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Abstract. Recently, the data-selective adaptive Volterra filters have been proposed;
however, up to now, there are not any theoretical analyses on its behavior rather than
numerical simulations. Therefore, in this paper, we analyze the robustness (in the
sense of l2-stability) of the data-selective Volterra normalized least-mean-square (DS-
VNLMS) algorithm. First, we study the local robustness of this algorithm at any
iteration, then we propose a global bound for the error/discrepancy in the coefficient
vector. Also, we demonstrate that the DS-VNLMS algorithm improves the parameter
estimation for the majority of the iterations that an update is implemented. Moreover,
we also prove that if the noise bound is known, then we can set the DS-VNLMS so that
it never degrades the estimate. The simulation results corroborate the validity of the
executed analysis and demonstrate that the DS-VNLMS algorithm is robust against
noise, no matter how its parameters are adopted.
Key words: Volterra filters, DS-VNLMS algorithm, simulation.

1. Introduction

Nonlinear systems have been utilized in many real-wold problems, such as non-
linear echo cancellation [1], nonlinear controllers [2], wireless sensor networks [3],
biological systems [4], audio processing [5], to mention but a few. Indeed, when an
online nonlinear solution is required, the adaptive Volterra filter (AVF) is the most
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appealing candidate [6, 7]. However, the fundamental drawback of this technique
is its high computational resources since the number of AVF coefficients increases
exponentially with the filter order and geometrically with the filter memory.

Recently, a data-selective AVF (DS-AVF) has been proposed to reduce the com-
putational cost of the AVF algorithms [8]. The data-selection strategy, apart from
maintaining the advantages of the conventional AVF algorithm, assesses the incom-
ing data before utilizing them in the learning process. This approach can improve
the accuracy, the robustness against noise, and the computational complexity of
the learning process by preventing the algorithm from updating adaptive coeffi-
cients when there is not enough innovation in input data [9–12].

To the best of our knowledge, since the DS-AVF had been proposed in 2018, no
study on the properties of this algorithm is executed, whereas there are many works
in literature to address the theoretical behavior of the conventional AVFs [13–16].
Therefore, in this work, similarly to the study for linear filters [9, 11], we analyze
the robustness (in the sense of l2-stability) of the data-selective Volterra normalized
least-mean-square (DS-VNLMS) algorithm. To this end, first, we introduce the
robustness criterion, then we propose the local and the global robustness properties
of the DS-VNLMS algorithm. Moreover, we study the situations where the noise
bound is assumed known and unknown.

This paper is organized as follows. Sections 2. and 3. provide a brief review of
Volterra filters and the robustness criterion for AVFs, respectively. In Section 4.,
the local and the global robustness of the DS-VNLMS algorithm is studied. Also,
the cases of known and unknown noise bound are discussed in this section. The
validity of our analysis is verified in Section 5.. Finally, the conclusions are drawn
in Section 6..

Notation: Scalars are denoted by lowercase letters. Vectors (matrices) are pre-
sented by lowercase (uppercase) boldface letters. The l2-norm of a vector w ∈ R

N

is defined by ‖w‖2 =
∑N

i=0 |wi|2. Moreover, the superscript (·)T denotes the vector
or matrix transpose operator, and R+ stands for the positive real numbers.

2. A short review on Volterra series

Suppose that x(k) and d(k) are the input and the desired signals of a system
at the time instant k, and they are related to each other by a nonlinear, time-
invariant, finite-memory, causal, continuous relationship d(k) = f(x1(k)), where
x1(k) = [x(k) x(k − 1) · · · x(k − N)]T and N is the system memory length. A
truncated Volterra series expansion of order P can be used to evaluate the signal
d(k) as

d(k) =

P∑

p=0

Wp(x1(k)) + n(k),(2.1)

where n(k) stands for the measurement noise. Also, by employing the triangular
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structure of the Volterra series [17, 18], Wp(x1(k)) can be defined by

Wp(x1(k)) ,
N∑

l1=0

. . .

N∑

lp=lp−1

wp(l1, . . . , lp)

p∏

i=1

x(n− li),(2.2)

where wp(l1, . . . , lp) is the Volterra kernel of order p, for all l1, . . . , lp. Without loss
of generality, we can consider the constant term of the Volterra series expansion,
w0, identical to zero; thus, the target of the Volterra adaptive filter is to compute
the Volterra kernels for all l1, . . . , lp and p = 1, . . . , P .

