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ABSTRACT

The article presents the assessment of disorder region predictions submitted to CASP10. The evaluation is based on the

three measures tested in previous CASPs: (i) balanced accuracy, (ii) the Matthews correlation coefficient for the binary pre-

dictions, and (iii) the area under the curve in the receiver operating characteristic (ROC) analysis of predictions using prob-

ability annotation. We also performed new analyses such as comparison of the submitted predictions with those obtained

with a Na€ıve disorder prediction method and with predictions from the disorder prediction databases D2P2 and MobiDB.

On average, the methods participating in CASP10 demonstrated slightly better performance than those in CASP9.
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INTRODUCTION

A systematic analysis of intrinsic disorder in proteins

started at the turn of the century1–4 and still remains a

hot research topic.5 Only this year several papers cover-

ing general aspects of protein disorder have been pub-

lished5–9 and the discussion on the fundamental

principles of disorder continues to unfold.10,11 PubMed

search with the keywords “intrinsically disordered protein

2012” and “intrinsically disordered protein 2013”

returned 525 and 305 entries, respectively (as of April

2013). The number of experimentally verified intrinsi-

cally disordered proteins and regions is steadily increas-

ing. The DisProt database12 currently contains

annotations for 684 intrinsically disordered proteins,

1513 disordered regions, and describes 38 different bio-

logical functions associated with disordered regions. The

more recently established IDEAL database also has a

number of useful annotations on disordered proteins.13

Such a high interest in this area of research triggered

rapid development of computational methods for predic-

tion of the location of disordered regions in proteins. The

recently published reviews and assessment papers14–18

altogether provide a comprehensive analysis of more than

fifty disorder prediction methods. An independent assess-

ment of the protein disorder methods within the scope of

CASP started in 2002 and is now already in its sixth

round.18–22 This study analyzes the results obtained by

the 28 disorder prediction groups participating in CASP10.

MATERIALS AND METHODS

Definition of disorder

As in all previous CASPs, a residue was considered as

being in either ordered or disordered state based on the

information provided in the protein coordinate file. If

available at the time of the evaluation, the files from the
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PDB database23 were used to define disordered regions;

in all other cases, coordinate files provided directly by

the experimentalists to the CASP organizers were used.

A residue was defined as disordered if it was present

in the target’s amino acid sequence but either (1) it

lacked the spatial coordinates or (2) its coordinates were

not well-defined, that is, the distances between positions

of the same residue in any pair of models in the NMR

ensemble or in any pair of X-ray chains in the asymmet-

ric unit exceeded 3.5 Å.

Note that this definition of disorder is not ideal as lack

of spatial coordinates in the PDB can arise from causes

other than intrinsic disorder. For example, flexibly hinged

structured domains with mobility within the crystal lattice

have long been known to result in lack of spatial coordi-

nates24; in some cases, lack of spatial coordinates in the

PDB has resulted from simple annotation errors.9 It is

also worth mentioning that possible transitions of residues

between disordered and ordered states with the change of

physiological conditions were not taken into account as

they are impossible to define solely from the coordinates,

usually the only information available to the assessors.

Targets and test sets

The groups participating in the CASP10 DR prediction

category were asked to predict disordered regions in all 114

released targets, including the all-group and server-only

ones.25 Eighteen targets were canceled by the organizers26

and two more (T0677 and T0686) were excluded from the

assessment as inappropriate for the disorder evaluation (see

the quality assessment paper in this issue27 for a detailed

explanation). The remaining 94 targets were assessed.

According to the adopted disorder definition, 1664

residues in the assessed targets were identified as disor-

dered. They constitute 6.8% of all residues, and this per-

centage is lower than that of the disordered residues

present in the CASP9 targets (10.2%). Structures identi-

fied by NMR show a higher level of disorder, in particu-

lar due to difference in experimental conditions. A

discussion of the implications of this observation is out-

side of scope of this paper, but some interesting thoughts

on this subject can be found in recently published

papers.9–11 The CASP10 NMR-derived structures con-

tained 277 disordered residues constituting 28.0% of all

residues in the NMR targets versus 1387 disordered resi-

dues (or 5.9% of all residues) in the X-ray targets.

The total fraction of disordered residues in individual tar-

gets varies from 0% in five targets (T0651, T0693, T0735,

T0747, and T0757) to 57.3% in T0675 – a 75-residue-long

NMR target. The distribution of disordered segments with

respect to their length is shown in Figure 1. The longest con-

tinuous disordered region in CASP10 targets is 49 residues

long and is located at the N-terminus of an X-ray target

(T0652). Shorter disordered segments occur more often. In

the evaluation, to reduce statistical noise due to experimental

uncertainty, we have removed from consideration unstruc-

tured regions shorter than four residues (162 residues total).

