanks to the semigroup property of solutions of the

diffusion equation, the regular field ζR(x, t) can be interpreted as the free diffusion
from time t− εR to time t of the complete field at time t− εR, ζ (x, t− εR), namely

ζR(x, t)=
∫
ζ (ξ , t− εR)g(x− ξ , εR) dξ , (2.19)

where the spatial convolution integral propagates the field from t− εR to t. Although
physically obvious, (2.19) can be directly proved using the result

g(x, t)=
∫

g(ξ , t− εR)g(x− ξ , εR) dξ , (2.20)
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ERPP method for multiphase flows in the two-way coupling regime 529

which is nothing more that a re-expression of the semigroup property for the free-
space diffusion equation applied to the fundamental solution g. Actually, using the
property (2.20) and introducing (2.11) at time t − εR into (2.19), after integration by
parts, one readily obtains

ζR(x, t) = 1
ρf

∫ {∫ t−εR

0
Dp(τ )×∇ξg[ξ − xp(τ ), t− εR − τ ] dτ

}
g(x− ξ , εR) dξ

= 1
ρf

∫ t−εR

0
Dp(τ )×

∫
∇ξg[ξ − xp(τ ), t− εR − τ ]g(x− ξ , εR) dξ dτ

= 1
ρf

∫ t−εR

0
Dp(τ )×∇

∫
g[ξ − xp(τ ), t− εR − τ ]g(x− ξ , εR) dξ dτ

= 1
ρf

∫ t−εR

0
Dp(τ )×∇g[x− xp(τ ), t− τ ] dτ , (2.21)

which is indeed (2.17). The corresponding vorticity field ζR at time t obeys a forced
diffusion equation where the forcing is applied at the slightly earlier time t− εR,

∂ζR

∂t
− ν∇2ζR =− 1

ρf
∇× Dp(t− εR)g[x− xp(t− εR), εR], ζR(x, 0)= 0; (2.22a,b)

see § A.3 for the detailed calculation. The velocity field vR associated with the
regularized vorticity field ζR can be expressed though the general decomposition
(2.12),

vR(x, t)= vζR +∇ΦR, (2.23)

where, by analogy with (2.15), the regularized pseudo-velocity vζR is

∂vζR

∂t
− ν∇2vζR =−

1
ρf

Dp(t− εR)g[x− xp(t− εR), εR], vζR(x, 0)= 0, (2.24a,b)

and the potential correction follows from the equation

∇2ΦR =−∇ · vζR . (2.25)

It is worth noticing that the complete regularized field obeys instead the forced
unsteady Stokes equation

∂vR

∂t
− ν∇2vR + 1

ρf
∇qR =− 1

ρf
Dp(t− εR) g[x− xp(t− εR), εR] (2.26)

for the solenoidal field vR. The crucial point to observe here is that the regularized
component of the velocity disturbance vR(x, t) evolves according to a diffusion
equation forced by the anticipating Stokes drag (i.e. evaluated at t − εR) times the
regular spatial distribution g[x − xp(t− εR), εR]. Equation (2.24) can, in principle, be
straightforwardly solved on a discrete grid, once the spatial scale σR of the forcing
is properly resolved by the grid. Once vζR is known, the correction needed to make
the field solenoidal calls for the solution of the Poisson equation (2.25).

For the future application to the full solver for the carrier phase in the presence
of the suspension, it is also worth mentioning that the field vζR is rapidly decaying
in space as long as the observation time t is small, since it implies the short-time
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diffusion of a rapidly decaying forcing. All the long-range effects are indeed confined
to the potential correction ∇ΦR. As will be discussed in the forthcoming sections,
the field vR does not need to be separately evaluated, since it will be embedded in
the solution procedure for the single field u which accounts for both the undisturbed
carrier flows and the particle perturbation.

At variance with vR, the singular contribution vS cannot be represented on a discrete
grid. It can also be decomposed into a vorticity related component plus a potential
correction, according to the general representation (2.12). The vortical component
vζS is an extremely rapidly decaying function of distance from the actual position
of the particle, while its potential correction ∇ΦS is not. In order to address the
error propagation of the algorithm that will be illustrated in the next section, it is
instrumental to explicitly provide an estimate on the order of magnitude of the field
∇ΦS. The singular part of the pseudo-velocity is given by

vζS(x, t)= 1
ρf

∫ t+

t−εR

Dp(τ )g[x− xp(τ ), t− τ ] dτ ; (2.27)

see (2.13) for comparison. The equation for the potential correction is then

∇2ΦS =−∇ · vζS =
1
ρf

∫ t+

t−εR

Dp(τ ) · ∇g[x− xp(τ ), t− τ ] dτ . (2.28)

It follows that

ΦS =− 1
ρf

∫ t+

t−εR

dτDp(τ ) · ∇

∫
R3

g[y− xp(τ ), t− τ ]
4π|x− y| d3 y, (2.29)

where −1/(4π|x− y|) is the fundamental solution of the Laplace equation. From the
solution (2.29) a rough estimate for the correction field ∇ΦS is immediately obtained
as

|∇ΦS|6 1
ρf

sup
t−εR6τ6t+

|Dp|

∣∣∣∣∣∣∣∣∣∇⊗∇
∫
R3

∫ t+

t−εR

g[y− xp(τ ), t− τ ] dτ
4π|x− y| d3 y

∣∣∣∣∣∣∣∣∣ . (2.30)

Sufficiently far away from the particle, i.e. |x − xp|/dp � 1, the above estimate is
asymptotically expressed as

|∇ΦS|6 1
ρf

∫
R3

∫ t+

t−εR

g[y− xp(τ ), t− τ ] dτ d3 y sup
t−εR6τ6t+

|Dp|
∣∣∣∣∣∇⊗∇ 1

4π|x− x∗p|

∣∣∣∣∣ ,
(2.31)

where x∗p = xp(τ
∗), t − εR 6 τ ∗ 6 t+, is the position along the portion of the particle

trajectory closest to the point x. Given the known integral∫
R3

1
(2πσ 2)3/2

e−r2/(2σ 2) d3r = 1, (2.32)
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one ends up with
|∇ΦS|6 sup

t−εR6τ6t+
|Dp| εR

4πρf |x− x∗p|3
, (2.33)

where the norm of the double tensor ∇⊗∇[1/(4π|x− x∗p)] is given by∣∣∣∣∣∇⊗∇ 1
4π|x− x∗p|

∣∣∣∣∣= sup
|ê|=1

[
(ê · ∇)∇

1
4π|x− x∗p|

]
= 1

4π|x− x∗p|3
. (2.34)

From the expression of the singular component of the pseudo-velocity (2.27) it is
clear that, far from the particle, vζS decays exponentially fast, hence the far-field
dominating component of vS is provided by the long-range correction ∇ΦS that is
of order εR/r3. It is also clear that close to the particle the singular contribution
is unbounded. This singular near field is however unessential as far as the relevant
length scales of the system are concerned, as either the smallest hydrodynamic
scale η or the inter-particle distance is larger than σR =

√
2νεR. For this reason,

it will be neglected when advancing the solution by one time step in the actual
algorithm illustrated in the following sections. However, this highly localized field
will eventually diffuse to larger scales at later times. Hence, the singular contribution
that is neglected during a single time step is successively reintroduced into the field
as soon as it reaches the smallest physically relevant scales of the system. This
procedure guarantees that the error does not accumulate in time, thereby maintaining
the accuracy of the calculation. Figure 2 sketches the decomposition into regular
and singular fields, using the vorticity field to describe the process as it is easier
to visualize than the velocity field. The sketch highlights the singular production of
vorticity by the particle, its diffusion, associated with the momentum transfer to the
fluid, and the regularizing effects of viscosity. A crucial point is that the singular
component of the field, which cannot be represented on a discrete mesh, is fully
recovered at a successive time instant when its characteristic length scale reaches the
grid size. In the following section the convective effect of the singular field will be
dealt with in more detail, to show that it is indeed negligible when the dynamics is
observed at the relevant hydrodynamical scale.

2.4. Coupling with the carrier flow
The regularized fluid velocity of the carrier flow in the presence of the perturbing
particles is obtained by aggregating the two contributions of the velocity decomposition
uR =w+ vR described in § 2.1. The resulting field obeys the equations

∇ · uR = 0,
∂uR

∂t
+ uR · ∇uR + {vS · ∇uR + uR · ∇vS + vS · ∇vS}

=− 1
ρf
∇p+ ν∇2uR − 1

ρf

Np∑
p

Dp(t− εR) g[x− xp(t− εR), εR],


(2.35)

with boundary and initial conditions given by

uR|∂D = uwall − vS|∂D, uR(x, 0)= u0(x), (2.36a,b)

where we have added the contributions arising from all the Np particles transported by
the fluid. It should be stressed that the boundary condition for the regularized velocity
uR at ∂D needs the singular contribution vS to be taken into account.
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(a)  (b) (c)

FIGURE 2. (Colour online) The coupling mechanism and regularization procedure. The
green curves sketch the vorticity field. (a) The complete vorticity field generated by
the particle at the current time t is split into the regular ζR(x, t) (solid green line)
and singular ζS(x, t) (dashed green line) components respectively. (b) Only the regular
component ζR(x, t) can be represented by the computational grid with mesh size Dx at
the generic time t. (c) After the elapsed time εR (time t+ εR) the singular component of
the vorticity field diffuses to scales large enough to be captured by the discrete grid. The
momentum transfer towards the fluid occurs via viscous diffusion of the vorticity generated
by the particle. When only the regularized field is considered, a small error is incurred
in the exchanged momentum. However, the successive diffusion of the singular field fully
recovers the correct amount of vorticity at a successive time step. Thus, the error does
not accumulate in time and remains under control along the simulation.