Also, the equations 2.1 and 2.2 can be represented in a compact formula [17,19].
Indeed, the vector generated by all input sample products appearing in 2.2 and
the vector containing the corresponding Volterra kernels wp(l1, . . . , lp), have been
denoted by xp(k) and wp, respectively. Then, by defining Wp(x1(k)) = wT

p xp(k),
Equation 2.1 can be reformulated as

d(k) = wTx(k) + n(k),(2.3)

where x(k) , [xT
1 (k) · · · xT

P (k)]
T , w , [wT

1 · · · wT
P ]

T .

3. Robustness criterion

Suppose that the unknown system is given byw∗, using Equation 2.3, the desired
signal can be expressed by d(k) = y∗(k) + n(k), where y∗(k) = wT

∗ x(k). Moreover,
assume that the sequence of the noise signal {n(k)} has finite energy [20], i.e.,

j∑

k=0

|n(k)|2 < ∞, for all j.(3.1)

Our target is to estimate y∗(k). To this end, suppose that ŷk|k is an approximation
of y∗(k), where it is only dependent on d(j) for j = 0, · · · , k. For a particular η ∈ R+,
we intend to compute the approximations ŷk|k ∈ {ŷ0|0, ŷ1|1, · · · , ŷM|M}, so that for
any w∗ and any noise signal satisfying 3.1, the criterion below is guaranteed [9]:

j∑
k=0

‖ŷk|k − y∗(k)‖2

w̃T (0)w̃(0) +
∑j

k=0 |n(k)|2
< η2, for all j = 0, · · · ,M,(3.2)

where w̃(0) is the difference between the unknown system and the initial guess; i.e.,
w̃(0) = w∗ −w(0).

To interpret 3.2, it should be noted that the numerator counts the estimation-
error energy up to iteration j, and the denominator incorporated the energy of
noise up to instant time j and the energy of the error caused by the initial guess.
Therefore, this criterion stipulates us to find the approximations {ŷk|k} so that the
ratio of the estimation-error energy to the energy of unreliability does not become
greater than η2. In other words, when 3.2 is true, bounded disturbance energies
imply bounded estimation-error energies; thus, the algorithm resulting {ŷk|k} is
robust.
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4. Robustness of the DS-VNLMS algorithm

In this section, first, we review the recursion rule of the DS-VNLMS algorithm,
then we analyze the local robustness of the algorithm in the sense of l2-stability.
Finally, the global robustness property for the DS-VNLMS algorithm is presented.

The data selection in the DS-VNLMS algorithm is performed by means of the
set-membership filtering approach [19, 21, 22]. Indeed, the DS-VNLMS algorithm
updates the Volterra kernels when the magnitude of the output estimation error
is greater than a predetermined positive value γ ∈ R+, and its update equation is
characterized by [8]

w(k + 1) = w(k) +
µ(k)

xT (k)x(k) + δ
e(k)x(k),(4.1)

where e(k) is the error signal, and it is described by e(k) = d(k) − wT (k)x(k).
Moreover, µ(k) is the step-size parameters and is defined by

µ(k) =

{
1− γ

|e(k)| if |e(k)| > γ,

0 otherwise.
(4.2)

Generally, γ is chosen based on some a priori knowledge of the problem, such as
the information about the measurement noise [19, 23]. Also, δ is a small positive
constant, and it is utilized to prevent division by zero when xT (k)x(k) = 0.

To facilitate the analysis of the DS-VNLMS algorithm, the recursion rule 4.1
can be rewritten as

w(k + 1) = w(k) +
µ(k)

α(k)
e(k)x(k)f(e(k), γ),(4.3)

where µ(k) = 1 − γ
|e(k)| , α(k) = xT (k)x(k) + δ, and f : R × R+ → {0, 1} is the

indicator function defined by

f(e(k), γ) =

{
1 if |e(k)| > γ,

0 otherwise.
(4.4)

Also, assume a system identification scenario where the unknown system is denoted
by w∗ and the desired signal is obtained by d(k) = wT