The disordered regions are more likely to be found at

the proteins’ termini. Out of 134 disordered segments

longer than three residues, 78 segments containing 998

residues (or 66.4% of all disordered residues) fall either

at the beginning or at the end of the sequence. Figure 2

shows the fraction of ordered/disordered residues for the

first and last 15 residues of the assessed targets. In more

than half of the targets, the first five residues and the last

residue are in the disordered state.

Format of predictions, participating groups

Disorder predictors were allowed to submit one model

per target, and the format of the predictions did not

change since the previous CASP. Every residue in the

Figure 1
Distribution of disordered regions of different lengths in CASP10 tar-

gets. Internal regions are shown with darker shades.

Figure 2
Fraction of disordered residues at the termini of CASP10 targets. L is
the target length (in number of residues).
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released target sequence had to be labeled as ordered or

disordered and assigned a score in the range [0;1], esti-

mating the probability of disorder. According to the

requirements introduced in CASP9, probabilities above

0.5 were reserved for disordered residues.

Twenty-eight groups participated in the DR prediction

category in CASP10, including 26 automatic servers and

2 human expert groups. These numbers are very similar

to those of CASP9, where 22 servers and 8 expert groups

participated. Classification and a brief description of

publicly available CASP10 disorder prediction servers are

provided in Table I.

Table II (Column “Targ”) contains information on the

total number of targets on which the CASP10 groups

were evaluated. The majority of the groups submitted pre-

dictions for all 94 assessed targets; a few groups submitted

predictions for a slightly smaller number of targets, but

the coverage of the target dataset was always large enough

to allow including all groups in the evaluation.

Datasets for comparison with the D2P228

and MobiDB29 databases

Exact sequence matches for 53 and 83 out of 94 eval-

uated CASP10 targets were found in the D2P2 and

MobiDB databases, respectively. Fifty-one CASP targets

had 100% sequence identity with entries in both the

D2P2 and MobiDB databases.

Na€ıve predictor

As mentioned in the “Targets and test sets” section

above, the disordered residues are more likely to appear at

the proteins’ termini. This information can be easily

incorporated in methods for statistical disorder prediction.

To estimate how much better are CASP predictors com-

pared to a simple predictor exploiting this tendency, we

introduced a Na€ıve disorder predictor assigning the first

nine and last four residues in the protein as disordered.

These numbers were selected based on the average length

of the disordered terminal regions in the CASP9 targets.

Evaluation criteria

A comprehensive analysis of strong and weak points of

different measures historically used in CASP disorder eval-

uations is provided in the CASP9 assessment paper.18 The

measures and procedures that were identified there as the

most suitable for the evaluation of disorder prediction

were used here as basis for the CASP10 disorder assess-

ment. Below we briefly discuss these measures.

Binary metrics

For evaluation of disorder predictors as binary classi-

fiers we used the precision

precision5
TP

TP1FP
;

the balanced accuracy (Acc)

Acc5
1

2

TP

TP1FN
1

TN

TN1FP

� �
;

and the Matthews correlation coefficient (MCC)

Table I
The Publicly Available Disorder Prediction Servers Participating in CASP10

CASP10 group name and URL Description

Prdos-CNF, metaprdos2
http://prdos.hgc.jp/cgi-bin/top.cgi

Prdos-CNF: conditional neural fields. Metaprdos2: uses predictions from five
servers.

DISOPRED3
http://bioinf.cs.ucl.ac.uk/disopred

SVM trained on high-resolution X-ray structures. Uses profiles from 15 posi-
tions around each residue as an input vector.

biomine_dr_mixed, biomine_dr_pdb-c
http://biomine.ece.ualberta.ca/MFDp.html

Meta-servers which include additional information such as evolutionary
profiles, secondary structure, solvent accessibility, and dihedral angles in
SVM learning.

POODLE
http://mbs.cbrc.jp/poodle

An SVM integrating three in-house SVM predictors: Poodle-S and Poodle-L
specialized in short and long disorder regions, respectively, and Poodle-
W targeting unfolded protein prediction.

MULTICOM-construct, MULTICOM-novel, MULTICOM-refine
http://irirs.rnet.missouri.edu/dndisorder/
http://casp.rnet.missouri.edu/predisorder.html

MULTICOM-novel: deep neural networks. MULTICOM-refine: 1D recursive
neural network. Input data include sequence profile, secondary structure,
and solvent accessibility. MULTICOM-construct combines the predictions
of both.