An interpretation of (2.35) could now be helpful. Along its motion the particle
experiences the hydrodynamic force. In the formulation here proposed, the force is
naturally regularized by viscous diffusion, hence the mollified Dirac delta functions
takes the form of the fundamental solution of the diffusion equation. The effect of
the hydrodynamic force is the generation of the regularized vorticity, (2.17), which is
characterized by the smallest length scale σR =

√
2νεR, where εR is the regularization

diffusion time scale. A crucial point to be stressed again is that the hydrodynamic
forcing acting on the regularized solution at time t is the one experienced by the
particles at a slightly previous time t − εR when their position was xp(t − εR). The
net effect of the disperse phase on the regularized carrier flow field is then accounted
for by the extra forcing term corresponding to the time-delayed hydrodynamic force,
expressed as the Gaussian g[x− xp(t− εR), εR] with variance σR.

The total field u will involve a singular part that is concentrated on scales
smaller than the physically relevant ones. As such, the singular contribution is
actually neglected since only the regularized field needs to be considered. However,
contributions from the singular disturbance field vS appear in the term in curly
brackets in (2.35). Indeed, in the far field of the particles vS was already shown to
be of the order of εR/r3, which is negligible in comparison with the other terms in
the equation. It is worth recalling that, at the successive time step, the corresponding
contribution is reintroduced into the field, giving rise to no error accumulation in the
long run. The crucial point here is that (2.35) is taken to hold almost everywhere in
D near the particle position xp. In this near field the term in curly brackets needs to
be treated with some care. In fact, due to the scale separation between uR and vS, the
filtering of the fields on a scale ∆ that is of the order of the smallest hydrodynamic
scale does not alter uR, i.e. denoting by ûR the filtered field one has uR = ûR. In
such conditions the equations for the regularized field follow by applying the filter
to the system (2.35). As a result of scale separation, the filter is actually acting
only on the terms in curly brackets which involve the singular contribution vS. As
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explicitly shown in § A.4, a few detailed calculations show that the filtered terms
give a contribution of the order

̂vS · ∇vS ∼ Rep

(σR

∆

)3 Dp

ρf
gmax,

̂vS · ∇uR ∼ ̂uR · ∇vS ∼ Rep

(σR

∆

)2 Dp

ρf
gmax,

 (2.37)

where gmax= 1/(2πσ 2
R)

3/2 is the maximum of the mollified delta function. Clearly, the
above filtered convective terms are an order Rep smaller than the forcing term on the
right-hand side of (2.35). Under the assumption of small particle Reynolds number
they can be safely neglected in the evolution equation of the regularized field.

We would like to stress the simplicity of the final equations that have to be solved,

∇ · uR = 0,

∂uR

∂t
+ uR · ∇uR =− 1

ρf
∇p+ ν∇2uR − 1

ρf

Np∑
p

Dp(t− εR) g[x− xp(t− εR), εR].


(2.38)

The effect of the disperse phase on the carrier fluid is taken into account by an
extra term in the Navier–Stokes equations. Under this point of view, any standard
Navier–Stokes solver can be easily equipped with such an extra term which is known
in closed form. Furthermore, each particle will produce an active forcing on the fluid
localized in a sphere of radius order σR centred at the particle position. In the presence
of many particles only the few grid points in the sphere of influence of the particle
will receive the disturbance produced by the particle itself. Finally, the forcing term is
grid-independent in the sense that, once the grid spacing is refined (Dx progressively
getting smaller at fixed σR), any successively finer grid will only provide a better
numerical approximation of the same forcing.

2.5. Evaluation of the hydrodynamic force and removal of self-interaction
The dynamics of a point particle of mass mp in the relative motion with respect to a
Newtonian fluid is described by the equation of motion

dxp

dt
= vp(t), mp

dvp

dt
= Dp(t)+ (mp −mf )g, (2.39a,b)

where mf is the displaced mass of fluid, Dp(t) is the hydrodynamic force and g is
the acceleration due to gravity. Clearly, for the accurate evaluation of the particle
trajectories and of the inter-phase momentum coupling, an accurate and efficient
expression for the hydrodynamic force is mandatory. To obtain such an expression
one should reconsider the equation for the perturbation field v addressed in § 2.1.

As shown there, the perturbation due to the presence of a particle obeys the
unsteady Stokes equation (2.4) where, worthy of note, the initial condition for the
perturbation field v is homogeneous. Indeed, in our scheme, the solution of the
unsteady Stokes equation for v at the generic time step provides the stress at the
fluid–particle interface and ultimately yields the drag force. Luckily, there is no need
to work out the details, since Maxey & Riley (1983) have already provided the
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expression for the general unsteady drag force of a spherical particle when the field
has homogenous initial conditions, which is the case of interest here. Their solution
can in fact be fully exploited to provide the drag force for the perturbation flow
which is asymptotically expressed as (2.6) during the generic time step.

Following Maxey & Riley (1983), the force Dp(t) can be evaluated as

Dp(t) = 6πµap

[
ũ(xp, t)+ a2

p

6
∇2ũ(xp, t)− vp(t)

]

+mf
Dũ
Dt

∣∣∣∣
xp

+ 1
2

mf
d
dt

[
ũ(xp, t)+ a2

p

10
∇2ũ(xp, t)− vp(t)

]
+ 6πµa2

p

×
∫ t

0
dτ

1
[πν(t− τ)]1/2

d
dτ

[
ũ(xp, τ )+

a2
p

6
∇2ũ(xp, τ )− vp(τ )

]
, (2.40)

where ap = dp/2 is the particle radius. Expression (2.40) involves the steady Stokes
drag (first line), the added mass terms (second line) and the Basset history force (third
line). In all terms the Faxen correction associated with spatial non-uniformity of the
flow is included and, following the original derivation by Maxey & Riley (1983), the
velocity ũ(xp, t) must be interpreted as the fluid velocity, at the particle position, in
the absence of the particle self-interaction, i.e. ũp should account for the background,
possibly turbulent, flow and for the disturbance generated by all the other particles
except the pth one; see also Gatignol (1983) and Boivin, Simonin & Squires (1998).
In the regime of our interest, where the particle backreaction modifies the carrier
flow, the correct calculation of ũp is crucial and calls for an effective procedure to
remove from the field u(x, t) the particle self-interaction contribution evaluated at the
particle position. Luckily, the (regularized) disturbance flow generated by each particle
is known in closed form and can thus be easily removed from the complete field in
computing the hydrodynamic force, at least for numerical algorithms using explicit
time integration schemes. As an illustration, let us consider the simple case of heavy
small particles, ρp� ρf , where the hydrodynamic force (2.40) reduces to the Stokes
drag

Dp(t)= 6πµap[ũ(xp, t)− vp(t)]. (2.41)

The explicit calculation of the velocity vR(x− x0, t) induced at time t and position x
by a particle located at x0 is provided in § A.5. This result can be exploited to remove
the self-interaction term in the illustrative case of an explicit Euler time advancement
algorithm. Indeed, in this case, to correctly evaluate the right-hand side of (2.41) it
suffices to subtract from u(xp, t) the value vR[xp(t)− xp(t−Dt),Dt] induced at time
t at the current particle position xp(t) by the same particle when it was placed at
xp(t − Dt). The same kind of reasoning can be straightforwardly extended to other
explicit time integration schemes, e.g. to each intermediate step of a Runge–Kutta
algorithm and to the different contributions in the general expression of the force
(2.40), e.g. bubbly flows (Climent & Magnaudet 2006).

Before closing this section devoted to force evaluation, a final note is in order
concerning the Basset force: it represents the effects on the force due to the particle–
fluid interaction during the previous motion of the particle before the actual time t. In
cases where the particle does not modify the carrier flow, see the derivation by Maxey
& Riley (1983), this interaction is modelled by a memory convolution integral which
mimics the particle vorticity production and its viscous diffusion occurring from the
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initial time t = 0 up to the actual time t. In our case, the carrier fluid is perturbed
step-by-step by the particle motion (two-way coupling regime) and the diffusion of
the vorticity produced by the particle during the past motion before the actual time
t is captured without any modelling by (2.38). Hence, the time integral must model
only the vorticity production occurring during the last time step Dt, i.e. the memory
integral is limited to a single time step of the eventual integration algorithm. Actually,
the effects of the previous history come in through the boundary condition of (2.4),
where the field w must be interpreted as the background velocity acting on the particle,
i.e. as the carrier flow velocity field that would occur at the particle boundary during
the last time step in the absence of the particle. For small particles this field reduces
to the value at the particle centre plus a Faxen-like correction accounting for spatial
flow variations on the scale of the particle.

3. Algorithm validation
The methodology illustrated in the previous sections needs to be validated. We

will address several test cases where analytical data can be employed for comparison.
To better focus our attention on the interaction between the fluid and the disperse
phase, we will consider a periodic box D free from solid boundaries which may
hinder the analysis. The numerical solution of (2.26) and (2.35) for the carrier
fluid is based on a pseudo-spectral Fourier-based spatial discretization where the
nonlinear terms are calculated by the standard 3/2 dealiasing procedure. Time
advancement is achieved by a low-storage semi-implicit Runge–Kutta method with a
fourth-order Adams–Bashforth formulation for the convective terms and an implicit
Crank–Nicolson formula for the diffusive terms. The details of the implementation
are described elsewhere, see Gualtieri et al. (2002).

