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Abstract. In this paper we study a variable-exponent fourth-order viscoelastic equation
of the form

|ut|ρ(x)utt +∆[(a+ b|∆u|m(x)−2)∆u]−
∫ t

0

g(t− s)∆2u(s)ds = |u|p(x)−2u,

in a bounded domain of Rn. Under suitable conditions on variable exponents and
initial data, we prove that the solutions will grow up as an exponential function with
positive initial energy level. Our result improves and extends many earlier results
in the literature such as the one by Mahdi and Hakem (Ser. Math. Inform. 2020,
https://doi.org/10.22190/FUMI2003647M).
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1. Introduction

In this paper, we study the following variable-exponent fourth-order viscoelastic
initial boundary value problem
(1.1)

|ut|ρ(x)utt+∆[(a+b|∆u|m(x)−2)∆u]−
∫ t

0

g(t−s)∆2u(s)ds = |u|p(x)−2u, x ∈ Ω, t > 0,
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(1.2)

{
u(x, t) = 0, x ∈ Γ0, t > 0

a∆u(x, t) =
∫ t

0
g(t− s)∆u(s)ds− b|∆u|m(x)−2∆u, x ∈ Γ1, t > 0

(1.3) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

where Ω ⊂ Rn(n ≥ 1) is a bounded domain with a smooth boundary ∂Ω = Γ0 ∪ Γ1

such that Γ0 and Γ1 are closed and disjointed. Here a, b are positive constants. Also
g(.), ρ(.), m(.) and p(.) are given real-valued functions that satisfy some conditions
to be specified later.

Before going any further, it is worth pointing out some previous results. In
bounded domains, there is an extensive literature on the existence, asymptotic
behavior and nonexistence of solution for the plate equations. In the following part,
the results are reviewed in two parts.

1.1. Case of constant exponents

It is known that the thin plate model leads to a differential equation of fourth-
order. These kinds of equations have been extensively discussed by many authors.
For example, Messaoudi [16] studied the following fourth-order equation

(1.4) utt +∆2u+ a|ut|m−2ut = b|u|p−2u,

where a, b > 0. He proved the existence of a local weak solution and showed that
if p > m, this solution blows up in finite time with negative initial energy. Also,
he proved that if m ≥ p, the solution is global. Wu and Tsai [31] considered (1.4)
and proved that the solution is global in time under some conditions without the
relation between m and p. Moreover, similar to [16], they proved that if p > m, the
local solution blows up in finite time. (see also [9, 27])

Shahrouzi [22] investigated the following fourth-order initial boundary value
problem

utt +∆[(a0 + a|∆u|m−2)∆u]− b∆ut = g(x, t, u,∆u) + |u|p−2u, x ∈ Ω, t > 0,

u(x, t) = 0, ∆u(x, t) = c0∂νu(x, t), x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.

Under sufficient conditions on c0 and b, when p > m+ 1 > 3, blow up of solutions
was proved.

It is known that viscoelastic materials show natural damping properties, which
is due to the special property of these substances in keeping memory of their past
history. From mathematical point of view, these damping effects are modeled by
integro-differential operators and for this reason, it is of special importance to study
the viscoelastic initial boundary value problems. For more details about the vis-
coelastic problems and their applications, we refer to [1, 21].
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In this regards, Rivera et al. [18] considered the plate model:

(1.5) utt +∆2u−
∫ t

0

g(t− s)∆2u(s)ds = 0,

and showed that if g(.) is exponentially decayed, the energy of solution is expo-
nentially decayed too. Tahamtani and Shahrouzi [30] studied the effect of a source
term |u|pu on the plate model (1.5). They proved the existence of weak solutions
by using the Faedo-Galerkin method. Also, blow-up of solutions was established
with positive initial energy as well as non-positive initial energy.

Li and Gao [14] considered the following nonlinear Petrovsky type equation

utt +∆2u−
∫ t

0

g(t− s)∆2u(s)ds+ |ut|m−2ut = |u|p−2u,

and obtained the blow-up result with upper bounded initial energy. Furthermore,
the blow up of solutions was proved for the linear damping case with non-positive
initial energy.