Espritz, Esppritzv2, Cspritz
http://protein.bio.unipd.it/espritz/
http://protein.bio.unipd.it/cspritz/

Espritz: recursive neural networks. Cspritz: additionally uses two SVM
modules trained on different datasets.

IntFOLD2
http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD2_form.html

Uses 3D models of the ModFOLDclust2 server to identify the regions of high
variability.

OnD-CRF69
http://babel.ucmp.umu.se/ond-crf/

Conditional random fields. Uses sequence and predicted secondary
structure as inputs.

GSmetaDisorderMD, Gsmetaserver, GSMetadisorder,
GSMetaDisorder3D
http://iimcb.genesilico.pl/metadisorder/

The meta-servers use genetic algorithm and different weighting schemes to
average models from 13 disorder predicting servers.
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MCC5
TP � TN2FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP1FPð Þ TN1FPð Þ TP1FNð Þ TN1FNð Þ
p ;

where TP (true positives) and TN (true negatives) are

the numbers of correctly predicted disordered and

ordered residues, respectively, and FP (false positives)

and FN (false negatives) are the numbers of misclassified

disordered and ordered residues, respectively.

A good feature of these measures is that all of them

place more weight on the prediction of the minority class

(disordered residues). The precision is completely insensi-

tive to the prediction of the dominant class (ordered

state) and reports the ratio between the correctly pre-

dicted disordered residues and all predicted disordered

residues. The balanced accuracy and the Matthews corre-

lation coefficient take into account all parameters of the

prediction quality (TP, TN, FP, and FN). The main con-

ceptual difference is that MCC does not reward overpre-

diction of disorder as much as the Acc does and is better

suited to identify classifiers with higher precision. All

three measures were shown to be appropriate for evalua-

tion of the disorder data,18 and in our assessment we

provide scores for all of them. We consider the MCC as

the main estimator of quality, as it is more balanced

than the other two.

Probability-based metrics

The accuracy of identifying disorder by assigning per-

residue disorder confidence scores can be evaluated by

the receiver operating characteristic (ROC) or the

precision-recall (PR) curve analysis.

The ROC analysis has been previously used in the

assessment of protein disorder predictions in CASP18–21

and elsewhere.30 A classical ROC curve represents a

monotonic function describing the balance between the

true positive and false positive rates of a predictor. For a

set of probability thresholds (from 0 to 1), a residue is

considered as a positive example (disordered) if its pre-

dicted probability is equal to or greater than the thresh-

old value. The area under the curve (AUC, or

AUC_ROC) is used as an aggregate measure of the over-

all quality of a prediction method. A value of 1 corre-

sponds to a perfect classifier, while 0.5 indicates a

random prediction. Note that the ROC curve analysis

works best for the probability estimates that are evenly

distributed throughout the range of the allowed values.

The “granularity” of the probability scores can affect

Table II
Performance of the Groups Participating in the DR Prediction Category and the Na€ıve Method

ID Group name Targ TP FP TN FN prec Acc MCC
AUC

(ROC)
AUC
(PR)

Ranks

prec Acc MCC AUC (ROC) AUC (PR)