3.1. Response to a localized force
We start by addressing a simple case where a known small-amplitude constant force
F is applied at a fixed point xp to the fluid which is initially at rest in the domain
D . Due to the small amplitude of the forcing, the flow obeys the linear unsteady
Stokes equations (2.7) which are suitable for an analytical solution. It is useful to
fix the notation: the constant force has Cartesian components F = (Fx, Fy, Fz), the
corresponding velocity vector is u= (u, v, w) and the distance from xp is measured
by the vector r = x − xp, whose Cartesian components are r = (rx, ry, rz). Hereafter,
we will consider the force in the x direction, namely F= (F0, 0, 0). In fact, an exact
solution can be easily determined in closed form by evaluating the time convolution
integral between the unsteady Green tensor, see § A.2 equation (A 13), and the force F.
After some algebra, the fluid velocity in the direction of the force when r = (rx, 0, 0)
reads

u(rx, t)= F0

µ
√

4νt

1
4π

[
1

2η3
t

erf(ηt)− 1
2ηt

erf(ηt)− 1√
πη2

t

exp(−η2
t )+

1
ηt

]
, (3.1)

while for r = (0, ry, 0) it reads

u(ry, t)= F0

µ
√

4νt

1
8π

[
− 1

2η3
t

erf(ηt)− 1
ηt

erf(ηt)+ 1√
πη2

t

exp(−η2
t )+

1
ηt

]
, (3.2)

where ηt = r/
√

4νt and r = √rk rk. The expressions (3.1) and (3.2) highlight that
the response of the fluid to a concentrated force assumes a self-similar form when

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2015.258
Downloaded from https:/www.cambridge.org/core. Open University Library, on 04 Feb 2017 at 16:01:35, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2015.258
https:/www.cambridge.org/core


536 P. Gualtieri, F. Picano, G. Sardina and C. M. Casciola

101

10–1

10–3

10–5

10–7

10–9

100

10–2

10–4

10–6
10–6

10–7
10–8

10–810–10

10–12
0.5 1.5 2.51 2

100 150 200 250
N

(a)  (b)

FIGURE 3. Convergence study in the case of a constant force F = (F0, 0, 0) applied
at a fixed point xp to the fluid initially at rest in a periodic box D . (a) The error
EI of the total impulse is plotted for different values of the spatial resolution σR/Dx
against the dimensionless parameter σR/

√
2νt, which serves as dimensionless time

√
εR/t.

(b) The supreme supt>0 EI is plotted against the ratio σR/Dx. The inset reports the supreme
supt>0 EI against the number of grid points N for a fixed spatial resolution σR/Dx= 1.

the velocity is rescaled with u0(t) = F0/(µ
√

4νt) and `0(t) =
√

2ν t is used as a
reference length scale. In addition, the regularized numerical solution, namely (2.26),
will also depend on the regularization length scale σR or, in dimensionless form, on
the parameter σR/`0(t), which will be used hereafter to assess the convergence of the
method. In fact, the algorithm is expected to correctly transfer the proper impulse to
the fluid, avoiding the singularity at xp, a crucial aspect in view of simulations in the
two-way coupling regime.

The validation starts by considering this fundamental quantity, namely the impulse.
Due to periodicity, the exact impulse, IE= Ft= ∫

D
ρf u(x, t) d3x, can also be expressed

in terms of the vorticity moment (Saffman 1992),

IE(t)= 1
2
ρf

∫
Ω

x× ζ (x, t) d3x. (3.3)

The error EI = |IE(t)− IN(t; σR)|/|IE(t)|, where IN(t; σR) is the estimate of (3.3) from
the numerical solution, is plotted in semilogarithmic scale in panel (a) of figure 3
for different spatial resolutions, namely the ratio σR/Dx versus σR/`0(t), which in this
case serves as dimensionless time

√
εR/t. In the unresolved cases (σR/Dx < 1), the

error is order one and increases in time. In contrast, when a proper spatial resolution
is adopted, i.e. σR/Dx> 1, the error becomes progressively smaller as the resolution
is increased and stays constant in time. In other words, as the simulation advances in
time EI does not accumulate. Panel (b) of figure 3 reports the supreme supt>0 EI as a
function of the ratio σR/Dx. This plot emphasizes the convergence rate of the impulse
against the spatial resolution. The inset shows supt>0 EI in a different manner. Here,
the ratio σR/Dx is fixed to one, and the number of grid points N in each direction is
progressively increased, denoting convergence also with respect to the grid refinement.

The impulse, although a fundamental quantity, does not retain any information
concerning the spatial structure of the fluid field. To go into more depth in the
convergence analysis we have addressed the vorticity field. The error is now defined
by using the standard L2 norm as Eζ = ‖ζE − ζN‖2/‖ζE‖2, where the subscripts refer
to the exact solution and its numerical counterpart (2.17). The error Eζ is shown in
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FIGURE 4. Convergence study in the case of a constant force F = (F0, 0, 0) applied at
a fixed point xp to the fluid initially at rest in a periodic box D . (a) The error Eζ , see
text for definition, is plotted against σR/

√
2νt for different values of the spatial resolution

σR/Dx. (b) The supreme supt>0 Eζ is shown as a function of the ratio σR/Dx. The
inset reports the supremesupt>0 Eζ versus the grid points N for a fixed spatial resolution
σR/Dx= 1.

panel (a) of figure 4 for different spatial resolutions, namely the ratio σR/Dx versus
σR/`0(t). When a proper spatial resolution is adopted, the error Eζ also stays constant
in time or decreases. It should be noted that the largest error is achieved at the early
stages of the simulation when the force is applied to the fluid at rest. In any case,
the supreme supt>0 Eζ converges when the spatial resolution is progressively refined,
as shown in panel (b) of the figure. The inset reports supt>0 Eζ against the number
of grid points N, documenting the convergence of supt>0 Eζ also with respect to the
grid resolution.

More detailed insight concerning the ensuing fluid motion generated by the fixed
force is achieved by a direct inspection of the flow field. Panels (a) and (b) of figure 5
report the velocity disturbance u/u0 in the direction of the force as a function of rx/`0
in a one-dimensional cut through the point where the force is applied. The curves in
the plot pertain to simulations that have different spatial resolutions. Namely, a typical
unresolved case σR/Dx = 0.38 and a resolved simulation σR/Dx = 1 are compared
against the exact solution given by (3.1) in self-similar variables. As shown in the
plot, when σR/Dx > 1 the present algorithm reproduces the exact solution well. It
should be noted that insufficient spatial resolution results in a clear underestimate
of the fluid velocity disturbance. This is emphasized by the curves reported in the
inset, where the data are represented in a semilogarithmic scale. Panel (b) of figure 5
documents the behaviour of the ERPP method when the spatial resolution σR/Dx is
kept fixed and the regularization length scale σR is progressively reduced, i.e. the grid
resolution N is progressively increased. In fact, as σR is decreased, the numerical
solution describes a progressively wider range of the exact solution, avoiding in all
cases the occurrence of the singularity at the point xp where the force is applied,
rx = 0 in the plot. The different cases share the same far-field behaviour away from
xp irrespective of the value of σR, as emphasized by the plots in the insets of figure 5
where the velocity disturbance is represented in a semilogarithmic scale. In summary,
the solution provided by ERPP retains the relevant features of the exact solution and
avoids the occurrence of the singularity at xp, which is clearly an unwanted trait in
any numerical solution. Panels (c) and (d) of figure 5 reinforce the conclusion of the
previous analysis by showing the fluid velocity component in the direction of the force
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FIGURE 5. Fluid velocity disturbance generated by a fixed constant force F0 = (F0, 0, 0)
on an initially motionless fluid. The 1D normalized fluid velocity profile u/u0 in the
direction of the force is plotted against the separation rx/`0 (a and b) and ry/`0 (c and
d). The exact solutions (3.1) and (3.2) are reported for comparison in (a,b) and (c,d)
respectively (solid line). In (a) and (c) u/u0 is plotted versus separation for two spatial
resolutions, namely σR/Dx= 0.38 (@) and σR/Dx= 1 (E). In (b) and (d) u/u0 is plotted
versus separation for several values of the grid resolution N, namely N= 96 (@), N= 128
(A), N = 192 (♦) and N = 256 (E), at a fixed ratio σR/Dx= 1. The insets of (a) and (b)
show the data in a semilogarithmic scale.

u as a function of the distance ry in a transverse one-dimensional cut through the point
of application of the force in comparison with the exact solution given by (3.2).

Finally, figure 6 reports the fluid velocity disturbance u/u0 plotted against the
normalized distances rx/σR and ry/σR. The discussion of these plots requires some
care. The ERPP model was conceived to describe the far-field effect produced on
the fluid by a point-like particle, avoiding the occurrence of singularities at the point
xp where the particle is located. In fact, the disturbance produced by the particle is
described by retaining only the first term in the multipole expansion of the general
solution of the unsteady Stokes flow, and the regularization time scale εR accounts
for the viscous diffusion process which naturally regularizes the solution. Hence,
the solution provided by ERPP has an intrinsic inner cutoff provided by σR and is
expected to reproduce the disturbance flow generated by a point particle in the far
field. This is indeed what happens and what is documented by the plots in figure 6.
The regularized solution stays on top of the exact solution everywhere, see e.g. the
main panels of figure 6 which, on the scale of the complete computational domain D ,
report the fluid velocity disturbance produced by the particle. The insets of figure 6
show the same data in the proximity of the origin where the particle is placed. This
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FIGURE 6. Fluid velocity disturbance generated by a fixed constant force F0 = (F0, 0, 0)
on an initially motionless fluid. The 1D normalized fluid velocity profile u/u0 in the
direction of the force is plotted against the separation rx/σR (a) and ry/σR (b) at
σR/
√

2νt= 0.05 for a given spatial resolution of N = 256 grid points and σR/Dx= 1. The
exact solutions (3.1) and (3.2) are also reported for comparison (solid line). The insets of
(a) and (b) provide a close-up view of the solution at xp = 0.

representation emphasizes that, after a distance of a few σR, the ERPP solution falls
on top of the exact solution. The threshold 3σR can be safely assumed as an inner
cutoff for the disturbance flow field produced by the particle.

3.2. Unsteady motion of an isolated particle
The following subsections address more realistic cases where the point xp is allowed
to move according to (2.39) with the initial conditions xp(t = 0) = x0

p, vp(t = 0) = 0.
In order to proceed gradually, we will first discuss a series of tests where the particle
motion is not affected by the fluid velocity disturbance that the particle generates. In
such decoupled cases the fluid disturbance field is still amenable to exact solutions
which can be employed for further comparisons. Subsequently, we will consider the
fully coupled case where the dynamics of the particles and the fluid are intertwined.

