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Abstract. In this paper, we establish the existence and uniqueness of a fixed point of
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1. Introduction

The well known Banach contraction principle [8] established the existence and
uniqueness of fixed point of a contraction on a complete metric space. Since then,
several authors generalized this principle by introducing the various contractions
on usual metric spaces such that as b-metric space, partial metric space, metric-
like space etc. As generalizations if standard metric spaces, metric-like spaces were
considered first by Hitzler and Seda [13] under the name of dislocated metric spaces.
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Afterwards Amini-harandi [2] proved some fixed point results in the class of metric-
like space. Very recently many authors have obtained fixed point results in the
setting of metric-like spaces, for example see [1, 4, 5, 6, 19, 24]. Let us recall some
notations and definitions we will need in the sequel.

2. Preliminaries

Definition 2.1. ([2, 5]) Let X be a non empty set. A function σ : X ×X → R+

is said to be a metric-like (or a dislocated metric) on X, if for any x, y, z ∈ X the
following conditions hold true:

(σ1) σ(x, y) = 0 implies x = y;

(σ2) σ(x, y) = σ(y, x);

(σ3) σ(x, z) ≤ σ(x, y) + σ(y, z).

The pair (X,σ) is then called a metric-like space.

Then a metric-like on X satisfies all conditions of a metric except that σ(x, x)
may be positive for x ∈ X. Each metric-like σ on X generates a topology τσ on X,
whose base is the family of open σ-balls, then for all x ∈ X and ϵ > 0

Bσ(X, ϵ) = {y ∈ X : σ(x, y)− σ(x, x) < ϵ}.

Now, let (X,σ) be a metric-like space. A sequence {xn} in the metric-like space
(X,σ) converges to a point x ∈ X if and only if limn→+∞ σ(xn, x) = σ(x, x).

Let (X,σ) be metric-like space, and let T : X → X be a continuous mapping.
Then limn→+∞ xn = x implies limn→+∞ T (xn) = T (x).

A sequence {xn} is Cauchy in (X,σ), if and only if limn,m→+∞ σ(xm, xn) ex-
ists and is finite. Moreover, the metric-like space (X,σ) is called complete, if
and only if for every Cauchy sequence {xn} in X, there exists x ∈ X such that
limn→+∞ σ(xn, x) = σ(x, x) = limn,m→+∞ σ(xn, xm).

Every partial metric space and metric space is a metric-like space.

Example 2.1. ([24]) Let X = {1, 2, 3} and σ(x, y) =

{
3 : if x = y
2 : otherwise.

Then (X,σ) is a metric-like space. It is neither a partial metric space (σ(1, 1) = 3)
and (σ(1, 2) = 2) nor a metric space (σ(1, 1) = 3 ̸= 0).

Remark 2.1. ([1]) A subset A of a metric-like space (X,σ) is bounded if there is a point
b ∈ X and a positive constant k such that σ(a, b) ≤ k for all a ∈ A.

Remark 2.2. ([1, 2]) Let X = {0, 1} such that σ(x, y) = 1 for each x, y ∈ X and let
xn = 1 for each n ∈ N . Then it is easy to see that xn → 0 and xn → 1 and so in metric
like space, the limit of a convergence sequence is not necessarily unique.
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The following Lemma is useful to prove our results.

Lemma 2.1. ([2, 5, 12]) Let (X,σ) be a metric-like space. Let {xn} be a sequence
in X such that xn → x, where x ∈ X and σ(x, y) = 0. Then for all y ∈ X we have
limn→+∞ σ(xn, y) = σ(x, y).

Definition 2.2. ([23]) For a non empty set X, let T : X → X and α : X ×X →
[0,+∞) be given mappings. We say that T is α-admissible, if for all x, y ∈ X, we
have α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1.

The concept of α-admissible mappings has been used in many works, see for
example [6, 14, 17, 20, 22]. Later, Karapinar et al. [16] introduced the notion of
triangular α-admissible mappings.