369 Prdos-CNF 94 657 287 22401 845 0.696 0.712 0.529 0.907 0.581 2 18 2 1 2
170 DISOPRED3 94 607 201 22487 895 0.751 0.698 0.531 0.897 0.603 1 22 1 2 1
478 biomine_dr_mixed 94 628 368 22320 874 0.631 0.701 0.488 0.890 0.526 4 20 3 3 3
288 biomine_dr_pdb_c 94 579 290 22398 923 0.666 0.686 0.483 0.886 0.526 3 25 4 4 3
340 metaprdos2 88 918 2228 18603 467 0.292 0.778 0.385 0.879 0.496 15 2 10 5 7
216 POODLE 94 980 2064 20624 522 0.322 0.781 0.409 0.875 0.416 12 1 6 6 15
222 MULTICOM-construct 94 940 1972 20716 562 0.323 0.769 0.400 0.873 0.502 11 4 7 7 5
180 Yang test 94 828 1702 20986 674 0.327 0.738 0.376 0.872 0.483 10 10 11 8 8
413 ZHOU-SPARKS-X 94 994 3065 19623 508 0.245 0.763 0.340 0.870 0.475 21 5 18 9 10
129 CASPITAv2 93 863 1610 20766 639 0.349 0.751 0.400 0.859 0.482 9 8 7 10 9
424 MULTICOM-novel 94 944 2630 20058 558 0.264 0.756 0.349 0.856 0.500 18 7 16 11 6
380 Espritz 94 916 2938 19750 586 0.238 0.740 0.317 0.855 0.465 23 9 20 12 11
327 Espritzv2 94 780 1639 21049 722 0.322 0.724 0.360 0.852 0.460 13 16 13 13 12
125 MULTICOM-refine 94 1029 3059 19629 473 0.252 0.775 0.354 0.846 0.459 20 3 14 14 13
003 GSmetadisorderMD 87 774 1895 18923 647 0.290 0.727 0.341 0.844 0.394 16 13 17 15 19
084 biomine_dr_pdb 94 814 2076 20612 688 0.282 0.725 0.335 0.840 0.409 17 15 19 16 16
484 CSpritz 94 1019 3655 19033 483 0.218 0.759 0.316 0.829 0.427 25 6 21 17 14
193 AIdisorder 83 731 1571 18172 674 0.318 0.720 0.352 0.826 0.405 14 17 15 18 18
273 IntFOLD2 94 1108 6359 16329 394 0.148 0.729 0.239 0.821 0.406 27 11 25 19 17
214 OWL2 90 566 714 20834 834 0.442 0.686 0.387 0.821 0.375 6 25 9 19 20
140 OnD-CRF2 92 819 2536 20027 628 0.244 0.727 0.311 0.814 0.248 22 13 22 21 26
496 GSmetadisorder 94 883 2989 19699 619 0.228 0.728 0.300 0.808 0.338 24 12 23 22 21
494 GSmetaserver 94 1059 6976 15712 443 0.132 0.699 0.204 0.778 0.332 28 21 27 23 22
183 sDisPred 94 980 5380 17308 522 0.154 0.708 0.228 0.778 0.316 26 19 26 23 23
384 GSmetadisorder3d 90 258 732 20717 1187 0.261 0.572 0.173 0.753 0.193 19 29 28 25 27
115 Slbio 87 575 899 20054 805 0.390 0.687 0.362 0.699 0.250 8 24 12 26 25
168 DisMeta 93 598 399 22201 890 0.600 0.692 0.464 0.692 0.310 5 23 5 27 24
167 Algorithmic_code 94 561 3999 18689 941 0.123 0.599 0.122 0.599 0.094 29 28 29 28 28
— Na€ıve 94 366 526 22162 1136 0.410 0.610 0.282 — — 7 27 24 — —

The groups are ranked according to the AUC (ROC) score. The Na€ıve predictor is assessed on the binary predictions only. The two main evaluation scores (MCC for

two-class estimations and AUC for probability-based predictions) are bold-faced.
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smoothness of the ROC curves and, subsequently, the

accuracy of the AUC scores.

The ROC curves are known to overestimate perform-

ance of predictors on the imbalanced data.31 To address

this potential issue, we complemented the ROC analysis

with the PR curve analysis, which is particularly suitable

for statistical evaluations on disproportional datasets.32–35

The PR curves are conceptually similar to the ROC

curves,36 but differ in that they are plotted in the

(recall 5 TP/(TP 1 FN), precision 5 TP/(TP 1 FP)) coordi-

nates and are not necessarily monotonous. As in ROC

curve analysis, the area under the PR curve, AUC_PR, is

indicative of the classifier’s accuracy, with a value of 1 cor-

responding to a perfect predictor.

Statistical significance of differences in group results

The statistical significance of the differences in group

performance was estimated in different ways in the

binary and probability-based analyses.

For binary predictions, we used a resampling tech-

nique, where we randomly drew 80% of the targets and

calculated the scores on the selected subset. The proce-

dure was repeated 1000 times and the obtained distribu-

tions of scores were used to compute the confidence

intervals at the 95% level. The conclusion regarding the

statistical difference in performance of the groups was

inferred by the comparison of the corresponding confi-

dence intervals.

The statistical differences in the probability-based eval-

uation of results were assessed by the nonparametric

DeLong tests calculated with the statistical package

R.37,38

RESULTS

The assessment results of the CASP10 disorder predic-

tion methods and the Na€ıve predictor (see “Methods”)

are summarized in Table II and Figures 3 and 4. For

each group, Table II reports the values of TP, TN, FP,

and FN; the assessment scores (precision, Acc, MCC,

AUC_ROC, and AUC_PR); and the rank of the methods

according to all five measures. Figure 3 provides a visual

summary of the group performance according to the

binary evaluation scores together with their 95% confi-

dence intervals; and Figure 4 illustrates the ROC and PR

curves used for calculation of the AUC_ROC and

AUC_PR scores in the probability-based analysis, respec-

tively. Note that the AUC_PR scores are highly correlated

with the classical AUC scores from the ROC analysis

(Pearson’s correlation coefficient of 0.9) and we use only

one of them (AUC_ROC) to describe the probability-

based evaluation results in what follows.