Shahrouzi [23] studied the solution behavior of the nonlinear fourth-order equa-
tion of the form

utt +∆[(a+ b|∆u|m−2)∆u]−
∫ t

0

g(t− s)∆2u(s)ds+ cut = h(x, t, u,∆u) + |u|p−2u,

and proved that if the initial data and parameters are taken in the appropriate
domain, then solutions uniformly decay to zero with the same arbitrary rate as the
memory kernel. Moreover, the blow up of solutions was proved under the conditions
of positive initial energy and suitable domain of parameters.

In another study, Mustafa and Abusharkh [19] considered the following vis-
coelastic plate equation

utt +∆2u−
∫ t

0

∆[a(x)g(t− s)∆u(s)]ds+ θ(t)b(x)h(ut) = 0,

in a bounded domain of Rn, where a(.) and b(.) are real functions such that
a(x)+ b(x) ≥ β > 0 for all x ∈ Ω. In addition, supposed that θ is a time-dependent
coefficient of the frictional damping term. They obtained a general relation between
the decay rate for the energy and the functions g, θ and h without imposing any
growth assumption near the origin on h and strongly weakening the usual assump-
tions on g.

Al-Gharabli [2] investigated the stability of a viscoelastic plate equation of the
form

utt +∆2u+ u−
∫ t

0

g(t− s)∆2u(s)ds = kuln|u|,

and proved explicit and general energy decay results when the relaxation function
g satisfied g′(t) ≤ −ξ(t)G(g(t)).
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Yang [34] investigated the blow-up and lower bound of lifespan of solutions for
the following equation
(1.6)

|ut|ρutt− (1+ b∥∇u∥2γ2 )∆u+

∫ t

0

g(t− s)∆u(s)ds+ut|ut|m−2−∆ut = |u|p−2u.

By constructing a suitable auxiliary function to overcome the difficulty of gradient
estimation and making use of differential inequality technique, he proved a finite
time blow-up result when the initial data is at arbitrary energy level. Moreover,
he derived a lower bound of the lifespan by constructing a control function with
both nonlocal term and memory kernel. Song [28] considered equation (1.6) without
strongly damping term and when (b = 0), he proved the nonexistence of solutions
with positive initial energy and nonincreasing relaxation function. For more results
related to the plate equations, we refer the reader to [3, 29].

1.2. Case of variable exponents

In recent years, much attention has been paid to the study of mathematical models
of hyperbolic, parabolic and elliptic equations with variable exponents of nonlin-
earity. Equations with nonstandard growth conditions and variable-exponent non-
linearities occur in the mathematical modeling of various physical phenomena, e.g,
the flows of electro-rheological fluids or fluids with temperature-dependent viscosity,
nonlinear viscoelasticity, processes of filtration through a porous media and image
processing. For more details, see [7, 8] and references therein.

Messaoudi et al. [17] studied

(1.7) utt −∆u+ a|ut|m(.)−2ut = |u|p(.)−2u,

and proved the existence and blow-up of solutions under some conditions on variable
exponents. Furthermore, Park and Kang [20] considered (1.7) in the presence of
viscoelastic term and proved the blow-up result for the solutions with positive as
well as non-positive initial energy when g is a nonincreasing positive function such
that ∫ ∞

0

g(s)ds <
p1(p1 − 2)

(p1 − 1)2
, 2 < p1 ≤ p(x) ≤ p2.

Shahrouzi [26] studied the behavior of solutions to the following initial-boundary
value problem with variable-exponent nonlinearities

utt −∆u− div(|∇u|m(x)∇u) +
∫ t

0

g(t− τ)∆u(τ)dτ + h(x, t, u,∇u) + βut

= |u|p(x)u, in Ω× (0,+∞){
u(x, t) = 0, x ∈ Γ0, t > 0
∂u
∂n (x, t) =

∫ t

0
g(t− τ) ∂u∂n (τ)dτ − |∇u|m(x) ∂u

∂n + αu, x ∈ Γ1, t > 0
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u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω.