∗ x(k) + n(k). Moreover,
denote by w̃(k) the discrepancy between the unknown system w∗ and the adaptive
Volterra kernels w(k), i.e., w̃(k) = w∗ − w(k). Hence, the error signal can be
expressed by

e(k) = d(k)−wT (k)x(k) = w̃T (k)x(k)︸ ︷︷ ︸
ẽ(k)

+n(k),(4.5)

where ẽ(k) = w̃T (k)x(k) stands for the noiseless error.
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Theorem 1. Local robustness of the DS-VNLMS For the DS-VNLMS algorithm,
we always have

‖w̃(k + 1)‖2 = ‖w̃(k)‖2, iff(e(k), γ) = 0(4.6)

or

‖w̃(k + 1)‖2 + µ(k)

α(k)
ẽ2(k) < ‖w̃(k)‖2 + µ(k)

α(k)
n2(k),(4.7)

if f(e(k), γ) = 1.

Proof. From w∗, subtract both sides of 4.3 and use the definition of w̃(k), we attain

w̃(k + 1) = w̃ − µ

α
exf,(4.8)

where the time index k and the arguments of function f are eliminated to simplify
the mathematical notations. After decomposing e(k) utilizing Equation 4.5, we get

w̃(k + 1) = w̃− µ

α
ẽxf − µ

α
nxf.(4.9)

By multiplying each side of the above equation to its transpose and performing
some mathematical manipulations, we acquire

‖w̃(k + 1)‖2 = ‖w̃‖2 − 2µ
α
ẽ2f − 2µ

α
nẽf + (ẽ + n)2 µ2

α2 ‖x‖2f2

= ‖w̃‖2 + (ẽ+ n)2 µ2

α2 ‖x‖2f2 + µ
α
n2f − (ẽ+ n)2 µ

α
f − µ

α
ẽ2f.(4.10)

If we rearrange the above equation, we get

‖w̃(k + 1)‖2 + µf

α
ẽ2 = ‖w̃‖2 + µf

α
n2 + c1c2,(4.11)

in which

c1 =
µf

α
(ẽ + n)2, c2 =

µf

α
‖x‖2 − 1.(4.12)

On the one hand, for f = 0 in 4.11, we obtain

‖w̃(k + 1)‖2 = ‖w̃(k)‖2,(4.13)

and it proves the first statement of the theorem; i.e., Equation 4.6. On the other
hand, for f = 1, we have |e| > γ > 0 by 4.4; thus 0 < µ < 1. They result in

c1 > 0 since α = ‖x‖2 + δ is positive. Furthermore, ‖x‖2

α
< 1 since δ > 0; thus,

0 < µf
α
‖x‖2 < 1. It leads to c2 < 0, and we obtain c1c2 < 0 when f = 1. Therefore,

after eliminating c1c2 < 0 from 4.11, we get

‖w̃(k + 1)‖2 + µ

α
ẽ2 < ‖w̃‖2 + µ

α
n2,(4.14)

and it proves the second statement of the theorem; i.e., Equation 4.7.
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Theorem 1 describes the coefficient deviation of the DS-VNLMS algorithm from
any iteration k to k + 1. To be more clear, Equation 4.6 shows that the coefficient
deviation does not change, when no update is implemented; however, Equation 4.7
states that ‖w̃(k+ 1)‖2 is bounded by a linear combination of ‖w̃(k)‖2, ẽ2(k), and
n2(k), when an update is performed.

We can now provide the global robustness property of the DS-VNLMS algorithm
in Corollary 1.

Corollary 1. Global robustness of the DS-VNLMS Suppose that the DS-VNLMS
algorithm is executed from k = 0 (initialization) to an iteration K. We always have

‖w̃(K)‖2 + ∑
k∈Kup

µ(k)
α(k) ẽ

2(k)

‖w̃(0)‖2 + ∑
k∈Kup

µ(k)
α(k)n

2(k)
< 1,(4.15)

where Kup stands for the set of the iterations that w(k) is updated.

