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Abstract. The object of the present paper is to give some characterizations of α-
cosymplectic manifolds admitting ∗-conformal Ricci solitons. Such manifolds with gra-
dient ∗-conformal Ricci solitons have also been considered.
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1. Introduction

Most of the geometric properties of a manifold are controlled by the Ricci tensor
of the manifold. In [9], the notion of Ricci curvature has been extended to ∗-Ricci
tensor. The idea of Ricci flow was coined by R. S. Hamilton [10]. A Ricci flow
is a pseudo parabolic heat type partial differential equation where the unknown
variable is the metric tensor. The theory of Ricci flow has also been developed in
[7], in some different perspective to address some issues in relativistic mechanics.
The theory of Ricci flow has become popular in the past years due to its application
by Perelman [14] to solve the well known Poincare conjecture. A fixed solution of
a Ricci flow, up to diffeomorphisms and scaling, is known as Ricci soliton. The
notion of Ricci soliton has been generalized and extended by several geometers in
several contexts. ∗-Ricci solitons have been studied in the papers [12, 13]. Theory
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of conformal Ricci solitons was introduced by N. Basu [1] in 2015 in the context of
Kenmotsu manifolds. Later the study has been enriched in the papers [6, 10].

On the other hand, α-cosymplectic manifolds form an important class of almost
contact manifolds which are receiving intensive attentions nowadays. Geometry
of α-cosymplectic manifolds has been investigated in the papers [2, 4, 15]. The
expression of ∗-Ricci tensor for α-cosymplectic manifolds has been determined in
the paper [11]. Motivated by these works, in the present paper, we are interested
to study ∗-conformal Ricci solitons on α-cosymplectic manifolds.

The present paper is organized as follows: After the introduction, in Section 2,
we report some well-known results as preliminary information which will be required
for subsequent calculations. Section 3 contains the study of α-cosymplectic mani-
folds with ∗-conformal Ricci solitons. Section 4 is devoted to gradient ∗-conformal
Ricci solitons. The last section contains an example.

2. Preliminaries

A (2n+1)-dimensional connected differentiable manifold is called an almost contact
manifold [3] if there exist a (1, 1) tensor field φ, a vector field ξ and a 1-form η such
that

φ2X = −X + η(X)ξ, η(ξ) = 1,(2.1)

where X ∈ χ(M), χ(M) is the set of all vector fields on M. The manifold is called
almost contact metric manifold if there exists a Riemannian metric g on M such
that

g(φX, φY ) = g(X,Y )− η(X)η(Y ),(2.2)

X,Y ∈ χ(M). For such a manifold, we have

φξ = 0, η(φX) = 0, η(X) = g(X, ξ),

for all X,Y ∈ χ(M). On an almost contact metric manifold, we also have

g(φX, Y ) = −g(X,φY ).(2.3)

An almost contact metric manifold is said to be normal if the Nijenhuis tensor of φ
vanishes. For a real number α, a normal almost contact metric manifold is said to
be α-cosymplectic if [2, 4, 5]

dη = 0, dΦ = 2αη ∧ Φ,(2.4)

where
Φ(X,Y ) = g(X,ΦY ).(2.5)

For an α-cosymplectic manifold we also have

(∇Xφ)Y = α(g(φX, Y )ξ − η(Y )φX),(2.6)
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∇Xξ = α(X − η(X)ξ).(2.7)

(∇Zη)X = α(g(X,Z)− η(Z)η(X)).(2.8)

If α = 0, the manifold is cosymplectic. For α = 1, it is Kenmotsu. For an α-
cosymplectic manifold, we also know

R(X,Y )ξ = α2(η(X)Y − η(Y )X),(2.9)

R(X, ξ)Y = α2(g(X,Y )ξ − η(Y )X),(2.10)

S(X, ξ) = −2nα2η(X).(2.11)

The expression of ∗-Ricci tensor on α-cosymplectic manifolds has been deter-
mined in the paper [11]. In a (2n + 1)-dimensional α-cosymplectic manifold the
∗-Ricci tensor is given by

S∗(X,Y ) = S(X,Y ) + α2(2n− 1)g(X,Y ) + α2η(X)η(Y ).(2.12)

The ∗-Ricci operator Q∗ is given by S∗(X,Y ) = g(Q∗X,Y ). For details we refer
[11].