Under appropriate conditions, he proved a general decay result associated with
solution energy. Moreover, regarding arbitrary positive initial energy, blow up of
solutions was proved. Recently, Shahrouzi in [25] investigated the blow-up result for
a Lamé system of viscoelastic equation with variable-exponent nonlinearities and
strong damping term.

In another article, Mahdi and Hakem [15] established the weak existence theorem
and found suitable assumptions on the initial data, m(.) and p(.) in which the
solutions of the following equation blow up in a finite time:

|ut|ρutt −∆u−∆utt +

∫ t

0

g(t− s)∆u(s)ds+ |ut|m(x)−2ut = |u|p(x)−2u.

In the plate model with variable exponent nonlinearities, Ferreira and Messaoudi
[13], considered a nonlinear viscoelastic plate equation with a lower order pertur-
bation of a −→p (x, t)−Laplacian operator of the form

(1.8) utt +∆2u−∆−→p (x,t)u+

∫ t

0

g(t− s)∆u(s)ds− ε∆ut + f(u) = 0,

and proved a general decay result under suitable conditions on g, f and the variable
exponent of the −→p (x, t)− Laplacian operator. Next, Antontsev and Ferreira [4]
studied (1.8) and proved the blow up of solutions under suitable conditions on g, f
and variable exponent with negative initial energy.

Recently, Antontsev et. al [5] considered the following nonlinear plate (or beam)
Petrovsky equation

utt +∆2u−∆ut + |ut|p(x)−2ut = |u|q(x)−2u.

By using the Banach contraction mapping principle they obtained local weak so-
lutions, under suitable assumptions on the variable exponents p(.) and q(.). Then,
they proved that the solution is global if p(.) ≥ q(.) and blows up in a finite time if
p(.) < q(.). In this regards, also see [6, 24].

Motivated by the aforementioned works, we try to prove a exponential growth
result for the problem (1.1)-(1.3). Subsequently, in Section 2, we recall some def-
initions and Lemmas about the variable-exponent Lebesgue space, Lp(.)(Ω), the
Sobolev space, W 1,p(.)(Ω), which will be used for the main result. In Section 3, we
prove the instability of solutions in infinity for appropriate initial data and suitable
range of ρ(.), m(.) and p(.). The conclusions of the paper are presented in fourth
section.

2. Preliminaries

In order to study problem (1.1)-(1.3), we need some additional conditions and the-
ories about Lebesgue and Sobolev spaces with variable-exponents (for detailed, see
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[10, 11, 12, 32, 33]). At first, we consider the following hypotheses for exponents
and relaxation function g:
(A1) ρ(.), m(.) and p(.) are given continuous and measurable functions on Ω such
that

1 < ρ1 ≤ ρ(x) ≤ ρ2

2 < m1 ≤ m(x) ≤ m2

2 < p1 ≤ p(x) ≤ p2

with

ρ1 := essinfx∈Ωρ(x), ρ2 := esssupx∈Ωρ(x),

m1 := essinfx∈Ωm(x), m2 := esssupx∈Ωm(x),

p1 := essinfx∈Ωp(x), p2 := esssupx∈Ωp(x).

(A2) g : R+ → R+ is a C1−nonincreasing function satisfying

g(0) > 0, a−
∫ ∞

0

g(s)ds > 0.

Let p(x) ≥ 1 and measurable, we define

C+(Ω) = {h|h ∈ C(Ω), h(x) > 1 for any x ∈ Ω},

Lp(x)(Ω) =
{
u| u is a measurable real-valued function,

∫
Ω

|u(x)|p(x)dx <∞
}
.

We equip the Lebesgue space with a variable exponent, Lp(x)(Ω), with the following
Luxembourg-type norm

∥u∥p(x) := inf
{
λ > 0

∣∣∣ ∫
Ω

|u(x)
λ

|p(x)dx ≤ 1
}

Lemma 2.1. [10, 32] Let Ω be a bounded domain in Rn

(i) the space (Lp(x)(Ω), ∥.∥p(x)) is a Banach space, and its conjugate space is

Lq(x)(Ω), where 1
q(x) +

1
p(x) = 1. For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we

have ∣∣ ∫
Ω

uvdx
∣∣ ≤ ( 1

p1
+

1

q1

)
∥u∥p(x)∥v∥q(x).