Definition 2.3. ([16]) Let T : X → X and α : X × X → [0,+∞) be given
mappings. A mapping T : X → X is called a triangular α-admissible if:

(T1) T is α-admissible;

(T2) α(x, y) ≥ 1 and α(y, z) ≥ 1 implies α(x, z) ≥ 1 for all x, y, z ∈ X.

Chandok [11] introduced the concept of (α, β)-admissible Geraghty type contractive
mapping, with sufficient condition for the existence of a fixed point for such class of
generalized non-linear contractive mapping in metric space proved some fixed point
results.

Definition 2.4. ([11]) Let X be a non empty set, T : X ×X and α, β : X ×X →
R+, we say that T is an (α, β)-admissible mapping if α(x, y) ≥ 1 and β(x, y) ≥ 1
implies α(Tx, Ty) ≥ 1 and β(Tx, Ty) ≥ 1 for all x, y ∈ X.

Berinde [9, 10] extended the class of contractive mappings, introducing the notion
of almost contractions as follows.

Definition 2.5. Let (X, d) be a metric space. A self mapping T on X is called an
almost contraction if there are constants λ ∈ (0, 1) and θ ≥ 0 such that

d(Tx, Ty) ≤ λd(x, y) + θd(y, Tx), for all x, y ∈ X.

Berinde [9] proved that every almost contraction mapping defined in termsw of
a complete metric sapce has at least one fixed point. Subsequently, Babu et al. [7]
demonstrated that almost contractions type mappings have a unique fixed point
under conditions that present the notion of B-almost contraction.

Definition 2.6. Let (X, d) be a metric space. A self mapping T on X is called an
B-almost contraction if there are constants λ ∈ (0, 1) and θ ≥ 0 such that

d(Tx, Ty) ≤ λd(x, y) + θN(x, y) for all x, y ∈ X,

where N(x, y) = min{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.
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Khojasteh et al. [18] presented the notion of Z-contraction involving a new class
of mappings, namely simulation function to prove the following Theorem.

Theorem 2.1. Let (X, d) be a complete metric space and T : X → X be a Z-
contraction with respect to a function ς satisfying certain conditions, that is,

ζ(d(Tx, Ty), d(x, y)) ≥ 0

for all x, y ∈ X. Then, T has a unique fixed point, and for every initial point
x0 ∈ X, the Picard sequence {Tnx0} converges to this fixed point.

A simple example of Z-contraction is the Banach contraction, which can be
obtained by taking λ ∈ [0, 1) and ζ(t, s) = λs − t for all t, s ∈ [0,+∞) in above
result.

Definition 2.7. [18] Let ζ : [0,+∞)× [0,+∞) → R be a function, then ζ is called
a simulation function if it satisfies the following conditions:

(ζ1) ζ(0, 0) = 0.

(ζ2) ζ(t, s) < s− t, for all t, s > 0.

(ζ3) If (tn), (sn) are sequences in (0,+∞) such that limn→+∞ tn = limn→+∞sn >
0, then limn→+∞ sup ζ(tn, sn) < 0.

(ζ4) If (tn), (sn) are sequences in (0,+∞) such that limn→+∞ tn = limn→+∞sn >
0 and tn < sn for all n ∈ N , then limn→+∞ sup ζ(tn, sn) < 0.

If the function ζ satisfies the conditions (ζ1)− (ζ3), we say that ζ is a simulation
function according to the sense of Khojasteh et al.[18]. If it satisfies (ζ2) and (ζ3), it
is a simulation function according to the sense of Argoubi et al.[3] and if it satisfies
(ζ1), (ζ2) and (ζ4), then it is a simulation function according to the sense of Roldan-
Lopez-de-Hierro et al.[21].

Remark 2.3. ([18]) It is clear from the definition of simulation function that ζ(t, s) < 0
for all t ≥ s > 0. Therefore if T is a Z-contraction with respect to ζ ∈ z then, for all
distinct x, y ∈ X such that d(Tx, Ty) < d(x, y). This shows that every Z-contraction
mapping is contraction, therefore it is continuous.