Proof. Assume that K = {0, 1, 2, . . . ,K − 1}. Also, let us denote by Kc
up = K \Kup

the set of iteration indexes that the Volterra kernels are not updated. By Theorem 1,
4.7 is satisfied for all k ∈ Kup. Thus, summing up this inequality for all k ∈ Kup

yields

∑

k∈Kup

(
‖w̃(k + 1)‖2 + µ(k)

α(k)
ẽ2(k)

)
<

∑

k∈Kup

(
‖w̃(k)‖2 + µ(k)

α(k)
n2(k)

)
.(4.16)

Also, using 4.6, for all k ∈ Kc
up, we have

∑

k∈Kc
up

‖w(k + 1)‖2 =
∑

k∈Kc
up

‖w(k)‖2.(4.17)

By integrating 4.16 and 4.17, we get

∑

k∈K

‖w̃(k + 1)‖2 +
∑

k∈Kup

µ(k)

α(k)
ẽ2(k) <

∑

k∈K

‖w̃(k)‖2 +
∑

k∈Kup

µ(k)

α(k)
n2(k).(4.18)

Note that we can eliminate various ‖w̃(k)‖2 from both sides of the above inequality
and acquire

‖w̃(K)‖2 +
∑

k∈Kup

µ(k)

α(k)
ẽ2(k) < ‖w̃(0)‖2 +

∑

k∈Kup

µ(k)

α(k)
n2(k).(4.19)

Assuming that the right-hand side of the above inequality is nonzero, we get

‖w̃(K)‖2 + ∑
k∈Kup

µ(k)
α(k) ẽ

2(k)

‖w̃(0)‖2 + ∑
k∈Kup

µ(k)
α(k)n

2(k)
< 1,(4.20)

and it terminates the proof.
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Note that, by Corollary 1, the l2-stability of the DS-VNLMS algorithm from
its uncertainties {w̃(0), {n(k)}0≤k≤K} to its errors {w̃(K), {ẽ(k)}0≤k≤K} is as-
sured independent of the selection of γ; however, the l2-stability of the conventional
VNLMS algorithm is dependent on the selection of the step-size parameter, and it
should be adopted small enough to ensure the l2-stability.

4.1. Convergence of {‖w̃(k)‖2} with unknown noise bound

The demonstrated results in the previous section give us some bounds for the evo-
lution of {‖w̃(k)‖2} in terms of other parameters. whereas, in practice, we have
observed that the DS-VNLMS algorithm shows a well-behaved convergence for the
sequence {‖w̃(k)‖2}, that is for majority of iterations we get ‖w̃(k+1)‖2 ≤ ‖w̃(k)‖2.
Thus, in this section, we examine in which situations the sequence {‖w̃(k)‖2} is (and
is not) decreasing.

Corollary 2. When an update happens (i.e., f(e(k), γ) = 1), ẽ2(k) ≥ n2(k) results
in ‖w̃(k + 1)‖2 < ‖w̃(k)‖2.

Proof. If we rearrange the terms in 4.7, we have

‖w̃(k + 1)‖2 + µ(k)

α(k)

(
ẽ2(k)− n2(k)

)
< ‖w̃(k)‖2,(4.21)

which is valid for f(e(k), γ) = 1. Note that when f(e(k), γ) = 1, we have α(k) ∈ R+

and µ(k) ∈ (0, 1); thus, µ(k)
α(k) > 0. Hence, when f(e(k), γ) = 1 and ẽ2(k) ≥ n2(k),

we get µ(k)
α(k)

(
ẽ2(k)− n2(k)

)
≥ 0. As the result, when an update happens, we obtain

ẽ2(k) ≥ n2(k) ⇒ ‖w̃(k + 1)‖2 < ‖w̃(k)‖2.

It is good to mention that Corollary 2 affirms when an update is occurred by
the DS-VNLMS algorithm and the energy of the error signal e2(k) is dominated by
ẽ2(k), then the improvement in the estimate of w(k + 1) is guaranteed.