(ii) If p, q ∈ C+(Ω), q(x) ≤ p(x) for any x ∈ Ω, then Lp(x)(Ω) ↪→ Lq(x)(Ω), and
the imbedding is continuous.

The variable-exponent Lebesgue Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω)|∇u exists and |∇u| ∈ Lp(x)(Ω)}.
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This space is a Banach space with respect to the norm ∥u∥W 1,p(x)(Ω) = ∥u∥p(x) +
∥∇u∥p(x). Furthermore, letW

1,p(x)
0 (Ω) be the closure of C∞

0 (Ω) inW 1,p(x)(Ω). The

dual ofW
1,p(x)
0 (Ω) is defined asW−1,p′(x)(Ω), by the same way as the usual Sobolev

spaces, where 1
p(x) +

1
p′(x) = 1.

If we define

p∗(x) =

{
Np(x)

esssupx∈Ω(N−p(x)) , p+ < N

∞, p+ ≥ N,

then we have

Lemma 2.2. [10, 32] Let Ω be a bounded domain in Rn then for any measurable
bounded exponent p(x) we have

(i) W 1,p(x)(Ω) and W
1,p(x)
0 (Ω) are separable Banach spaces;

(ii) if q ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω, then the imbeddingW 1,p(x)(Ω) ↪→
Lq(x)(Ω) is compact and continuous;

(iii) if p(x) is uniformly continuous in Ω then there exists a constant C∗ > 0, such
that

∥u∥p(x) ≤ C∗∥∆u∥p(x) ∀u ∈W
2,p(x)
0 (Ω).

We know that the space W
1,p(x)
0 (Ω) has an equivalent norm given by

∥u∥W 1,p(x)(Ω) = ∥∇u∥p(x). Also, we recall the trace Sobolev embedding in Lebesgue
space with a constant exponent

H1
Γ0
(Ω) ↪→ Lq(Γ1) for 2 ≤ q <

2(n− 1)

n− 2

where
H1

Γ0
(Ω) = {u ∈ H1(Ω) : u|Γ0

= 0}
and the embedding inequality

∥u∥q,Γ1
≤ Bq∥∇u∥2,

where Bq is the optimal constant.
We recall the Young’s inequality

(2.1) XY ≤ θXq(x) + C(θ, q(x))Y q′(x), X, Y ≥ 0, θ > 0,
1

q(x)
+

1

q′(x)
= 1,

where C(θ, q(x)) = 1
q′(x) (θq(x))

− q′(x)
q(x) . In special case when θ = 1

q(x) , we have from

(2.1)

(2.2) XY ≤ Xq(x)

q(x)
+
Y q′(x)

q′(x)
.
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For completeness we state, without proof, the existence result for the problem (1.1)-
(1.3):(see [13, 17])

Theorem 2.1. (Local existence) Let (u0, u1) ∈W
2,m(.)
0 (Ω)× L2(Ω) be given. As-

sume that (A1) and (A2) are satisfied; then the problem (1.1)-(1.3) has at least one
weak solution such that

u ∈ L∞(
(0, T ),W

2,m(.)
0 (Ω)

)
, ut ∈ L∞(

(0, T ), L2(Ω)
)
∩ Lρ(.)(Ω),

utt ∈ L∞(
(0, T ), L2(Ω) ∩W−1,m′(.)

0 (Ω)
)
,

where 1
m(x) +

1
m′(x) = 1.

3. Exponential growth result

In this section we are going to prove instability of solutions in infinity for the prob-
lem (1.1)-(1.3). To prove the growth-up result for certain solutions with arbitrary
positive initial energy, we assumed that:
(A3)

2 < m1 ≤ m(x) ≤ m2 ≤ ρ2 + 2 ≤ p1 ≤ p(x) ≤ p2 <∞,∫ ∞

0

g(s)ds ≤ aρ2(ρ2 + 2)

2(ρ22 + 2ρ2 + a)
.