In this study, by combining the ideas in [15] and [24], we prove some fixed point
results for (α, β)-admissible almost Z-contraction with respect to ζ. Moreover, one
example is given to support the obtained result.

3. Main Results

Firstly, we give the following definition which will be used in our main results.
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Definition 3.1. ([15]) Let (X, d) be a metric space and ζ ∈ z. We say that
T : X → X is an almost Z-contraction if there is a constant θ ≥ 0 such that

ζ(α(Tx, Ty), d(x, y) + θN(x, y)) ≥ 0(3.1)

for all x, y ∈ X, where N(x, y) = min{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}

Remark 3.1. If T is an almost Z-contraction with respect to ζ ∈ Z, then

d(Tx, Ty) < d(x, y) + θN(x, y)(3.2)

for all x, y ∈ X.

Our main result is as follows.

Theorem 3.1. Let (X,σ) be a complete metric-like space and a continuous map-
ping T : X → X be a (α, β)-admissible almost Z-contraction with respect to a ζ
simulation function satisfying as

ζ(α(Tx, Ty)β(Tx, Ty)σ(Tx, Ty), σ(x, y) + θN(x, y)) ≥ 0(3.3)

for all x, y ∈ X and there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, β(x0, Tx0) ≥ 1.
Then, T has a unique fixed point u ∈ X.

Proof. Let xn be a sequence in X such that xn+1 = Txn for all n = 0, 1, 2, 3.... If
xn = xn+1 then Txn = xn+1 = xn i.e. xn is a fixed point of T . So proof is trivial.
Now, we consider xn ̸= xn+1 for all n ∈ N ∪ {0}.

Since α(x0, Tx0) ≥ 1 implies α(x0, x1) ≥ 1 and T is an (α, β)-admissible, so

α(Tx0, Tx1) ≥ 1 implies α(x1, x2) ≥ 1.

Continuing, we have for all n ≥ 0

α(xn, xn+1) ≥ 1.(3.4)

Similarly for all n ≥ 0, we obtain

β(xn, xn+1) ≥ 1.(3.5)

From (3.3), we have

0 ≤ ζ(α(Txn−1, Txn)β(Txn−1, Txn)σ(Txn−1, Txn), σ(xn−1, xn)

+θN(xn−1, xn))
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i.e.

0 ≤ ζ(α(xn, xn+1)β(xn, xn+1)σ(xn, xn+1), σ(xn−1, xn) + θN(xn−1, xn))(3.6)

Since

N(xn−1, xn) = min{σ(xn−1, Txn−1), σ(xn, Txn), σ(xn−1, Txn), σ(xn, Txn−1)}
= min{σ(xn−1, xn), σ(xn, xn+1), σ(xn−1, xn+1), σ(xn, xn)} = 0.

Therefore, from (3.6) and by ζ2, we have

0 ≤ ζ(α(xn, xn+1)β(xn, xn+1)σ(xn, xn+1), σ(xn−1, xn))

< σ(xn−1, xn)− α(xn, xn+1)β(xn, xn+1)σ(xn, xn+1)

α(xn, xn+1)β(xn, xn+1)σ(xn, xn+1) < σ(xn−1, xn).(3.7)

We know,

σ(xn, xn+1) ≤ α(xn, xn+1)β(xn, xn+1)σ(xn, xn+1).(3.8)

Since α(xn, xn+1) ≥ 1 and β(xn, xn+1) ≥ 1. From (3.7) and (3.8) for all n ≥ 0,
we have

σ(xn, xn+1) ≤ α(xn, xn+1)β(xn, xn+1)σ(xn, xn+1) < σ(xn−1, xn)(3.9)

i.e.