3.2.1. Imposed particle motion
We consider the motion of a small particle subjected to an external force,

e.g. gravity, and to the Stokes drag. The particle velocity is given by the solution of
the equation

mp
dvp

dt
=mp g− 6πµapvp(t), (3.4)

namely
vp(t)= vt(1− e−t/τp), (3.5)

where vp(t) denotes the particle velocity in the direction of the gravity acceleration,
say the x direction, vt= τp g is the particle terminal velocity and τp= ρpd2

p/18µ is the
Stokes relaxation time scale. In this framework the motion of the particle is imposed
and its dynamics is decoupled from the dynamics of the carrier fluid.

Panel (a) of figure 7 reports the fluid velocity disturbance produced by the moving
particle at t/τp = 20 when the particle has reached its terminal velocity vt. The fluid
velocity profile is plotted for two cases which differ in the value of the regularization
length scale σR for σR/Dx = 1. Once again the value of σR controls the regularized
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FIGURE 7. Normalized fluid velocity disturbance produced by a particle moving with
velocity vp(t) = vt(1 − e−t/τp) in the x direction in a periodic box D . The normalized
velocity disturbance u/vt in the direction of the particle motion is plotted against the
separation rx/ap at time t/τp = 20 when the particle has reached the terminal velocity
vt. (a) Data obtained for different values of the regularization length scale σR at a fixed
spatial resolution σR/Dx= 1, namely N = 192 (A) and N = 384 (E), are compared against
the exact solution (solid line) given by (3.6). The inset reports the data of the main panel
plotted in a semilogarithmic scale. (b) Data pertaining to particles with different terminal
velocities, namely v∗t = vtdp/ν = 10−5 (@) and v∗t = 10−3 (E), are compared against the
corresponding exact solution (3.6), shown by the dashed and solid line respectively. The
inset reports the data of the main panel plotted in a semilogarithmic scale.

near field and does not affect the far field, see the inset of the figure. In the case of
the moving particle the fluid velocity also has an explicit solution given by the time
convolution integral of the unsteady Stokeslet, (A 13), and the hydrodynamic force
Dp(t) where the Stokeslet is placed at the instantaneous particle position as specified
by (3.5). It is now a little more tricky to perform the time convolution integral than
in the example discussed in § 3.1 since r = x − xp(t) where ẋp = vp(t). In fact, the
integration of the expression

ui(r, t)=
∫ t

0
Gik[x− xp(τ ), t− τ ]Dp

k(τ ) dτ (3.6)

in a closed form becomes cumbersome even though the integral can be evaluated
numerically by a quadrature formula. Indeed, such numerical approximation of the
exact solution can be still used for useful comparisons. The data produced by the
ERPP algorithm are compared with the reference solution (3.6) in figure 7. The plots
show that the ERPP approach is able to capture the expected solution and provides
a consistent regularization of the singularity that occurs at xp. Panel (b) of figure 7
provides the fluid velocity disturbance produced by particles with different terminal
velocities vt. The effect of increasing the terminal velocity is worth discussing. As
vt is increased the fore–aft symmetry in the disturbance flow is progressively broken.
This symmetry breaking is indeed easily explained in terms of vorticity released along
the path of the moving particle. In fact, in the body-fixed frame, the convective term
vp · ∇u is responsible of the constant velocity advection for the vorticity even in a
Stokes regime.

We conclude the discussion by presenting in figure 8 the comparison between the
ERPP solution and what one would obtain by using the classical PIC approach. As
expected, the solution provided by the PIC method is grid dependent, as demonstrated

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2015.258
Downloaded from https:/www.cambridge.org/core. Open University Library, on 04 Feb 2017 at 16:01:35, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2015.258
https:/www.cambridge.org/core


ERPP method for multiphase flows in the two-way coupling regime 541

–1500 –500 500 1500

0

0.05

0.10

0.15

0.20

Exact

–1500 –500 500 1500

10–1

10–2

10–3

10–4

–100 0 100

0.05

0.15
(a) (b)

FIGURE 8. (Colour online) Normalized fluid velocity disturbance at t/τp = 20 produced
by a particle moving with velocity vp(t) = vt(1 − e−t/τp) in the x direction. The velocity
profile ensuing from ERPP for different values of the regularization length scale σR and
grid resolution, namely N = 192, σR/Dx = 1 (@), N = 384, σR/Dx = 2 (A) and N = 384,
σR/Dx= 1 (E), is compared against the exact solution given by (3.6) (solid red line) and
the corresponding results obtained by the PIC approach, namely N= 192 (C) and N= 384
(♦). Inset (a) shows a close-up view of the velocity disturbance near the singular point
xp. Inset (b) shows the velocity profile plotted in a semilogarithmic scale.

by comparing the disturbance velocity profiles of two simulations that share the same
physical parameters but differ in the grid resolution, namely N = 192 and N = 384
grid points. As the grid is refined, a singular-like behaviour occurs at xp and the
field is characterized by numerical aliasing, see e.g. inset (b) where the velocity
profile is plotted in a semilogarithmic scale. In contrast, once the regularization time
scale εR (or equivalently the length scale σR) is fixed, the ERPP approach provides a
numerically convergent asymptotically grid-independent solution. This behaviour can
be better appreciated in inset (a) where a close-up view of the velocity disturbance is
reported. In a nutshell, ERPP retains all the features of the physical solution produced
by a small point-like particle except for the (undesired) singularity which unavoidably
occurs at xp. The regularization of the solution is controlled by the time scale εR
which is related to a diffusive length scale σR. Indeed, σR is naturally introduced
by the process of vorticity diffusion and can be fixed on a physical ground. For
instance, in a turbulent flow, velocity fluctuations are physically irrelevant below the
Kolmogorov length scale η. At the same time the effects that a swarm of point-like
particles generate on length scales larger than η are physically relevant. In such a
framework the regularization length scale σR is naturally selected as σR = η.

3.2.2. Particle motion in the coupled regime
This subsection addresses the unsteady motion of a particle that settles from rest

under the action of gravity in the coupled regime where the particle induces a
disturbance in the surrounding fluid and this disturbance enters the expression of the
hydrodynamic force. For simplicity we will consider small particles much heavier
than the surrounding fluid, i.e. ρp� ρf , where the only relevant force is the Stokes
drag. The general expression of the force (2.40) simplifies to

Dp(t)=mp g+ 6πµap[ũ(xp, t)− vp(t)]. (3.7)
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Following the discussion of § 2.5 the velocity ũ(xp, t) must be interpreted as
the background fluid velocity in the absence of the pth particle, e.g. turbulent
fluctuations plus the disturbance flow generated by all the other particles. This makes
the calculation of the hydrodynamic force particularly challenging in the two-way
coupling regime. In the particular case where only one particle is considered the
value ũ(xp, t) should be set to zero. However this way of proceeding is unfeasible
in the general case where many particles are present since the value of ũ(xp, t) must
also account for the velocity disturbance generated by all the other particles and the
background flow. This conundrum can be disentangled in the context of the ERPP
approach since the disturbance flow produced by the pth particle on itself is known
in a closed form and thus can be removed from the background fluid velocity u(xp, t)
even in the presence of many other particles.

The two panels of figure 9 provide evidence on the above considerations. The plots
report the particle velocity normalized with the settling velocity vt as a function of
the dimensionless time t/τp both for the ERPP calculation and for the PIC approach.
The particle trajectory should be compared with the reference solution given by (3.5).
Panel (a) shows the particle velocity calculated by the ERPP method for different
values of the ratio dp/σR. We recall that our approach is designed to model the
disturbance flow produced by point-like particles, i.e. particles whose diameter dp is
much smaller that any other length scale in the system. In the ERPP approach, in
the absence of any other length scales introduced by the background flow, the only
significant length scale is the diffusive scale σR. Hence, the nominal diameter of the
particle should be smaller than σR. Indeed, as the ratio dp/σR decreases the particle
velocity rapidly approaches the reference curve provided by (3.5). When the scale
σR has been fixed ERPP gives a grid-independent solution, as can be appreciated in
figure 9 where two trajectories that share the same σR but have different grids, namely
N = 192 and N = 24 grid points in each direction, give practically undistinguishable
results. It is worth noting that the error in the particle velocity is already below
10 % for the relatively large ratio dp/σR = 0.5 we have considered. Panel (b) of
figure 9 reports the particle velocity calculated with the PIC method. The solution
now presents larger deviations from the exact result (3.5). This is due to a poor
estimate of the hydrodynamic force. In fact, in the PIC approach the self-induced
disturbance produced by the pth particle is unknown or, if eventually modelled by
the steady Stokeslet, is singular at the particle position xp. In both cases it cannot be
removed from the particle-to-fluid slip velocity, resulting in an inaccurate prediction
of the hydrodynamic force and, consequently, of the particle trajectory. For instance,
for dp/Dx = 0.5 the error in the terminal velocity is 50 % for the PIC approach
compared with a much lower 10 % for ERPP. Clearly, the error reduces as the ratio
dp/Dx→ 0.

A more direct comparison between the two approaches is provided in panel (a) of
figure 10 where we plot the particle velocity for the largest ratio dp/σR= 0.5 and the
smallest one dp/σR = 0.0625 for both ERPP and PIC. For comparison, in the ERPP
calculation we have reported the particle velocity in a case where we did not subtract
from u(xp, t) the self-induced disturbance. Panel (b) of the figure presents the relative
error in the estimate of the terminal velocity as a function of dp/σR. Although the
error scaling with grid resolution is comparable (see inset), the error pertaining to the
ERPP approach is substantially smaller. A last issue concerns the sensitivity of the
ERPP method in poorly resolved cases where σR/Dx< 1. In figure 11 we compare the
particle velocity for three different resolutions at fixed dp/σR. As expected, the method
loses accuracy as the regularization kernel is not resolved on the computational grid.