Group prdos-CNF (G369) is the best performing group

according to the AUC score. It is statistically indistin-

guishable from the second group in the ranking, DIS-

OPRED3, and better than all other groups based on the

results of the nonparametric DeLong test (Table III). The

results of DISOPRED3 (G170) are, in turn, statistically

indistinguishable from those of the next two groups, bio-

mine_dr_mixed (G478) and biomine_dr_pdb_c (G288),

and better than the rest of the results.

The best four groups according to the AUC score

maintain their leading positions also in the MCC-based

rankings, and in general, the correlation between the

AUC and MCC scores is quite high (Spearman’s q 5 0.7),

even though the two measures are conceptually different.

The MCC-based confidence intervals for the top five

groups (the four groups mentioned above plus DisMeta,

G168) overlap, and, as a result, the statistical significance

of the differences in their performance cannot be estab-

lished. At the same time, comparing their confidence

intervals with those of other methods allows us to con-

clude that these five groups are statistically better than

the remaining ones. We note that even though the Dis-

Meta group is ranked high according to the MCC (fifth),

it is way down the list according to the AUC. The reason

is that this group used only two values of disorder

Figure 3
Performance of groups as binary disorder/order classifiers according to

the MCC, Acc, and precision scores. The error bars indicate boundaries

of the 95% confidence intervals for each measure. Groups are ordered
according to decreasing MCC score.
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probability (0.3 for the ordered residues and 0.7 for dis-

ordered) and therefore was penalized in the ROC analysis

(see “Methods”).

It should also be mentioned that the top four groups

according to the AUC and MCC scores rank low in the

Acc-ordered list. This difference can be explained by

comparing the numbers of true and false positives for

these groups with those of the subsequent groups. It can

be noticed that the first four MCC-ranked groups have

many fewer false positives than the next few groups,

while maintaining comparable numbers of the true posi-

tives. This results in higher precision of these methods

and higher MCC scores, which are known to adequately

favor the higher-precision groups. At the same time, the

Acc scores are higher for the second-tier groups as Acc

strongly favors “greedy” classifications (i.e., predicting

more residues as disordered, even at the cost of a larger

fraction of wrong predictions). This type of behavior is a

well-known feature of predictions on highly imbalanced

data.

Figure 4
(A) ROC and (B) PR curves for the probability-based disorder region predictions for all CASP10 groups. The three groups with the atypical ROC

curves in (A) used only a very limited number of disorder probability values: Groups G167 and G168 used only two different values (one for
ordered and another for disordered residues); Group G115 used only five different values (two for ordered and three for disordered residues, and

two out of the five values were only assigned to a very small number of residues). Groups in the legend are sorted according to decreasing
AUC_ROC score.

Table III
Results of Nonparametric DeLong Tests of Comparison of the Performance of the Best 12 Groups According to the AUC (ROC) Scores

1 2 3 4 5 6 7 8 9 10 11 12

1. Prdos-CNF x
2. DISOPRED3 0.093 x
3. biomine_dr_mixed <0.01 0.247 x
4. biomine_dr_pdb_c <0.01 0.090 0.541 x
5. metaprdos2 <0.01 <0.01 0.095 0.311 x
6. POODLE <0.01 <0.01 0.021 0.104 0.534 x
7. MULTICOM-construct <0.01 <0.01 0.012 0.065 0.387 0.798 x
8. Yang test <0.01 <0.01 <0.01 0.036 0.281 0.661 0.867 x
9. ZHOU-SPARKS-X <0.01 <0.01 <0.01 0.015 0.157 0.438 0.619 0.730 x

10. CASPITAv2 <0.01 <0.01 <0.01 <0.01 <0.01 0.033 0.064 0.079 0.151 x
11. MULTICOM-novel <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.019 0.023 0.052 0.654 x
12. Espritz <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.012 0.03 0.527 0.857 x

The cells contain the P values. Values in italics represent the statistically indistinguishable cases at the 0.05 confidence level.