σ(xn, xn+1) < σ(xn−1, xn).(3.10)

The sequence {σ(xn, xn+1)} is non increasing. So there exist r ≥ 0 such that
limn→+∞σ(xn−1, xn) = r. We prove that

lim
n→+∞

σ(xn−1, xn) = 0.(3.11)

Now, we assume on the contrary such that r > 0. By (3.9), we have

lim
n→+∞

{α(xn, xn+1)β(xn, xn+1)σ(xn, xn+1)} = r.

Since r > 0 and letting sn = α(xn, xn+1)β(xn, xn+1)σ(xn, xn+1) and tn = σ(xn, xn+1)
such that limn→+∞ sn = limn→+∞ tn = r, then by (ζ3) limn→+∞ sup ζ(sn, tn) < 0.
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Since ζ(sn, tn) ≥ 0, so 0 ≤ limn→+∞ sup ζ(sn, tn) < 0, which is a contradiction.
So, our assumption is false. Hence r = 0. Again we show that {xn} is a Cauchy
sequence in (X,σ), i.e.

lim
n,m→+∞

σ(xn, xm) = 0.(3.12)

Suppose on the contrary that is {xn} is not a Cauchy sequence. Then there
exist ϵ > 0 for which we can assume subsequences xn(k)

and xm(k)
of xn with

n(k) > m(k) > k such that for every k

σ(xn(k)
, xm(k)

) ≥ ϵ(3.13)

and n(k) is the smallest number such that (3.13) holds.

From (3.13), we get

σ(xn(k)−1, xm(k)
) < ϵ.(3.14)

Then by triangular inequality and (3.12), we have

ϵ ≤ σ(xn(k)
, xm(k)

) ≤ σ(xn(k)
, xn(k)−1) + σ(xn(k)−1, xm(k)

)

< σ(xn(k)
, xn(k)−1) + ϵ.

Taking n → +∞ in above equation and applying (3.11), we get

limn→+∞σ(xn(k)
, xm(k)

) = ϵ.(3.15)

From the triangular inequality, we have

σ(xn(k)+1, xm(k)
) ≤ σ(xn(k)+1, xn(k)

) + σ(xn(k)
, xm(k)

)

taking limit n → +∞ and using (3.11), (3.13) and (3.15), we have

lim
n→+∞

σ(xn(k)+1, xm(k)
) = ϵ.(3.16)

Similarly, it is easy to show that

lim
n→+∞

σ(xn(k)+1, xm(k)+1) = ϵ.(3.17)

Since T is an (α, β)-admissible almost Z-contraction with respect to ζ and using
(ζ3)
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0 ≤ lim
n→+∞

Supζ(α(Txn(k)
, Txm(k)

)β(Txn(k)
, Txm(k)

)σ(Txn(k)
, Txm(k)

),

σ(xn(k)
, xm(k)

) + θN(xn(k)
, xm(k)

))

0 ≤ lim
n→+∞

Supζ(α(xn(k)+1, xm(k)+1)β(xn(k)+1, xm(k)+1)(3.18)

σ(xn(k)+1, xm(k)+1), σ(xn(k)
, xm(k)

)+θN(xn(k)
, xm(k)

)) < 0

Since

N(xn(k)
, xm(k)

) = min{σ(xn(k)
, Txn(k)

), σ(xm(k)
, Txm(k)

), σ(xn(k)
, Txm(k)

),

σ(xm(k)
, Txn(k)

)}
= min{σ(xn(k)

, xn(k)+1), σ(xm(k)
, xm(k)+1), σ(xn(k)

, xm(k)+1),

σ(xm(k)
, xn(k)+1)}

taking n → +∞ and using (3.11), we obtain

lim
n→+∞

N(xn(k)
, xm(k)

) = 0,(3.19)

from (3.18) and (3.19), we have

0 ≤ lim
n→+∞

sup ζ(α(xn(k)+1, xm(k)+1)β(xn(k)+1, xm(k)+1)σ(xn(k)+1, xm(k)+1),

σ(xn(k)
, xm(k)