Additional validation of the approach is discussed in § A.6 by comparison with
known solutions for systems of hydrodynamically coupled particles.
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FIGURE 9. Normalized particle velocity vp/vt as a function of the dimensionless time
t/τp. (a) Particle velocity in the ERPP simulations for different values of the ratio dp/σR,
namely dp/σR = 0.5 (@), dp/σR = 0.25 (A), dp/σR = 0.125 (♦) and dp/σR = 0.0625 (E).
The fluid field is resolved with N = 192 grid points (Fourier modes) for each direction
(open symbols) in a periodic box LB = 2π. In the case dp/σR = 0.0625 (p) the fluid
field is resolved with N = 24 grid points (in each direction) to check grid independence.
(b) Particle velocity provided by the PIC approach in comparable conditions to ERPP.
Here, dp/Dx = 0.5 (@), dp/Dx = 0.25 (A), dp/Dx = 0.125 (♦) and dp/Dx = 0.0625 (E).
In (a) and (b) the reference solution (3.5) is reported for comparison (solid line).
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FIGURE 10. Normalized particle velocity vp/vt as a function of the dimensionless time
t/τp. (a) Direct comparison of the ERPP results against the PIC approach and the
reference solution (solid line) for different values of the ratio dp/σR or equivalently dp/Dx,
namely dp/σR–dp/Dx = 0.5 (squares) and dp/σR–dp/Dx = 0.0625 (circles). Black filled
symbols refer to the PIC approach, open symbols to the ERPP method. The grey square
refers to an ERPP calculation where intentionally we did not remove the self-induced
velocity disturbance. (b) Relative error in the evaluation of the terminal velocity as a
function of the dimensionless parameter d∗p = dp/σR for ERPP and PIC. The inset shows
the data plotted on a log–log scale.

4. Application to turbulent flows

In order to discuss the feasibility of turbulent particle-laden flow simulations, in
this section we present preliminary results obtained by the ERPP method for a
homogeneous shear flow at moderate Reynolds number. The mean velocity profile in
the x direction (streamwise direction) is imposed and is characterized by a constant
velocity gradient S along the y direction (shear direction). The third coordinate is
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FIGURE 11. Normalized particle velocity vp/vt as a function of the dimensionless time
t/τp. The trajectories obtained in two unresolved cases, namely σR/Dx= 0.5 and σR/Dx=
0.25, are compared against a resolved case at σR/Dx = 1 for a given value of the ratio
dp/σR = 0.0625.
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FIGURE 12. (Colour online) Sketch of the flow configuration. The flow domain is
represented by a periodic box of length Lx = 4π, Ly = 2π and Lz = 2π in the steamwise,
shear and spanwise directions respectively. The mean flow Syex is in the x direction and
linearly changes at a rate S along the y direction. The contour plot shows the intensity of
the velocity fluctuations in selected coordinate planes.

denoted by z (spanwise direction). The Reynolds decomposition u= Syex + u′ allows
us to write the Navier–Stokes equations for the turbulent fluctuating component u′,
which are solved in a reference frame advected by the mean flow, see e.g. Rogallo
(1981). Rogallo’s transformation allows us to restore the spatial homogeneity of the
fluctuations in the convected frame. A sketch of the flow domain is reported in
figure 12.

In the homogeneous shear flow the turbulent fluctuations are sustained by the
off-diagonal component of the Reynolds shear stress, −〈u v〉, resulting in a neat
turbulent kinetic energy production rate P = −S〈u v〉. The growth of the integral
scale is eventually bounded by the computational box, originating a pseudo-cyclic
behaviour of the turbulent kinetic energy and the enstrophy, as discussed in Pumir
(1996), Gualtieri et al. (2002) and Yakhot (2003). Stationarity must be intended in
the sense that the pseudo-cyclic oscillations repeat themselves indefinitely, yielding
time-independent ensemble averages, see e.g. the extensive discussion in Gualtieri
et al. (2007) where most of the relevant literature was reported.

The large-scale anisotropic forcing due to the Reynolds shear stress feeds the
energy cascade operated by the nonlinear terms of the Navier–Stokes equations,
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which eventually restore isotropy at smaller scales. The so-called shear scale LS
ideally separates the production range LS < `< L0 (L0 is the integral scale), from the
isotropy recovery range η < `< LS. It follows that the nature of turbulent fluctuations
is parametrized by two dimensionless parameters, the shear intensity S∗ = (L0/LS)

2/3

and the Corsin parameter Sc = (η/LS)
2/3. The latter can be recast in terms of the

inverse of the classical turbulent Reynolds number Reλ based on the Taylor length
scale.

In the conditions discussed above the transport of inertial particles is non-trivial.
In fact, the disperse phase is characterized by small-scale aggregates (clusters) which
preserve a spatial preferential orientation induced by the large-scale motions, up to
the smallest scales where, in contrast, turbulent fluctuations recover isotropy, see e.g.
Gualtieri, Picano & Casciola (2009) and Gualtieri et al. (2013).

The first result concerns a flow at a Taylor-based Reynolds number of Reλ = 70
and shear intensity of S∗ = 7. The carrier phase is resolved by using Nx × Ny × Nz =
256× 256× 128 Fourier modes in a 4π× 2π× 2π periodic box. This spectral-based
discretization corresponds to 384× 384× 192 collocation points in physical space due
to the 3/2 dealiasing procedure required for the calculation of the nonlinear terms.
The spatial discretization fully resolves the Kolmogorov length scale with η/Dx∼1.50,
and σR is chosen to match η. Time integration is performed by the low-storage Runge–
Kutta method already mentioned in § 3. The carrier fluid is laden with Np= 2200 000
inertial particles. The particle-to-fluid density ratio is ρp/ρf = 1800, corresponding to
a Stokes number Stη = τp/τη = 1, where τp = (ρp/ρf )d2

p/18ν is the Stokes relaxation
time and τη is the Kolmogorov time scale. In such conditions the particle diameter dp
is much smaller than the Kolmogorov length, namely dp/η = 0.1. The mass load Φ,
defined as the ratio between the masses of the disperse phase and the carrier fluid, is
Φ = 0.4.

In figure 13 we present a snapshot of the particle position in an xy plane containing
the mean flow (from left to right). As expected, particles with unitary Stokes number
are characterized by small-scale clusters, i.e. the particles concentrate in narrow
regions, clusters, separated by voids where no particles can be found. The preferential
alignment of the aggregates along the principal strain direction of the mean flow is
also evident from the snapshot. This is the signature of the persistent anisotropy
of the clusters at small scales. In the context of the ERPP methodology we are
able to compute in a closed form the forcing operated by the particles on the
fluid. In figure 13(b) we report the intensity of the forcing term of (2.35) which
accounts for the backreaction on the fluid. The pattern of the backreaction field is
strongly correlated to the cluster structure and inherits from the latter its characteristic
multiscale nature. The forcing is actually active in a broad range of scales up to the
smallest scales where intense peaks occur. It should be noted, however, that the
forcing field is everywhere smooth and can be successfully represented on the
discrete grid by virtue of the regularization naturally operated by the viscosity.
The highest forcing intensity is localized in the spatial regions where the particles
are concentrated, while in the void regions the forcing vanishes. The correlation
between the instantaneous spatial configuration of the particles and the corresponding
backreaction on the fluid can be visually appreciated in panel (c) of the figure where
the two fields are superimposed.

As anticipated, this short section was aimed at the clear illustration of the potential
of ERPP in dealing with actual turbulent flows laden with millions of particles.
Clearly, a complete analysis of the turbulence modulation in the two-way coupling
regime would require a more complete statistical analysis, which is, however, beyond
the scope of the present work and is postponed to future investigation.
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FIGURE 13. Snapshot of the instantaneous particle configuration (a) and corresponding
intensity of the forcing on the fluid (b) in a thin slice along the xy plane. The mean flow
S y is in the x direction from left to right. In (c), (a) and (b) are superimposed to provide
a visual correlation between the instantaneous particle configuration and the corresponding
forcing field.

5. Final remarks

In this paper we have presented a new methodology, dubbed the ERPP method,
able to capture the inter-phase momentum exchange between a carrier flow and
a disperse phase modelled as lumped massive points. The coupling mechanism is
designed on the physical grounds provided by the unsteady Stokes flow around
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a small sphere. In short, along its trajectory the particle continuously generates a
highly localized vorticity field that can be evaluated in a closed form. Successively,
because of viscous diffusion, the vorticity field reaches the physically significant
length scales of the flow field. When this occurs, the newly generated vorticity can
be injected into the computational grid where the Navier–Stokes equations for the
carrier flow are solved, thus achieving the inter-phase momentum coupling. In this
approach the viscous diffusion naturally regularizes the disturbance flow produced
by each particle without requiring any ‘ad hoc’ numerical artefact. The proposed
approach can be implemented in a highly efficient computational algorithm since
the disturbance produced by a particle is strongly compact in space and is localized
around the actual particle position. This means that at each time step only few grid
points perceive the particle disturbance which decays exponentially fast in space. As
a consequence, the ERPP method can handle millions of particles at an affordable
computational cost, as proved by preliminary results for a particle-laden turbulent
homogeneous shear flow in the two-way coupling regime.

The ERPP method overcomes several drawbacks of established methods, like the
PIC method. Indeed, the regularization of the backreaction field provided by the
viscous diffusion allows numerically convergent solutions, preventing the strong grid
dependence which spoils singularity-based approximations. Even more importantly,
the ERPP method solves the intrinsic difficulty of numerical simulations in the
two-way coupling regime associated with the calculation of the correct particle-to-fluid
slip velocity. Actually, in the ERPP method the disturbance flow produced by the
particles at each time step can be evaluated in a closed form. This allows the spurious
self-induced velocity disturbance to be removed from the particle-to-fluid slip velocity,
allowing for a correct evaluation of the hydrodynamic force.