B. Monastyrskyy et al.

132 PROTEINS



The comparison of CASP10 methods with the Na€ıve

disorder predictor shows that practically all participating

groups are better binary classifiers than the Na€ıve, which

is near the bottom of Table II according to the MCC and

Acc scores. The Na€ıve method is statistically worse than

all 26 higher ranked methods when the Acc confidence

intervals are compared and worse than the majority of

the methods when the MCC confidence intervals are

compared. It does have a quite high precision score, but

this score is overinflated as, by definition, the method

identifies only 9 1 4 5 13 termini residues as disordered

for each target, and the probability of finding disordered

residues at termini is relatively high.

Prediction of internal disorder

As unstructured residues are more abundant at the ter-

mini (see “Methods”), prediction of the internal disor-

dered regions is expected to be a harder problem. To

assess the ability of methods to predict disordered resi-

dues inside the protein sequence, we repeated our analy-

sis after trimming 10 residues from each terminal of the

targets. Indeed, this analysis showed that the group per-

formance dropped as the average MCC score decreased

from 0.35 to 0.23 and the average AUC decreased from

0.83 to 0.77 (see Fig. 5). The relatively small change in

AUC scores is an indication that the groups’ algorithms

are almost equally accurate in assigning disorder proba-

bilities to residues inside the proteins and at the termini.

Figure 5 also shows that the ranks of the groups

remained essentially unchanged.

Prediction of long disordered regions

The functional roles of proteins containing short or

long unstructured regions are likely to be different. To

test the predictive power of methods to identify longer

disordered regions, we have re-evaluated predictions after

setting a minimum length for the disordered regions.

Figure 6 shows the MCC and AUC scores for four

minimum length cutoffs: 4, 20, 30, and 40 residues.

There is no clear general tendency in the data. According

to the AUC, the average score (corresponding to the

thicker “AVRG” line) remains unchanged for the cutoffs

of 4, 20, and 30 residues and drops considerably for the

cutoff of 40. The MCC scores show a trend to decrease

with the increase of the disorder segment length. The

average MCC is at the 0.35 level when calculated on seg-

ments longer than three residues and decreases to 0.25

and 0.20 on those not shorter than 20 and 30 residues,

respectively. Further, it falls to a level just above that for

a random predictor (MCC 5 0) for segments of 40

Figure 5
Comparison of group performance on the full-length and termini-trimmed targets according to the (A) MCC and (B) AUC scores. Scores on the

trimmed targets are marked as “internal.”

Disorder Assessment

PROTEINS 133



residues or longer. It should be noted, though, that the

results for the latter case should be interpreted with

abundance of caution as the dataset consists of only two

segments.

The Disopred3 (G170) and prdos-CNF (G369) are the

two best performing groups across a wide range of disor-

der region lengths according to both the MCC and AUC

scores. Their results are shown to get better with the

increase of the disorder region length cutoff from 4 to 20

to 30 according to the AUC measure. The Disopred3

(G170) and DisMeta (G168) groups show better [compa-

rable] results on the �20- [�30-] residue-long disorder

regions than on the �4-residue-long segments according

to the MCC.

Comparison of CASP10 predictions with
those from the D2P228 and MobiDB29

databases

In 2012, the year of the CASP10 experiment, two data-

bases of protein disorder were made available in addition

to the already existing repository of experimentally deter-

mined disordered regions DisProt12 and IDEAL.13 The

Database of Disordered Protein Prediction (D2P2) con-

tains disorder predictions for protein sequences from

1765 complete proteomes and their variants generated by

six disorder prediction methods: VL-XT, VSL2b, PrDOS,

PV2, ESpritz, and IUPred. The MobiDB database con-

tains proteins with experimental disorder annotations

(covering the entire PDB) and predictions for all Swis-

sProt39 sequences from three disorder predictors:

ESpritz, IUpred, and DisEMBL. It is interesting to com-

pare disorder predictions in CASP10 with the corre-

sponding entries in these two databases. The results on

the common set of targets (see “Methods”) are provided

in Table IV (comparisons on the maximum sets of

CASP10 targets overlapping with entries in each of the

two databases are also provided in the Supporting Infor-

mation Tables S1 and S2).

The scores of the best CASP10 methods according to

all evaluation measures are higher than the scores of the

methods used to produce the data stored in the data-

bases. Interestingly, a few of the prediction methods par-

ticipating in CASP have also contributed to the databases

(ESpritz and prDOS series of methods). Table IV shows

that the scores achieved by these techniques in CASP are

different (usually substantially higher) than the scores

calculated for the corresponding entries in the databases.