For the first iterations of the DS-VNLMS algorithm, the absolute value of the
error signal is large; as a result, we have |e(k)| > γ and ẽ2(k) > n2(k). It
leads to the monotonic decreasing sequence {‖w̃(k)‖2} in the transient period.
Also, when there is not enough innovation in the input signal during the tran-
sient period, the DS-VNLMS algorithm does not execute any updates, and we get
‖w̃(k + 1)‖2 = ‖w̃(k)‖2. Therefore, for any k in the transient period, we have
‖w̃(k+1)‖2 ≤ ‖w̃(k)‖2 with very high probability. However, after the convergence,
for few iterations of the DS-VNLMS algorithm we get ‖w̃(k + 1)‖2 > ‖w̃(k)‖2.
Indeed, counting the exact number of iterations satisfying this inequality is not
possible, but we can compute an upper bound probability for the occurrence of this
event by

P[‖w̃(k + 1)‖2 > ‖w̃(k)‖2] ≤ P[{|e(k)| > γ} ∩ {ẽ2(k) < n2(k)}]
< P[|e(k)| > γ] = erfc

(√
τ
2

)
,(4.22)
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where erfc(·) is the complementary error function [24]. The details of the last
equality can be observed in [25] by defining γ =

√
τσ2

n, where τ ∈ R+ (as a rule of
thumb 1 ≤ τ ≤ 5) and by simulating the error signal e(k) as a zero-mean Gaussian
random variable with variance σ2

n.

Note that the probability of attaining ‖w̃(k+1)‖2 > ‖w̃(k)‖2 is insignificant. As
example, for τ = 3, 4, and 5 we have erfc

(√
τ
2

)
= 0.0832, 0.0455, and 0.0253, respec-

tively. Therefore, for the majority of the iterations of the DS-VNLMS algorithm,
we have ‖w̃(k + 1)‖2 ≤ ‖w̃(k)‖2; in other words, that the DS-VNLMS algorithm
takes advantages of the input data efficiently. In contrast with the classical adaptive
Volterra algorithms, we demonstrated that for the DS-VNLMS algorithm rarely we
have ‖w̃(k + 1)‖2 > ‖w̃(k)‖2. Also, we will verify this property experimentally in
Section 5..

4.2. Convergence of {‖w̃(k)‖2} with known noise bound

Here, we show that when we know the noise bound, we can adopt the threshold
parameter γ of the DS-VNLMS algorithm in such a way that {‖w̃(k)‖2} becomes
a monotonic decreasing sequence.

Theorem 2. Strong Local Robustness of DS-VNLMS Suppose that the noise is bo-
unded by the constant C ∈ R+, namely, |n(k)| ≤ C, for all k ∈ N. If we select
γ ≥ 2C, then {‖w̃(k)‖2} is a monotonic decreasing sequence; that is ‖w̃(k+1)‖2 ≤
‖w̃(k)‖2, ∀k.

Proof. For f(e(k), γ) = 1 we have |e(k)| = |ẽ(k) + n(k)| > γ. This implies that (i)
for ẽ(k) ≥ 0 we get ẽ(k) > γ − n(k) or (ii) for ẽ(k) ≤ 0 we have ẽ(k) < −γ − n(k).
Note that n(k) ∈ [−C,C] and γ ∈ [2C,∞) by the hypothesis of the theorem; thus,
the bound for ẽ(k) by searching the minimum of (i) and the maximum of (ii) can
be obtained as follows:
(i) ẽ(k) > γ − n(k) ⇒ ẽmin > γ − C ≥ C;
(ii) ẽ(k) < −γ − n(k) ⇒ ẽmax < −γ + C ≤ −C.
By using (i) and (ii), we can conclude that if γ ≥ 2C, then |ẽ(k)| > C. This means
that |ẽ(k)| > |n(k)|, for all k ∈ N. Subsequently, Corollary 2 results in ‖w̃(k+1)‖2 <
‖w̃(k)‖2, for all k ∈ N, when f(e(k), γ) = 1. Moreover, for f(e(k), γ) = 0, we get
‖w̃(k + 1)‖2 = ‖w̃(k)‖2. Hence, for γ ≥ 2C ⇒ ‖w̃(k + 1)‖2 ≤ ‖w̃(k)‖2, for all
k ∈ N.

Corollary 3. Strong Global Robustness of DS-VNLMS Suppose that the
DS-VNLMS algorithm is running from iteration 0 to a given iteration K ∈ N. If
γ ≥ 2C, then we have ‖w̃(K)‖2 ≤ ‖w̃(0)‖2, where the equality is guaranteed only
when no update has been implemented during all the iterations.