The preliminary results concerning a turbulent particle-laden shear flow presented
in § 4 demonstrate the potential of the ERPP method in the simulation of turbulent
flows in the two-way coupling regime. It is known that the dynamics of the
two-phase system is fully characterized by a given set of dimensionless parameters,
namely {Re0, Stη, ρp/ρf , dp/η, Φ, Np}. To comment on the effectiveness of the
ERPP method in modelling turbulent suspensions, let us assume that the turbulence
characteristics are prescribed, i.e. the turbulent Reynolds number Re0, the integral
scale L0, the Kolmogorov scale η or time scale τη are fixed, and let us consider small
particles, i.e. dp/η � 1. In these conditions the Stokes number Stη = τp/τη controls
the dynamics of the disperse phase in terms of its preferential spatial accumulation,
either small-scale clustering in homogeneous flows (Reade & Collins 2000; Toschi &
Bodenschatz 2009; Bec et al. 2010; Monchaux, Bourgoin & Cartellier 2010; Meneguz
& Reeks 2011) or turbophoresis in wall-bounded flows (Marchioli & Soldati 2002;
Picano, Sardina & Casciola 2009). Once the Stokes number is fixed, the mass load
Φ follows as

Φ = π

6
Np

(18 Stη)3/2

(ρp/ρf )1/2 Re9/4
0

. (5.1)

The value of Φ can be adjusted by means of the density ratio ρp/ρf and the number
of particles Np. However, in an actual experiment the ratio ρp/ρf must fall in the
range of the available materials, and the most straightforward way to achieve the
desired mass load consists in adjusting the number of particles Np. Although rather
easy in experiments, adjustment of the number of particles turns out to be a big
issue in numerical simulations since, most often, the momentum coupling model is
unable to handle an arbitrary number of particles while providing grid-independent
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and physically consistent results. At variance with most available methods, both
these requirements are fulfilled by the ERPP approach. Indeed, the number of
particles can be freely changed since the disturbance flow and backreaction of each
particle are smooth fields. This implies that the solution is correctly reproduced
also in flow regions where the particles are extremely dilute, as occurs for the
exterior region of turbulent jets or spatially evolving boundary layers. For comparison,
classical approaches like the PIC method intrinsically suffer from spurious numerical
oscillations in the backreaction field when too few particles per computational cell
are available, leading to strong limitations in the achievable mass load Φ. Indeed,
in any direct numerical simulation of a turbulent flow the number of computational
cells scales with the Reynolds number as Nc ∼ Re9/4

0 , suggesting through (5.1) that
no room is available to adjust the mass load if the additional constraint Np/Nc ∼ 1
needs to be enforced. This limitation is overcome in the approach proposed here by
relaxing the requirement on the particle density to allow for the modelling freedom
needed to reproduce any physically relevant condition.
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Appendix A
A.1. Fundamental solution of the diffusion equation

The fundamental solution of the diffusion equation g(x − ξ , t − τ) can be found by
solving the following singularly forced diffusion problem:

∂g
∂t
− ν∇2g= δ(x− ξ)δ(t− τ), (A 1)

with limt→τ− g(x − ξ , t − τ) = g(x − ξ , 0−) = 0 expressing the causality principle.
By integrating (A 1) in the interval [τ − ε, τ + ε] and letting ε approach zero, the
singularly forced diffusion equation is recast into an initial-value problem:

∂g
∂t
− ν∇2g= 0 t> τ,

lim
t→τ+

g(x− ξ , t− τ)= g(x− ξ , 0+)= δ(x− ξ),

 (A 2)

whose solution is immediate in Fourier space. By denoting with ĝ(k, t− τ) the Fourier
transform of g(x− ξ , t− τ), (A 2) reads

∂ ĝ
∂t
+ ν‖k‖2ĝ= 0 t> τ,

lim
t→τ+

ĝ(k, t− τ)= ĝ(k, 0+)= 1
(2π)3

.

 (A 3)
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The solution in Fourier space is

ĝ(k, t− τ)= 1
(2π)3

exp[−ν‖k‖2(t− τ)], (A 4)

which, after inverse Fourier transformation, yields the fundamental solution

g(x− ξ , t− τ)= 1
[4π ν(t− τ)]3/2 exp

[
− ‖x− ξ‖

2

4ν(t− τ)
]

(A 5)

as a Gaussian function with time-dependent variance σ(t− τ)=√2ν(t− τ).

A.2. Fundamental solution of the unsteady Stokes equations
The fundamental solution of the unsteady Stokes operator can be found by solving
the singularly forced unsteady Stokes equations, namely

∇ · v= 0,

ρf
∂v

∂t
=−∇p+µ∇2v+ êδ(x− ξ)δ(t− τ),

lim
t→τ−

v(x− ξ , t− τ)= v(x− ξ , 0−)= 0,

 (A 6)

where the singular forcing δ(x − ξ)δ(t− τ) is applied at the point x = ξ at time t=
τ along the direction ê. The solution of (A 6) is more easily found in terms of the
associated vorticity field ζ =∇× v. By taking the curl of (A 6) it follows that

ρf
∂ζ

∂t
=µ∇2ζ − ê×∇δ(x− ξ)δ(t− τ), (A 7)

with the corresponding initial condition ζ (x− ξ , 0−)= 0. Equation (A 7) can be recast
as the standard scalar diffusion equation (A 1) by the ansatz

ζ =− 1
ρf

ê×∇g. (A 8)

Equations (A 8) and (A 5) provide the solution of the singularly forced unsteady
Stokes problem in terms of vorticity. The solution in terms of velocity can be
found by introducing a divergence-free vector potential A, namely v = ∇ × A and
∇2 A=−ζ . The Laplace equation for the vector potential can be transformed into a
scalar equation by looking for solutions for the vector potential in the form

A= 1
ρf

ê×∇G, (A 9)

where the scalar function G satisfies the standard Laplace equation ∇2G = g. The
solution for G reads

G=− 1
4πr

erf
(

r√
4ν(t− τ)

)
, (A 10)

where r = ‖x − ξ‖. The velocity field can be readily determined by substituting the
expressions (A 9) and (A 10) into v=∇× A. After some algebra the velocity reads

v= (g I −∇⊗∇G) · ê. (A 11)
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The solution (A 11) is usually written in terms of the Green tensor Gik(x − ξ , t− τ).
In fact, by using (A 5) and (A 10), (A 11) can be written as

vi =Gik êk, (A 12)

where the Green tensor is given by the expression

Gik(x− ξ , t− τ)= 1
ρf

[(
1+ σ

2

r2

)
g+ G

r2

]
δik− 1

ρf

[(
1+ 3σ 2

r2

)
g+ 3G

r2

]
rirk

r2
. (A 13)

The solution of the singularly forced Stokes problem is completed by the expression of
the pressure and of the viscous stresses. The pressure field associated with the original
problem (A 6) can be computed by taking the divergence of the momentum equation,
namely

∇2p= ê · ∇δ(x− ξ)δ(t− τ). (A 14)

The Laplace equation for the pressure can be readily solved by the substitution p=
ê · ∇q δ(t − τ). In fact, the function q satisfies the Laplace problem ∇2q= δ(x − ξ),
i.e. q=−1/(4πr). The pressure field then follows immediately as

p= ê · r
4πr3

δ(t− τ). (A 15)

The stress tensor associated with the singularly forced unsteady Stokes problem can
be computed as

T ij =−pδij +µ
(
∂vi

∂xj
+ ∂vj

∂xi

)
, (A 16)

where the pressure p is given by (A 15) and the velocity v by (A 12). Usually, the
stress tensor is expressed via a third-rank tensor

T ij = T ijkêk, (A 17)

where T ijk is the Green stress tensor defined as

T ijk =− rk

4πr3
δ(t− τ)δij +µ

(
∂Gik

∂xj
+ ∂Gjk

∂xi

)
. (A 18)

The expression for the Green tensor (A 13) can be substituted into the definition
(A 18), and, after some algebra, the final expression for T ijk reads

T ijk = − rk

4πr3
δ(t− τ)δij

+ ν
[
−2

B
r2
δijrk +

(
1
r

dA
dr
− B

r2

)
(δjkri + δikrj)− 2

(
2
r

B+ dB
dr

)
rirjrk

r3

]
, (A 19)

where the functions A(r) and B(r) are defined as

A(r)=
(

1+ σ
2

r2

)
g+ G

r2
,

B(r)=
(

1+ 3σ 2

r2

)
g+ 3

r2
G.

 (A 20)
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A.3. Evolution of the regular vorticity field, proof of (2.22)
Let us first differentiate (2.17) with respect to time,

∂ζR

∂t
= 1
ρf

Dp(t− εR)×∇xg[x− xp(t− εR), εR]

+ 1
ρf

∫ t−εR

0
Dp(τ )×∇x

∂g
∂t
[x− xp(τ ), t− τ ] dτ , (A 21)

take the Laplacian,

∇2ζR = 1
ρf

∫ t−εR

0
Dp(τ )×∇x∇2g[x− xp(τ ), t− τ ] dτ , (A 22)

and recombine the two results with the kinematic viscosity, yielding

∂ζR

∂t
− ν∇2ζR = 1

ρf
Dp(t− εR)×∇xg[x− xp(t− εR), εR]

+ 1
ρf

∫ t−εR

0
Dp(τ )×∇x

{
∂g
∂t
− ν∇2g

}
[x− xp(τ ), t− τ ] dτ

= 1
ρf

Dp(t− εR)×∇xg[x− xp(t− εR), εR]

+ 1
ρf

∫ t−εR

0
Dp(τ )×∇xδ[x− xp(τ )]δ(t− τ) dτ

= 1
ρf

Dp(t− εR)×∇xg[x− xp(t− εR), εR]. (A 23)

A.4. Singular part of the velocity field
The contribution of the singular component of the velocity disturbance vS due to the
particles can be estimated starting from the expression for the associated singular
vorticity field given in (2.18), which we report here for convenience, namely

ζS(x, t)= 1
ρf

∫ t+

t−εR

Dp(τ )×∇g[x− xp(τ ), t− τ ] dτ . (A 24)

The time integral for small values of εR can be approximated as

ζS(x, t)= D∗p
ρf
×∇

∫ t+

t−εR

g[x− xp(τ
∗), t− τ ] dτ , (A 25)

where D∗p = supt−εR<τ<t+ Dp(τ ) and τ ∗ is the time corresponding to the minimum
distance between the actual particle position xp(τ

∗) and the point x. The time
integral in (A 25) can be explicitly computed, leading to the following expression for
the singular vorticity field:

ζS = D∗p ×∇H, with H = 1
4πµr

[
1− erf

(
r√
2σR

)]
, (A 26)

where r = |x − xp(τ
∗)|. Given the vorticity, the corresponding velocity can be found

in terms of the associated divergence-free vector potential, namelyvS = ∇ × AS, by
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solving the Poisson problem ∇2 AS=−ζS. The solution can be found in the form AS=
−D∗p × ∇ψ , where ψ is the solution of the scalar problem ∇2ψ = H. The singular
velocity field is then expressed as

vS(x, t)= (∇⊗∇ψ −∇2ψ)D∗p, (A 27)

and ψ is given by

ψ =
√

2σR

8πµ

[
η− η erf(η)− 1

2η
erf(η)− 1√

π
exp (−η2)

]
, (A 28)

in terms of the dimensionless variable η = r/
√

2σR. The explicit expression for vS
is only a matter of successive derivation of expression (A 28). After calculations, the
singular velocity field can be finally expressed as

vS
i (x, t)= Dp

j
∗

8πµ

[(
∂2ψ

∂η2
− 1
η

∂ψ

∂η

)
rirj

r2
−
(
∂2ψ

∂η2
+ 1
η

∂ψ

∂η

)
δij

]
. (A 29)

Expression (A 29) is amenable to further manipulation to extract the near-field
behaviour of the singular velocity field, i.e. the expression of vS in the limit of η→ 0.
In fact, for small values of η, the error function that appears in ψ and in its first and
second derivatives can be expanded in Maclaurin series. After some algebra, (A 29)
can be recast in the form

vS
i (x, t)=− Dp

j
∗

8πµr

(
δij + rirj

r2

)
, (A 30)

which express the behaviour of the singular field for small distances r from the
particle when compared with the diffusion length scale σR. From (A 30) it appears
that the singular velocity field still presents a singularity which diverges as 1/r
in the neighbourhood of the actual particle position xp. In principle, the singular
velocity field gives a finite contribution to the convective terms of the Navier–Stokes
equations, see e.g. (2.35). By coarse graining the equations on a scale ∆, small with
respect to the hydrodynamic scale but larger than the particle size, one can show that
the contributions arising from vS · ∇vS, vS · ∇uR and uR · ∇vS are negligibly small
and can be neglected. In performing the coarse graining, one has to consider that
the convolution integral should be performed in the region occupied by the fluid,
i.e. outside the particles. For instance, let us refer to the sketch in figure 14, where
the particle placed at xp induces a velocity disturbance in y and the coarse-grained
velocity field is evaluated at point x. For the relative position of the particle with
respect to the point x we will discuss two typical cases. The particle can lie entirely
inside the region where the filter kernel is non-vanishing or it can partially lie
outside the filter kernel radius. Lastly, the particle might lie completely outside
the filter kernel. In all cases the coarse-grained advective terms at point x can be
computed as a convolution of the relevant part of the convective term with a filter
kernel K, e.g.

hSS(x, t)=
∫
Ω∆\Ωp

vS(y, t) · ∇ yvS(y, t)K(y− x) d3 y, (A 31)

where the integration variable y belongs to the domain Ω∆\Ωp, which is the
complement to the support Ω∆ of the filter of the region Ωp occupied by the
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particle. By assuming, for the sake of definiteness, a top-hat kernel,

K(y− x)=


1
∆3
, |y− x|<∆,

0, |y− x|>∆,
(A 32)

the convolution integral (A 31) can be transformed by incompressibility of the field vS
into a surface integral

hSS(x, t)= 1
∆3

∫
∂(Ω∆\Ωp)

vS (vS · n) dSy. (A 33)

In expression (A 33) the integration point y runs on ∂Ω∆ ∪ ∂Ωp when the
particle lies entirely within the filter width, figure 14(a). In the other case when
the particle partially intercepts the filter boundary, see figure 14(b), the point y runs
on (∂Ωp ∩ Ω∆) ∪ ∂Ω∆\(∂Ω∆ ∩ Ωp). For detailed calculations, it is convenient to
define the vectors r = y− x, R= y− xp and d = x − xp. In fact, when y ∈ ∂Ω∆ the
integration in (A 33) is better evaluated in terms of the r variable, while for y∈ ∂Ωp
use of the integration variable R eases the calculations. In particular, for y∈ ∂Ω∆ the
outward positive normal is n= r̂, where the hat denotes r̂ = r/r, while for y ∈ ∂Ωp

the positive normal is n = −R̂. It should be noted that in the new variables the
singular velocity field depends on R, vS(R, t), with R = d + r. By exploiting the
expression (A 30) for vS, the integrand function in (A 33) for y ∈ ∂Ω∆ is

vS(vS · n) = 1
(8πµR)2

{[(D∗p · r̂)+ (D∗p · R̂)(R̂ · r̂)]D∗p
+ (D∗p · R̂)[(D∗p · r̂)+ (D∗p · R̂)(R̂ · r̂)]R̂ } (A 34)

or
vS(vS · n)= 2

(8πµR)2
(D∗p · R̂)[D∗p + (D∗p · R̂)R̂] (A 35)

when y ∈ ∂Ωp.
Let us discuss the case when the particle is entirely within the filter kernel, see

figure 14(a). The contribution to the surface integral coming from y∈ ∂Ωp identically
vanishes while the contribution from y∈ ∂Ω∆ in (A 33) can be explicitly calculated by
using a system of spherical coordinates centred in x, i.e. by integrating the expression
(A 34) with respect to r. After tedious but straightforward calculations it can be proved
that each term arising from (A 34) gives a finite contribution to the integral, thus
providing the following estimate for hSS:

hSS ∼
|D∗p|2
µ2∆3

f
(

d
∆

)
, (A 36)

where f (d/∆) is a regular function of the ratio d/∆, with 0 6 d/∆< 1− a/∆.
The same conclusion holds when the calculations are repeated for the case when the

particle intercepts the filter boundary, figure 14(b). The mixed advective terms vS ·∇uR
and uR · ∇vS can be calculated by means of the same procedure assuming that the
regular contribution uR and its gradients are constant on the filter length scale ∆. In
such conditions, the corresponding coarse-grained contributions scale as

hRS ∼
|D∗p|2
µ2σR∆2

, hSR ∼
|D∗p|2
µ2σ 2

R∆
. (A 37a,b)
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FIGURE 14. Sketch of the coarse-graining procedure in the neighbourhood of the Eulerian
point x. The boundary ∂Ω∆ denotes the filter kernel of width ∆, and ∂Ωp is the spherical
surface of the particle of radius a<∆. Two cases are possible. The particle lies entirely
inside the region where the filter kernel is non-vanishing (a) or the particle lies partially
outside the filter radius ∆ (b).

The estimates (A 36) and (A 37) can be used to compare the order of magnitude of the
advective terms against the order of magnitude of the feedback term in (2.35), which
scales as

Dp(t− εR)

ρf
g[x− xp(t− εR), εR] ∼ |Dp|

ρfσ
3
R
. (A 38)

From the above estimates, it follows that

O(hSS)

O
(

Dp

ρf
g
) ∼ Rep

(σR

∆

)3
,

O(hRS; hSR)

O
(

Dp

ρf
g
) ∼ Rep

(σR

∆

)2
, (A 39a,b)

where Rep is the particle Reynolds number calculated by using the particle radius a,
the particle-to-fluid slip velocity wrel and the kinematic viscosity ν. It follows that all
these terms can be neglected in the limit of small particle Reynolds number.

Let us give an example of the detailed calculations of the integral (A 33) in the
two cases reported in figure 14. We first address the case reported in figure 14(a),
where the particle is entirely inside the filter kernel, hence the integral is split
on ∂Ω∆ where the integrand function is given by (A 34) and ∂Ωp where the
expression (A 35) must be adopted. Let us first discuss the integration of (A 34)
on ∂Ω∆. For convenience, we fix the polar axis along the direction e3 such that
r1 = r sin φ cos θ, r2 = r sin φ sin θ, r3 = r cos φ. Due to the symmetries of the
problem only the terms involving the contributions from r3, R3, R2

1R3, R2
2R3, R3

3 give a
contribution to the integral. In the following we address the term (D∗p · r̂)D

∗
p, which

reduces to
1
∆3

D∗pD3
p
∗

(8πµ)2

∫
∂Ω∆

r̂3

R2
∆2 sin φ dφ dθ, (A 40)

where R=√∆2 + d2 + 2d∆ cos φ. By defining b= d/∆ we get

2π

∆3

D∗pD3
p
∗

(8πµ)2

∫ 1

−1

ξ

1+ b2 + 2bξ
dξ (A 41)
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and
2π

∆3

D∗pD3
p
∗

(8πµ)2

1
4b2

[
4b+ 2(b2 + 1) ln

|b− 1|
|b+ 1|

]
. (A 42)

The above expression holds for 06 b< 1− a/∆ and is apparently singular for b→ 0.
However, for small values of b we have ln |b− 1| = ln (1− b)'−b and ln (1+ b)' b.
It follows that the term in square brackets in expression (A 42) goes like −4b3 and
(A 42) vanishes for d/∆→ 0. A term that gives a finite contribution to the expression
(A 33) is indeed given by (D∗p · R̂)(R̂ · r̂)D∗p, which reduces to D3

p
∗R̂3(R̂ · r̂). Hence,

the expression is transformed into

1
∆3

D∗pD3
p
∗

(8πµ)2

∫
∂Ω∆

R̂3(R̂ · r̂)
R2

∆2 sin φ dφ dθ, (A 43)

where (R̂ · r̂)= (1+b cosφ)/
√

1+ b2 + 2b cos φ. After substitution we get the integral

2π

∆3

D∗pD3
p
∗

(8πµ)2

∫ 1

−1

(1+ bξ)2

(1+ b2 + 2bξ)2
dξ, (A 44)

which can be integrated providing the following expression:

2π

∆3

D∗pD3
p
∗

(8πµ)2

1
4b

[
4b+ 2(1− b2) ln

|b+ 1|
|b− 1|

]
. (A 45)

For small values of b we have ln |b+ 1| − ln |b− 1| ' 2b, hence the term in square
brackets goes like 8b − 4b2, resulting in a finite limit of expression (A 45). Let us
now discuss the integration of the field given by (A 35) on ∂Ωp. The calculation is
straightforward when the integral is computed with respect to the variables R. In fact,
it can be proved that each contribution arising from expression (A 35) vanishes, in
agreement with the fact that the field vS is spherically symmetric with respect to the
natural variable R. We complete the discussion by discussing the integral (A 33) when
the particle partially intersects the filter boundary, see figure 14(b). In this case the
field (A 34) must be used on ∂Ω∆\(∂Ω∆ ∩Ωp) and the expression (A 35) on (∂Ωp ∩
Ω∆). The same calculations reported above can be easily repeated by taking into
account that the angles φ and α assume values in [0 : φmax] and [0 : αmax] respectively,
and that the ratio b= d/∆> 1− a/∆. Such limitations exclude any singular behaviour
of the integrals on both ∂Ω∆\(∂Ω∆ ∩Ωp) and (∂Ωp ∩Ω∆).