This indicates that the methods might have been tuned

differently for CASP10 and the databases. Our communi-

cations with the authors revealed that indeed this was

the case. The methods were trained on different data-

bases, with different disorder definitions, and different

optimization functions. For example, for the databases,

both Espritz and prDOS were trained to keep the false

positive rate at a level of around 5%, while for CASP

Espritz was tweaked to maximize the Acc score and

prDOS was adjusted to gain balance between the high

MCC and Acc scores. Besides being trained differently,

the methods were also run using different modes of

operation. For example, the Spritz series of methods was

run using the PSI-BLAST sequence profiles for CASP and

without them (to speed up the calculations) for the data-

bases. All this information highlights the importance of

using different flavors of methods depending on which

aspect of the results is more important for the specific

purpose.

Progress in the recent CASPs?

To address the question of whether there is progress in

the field, we compared the performance of groups partic-

ipating in the last four rounds of CASP. Since the defini-

tion of disorder was slightly modified after CASP8 (i.e.,

differences in different chains of X-ray structures were

treated similarly to the differences in models from NMR

ensembles), we reevaluated the CASP7 and CASP8 results

according to the procedures and measures used in this

article.

The MCC and AUC scores for the best twelve per-

forming groups are presented in Figure 7. The data indi-

cate that the best CASP10 methods are moderately more

Figure 6
Comparison of group performance for four different thresholds of the

minimum length of disordered regions. The two panels show data for
two different evaluation measures (MCC and AUC). Each group is

shown with a different color; groups in the legend are sorted according
to the AUC score (across and then down); the artificial average group

(“AVRG,” black thicker line) is added to the graph for reference.
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accurate than the best CASP9 and CASP7 methods, and

approximately as accurate as the best CASP8 methods.

CONCLUSIONS

The CASP10 experiment tested performance of 28 disor-

der prediction methods on 94 test sequences. Four predic-

tion groups—Prdos-CNF, DISOPRED3, biomine_dr_mixed,

and biomine_dr_pdb_c—perform better than the others

according to the majority of the evaluation measures. The

scores of the best CASP10 groups are slightly higher than

those of the best CASP9 groups, potentially indicating a

(modest) progress. It should be mentioned, though, that

this conclusion should be taken with a grain of salt, as

measuring progress is always a tricky business as targets,

methods, and databases change in time.

As in previous CASPs, prediction targets were not

optimal for the evaluation of disorder prediction as the

Table IV
Comparison of CASP10 Disorder Predictors with the Methods Contributing to the D2P2 and MobiDB Databases on the Common Set of 51