S∗(X, ξ) = 0.(2.13)

Following the similar method as in [8], one can easily establish the following:

Lemma 2.1. If M is an α-cosymplectic manifold of dimension (2n + 1), then for
any vector field Y ∈ χ(M), (∇ξQ)Y = −2αQY − 4nα3Y .

3. α-cosymplectic manifolds with ∗-conformal Ricci solitons

Definition 3.1. A (2n + 1)-dimensional α-cosymplectic manifold is said to have
∗-conformal Ricci soliton if

(£V g)(X,Y ) + 2S∗(X,Y ) = (2λ− (p+
2

2n+ 1
))g(X,Y ),(3.1)

where S∗ is the ∗-Ricci tensor of the manifold given in (2.12). Here £V denotes Lie
derivative with respect to the vector field V, λ and p are real numbers and p ≥ 0.
The soliton is called expanding, steady or shrinking according as λ < 0, λ = 0 and
λ > 0. Suppose an α-cosymplectic manifold admits a ∗-conformal Ricci soliton.
Covariant differentiation of (3.1) gives

(∇Z(£V g))(X,Y ) = −2(∇ZS∗)(X,Y ).(3.2)

By the relation between covariant derivative and Lie derivative, it is known from
Yano [16]

(∇X(£V g))(Y,Z) = g((£V∇)(X,Y ), Z) + g((£V∇)(X,Z), Y ).(3.3)
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By symmetry of £V∇, and using some combinoterial computation, we have from
(3.3)

g((£V∇)(X,Y ), Z) =
1

2
(∇X(£V g))(Y,Z)

+
1

2
(∇Y (£V g))(X,Z)

− 1

2
(∇Z(£V g))(X,Y ).(3.4)

By virtue of (3.2), (3.3) and (3.4), for Y = ξ, we get

g((£V∇)(X, ξ), Z) = (∇ZS∗)(X, ξ)− (∇XS∗)(ξ, Z)− (∇ξS∗)(X,Z).(3.5)

In view of (2.12), we have

(∇ZS∗)(X,Y ) = (∇ZS)(X,Y ) + α2(∇Zη)Xη(Y ) + α2η(X)(∇Zη)Y.(3.6)

By virtue of the above equation, we obtain

(∇ZS∗)(X, ξ)− (∇XS∗)(Z, ξ) = (1− 2n)(α2(∇Zη)X − (∇Xη)Z)

+ α2(η(X)Z − η(Z)X).(3.7)

Again from (2.12)

(∇ξS∗)(X,Y ) = (∇ξS)(X,Y ) + α2(∇ξη)Xη(Y ) + α2η(X)(∇ξ)Y.(3.8)

By virtue of (3.7) and (3.8), (3.5) takes the form

g((£V∇)(X, ξ), Z) = (1− 2n)α2((∇Zη)X − (∇Xη)Z)

− (∇ξS)(X,Z)− α2(∇ξη)Xη(Z)

+ α2η(X)(∇ξη)Z.(3.9)

In view of Lemma 2.1, the above equation takes the form

g((£V∇)(X, ξ), Z) = (1− 2n)α2((∇Zη)X − (∇Xη)Z)

+ 2αS(X,Z) + 4nα3g(X,Z)

− α2(∇ξη)Xη(Z)

+ α2η(X)(∇ξη)Z.(3.10)

Using (2.8) in the above, one obtains

g((£V∇)(X, ξ), Z) = 2αS(X,Z) + 4nα3g(X,Z).

As a consequence of the above equation, we get

(£V∇)(X, ξ) = 2αQX + 4nα3X.(3.11)
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The above equation yields

(∇ξ(£V∇))(X, ξ) = −4α2QX − 4nα3X.(3.12)

A formula from Yano [16] gives

(£VR)(X,Y )Z = (∇X£V∇)(Y,Z)− (∇Y£V∇)(X,Z).