The proof of this Corollary is not presented since, by using the same procedure
of Corollary 1, it is a trivial consequence of Theorem 2.
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4.3. Time-varying γ(k)

Note that γ shows a trade-off between the convergence rate and the computational
efficiency of the DS-VNLMS algorithm. Indeed, a large value for γ leads to low
computational complexity by reducing the update rate, whereas it can decrease the
convergence speed due to avoid update in the transient period. Hence, selecting
a suitable γ is fundamental in taking advantage of data selection approach. As
an alternative technique, we can adopt a time-varying error bound γ(k) as γ(k) ,√
τ(k)σ2

n [9], where

τ(k) ,

{
Low value (e.g., τ(k) ∈ [1, 5]) if k ∈ transient period,
High value (e.g., τ(k) ∈ [5, 9]) if k ∈ steady− state.

(4.23)

This γ results in a great compromise between the computational resources and the
performance of the DS-VNLMS algorithm. Moreover, when the noise bound C is
known, in the steady-state period, γ should be adopted less than or equal to C.

To use the γ(k) proposed in 4.23, the algorithm has to be capable of monitoring
the environment to recognize a transition from transient to steady-state periods. To
this end, we can monitor |e(k)|. In other words, we can create a window with the
length E ∈ N including Boolean variables denoting the iterations where an update
is implemented in the E recent iterations. Then, if we detect many updates in the
window, we assume that the algorithm is in the transient period; otherwise, we are
in the steady-state period.

5. Simulations

In this section, we verify the robustness of the DS-VNLMS algorithm in system
identification scenarios. The nonlinear Volterra channel is given by

d(k) = −0.76x(k) + 0.5x2(k) + 2x(k)x(k − 2)

−0.5x2(k − 3) + n(k),(5.1)

where n(k) is a zero-mean white Gaussian noise (WGN) with the variance σ2
n = 0.01.

The order and the memory-length of the adaptive Volterra filter are equal to 3.
The robustness has been verified considering two different input signals: (i) a zero-
mean WGN with the unit variance, (ii) a first-order autoregressive (AR(1)) signal
produced by x(k) = 0.95x(k − 1) + m(k), where m(k) is a zero-mean WGN with
the unit variance. The regularization parameter is adopted as δ = 10−9, and the
algorithms are initialized with the null vector. Also, we have tested the robustness
using two different values of γ; i.e.,

√
5σ2

n and
√
2σ2

n. Moreover, let us denote
the right-hand side (RHS) and the left-hand side (LHS) of 4.7 by r(k) and l(k),
respectively.

Figures 5.1(a) and 5.1(b) show l(k) and r(k) for WGN input signal and AR(1)
input signal, respectively, when γ =

√
5σ2

n. Also, Figures 5.2(a) and 5.2(b) illustrate

the same results but assuming γ =
√
2σ2

n. In all figures, we can observe that, for



462 J. Sharafi and A. Maarefparvar

0 500 1000 1500 2000 2500 3000 3500 4000

Number of iterations, k

-25

-20

-15

-10

-5

0

5

10

2950 3000 3050 3100 3150 3200 3250

-23.5

-23

-22.5

-22

(a)

0 500 1000 1500 2000 2500 3000 3500 4000

Number of iterations, k

-4

-2

0

2

4

6

8

3250 3300 3350 3400 3450 3500 3550 3600
-1.9

-1.8

-1.7

-1.6

(b)

Fig. 5.1: The values of l(k) and r(k) over the iterations when γ =
√
5σ2

n: (a) the
WGN input signal; (b) the AR(1) input signal.
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Fig. 5.2: The values of l(k) and r(k) over the iterations when γ =
√
2σ2

n: (a) the
WGN input signal; (b) the AR(1) input signal.

both input signals and both values of γ, l(k) is strictly below r(k) or is overlapped
with r(k); that is, l(k) ≤ r(k). Note that when l(k) and r(k) overlap each other,
it means that f(e(k), γ) = 0 and the DS-VNLMS does not update the adaptive
Volterra kernels and l(k) = r(k), otherwise l(k) < r(k) is true and an update is
performed. Thus, these figures substantiate Theorem 1.