CASP10 Targets

ID Group name Targ TP FP TN FN prec Acc MCC AUC

Ranks

prec Acc MCC AUC

170 DISOPRED3 51 359 119 12531 431 0.751 0.723 0.565 0.92 1 15 1 1
478 biomine_dr_mixed 51 347 187 12463 443 0.65 0.712 0.511 0.898 4 18 2 3
369 Prdos-CNF 51 313 158 12492 477 0.665 0.692 0.491 0.918 2 22 3 2
168 DisMeta 51 356 262 12388 434 0.576 0.715 0.483 0.715 5 16 4 29
216 POODLE 51 528 914 11736 262 0.366 0.798 0.453 0.89 9 1 5 4
288 biomine_dr_pdb_c 51 259 135 12515 531 0.657 0.659 0.442 0.877 3 28 6 5
222 MULTICOM-construct 51 489 1083 11567 301 0.311 0.767 0.39 0.871 15 4 7 8
129 CASPITAv2 50 405 758 11580 385 0.348 0.726 0.378 0.842 11 12 8 13
180 Yang test 51 442 952 11698 348 0.317 0.742 0.374 0.871 13 8 9 7
424 MULTICOM-novel 51 493 1250 11400 297 0.283 0.763 0.368 0.867 18 6 10 11
340 metaprdos2 47 448 1227 10317 246 0.267 0.77 0.363 0.876 22 3 11 6
115 Slbio 48 314 535 11497 426 0.37 0.69 0.356 0.707 8 23 12 30
003 GSmetadisorderMD 48 389 852 11003 362 0.313 0.723 0.354 0.867 14 13 13 10
214 OWL2 48 256 371 11475 438 0.408 0.669 0.354 0.82 6 27 14 18
327 Espritzv2 51 332 605 12045 458 0.354 0.686 0.344 0.838 10 24 15 15
125 MULTICOM-refine 51 536 1748 10902 254 0.235 0.77 0.338 0.836 27 2 16 16
413 ZHOU-SPARKS-X 51 528 1718 10932 262 0.235 0.766 0.336 0.868 28 5 17 9
— D2P2_Espritz-X 51 265 389 12261 525 0.405 0.652 0.333 0.652 7 29 18 —
193 AIdisorder 47 359 834 10810 392 0.301 0.703 0.329 0.83 16 21 19 17
380 Espritz 51 463 1388 11262 327 0.25 0.738 0.325 0.84 24 10 20 14
— D2P2_PrDOS 51 463 1439 11211 327 0.243 0.736 0.319 0.736 26 11 21 —
140 OnD-CRF2 51 432 1276 11374 358 0.253 0.723 0.315 0.812 23 14 22 20
484 CSpritz 51 485 1620 11030 305 0.23 0.743 0.314 0.808 29 7 23 21
084 biomine_dr_pdb 51 403 1247 11403 387 0.244 0.706 0.295 0.817 25 20 24 19
496 GSmetadisorder 51 420 1485 11165 370 0.22 0.707 0.279 0.792 33 19 25 23
273 IntFOLD2 51 562 2870 9780 228 0.164 0.742 0.261 0.845 37 9 26 12
— MobiDB_Dise-465 51 238 583 12067 552 0.29 0.628 0.251 0.7 17 34 27 31
— D2P2_PV2 51 497 2544 10106 293 0.163 0.714 0.241 0.714 38 17 28 —
— D2P2_IUPred-S 51 215 556 12094 575 0.279 0.614 0.231 0.614 19 36 29 —
— MobiDb_IUPed-S 51 215 556 12094 575 0.279 0.614 0.231 0.614 20 37 30 33
*** Na€ıve 51 161 314 12336 629 0.339 0.589 0.228 0.788 12 39 31 —
— D2P2_Espritz-N 51 289 1021 11629 501 0.221 0.643 0.226 0.643 32 31 32 —
— MobiDB_Espritz-N 51 272 964 11686 518 0.22 0.634 0.218 0.727 34 33 33 28
— MobiDB_Espritz-X 51 290 1185 11465 500 0.197 0.637 0.206 0.745 35 32 34 25
384 GSmetadisorder3d 49 167 450 11587 601 0.271 0.59 0.2 0.805 21 38 35 22
183 sDisPred 51 474 2949 9701 316 0.138 0.683 0.198 0.74 41 25 36 26
— D2P2_VSL2b 51 355 1979 10671 435 0.152 0.646 0.182 0.646 40 30 37 —
494 GSmetaserver 51 519 3814 8836 271 0.12 0.678 0.179 0.74 43 26 38 27
— D2P2_IUPred-L 51 148 518 12132 642 0.222 0.573 0.159 0.573 30 41 39 —
— MobiDB_IUPred-L 51 148 518 12132 642 0.222 0.573 0.159 0.57 31 42 40 35
— MobiDB_Dise-HL 51 416 3415 9235 374 0.109 0.628 0.134 0.653 45 35 41 32
— D2P2_IUPred-A 51 112 484 12166 678 0.188 0.552 0.118 0.552 36 44 42 —
167 Algorithmic_code 51 265 2134 10516 525 0.11 0.583 0.102 0.583 44 40 43 34
— MobiDB_Espritz-D 51 78 413 12237 712 0.159 0.533 0.083 0.757 39 45 44 24
— D2P2_VLXT 51 236 2155 10495 554 0.099 0.564 0.079 0.564 46 43 45 —
— D2P2_Espritz-D 51 78 496 12154 712 0.136 0.53 0.069 0.53 42 46 46 —

The names of the database methods are precluded with the corresponding database name. The groups are ranked according to the MCC score. The Na€ıve predictor and

methods from the D2P2 database are assessed in the binary mode only. The database methods are marked with the gray background. The two main evaluation scores

(MCC for two-class estimations and AUC for probability-based predictions) are bold-faced.
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vast majority of CASP10 targets were solved by X-ray

crystallography and typically contained relatively short

disorder regions. Obtaining a test dataset better repre-

senting the type of disorder observed in functionally rele-

vant proteins (longer disordered regions) still remains a

challenging task for the CASP organizers.

In CASP10, the standard assessment of disorder pre-

diction was complemented with the analysis of capacity

to recognize disorder regions of different lengths and at

different locations along the sequence (at termini or

inside the protein). We also compared CASP predic-

tions with the entries stored in the two recently estab-

lished databases for disorder predictions—D2P2 and

MobiDB. The CASP10 prediction methods show better

performance than methods contributing to the data-

bases, perhaps due to differences in training (e.g., using

datasets reflecting shorter disorder regions), tuning

(reflecting CASP assessment criteria more closely), and

execution (e.g., allowing for more elaborate calcula-

tions). This analysis shows that using a problem-tuned

approach can enhance performance by a substantial

margin.
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