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Abstract. In this paper, we prove a new type of stability and hyperstability results for
the following cubic functional equation

f (2x + y) + f (2x− y) = 2f (x + y) + 2f (x− y) + 12f(x)

in 2-Banach spaces using fixed point approach.
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1. Introduction

Throughout this paper, we will denote the set of natural numbers by N, N0 :=
N ∪ {0} and the set of real numbers by R. By Nm, m ∈ N, we will denote the
set of all natural numbers greater than or equal to m. Let R+ = [0,∞) be the
set of nonnegative real numbers. We write BA to mean the family of all functions
mapping from a nonempty set A into a nonempty set B and we use the notation
E0 for the set E\{0}.

We need to recall some basic facts concerning 2-normed spaces and some pre-
liminary results [6]).
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Definition 1.1. let X be a real linear space with dimX > 1 and ‖·, ·‖ : X×X −→
R+ be a function satisfying the following properties:

1. ‖x, y‖ = 0 if and only if x and y are linearly dependent,

2. ‖x, y‖ = ‖y, x‖,

3. ‖λx, y‖ = |λ|‖x, y‖,

4. ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖,

for all x, y, z ∈ X and λ ∈ R. Then the function ‖·, ·‖ is called a 2-norm on X and
the pair (X, ‖·, ·‖) is called a linear 2-normed space. Sometimes the condition (4)
called the triangle inequality.

Definition 1.2. A sequence {xk} in a 2-normed space X is called a convergent
sequence if there is an x ∈ X such that

lim
k→∞

‖xk − x, y‖ = 0,

for all y ∈ X. If {xk} converges to x, write xk −→ x with k −→ ∞ and call x the
limit of {xk}. In this case, we also write limk→∞ xk = x.

Definition 1.3. A sequence {xk} in a 2-normed space X is said to be a Cauchy
sequence with respect to the 2-norm if

lim
k,l→∞

‖xk − xl, y‖ = 0,

for all y ∈ X. If every Cauchy sequence in X converges to some x ∈ X, then X is
said to be complete with respect to the 2-norm. Any complete 2-normed space is
said to be a 2-Banach space.

Now, we state the following results as lemma (see [12] for the details).

Lemma 1.1. Let X be a 2-normed space. Then,

1.
∣∣‖x, z‖ − ‖y, z‖∣∣ ≤ ‖x− y, z‖ for all x, y, z ∈ X,

2. if ‖x, z‖ = 0 for all z ∈ X, then x = 0,

3. for a convergent sequence xn in X,

lim
n−→∞

‖xn, z‖ =
∥∥∥ lim
n−→∞

xn, z
∥∥∥

for all z ∈ X.
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The method of the proof of the main result corresponds to some observations in
[4]. The problem of the stability of functional equations was first raised by Ulam
[17]. This included the following question concerning the stability of group homo-
morphisms.

Let (G1, ∗1) be a group and let (G2, ∗2) be a metric group with a metric d(., .).
Given ε > 0, does there exists a δ > 0 such that if a mapping h : G1 → G2 satisfies
the inequality

d
(
h(x ∗1 y), h(x) ∗2 h(y)

)
< δ

for all x, y ∈ G1, then there exist a homomorphism H : G1 → G2 with

d
(
h(x), H(x)

)
< ε

for all x ∈ G1?

If the answer is affirmative, we say that the equation of homomorphism

h(x ∗1 y) = h(x) ∗2 H(y)

is stable.

In 1941, Hyers [8] provided the first partial answer to Ulam’s question and de-
fined the result of stability where G1 and G2 are Banach spaces.

Later, Aoki [1] considered the problem of stability with unbounded Cauchy dif-
ferences. Rassias [14] used a direct method to prove a generalization of Hyers result.
The following theorem is the most classical result concerning the Hyers–Ulam sta-
bility of the Cauchy equation

T (x+ y) = T (x) + T (y).(1.1)

Theorem 1.1. Let E1 be a normed space, E2 be a Banach space, and f : E1 → E2

be a function. If f satisfies the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ θ
(
‖x‖p + ‖y‖p

)
(1.2)

for some θ ≥ 0, for some p ∈ R with p 6= 1, and for all x, y ∈ E1 − {0E1
}, then

there exists a unique additive function T : E1 → E2 such that

‖f(x)− T (x)‖ ≤ 2θ

|2− 2p|
‖x‖p(1.3)

for each x ∈ E1 − {0E1}.