When the VNLMS and the DS-VNLMS algorithms have been implemented,
Figures 5.3(a) and 5.3(b) illustrate the sequence {‖w̃(k)‖2} for WGN input signal
and AR(1) input signal, respectively. Three different cases for the DS-VNLMS
algorithm have been considered: fixed γ with unknown noise bound (magenta solid
line), fixed γ with known noise bound C = 0.1 (blue solid line), and time-varying
γ(k), described by

√
5σ2

n for the transient period and
√
9σ2

n for the steady-state
period, with unknown noise bound (black solid line). When we utilized the time-
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varying γ(k), the window length is adopted as E = 20, and we supposed that the
algorithm is in the steady-state when the number of updates in the window is less
than 5. Moreover, when we have executed the VNLMS algorithm, two different
step-sizes are chosen as µ = 0.8 and µ = 0.3. The larger step-size leads to fast
convergence and high misadjustment, whereas µ = 0.3 results in slow convergence
and low misadjustment.

In Figure 5.3(a), we observe that the sequence {‖w̃(k)‖2} presented by the ma-
genta curve increases only 25 times during the 2500 iterations, it means that the
DS-VNLMS algorithm did not promote the adaptive Volterra kernels only in 25
iterations. In the case of the correlated input signal, this number if 17 among 2500
iterations. Therefore, in this experiment, for the WGN and the AR(1) input sig-
nals, we get P[‖w̃(k + 1)‖2 > ‖w̃(k)‖2] = 0.01 and 0.0068, where they are lower
than the upper bound given by erfc(

√
2.5) = 0.0253, as described in Subsection 4.1..

Moreover, note that the inequality ‖w̃(k + 1)‖2 > ‖w̃(k)‖2 did not happen in the
transient period since in this period ẽ2(k) is generally large due to a remarkable mis-
match between w(k) and wo. It means that the condition described in Corollary 2
is regularly held.

Furthermore, by verifying the blue curves in Figures 5.3(a) and 5.3(b), we can
observe that when the noise bound is known, by adopting γ ≥ 2B, the sequence
{‖w̃(k)‖2} is monotonic decreasing; This substantiate Theorem 2 and Corollary 3.
In Figure 5.3(a), the sequence {‖w̃(k)‖2} denoted by the black curve increases only
one time, and in Figure 5.3(b), the black curve never increases. This corroborate
the benefit of applying a time-varying γ(k) when the noise bound is unknown. Note
that the behavior of {‖w̃(k)‖2} for the VNLMS algorithm is extremely irregular,
and in many iterations we have ‖w̃(k + 1)‖2 > ‖w̃(k)‖2. This happens since the
VNLMS algorithm performed many unnecessary updates.

Therefore, the DS-VNLMS algorithm as compared to the VNLMS algorithm
has high convergence rate, low computational burden, and well-behaved sequence
{‖w̃(k)‖2}. In Figure 5.3(a), the update rates of the DS-VNLMS algorithm in the
magenta, blue, and black curves are 5%, 1.4%, and 1.7%, respectively. Also, in
Figure 5.3(a), the update rates for the magenta, blue, and black curves are 4.9%,
1.1%, and 1.4%, respectively.
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Fig. 5.3: ‖w̃(k)‖2 , ‖w∗−w(k)‖2 for the VNLMS and the DS-VNLMS algorithms:
(a) the WGN input signal; (b) the AR(1) input signal.

6. Conclusions

In this paper, the robustness (in the sense of l2-stability) of the DS-VNLMS
algorithm has been analyzed. First, we have reviewed the Volterra series and the
robustness criterion, then the local robustness of the DS-VNLMS algorithm has
been discussed. Moreover, with the help of the local robustness summarized in
Theorem 1, the global robustness property of the DS-VNLMS algorithm has been
presented. In other words, we have demonstrated that, when the energy of the ad-
ditive noise signal is bounded, the DS-VNLMS algorithm never diverges, no matter
how its parameters are adopted, and the energy of the errors is less than the energy
of the uncertainties. Furthermore, when the noise bound is known, we described
how to choose a suitable γ such that the DS-VNLMS algorithm never produces a
worse estimate. Also, for the situation in which the noise bound is unknown, we
proposed a time-varying γ(k) that obtains high convergence rate and takes an ef-
ficient advantage of the input data. Finally, the numerical results substantiate the
validity of the implemented analysis.
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