A.5. Evaluation of the self-induced disturbance flow
The self-disturbance flow produced by the pth particle in a generic time step tn→ tn+1
can be evaluated by integrating the complete equation for the disturbance field, namely
(2.26), which we report below in a slightly different notation where the subscript R is
omitted,

∂v

∂t
− ν∇2v+ 1

ρf
∇q=− 1

ρf
Dp(t− εR) g[x− xp(t− εR), εR], (A 46)

with the initial condition v(x, tn) = 0. For the sake of simplicity let us consider an
Euler-like time integration algorithm. In order to achieve the solution v(x, tn+1) the
operator in (A 46) is successively split into three steps, namely the forcing step, the

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2015.258
Downloaded from https:/www.cambridge.org/core. Open University Library, on 04 Feb 2017 at 16:01:35, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2015.258
https:/www.cambridge.org/core


556 P. Gualtieri, F. Picano, G. Sardina and C. M. Casciola

diffusion step and the projection step, which enforces the condition ∇ ·v= 0. Actually,
the forcing step gives

ṽ(x, tn+1)=−1t
ρf

Dp(tn − εR) g[x− xp(tn − εR), εR]. (A 47)

The diffusion step is readily achieved thanks to the semigroup property of solutions
of the heat equation and the property (2.20), namely

v∗(x, tn+1)=
∫
ṽ(ξ , tn+1)g(x− ξ , 1t) dξ , (A 48)

which results in the pseudo-velocity

v∗(x, tn+1)=−1t
ρf

Dp(tn − εR) g[x− xp(tn − εR), εR +1t]. (A 49)

The divergence-free solution is achieved in terms of the decomposition v(x, tn+1) =
v∗(x, tn+1) + ∇Φ and the projection step ∇2φ = −∇ · v∗. By using the expression
(A 49), after some algebra, the solution v(x, tn+1) can be evaluated in a closed form
as

v(x, tn+1)= 1
(2πσ 2)3/2

{[
e−η

2 − f (η)
2η3

]
Dn − (Dn

· r̂)
[

e−η
2 − 3f (η)

2η3

]
r̂
}
. (A 50)

In the above expression we have defined Dn= D(tn− εR), r = x− xp(tn− εR), the hat
denotes r̂= r/r, η= r/

√
2σ is the dimensionless distance with σ =√2ν(εR +1t) and

f (η)= (√π/2)erf(η)− ηe−η2 .

A.6. Embedding finite-size effects in ERPP
The ERPP approach has been derived in the rigorous limit of a point-like particle.
However, the approach is suitable for further developments, which allows some
features that strictly pertain to finite-size particles to be retained. The ERPP approach
requires the specification of the regularization length scale σR, which represents the
diffusion length scale of the vorticity disturbance produced by each particle. This
circumstance can be exploited to directly relate the disturbance flow and the particle
radius ap. For this purpose let us consider the simple problem of a particle that
moves steadily with velocity v1 in a fluid at rest at infinity under the action of a
constant force F1. The relation between the velocity and the force is provided by
the Stokes law for a small sphere, i.e. v1 = F1/(6πµap). In a reference frame fixed
with the particle the fluid will experience a constant force F1 applied at the particle
position. The corresponding disturbance flow can be computed by using (2.17), where
the force is given by F= F1e1, namely

ζR(x, t)= F
ρf
×∇

∫ t−εR

0
g(r, t− τ) dτ , (A 51)

where r= ‖x− xp‖. After time integration the vorticity field reads

ζR(x, t)= F
4πµ
×∇

[
1
r

erf
(

r√
4νt

)
− 1

r
erf
(

r√
4νεR

)]
. (A 52)
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Given the regularized vorticity field (A 52), the corresponding velocity disturbance can
be calculated by exploiting the relations vR=∇× A and ∇2 A=−ζR(x, t). The velocity
field has the form

vR(x, t)=∇⊗∇ψ · F− F∇2ψ, (A 53)

where ψ =ψt +ψR and

ψt = 1
8πµ

[
r
(

1− σ
2
t

r2

)
erf
(

r√
2σt

)
+
√

2
π
σt exp

(
− r2

2σ 2
t

)]
,

ψR = 1
8πµ

[
r
(
σ 2

R

r2
− 1
)

erf
(

r√
2σR

)
−
√

2
π
σt exp

(
− r2

2σ 2
R

)]
,

 (A 54)

with σt =
√

2νt. Expression (A 53) combined with (A 54) can be used to evaluate the
regularized fluid velocity at the particle position r= 0. In the limit t→∞ it follows
that v1R(0,∞)= F1

√
2/π/(6πµσR). This expression can be used to fix the value of

the regularization parameter σR by requiring that the disturbance flow at the particle
position matches the rigid-body velocity of the particle v1, namely

σR

ap
=
√

2
π
. (A 55)

Equation (A 55) fixes the value of the regularization parameter in relation to the
particle radius ap. One should note how this result coincides with that obtained in
the FCM (Maxey & Patel 2001). The constraint (A 55) requires that the fluid velocity
at the particle position matches the rigid-body motion of the particle, thus enforcing,
at least in an approximate way, a boundary condition at the particle centre when the
particle is described only in terms of the first monopole in the multipole expansion of
(2.5). It follows that the finite-size effects are included only at first order even though
the modelling approximation can be improved by retaining higher-order moments in
the expansion (2.5).

As noted by Batchelor (1972, 1976), the settling velocity of a particle pair in
the steady Stokes regime differs from the settling velocity of an isolated particle
due to the particle–particle interaction. The value of the settling velocity of the pair
depends on the particle separation δ with respect to the orientation of the gravity
force. We will refer to a vertical separation when the particle centres are aligned in
the direction of gravity and to a horizontal separation when the centres are aligned
at right angles with respect to the gravity. In our approach, the particle–particle
interaction is indirect and occurs through the modification of the surrounding fluid
that each particle produces. The results provided by the ERPP method are presented
in figure 15(a) and compared against the analytical prediction by Batchelor and the
data provided by the FCM (Maxey & Patel 2001). The agreement of the ERPP
method is remarkable once one realizes that the particle is described only in terms
of its first monopole in the expansion of (2.5) and that the boundary condition
at the particle surface is approximately enforced at the particle centre. The ERPP
approach provides good results up to δ/ap = 4 for both particle pair configurations.
At smaller separation, say δ/ap= 3, the results for the vertical particle pair are still in
good agreement with the analytical results, while at the same separation the settling
velocity of the horizontal pair is overestimated. It should be noted that at δ/ap = 3
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FIGURE 15. (a) Normalized particle pair settling velocity versus the particle centre
separation δ/ap. Reference analytical steady Stokes solution by Batchelor for a horizontal
(H) pair (E) and a vertical (V) pair (@); FCM method (H, A) and (V, ♦); ERPP (H,
dashed line), (V, solid line). (b) Normalized terminal velocity of a periodic array of
particles versus the volume fraction. Analytical prediction (A 56) (solid line), FCM (A),
ERPP (E).

the particles in the pair are fairly close together, i.e. the gap between the particles is
only 2 ap, calling for the higher-order terms in the multipole expansion.

Another significant comparison concerns the settling of a periodic array of particles,
see e.g. Hasimoto (1959) and Sangani & Acrivos (1982). The settling velocity of the
particle ensemble depends on the volumetric concentration, defined as c= 4πa3

p/3L3,
where L is the separation between adjacent particles, according to the following
relation, see Sangani & Acrivos (1982):

vp

vt
= 1− 1.7601c1/3 + c− 1.5593c2 + 3.9799c8/3 − 3.0734c10/3 +O(c11/3). (A 56)

The results provided by ERPP are compared against theoretical predictions given by
(A 56) and the results from the FCM Maxey & Patel (2001) in figure 15(b). The ERPP
prediction is in good agreement with the available data up to a value of c1/3= 0.3. As
expected, for higher values of the volumetric fraction, i.e. for closer particles, the data
show a saturation of the settling velocity. It should be noted, however, that the value
at c1/3= 0.35 corresponds to a particle–particle separation of approximately δ/ap' 2.3,
i.e. the particles are close to the packing limit of δ/ap = 2.

Although the focus of the paper is not on finite-size effects, the comparison with
known steady Stokes solutions for simple systems of finite-size particles provides a
direct validation of the present new approach. The correspondence found between the
ERRP solution and the known solutions should be considered remarkable, given that
no effort was made to embed actual finite-size effects in the formulation, other than
selecting the regularization parameter to meet the rigid-body velocity at the centre
of an isolated particle. The approach can easily be enriched to include higher-order
multiples to describe the near field of the particles more accurately, a development
left for future work.

We emphasize that the steady Stokes solutions illustrated in the present appendix
are obtained as the eventual steady state of a sequence of small time steps. Finally, the
examples here provided could help in understanding how particle–particle interaction
works in the present setting. Indeed, the interaction is mediated by the vorticity
released in the field at each time step by each single particle. The consequence is
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that particle–particle interactions can be dealt with by an algorithm that has only
order-Np complexity, compared with the N2 operation count required to catch particle
coupling effects through classical steady Stokeslet approaches.
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