It is due to Aoki [1] (for 0 < p < 1; see also [13]), Gajda [7] for p > 1 and Rassias
[14] for p < 0. Also, Brzdȩk [2] showed that estimation (1.3) is optimal for p ≥ 0 in
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the general case. Recently, Brzdȩk [3] showed that Theorem 1.1 can be significantly
improved; namely, in the case p < 0, each f : E1 → E2 satisfying (1.2) must actually
be additive, and the assumption of completeness of E2 is not necessary.
The cubic function f(x) = cx3 satisfies the functional equation

f (2x+ y) + f (2x− y) = 2f (x+ y) + 2f (x− y) + 12f(x),(1.4)

In 2002, Jun and Kim [9] established the general solution and the Hyers–Ulam sta-
bility of the cubic functional equation (1.4) for mappings f : X → Y , where X is a
real normed space and Y is a Banach space. Recently, interesting results concerning
the cubic functional equation (1.4) have been obtained, for example, in [10] and [11].

In 2018, Brzdȩk and Ciepliński [4] proved a new fixed point theorem in 2-Banach
spaces and showed its applications to the Ulam stability of some single-variable
equations and the most important functional equation in several variables. In ad-
dition, Brzdȩk and El-hady [5] provided an extension of an earlier stability result
that has been motivated by a problem of Rassias for the functions taking values
in 2- Banach spaces. After that, Sayar and Bergam proved stability results for the
quadratic functional equation in 2-Banach spaces [16].

In our paper, we discuss some stability and hyperstability results for the cubic
functional equation (1.4) in 2-Banach spaces.

Now, we present the fixed point theorem concerning 2-Banach spaces given in
[4]. First, we need the following hypotheses:

(H1) E is a nonempty set,
(
Y, ‖·, ·‖

)
is a 2-Banach space, Y0 is a subset of Y

containing two linearly independent vectors, j ∈ N, fi : E → E, gi : Y0 → Y0, and
Li : E × Y0 → R+ for i = 1, ..., j;

(H2) T : Y E → Y E is an operator satisfying the inequality

∥∥T ξ(x)−T µ(x), y
∥∥ ≤ j∑

i=1

Li(x, y)
∥∥∥ξ(fi(x)

)
−µ
(
fi(x)

)
, gi(y)

∥∥∥, ξ, µ ∈ Y E , x ∈ E, y ∈ Y0;

(1.5)

(H3) Λ : RE×Y0
+ → RE×Y0

+ is an operator defined by

Λδ(x, y) :=

j∑
i=1

Li(x, y)δ
(
fi(x), gi(y)

)
, δ ∈ RE×Y0

+ , x ∈ E, y ∈ Y0.(1.6)

Theorem 1.2. [4] Let hypotheses (H1)-(H3) hold and functions ε : E × Y0 → R+

and ϕ : E → Y fulfill the following two conditions:∥∥∥T ϕ(x)− ϕ(x), y
∥∥∥ ≤ ε(x, y) x ∈ E, y ∈ Y0,(1.7)
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ε∗(x, y) :=

∞∑
n=0

(
Λnε

)
(x, y) <∞ x ∈ E, y ∈ Y0.(1.8)

Then, there exists a unique fixed point ψ of T for which∥∥ϕ(x)− ψ(x), y
∥∥ ≤ ε∗(x, y) x ∈ E, y ∈ Y0.(1.9)

Moreover,
ψ(x) := lim

n→∞
(T nϕ)(x) x ∈ E.(1.10)

2. Main results

In this section, we begin with a discussion of the stability of the cubic equation
(1.4) in 2-Banach spaces using Theorem 1.2. Then, we will present some sufficient
conditions to prove that this equation is hyperstable, namely, the approximated
solution of that equation is an exact solution of it.

In what follows E is a normed space, (Y, ‖·, ·‖) is a real 2-Banach space and Y0
is a subset of Y containing two linearly independent vectors.