The energy associated with problem (1.1)-(1.3) is given by

(3.1)

E(t) =

∫
Ω

1

ρ(x) + 2
|ut|ρ(x)+2dx+

1

2
(a−

∫ t

0

g(s)ds)∥∆u∥2 + 1

2
(g ∗∆u)(t)

+ b

∫
Ω

1

m(x)
|∆u|m(x)dx−

∫
Ω

1

p(x)
|u|p(x)dx,

where

(g ∗ u)(t) =
∫ t

0

g(t− s)

∫
Ω

|u(s)− u|2dxds.

Lemma 3.1. (Monotonicity of energy) Let u be a local solution of (1.1)-(1.3).
Then the energy functional along the solution satisfies

(3.2) E′(t) =
1

2
(g′ ∗∆u)(t)− 1

2
g(t)∥∆u∥2 ≤ 0.

Proof. By multiplying equation (1.3) by ut and integrating over Ω, using integration
by parts, boundary conditions and hypotheses (A1) and (A2), we obtain (3.2) for
any regular solution. This equality remains valid for weak solutions by a simple
density argument.

Our main result in this section reads in the following theorem:
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Theorem 3.1. Suppose that the assumptions (A1)-(A3) hold. Moreover, E(0) > 0
is a given initial energy level. If we choose parameter a > 0 large enough and initial
data u0, u1 satisfying

(3.3)
1

ρ1 + 1

∫
Ω

u0u1|u1|ρ2dx >
ρ2 + 2

ρ1 + 1
E(0),

then the solutions of (1.1)-(1.3) grow up as an exponential function when time goes
to infinity.

To prove the above theorem, we assume that u is a global solution of the our
problem. Let define

(3.4) ψ(t) =

∫
Ω

1

ρ(x) + 1
uut|ut|ρ(x)dx.

Lemma 3.2. Under the assumptions of Theorem 3.1, ψ(t) satisfies, along the so-
lution, the estimate

(3.5) |ψ(t)| ≤ aρ2
2ρ1 + 2

∥∆u∥2 + ρ2 + 1

(ρ1 + 1)(ρ2 + 2)

∫
Ω

|ut|ρ(x)+2dx.

Proof. By using (A1) and Young’s inequality (2.2) with X := |u|, Y := |ut|ρ(x)+1

and q(x) := ρ(x) + 2, q′(x) := ρ(x)+2
ρ(x)+1 , we get

(3.6)

|ψ(t)| ≤ 1

ρ1 + 1
|
∫
Ω

u|ut|ρ(x)+1dx|

≤ 1

ρ1 + 1

∫
Ω

1

ρ(x) + 2
|u|ρ(x)+2dx+

1

ρ1 + 1

∫
Ω

ρ(x) + 1

ρ(x) + 2
|ut|ρ(x)+2dx.

On the other hand, let C∗ be the best constant of embedding H2
0 (Ω) ↪→ Lρ(.)+2(Ω)

(c.f. part (iii) of Lemma 2.2), then for sufficiently large a, we have

(3.7)

∫
Ω

|u|ρ(x)+2dx ≤max{
(∫

Ω

|u|ρ(x)+2dx
) ρ1+2

ρ(x)+2

,
(∫

Ω

|u|ρ(x)+2dx
) ρ2+2

ρ(x)+2 }

≤max{Cρ1+2
∗ ∥∆u∥ρ1+2, Cρ2+2

∗ ∥∆u∥ρ2+2}
≤max{Cρ1+2

∗ ∥∆u∥ρ1 , Cρ2+2
∗ ∥∆u∥ρ2}∥∆u∥2

≤a
2
ρ2(ρ1 + 2)∥∆u∥2.

Combining (3.6) with (3.7), we deduce

|ψ(t)| ≤ aρ2
2ρ1 + 2

∥∆u∥2 + ρ2 + 1

(ρ1 + 1)(ρ2 + 2)

∫
Ω

|ut|ρ(x)+2dx,

and proof of Lemma 3.2 is completed.
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Lemma 3.3. Under the assumptions of Theorem 3.1, ψ(t) and E(t) satisfy the
following differential inequality

(3.8) ψ′(t) + (ρ2 + 2)E(t) ≥ (ρ1 + 1)ψ(t) +
ρ2 + 2

ρ1 + 1
E′(t).