Putting Y = Z = ξ we get

(£VR)(X, ξ)ξ = (∇X£V )(ξ, ξ)− (∇ξ£V∇)(X, ξ).(3.13)

In view of (3.12) and (3.13) we get

(£VR)(X, ξ)ξ = 0.(3.14)

But from (2.9) and (2.10)

(£VR)(X, ξ)ξ = α2(£V g)(X, ξ)ξ − α2(£V g)(ξ, ξ)X.(3.15)

Thus, by (3.14) and (3.15), we have

α2(£V g)(X, ξ)ξ = α2(£V g)(ξ, ξ)X.(3.16)

In (3.1) putting Y = ξ and using (2.11) and (2.13), we deduce that

(£V g)(X, ξ) = (2λ− (p+
2

2n+ 1
))η(X).

Putting X = ξ, in the above equation, we obtain

(£V g)(ξ, ξ) = −(λ− (
p

2
+

1

2n+ 1
)).(3.17)

In view of (3.16), for α 6= 0, we get(
2λ− (p+

2

2n+ 1
)
)

= 0.

Thus, λ = p
2 + 1

2n+1 Since p ≥ 0 we get λ > 0. Thus, we state the following

Theorem 3.1. A non-cosymplectic α-cosymplectic manifold as a ∗-conformal Ricci
soliton is shrinking.

4. Gradient ∗-conformal Ricci solitons on α-cosymplectic manifolds

Definition 4.1. A Ricci soliton on a Riemannian manifold is called gradient ∗-
conformal Ricci soliton if

∇∇f = S∗ − (2λ− (p+
2

2n+ 1
))g(4.1)
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holds in the manifold. Here f is the potential function. The above equation has
following alternative form

∇XDf = Q∗X − (2λ− (p+
2

2n+ 1
))X.(4.2)

The above equation yilds

R(X,Y )Df = (∇XQ∗)Y − (∇YQ∗)X.

In the above equation taking Y = ξ and using (2.11) we have

R(X, ξ)Df = 0.

Replacing X by Df in the above equation, we see that

R(Df, ξ)Df = 0.(4.3)

But putting X = Df in (2.10), we have

R(Df, ξ)Df = α2(g(Df,Df)ξ − η(Df)Df).(4.4)

Comparing (4.3) and (4.4) we get α = 0. Thus, we state the following

Theorem 4.1. A α-cosymplectic manifold admitting gradient ∗-conformal Ricci
soliton is cosymplectic.

5. Example

Example 5.1. Consider the 3-dimensional manifold M = {(x1, x2, z) ∈ R3}, where
(x1, x2, z) are the standard coordinates in R3. Let e1, e2, e3 be the vector fields on
M given by

e1 = eαz
∂

∂x1
, e2 = eαz

∂

∂x2
, e3 = − ∂

∂z
= ξ.

Define the metric g by

g(ei, ej) = 0, i 6= j, i, j = 1, 2, 3

= 1, i = j.

Let η be the 1-form on M defined by η(X) = g(X, e3) and φ be the (1, 1)-tensor
field on M defined by φe1 = −e2, φee = e1 and φe3 = 0. It is a routine calculation
to check that the manifold is almost contact with ξ = e3. Here

∇e1e3 = αe1, ∇e1e2 = 0, ∇e1e1 = −αe3,
∇e2e3 = αe2 ∇e2e2 = −αe3, ∇e2e1 = 0,
∇e3e3 = 0, ∇e3e2 = 0, ∇e3e1 = 0.

Obviously, the manifold is α-cosymplectic.
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Here, we can easily calculate the non-vanishing components of the curvature
tensor as follows;

R(e1, e2)e2 = −α2e1, R(e1, e3)e3 = −α2e1
R(e1, e2)e1 = α2e2, R(e2, e3)e3 = −α2e2.
R(e1, e3)e2 = α2e3, R(e1, e3)e1 = α2e3.

Here
S(e1, e1) = S(e2, e2) = S(e3, e3) = −2α2.

The components of the ∗-Ricci tensor S∗ are given by S∗(ei, ej) = 0 for all i, j =
1, 2, 3. The ∗-scalar curvature r∗ = 0. If we take, V = e3, λ = 1

2 and p = 1
3 , then

the manifold is a ∗- conformal Ricci soliton.
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