Theorem 2.1. Let h1, h2 : E0 × Y0 → R+ be two functions, such that

U := {n ∈ N:αn < 1} 6= φ(2.1)

where

αn := 2λ1(3n−1)λ2(3n−1)+2λ1(1−n)λ2(1−n)+12λ1(n)λ2(n)+λ1(4n−1)λ2(4n−1)

λi(n) := inf {t ∈ R+:hi(nx, z) ≤ t hi(x, z), x ∈ E0, z ∈ Y0}(2.2)

for all n ∈ N, where i = 1, 2. Assume that f : X → Y satisfies the inequality

‖f (2x+ y) + f (2x− y)− 2f (x+ y)− 2f (x− y)− 12f(x), z‖ ≤ h1(x, z)h2(y, z)
(2.3)
for all x, y ∈ E0, z ∈ Y0, such that x+ y 6= 0, x− y 6= 0, 2x+ y 6= 0 and 2x− y 6= 0.
Then there exists a unique cubic function F : E → Y , such that∥∥f(x)− F (x), z

∥∥ ≤ λ0h1(x, z)h2(x, z)(2.4)

for all x, z ∈ X0, where

λ0 := inf
n∈U

{
λ1(n)λ2(2n− 1)

1− αn

}
.

Proof. Replacing x with mx and y with (2m − 1)x, where x ∈ X0 and m ∈ N, in
inequality (2.3), we get∥∥2f

(
(3m− 1)x

)
+ 2f

(
(1−m)x

)
+ 12f(mx)− f

(
(4m− 1)x

)
− f(x), z

∥∥
≤ h1(mx, z)h2((2m− 1)x, z)
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for all x ∈ E0, z ∈ Y0. For each m ∈ N, we define the operator Tm : Y E0 → Y E0

by

Tmξ(x) := 2ξ
(
(3m−1)x

)
+2ξ

(
(1−m)x

)
+12ξ(mx)−ξ

(
(4m−1)x

)
, ξ ∈ Y E0 , x ∈ E0.

(2.5)
Further put

εm(x, z) := h1(mx, z)h2((2m− 1)x, z), x ∈ E0, z ∈ Y0,(2.6)

and observe that

εm(x, z) := h1(mx, z)h2((2m− 1)x, z) ≤ λ1(m)λ2(2m− 1)h1(x, z)h2(x, z),(2.7)

for all x ∈ E0, z ∈ Y0,m ∈ N. Then the inequality (2.5) takes the form∥∥Tmf(x)− f(x), z
∥∥ ≤ εm(x, z), x ∈ E0, z ∈ Y0.(2.8)

Furthermore, for every x ∈ E0, z ∈ Y0, ξ, µ ∈ Y E0 , we obtain∥∥∥Tmξ(x)− Tmµ(x), z
∥∥∥ =

∥∥∥2ξ
(
(3m− 1)x

)
+ 2ξ

(
(1−m)x

)
+ 12ξ(mx)

−ξ
(
(4m− 1)x

)
− 2µ

(
(3m− 1)x

)
−2µ

(
(1−m)x

)
− 12µ(mx) + µ

(
(4m− 1)x

)
, z
∥∥∥

≤ 2
∥∥∥(ξ − µ)

(
(3m− 1)x

)
, z
∥∥∥+ 2

∥∥∥(ξ − µ)
(
(1−m)x

)
, z
∥∥∥

+12
∥∥∥(ξ − µ)(mx), z

∥∥∥+
∥∥∥(ξ − µ)

(
(4m− 1)x

)
, z
∥∥∥.

So, (H2) is valid for Tm.
This brings us to define the operator Λm : RE0×Y0

+ → RE0×Y0
+ by

Λmδ(x, z) := 2δ
(
(3m− 1)x, z

)
+ 2δ

(
(1−m)x, z

)
+ 12δ(mx, z) + δ

(
(4m− 1)x, z

)
,

for all δ ∈ RE0×Y0
+ , x ∈ E0, z ∈ Y0,m ∈ N. The above operator has the form

described in (H3) with f1(x) = (3m− 1)x, f2(x) = (1−m)x, f3(x) = mx, f4(x) =
(4m − 1)x, g1(z) = g2(z) = z and L1(x) = L2(x) = 2, L3(x) = 12 and L4(x) = 1
for all x ∈ X0. By induction on n ∈ N0, we will show

(Λnmεm)(x, z) ≤ λ1(m)λ2(2m− 1)αnmh1(x, z)h2(x, z)(2.9)

where

αm = 2λ1(3m−1)λ2(3m−1)+2λ1(1−m)λ2(1−m)+12λ1(m)λ2(m)+λ1(4m−1)λ2(4m−1).