Proof. Multiplying equation (1.1) by u and integrating over Ω, we get∫
Ω

|u|p(x)dx =

∫
Ω

u|ut|ρ(x)uttdx+

∫
Ω

u∆[(a+ b|∆u|m(x)−2)∆u]dx

−
∫ t

0

g(t− s)

∫
Ω

u∆2u(s)dxds.

Then, by using the boundary conditions, we easily obtain

(3.9)

ψ′(t) =

∫
Ω

1

ρ(x) + 1
|ut|ρ(x)+2dx+

∫
Ω

u|ut|ρ(x)uttdx

=

∫
Ω

1

ρ(x) + 1
|ut|ρ(x)+2dx− a∥∆u∥2 − b

∫
Ω

|∆u|m(x)dx

+

∫
Ω

|u|p(x)dx+

∫ t

0

g(t− s)

∫
Ω

∆u∆u(s)dxds.

For the last term on the right side of (3.9), we have

(3.10)

∫ t

0

g(t− s)

∫
Ω

∆u∆u(s)dxds =

∫ t

0

g(t− s)

∫
Ω

∆u(∆u(s)−∆u)dxds

+ (

∫ t

0

g(s)ds)∥∆u∥2,

and by virtue of the Young’s inequality (2.1) with θ = ρ2+2
2 , q(x) = q′(x) = 2, we

obtain

(3.11)

|
∫
Ω

∆u

∫ t

0

g(t− s)(∆u(s)−∆u)dsdx|

≤ρ2 + 2

2a

∫
Ω

(∫ t

0

g(t− s)|∆u(s)−∆u|ds
)2

dx+
a

2(ρ2 + 2)

∫ t

0

g(s)ds∥∆u∥2

=
ρ2 + 2

2a

∫
Ω

(∫ t

0

g(t− s)√
g(t− s)

√
g(t− s)|∆u(s)−∆u|ds

)2

dx

+
a

2(ρ2 + 2)

∫ t

0

g(s)ds∥∆u∥2

≤ρ2 + 2

2a

(∫ t

0

g(s)ds
)∫

Ω

∫ t

0

g(t− s)|∆u(s)−∆u|2dsd

+
a

2(ρ2 + 2)

∫ t

0

g(s)ds∥∆u∥2

≤ρ2 + 2

2
(g ∗∆u)(t) + a

2(ρ2 + 2)

∫ t

0

g(s)ds∥∆u∥2,
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where condition (A2) and as a result
∫ t

0
g(s)ds <

∫∞
0
g(s)ds < a has been used.

Utilizing (3.11) into (3.10), we arrive at

(3.12)

∫ t

0

g(t− s)

∫
Ω

∆u∆u(s)dxds ≥− ρ2 + 2

2
(g ∗∆u)(t)

+ (1− a

2(ρ2 + 2)
)

∫ t

0

g(s)ds∥∆u∥2.

Therefore we get

(3.13)

ψ′(t) ≥
∫
Ω

1

ρ(x) + 1
|ut|ρ(x)+2dx− a∥∆u∥2 − b

∫
Ω

|∆u|m(x)dx

+

∫
Ω

|u|p(x)dx− ρ2 + 2

2
(g ∗∆u)(t)

+ (1− a

2(ρ2 + 2)
)

∫ t

0

g(s)ds∥∆u∥2.