From (2.6) and (2.7), we obtain that the inequality (2.9) holds for n = 0. Next, we
assume that (2.9) holds for n = k, where k ∈ N and we have

(Λk+1
m εm)(x, z) = Λm

(
(Λkmεm)(x, z)

)
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= 2(Λkmεm)
(
(3m− 1)x, z

)
+ 2(Λkmεm)

(
(1−m)x, z

)
+12(Λkmεm)(mx, z) + (Λkmεm)

(
(4m− 1)x, z

)
≤
(

2λ1(m)λ2(2m− 1)αkmh1((3m− 1)x, z)h2((3m− 1)x, z)

+2λ1(m)λ2(2m− 1)αkmh1((1−m)x, z)h2((1−m)x, z)

+12λ1(m)λ2(2m− 1)αkmh1(mx, z)h2(mx, z)

+λ1(m)λ2(2m− 1)αkmh1((4m− 1)x, z)h2((4m− 1)x, z)
)

= λ1(m)λ2(2m− 1)αk+1
m h1(x, z)h2(x, z)

for all x ∈ E0, z ∈ Y0, m ∈ U . This shows that (2.9) holds for n = k + 1. Now, we
can conclude that the inequality (2.9) holds for all n ∈ N0. By (2.9), we obtain

ε∗m(x, z) =
∑∞
n=0(Λnmεm)(x, z)

≤
∑∞
n=0 λ1(m)λ2(2m− 1)αnmh1(x, z)h2(x, z)

= λ1(m)λ2(2m−1)h1(x,z)h2(x,z)
(1−αm) <∞

for all x ∈ E0, z ∈ Y0 and all m ∈ U . Therefore, according to Theorem 1.2 with
ϕ = f , the limit

Fm(x) := lim
n→∞

(
T nmf

)
(x)

exists for each x ∈ E0 and m ∈ U , and

∥∥f(x)− Fm(x), z
∥∥ ≤ λ1(m)λ2(2m− 1)h1(x, z)h2(x, z)

(1− αm)
,(2.10)

for all x,∈ E0, z ∈ Y0 m ∈ U . To prove that Fm satisfies the functional equation
(1.4), just prove the following inequality∥∥∥(T nmf)

(
2x+ y

)
+ (T nmf)

(
2x− y

)
− 2(T nmf)

(
x+ y

)
− 2(T nmf)

(
x− y

)
− 12(T nmf)(x), z

∥∥∥
≤ αnmh1(x, z)h2(y, z)(2.11)

for every x, y ∈ E0, z ∈ Y0 such that x+y 6= 0, x−y 6= 0, 2x+y 6= 0 and 2x−y 6= 0,
n ∈ N0, and m ∈ U . Since the case n = 0 is just (2.3), take k ∈ N and assume that
(2.11) holds for n = k. Then, for each x, y ∈ E0, z ∈ Y0 and m ∈ U , we get∥∥∥(T k+1

m f)
(
2x+ y

)
+ (T k+1

m f)
(
2x− y

)
− 2(T k+1

m f)
(
x+ y

)
−2(T k+1

m f)
(
x− y

)
− 12(T k+1

m f)(x), z
∥∥∥

=
∥∥∥2T kmf ((3m− 1)(2x+ y)) + 2T kmf ((1−m)(2x+ y)) + 12T kmf (m(2x+ y))

−T kmf ((4m− 1)(2x+ y)) + 2T kmf ((3m− 1)(2x− y)) + 2T kmf ((1−m)(2x− y))

+12T kmf (m(2x− y))− T kmf ((4m− 1)(2x− y))− 2
(

2T kmf ((3m− 1) (x+ y))
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+2T kmf ((1−m)(x+ y)) + 12T kmf (m(x+ y))− T kmf ((4m− 1)(x+ y))
)

−2
(

2T kmf ((3m− 1)(x− y)) + 2T kmf ((1−m)(x− y)) + 12T kmf (m(x− y))

−T kmf ((4m− 1)(x− y))
)
− 12

(
2T kmf ((3m− 1)x) + 2T kmf ((1−m)x)

+12T kmf (mx)− T kmf ((4m− 1)x)
)
, z
∥∥∥

≤ 2
∥∥∥T kmf ((3m− 1)(2x+ y)) + T kmf ((3m− 1)(2x− y))− 2T kmff ((3m− 1)(x+ y))

−2T kmf ((3m− 1)(x− y))− 12T kmf ((3m− 1) (x)) , z
∥∥∥

+2
∥∥∥T kmf ((1−m)(2x+ y)) + T kmf ((1−m)(2x− y))− 2T kmf ((1−m)(x+ y))

−2T kmf ((1−m)(x− y))− 12T kmf ((1−m)x) , z
∥∥∥

+12
∥∥∥T kmf ((m)(2x+ y)) + T kmf (m(2x− y))− 2T kmf (m(x+ y))

−2T kmf (m(x− y))− 12T kmf (mx) , z
∥∥∥

+
∥∥∥T kmf ((4m− 1)(2x+ y)) + T kmf ((4m− 1)(2x− y))− 2T kmf ((4m− 1)(x+ y))

−2T kmf ((4m− 1)(x− y))− 12T kmf ((4m− 1)x) , z
∥∥∥

≤ 2αkmh1
(
(3m− 1)x, z

)
h2
(
(3m− 1)y, z

)
+ 2αkmh1

(
(1−m)x, z

)
h2
(
(1−m)y, z

)
+12αkmh1

(
mx, z

)
h2
(
my, z

)
+ αkmh1

(
(4m− 1)x, z

)
h2
(
(4m− 1)y, z

)
= αk+1

m h1(x, z)h2(y, z).

Thus, by induction on n ∈ N0, we have shown that (2.11) holds for all x, y ∈
E0, z ∈ Y0, such that x+ y 6= 0, x− y 6= 0, 2x+ y 6= 0 and 2x− y 6= 0, and m ∈ U .
Letting n→∞ in (2.11), we obtain the equality

Fm(2x+ y) + Fm(2x− y) = 2Fm(x+ y) + 2Fm(x− y) + 12Fm(x),(2.12)

for all x, y ∈ E0, such that x+ y 6= 0, x− y 6= 0, 2x+ y 6= 0 and 2x− y 6= 0, m ∈ U .
This implies that Fm : E → Y , defined in this way, is a solution of the equation

F (x) = 2F
(
(3m− 1)x

)
+ 2F

(
(1−m)x

)
+ 12F (mx)− F

(
(4m− 1)x

)
,(2.13)

for all x ∈ E0,m ∈ U . Next, we will prove that each cubic function F : E → Y
satisfying the inequality∥∥f(x)− F (x), z

∥∥ ≤ L h1(x, z)h2(x, z), x ∈ E0, z ∈ Y0(2.14)

with some L > 0, is equal to Fm for each m ∈ U . To this end, we fix m0 ∈ U and
F : E → Y satisfying (2.14). From (2.10), for each x ∈ E0, we get∥∥F (x)− Fm0

(x), z
∥∥ ≤ ∥∥F (x)− f(x), z

∥∥+
∥∥f(x)− Fm0

(x), z
∥∥
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≤ L h1(x, z)h2(x, z) + ε∗m0
(x, z)

≤ L0 h1(x, z)h2(x, z)

∞∑
n=0

αnm0
,(2.15)

where L0 := (1 − αm0
)L + λ1(m0)λ2(2m0 − 1) > 0 and we exclude the case that

h1(x, z) ≡ 0 or h2(x, z) ≡ 0 which is trivial. Observe that F and Fm0
are solutions

to equation (2.13) for all m ∈ U . Next, we show that, for each j ∈ N0, we have∥∥F (x)− Fm0
(x), z