Taking into account (3.1), we deduce

ψ′(t) ≥− (ρ2 + 2)E(t) + (ρ2 + 2)

∫
Ω

1

ρ(x) + 2
|ut|ρ(x)+2dx

+

∫
Ω

1

ρ(x) + 1
|ut|ρ(x)+2dx+

1

2
[ρ2a− (ρ2 +

a

ρ2 + 2
)

∫ t

0

g(s)ds]∥∆u∥2

+ b(ρ2 + 2)

∫
Ω

1

m(x)
|∆u|m(x)dx− b

∫
Ω

|∆u|m(x)dx

+

∫
Ω

|u|p(x)dx− (ρ2 + 2)

∫
Ω

1

p(x)
|u|p(x)dx,

by the assumption (A1), last inequality becomes

ψ′(t) ≥− (ρ2 + 2)E(t) + (1 +
1

ρ2 + 1
)

∫
Ω

|ut|ρ(x)+2dx

+ (1− ρ2 + 2

p1
)

∫
Ω

|u|p(x)dx+
1

2
[ρ2a− (ρ2 +

a

ρ2 + 2
)

∫ t

0

g(s)ds]∥∆u∥2

+ b(
ρ2 + 2

m2
− 1)

∫
Ω

|∆u|m(x)dx,

and by using (A3), we obtain

(3.14)

ψ′(t) ≥− (ρ2 + 2)E(t) + (1 +
1

ρ2 + 1
)

∫
Ω

|ut|ρ(x)+2dx

+
1

2
[ρ2a− (ρ2 +

a

ρ2 + 2
)

∫ t

0

g(s)ds]∥∆u∥2.
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Utilizing (3.4) into (3.14), it is easy to see that

(3.15)

ψ′(t) ≥(ρ1 + 1)(ψ(t)− ρ2 + 2

ρ1 + 1
E(t)) + (1 +

1

ρ2 + 1
)

∫
Ω

|ut|ρ(x)+2dx

+
1

2
[ρ2a− (ρ2 +

a

ρ2 + 2
)

∫ t

0

g(s)ds]∥∆u∥2 − (ρ1 + 1)ψ(t).

Thanks to the conclusion of Lemma 3.2, we get from (3.15)

ψ′(t) ≥(ρ1 + 1)(ψ(t)− ρ2 + 2

ρ1 + 1
E(t)) + (1 +

1

ρ2 + 1
− ρ2 + 1

ρ2 + 2
)

∫
Ω

|ut|ρ(x)+2dx

+
1

2
[
ρ2a

2
− (ρ2 +

a

ρ2 + 2
)

∫ t

0

g(s)ds]∥∆u∥2.

Now, by using (A3) and (3.2), we have

ψ′(t) ≥(ρ1 + 1)(ψ(t)− ρ2 + 2

ρ1 + 1
E(t))

≥(ρ1 + 1)(ψ(t)− ρ2 + 2

ρ1 + 1
E(t)) +

ρ2 + 2

ρ1 + 1
E′(t).

and proof of Lemma 3.3 is completed.

Proof of Theorem 3.1. Let define

H(t) = ψ(t)− ρ2 + 2

ρ1 + 1
E(t),

by using the inequality (3.8), we get

(3.16) H ′(t) ≥ (ρ1 + 1)H(t).

Then, by (3.3), it holds that H(0) = ψ(0) − ρ2+2
ρ1+1E(0) > 0. Therefore, by (3.16),

we conclude that
H(t) ≥ e(ρ1+1)tH(0), ∀t ≥ 0.

This completes the proof of Theorem 3.1.

4. Conclusion

In recent years, due to the very wide applications of partial differential equations
with non-standard growth conditions, there many works concerning the wave equa-
tions with variable-exponent nonlinearities have been published. However, to the
best of our knowledge, there were no exponential growth results for the viscoelastic
plate equation involving variable-exponent nonlinearities and boundary feedback.
In this work, we used the modified energy method to establish the exponential
growth of solutions for the boundary value problem (1.1)-(1.3). Indeed, we proved
that for the appropriate range of the variable exponents ρ(.), m(.) and p(.) the
global solutions are exponential growth (without damping term), while in the pre-
vious studies (with damping term) the authors proved that there exists a finite time
such that the solutions blow up (see [4, 15, 17, 20, 24]).
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5. S. Antontsev, J. Ferreira and E. Pişkin, Existence and blow up of solutions for a
strongly damped petrovsky equation with variable-exponent nonlinearities, Electron. J.
Differ. Equ. 2021 (6), (2021) 1–18.
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