∥∥ ≤ L0 h1(x, z)h2(x, z)

∞∑
n=j

αnm0
, x, z ∈ E0.(2.16)

The case j = 0 is exactly (2.15). We fix k ∈ N and assume that (2.16) holds for
j = k. Then, in view of (2.15), for each x, z ∈ E0, we get

∥∥F (x)− Fm0(x), z
∥∥ =

∥∥2F
(
(3m0 − 1)x

)
+ 2F

(
(1−m0)x

)
+ 12F (m0x)

−F
(
(4m0 − 1)x

)
− 2Fm0

(
(3m0 − 1)x

)
− 2Fm0

(
(1−m0)x

)
−12Fm0

(m0x) + Fm0

(
(4m0 − 1)x

)
, z
∥∥

≤ 2
∥∥F ((3m0 − 1)x

)
− Fm0

(
(3m0 − 1)x

)
, z
∥∥

+2
∥∥F ((1−m0)x

)
− Fm0

(
(1−m0)x

)
, z
∥∥

+12
∥∥F (m0x)− Fm0

(m0x), z
∥∥

+
∥∥F ((4m0 − 1)x

)
− Fm0

(
(4m0 − 1)x

)
, z
∥∥

≤ 2L0 h1
(
(3m0 − 1)x, z

)
h2
(
(3m0 − 1)x, z

)∑∞
n=k α

n
m0

+2L0 h1
(
(1−m0)x, z

)
h2
(
(1−m0)x, z

)∑∞
n=k α

n
m0

+12L0 h1
(
m0x, z

)
h2
(
m0x, z

)∑∞
n=k α

n
m0

+L0h1
(
(4m0 − 1)x, z

)
h2
(
(4m0 − 1)x, z

)∑∞
n=k α

n
m0

= L0

(
2h1
(
(3m0 − 1)x, z

)
h2
(
(3m0 − 1)x, z

)
+2h1

(
(1−m0)x, z

)
h2
(
(1−m0)x, z

)
+ 12h1

(
m0x, z

)
h2
(
m0x, z

)
+h1

(
(4m0 − 1)x, z

)
h2
(
(4m0 − 1)x, z

))∑∞
n=k α

n
m0

≤ L0 αm0
h1(x, z)h2(x, z)

∑∞
n=k α

n
m0

= L0 h1(x, z)h2(x, z)
∑∞
n=k+1 α

n
m0
.

This shows that (2.16) holds for j = k + 1. Now we can conclude that the
inequality (2.16) holds for all j ∈ N0. Now, letting j →∞ in (2.16), we get

F = Fm0
.(2.17)

Thus, we have also proved that Fm = Fm0
for each m ∈ U , which (in view of (2.10))

yields∥∥f(x)− Fm0
(x), z

∥∥ ≤ λ1(m)λ2(2m− 1)h1(x, z)h2(x, z)

1− αm
, x,∈ E0, z ∈ Y0 m ∈ U .
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This implies (2.4) with F = Fm0
and (2.17) confirms the uniqueness of F .

3. Applications

According to above theorem, we can obtain the following corollary for the hyper-
stability results of the cubic equation (1.4) in 2-Banach spaces.

Corollary 3.1. Let h1, h2 and U be as in Theorem 2.1. Assume that

lim
n→∞

λ1(n)λ2(2n− 1) = 0,(3.1)

Then every f : E → Y satisfying (2.3) is a solution of (1.4) on E0.

Proof. Suppose that f : E → Y satisfies (2.3). Then, by Theorem 2.1, there exists
a mapping F : E → Y satisfies (1.4) and

‖f(x)− F (x), z‖ ≤ λ0h1(x, z)h2(x, z)(3.2)

for all x ∈ E0, z ∈ Y0, where

λ0 := inf
n∈U

{
λ1(n)λ2(2n− 1)

1− αn

}
.

Since, in view of (3.1), λ0 = 0. This means that f(x) = F (x) for all x ∈ E0,
whence

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x),

for all x, y ∈ E0 such that x + y 6= 0, x − y 6= 0, 2x + y 6= 0 and 2x − y 6= 0, which
implies that f satisfies the functional equation (1.4) on E0.
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