)) < 0,

which is a contradiction due to our assumption. So, {xn} is a Cauchy sequence.
Since X is complete metric-like space, then there exists x ∈ X and using (3.12)
such that

lim
n→+∞

σ(xn, x) = σ(x, x) = lim
n,m→+∞

σ(xn, xm) = 0.(3.20)

Now, we show that x is a fixed point of T . Since T is continuous and xn → x
as n → +∞. So from (3.20)

lim
n→+∞

σ(xn+1, Tx) = lim
n→+∞

σ(Txn, Tx) = σ(Tx, Tx) = 0.(3.21)

Using Lemma (2.1) and (3.21), we have

lim
n→+∞

σ(xn+1, Tx) = σ(x, Tx),(3.22)
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from (3.21) and (3.22),

σ(x, Tx) = σ(Tx, Tx) = 0.(3.23)

Hence, Tx = x, that is x is a fixed point of T . Now, we shall show that the
uniqueness of fixed point of x. We argue by contrary. Assume that there exists
u ∈ X such that Tu = u and x ̸= u. Now,

0 ≤ ζ(α(Tx, Tu)β(Tx, Tu)σ(Tx, Tu), σ(x, u) + θN(x, u)),(3.24)

where N(x, u) = min{σ(x, Tx), σ(u, Tu), σ(x, Tu), σ(u, Tx)},

i.e. N(x, u) = 0.(3.25)

From (3.24) and (3.25), we have

0 ≤ ζ(α(Tx, Tu)β(Tx, Tu)σ(Tx, Tu), σ(x, u))

≤ σ(x, u)− α(Tx, Tu)β(Tx, Tu)σ(Tx, Tu)

= σ(x, u)− α(x, u)β(x, u)σ(x, u)

= σ(x, u)[1− α(x, u)β(x, u)] < 0,

since α(x, u) ≥ 1, β(x, u) ≥ 1, which is a contradiction, so x = u. Hence T has a
unique fixed point.

Corollary 3.1. In Theorem 3.1, if we have choose any one of the ζ simulation
given below, we have the same result and proof are similar to these corollary.

ζ(α(x, Tx)β(y, Ty)σ(Tx, Ty), σ(x, y) + θN(x, y)) ≥ 0(3.26)

ζ(α(x, y)β(Tx, Ty)σ(Tx, Ty), σ(x, y) + θN(x, y)) ≥ 0(3.27)

ζ(α(x, y)β(x, y)σ(Tx, Ty), σ(x, y) + θN(x, y)) ≥ 0(3.28)

ζ(α(Tx, Ty)β(x, y)σ(Tx, Ty), σ(x, y) + θN(x, y)) ≥ 0.(3.29)

The following example shows that our main result i.e. Theorem 3.1 is a proper
generalization of [15] and [24].
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Example 3.1. [12] Take X = [0,+∞) endowed with the metric-like σ(x, y) = x2 + y2.
Consider the mapping T : X → X given by

T (x) =

{
x2

x+1
, if x ∈ [0, 1],

x2, if x > 1.

Note that (X,σ) is a complete metric-like space. Define mappings α, β : X ×X → R+ by

α(x, y) = β(x, y) =

{
1 if x, y ∈ [0, 1],
0 if otherwise.

Note that T is an (α, β)-admissible mapping if α(x, y) ≥ 1 and β(x, y) ≥ 1 implies
α(Tx, Ty) ≥ 1 and β(Tx, ty) ≥ 1 for all x, y ∈ X. By definition of α and β this implies
that x, y ∈ [0, 1]. Thus

α(Tx, Ty) = α

(
x2

x+ 1
,
y2

y + 1

)
= 1.

Similarly β(Tx, Ty) = 1.
From above, it is clear that T is an (α, β)-admissible mapping. Let ζ(t, s) = λs − t,
λ ∈ [0, 1] for all s, t > 0. Also for x, y ∈ X such that α(x, y) ≥ 1 and β(x, y) ≥ 1. So,
x, y ∈ [0, 1]. In this case, we have

(α(Tx, Ty)β(Tx, Ty)σ(Tx, Ty), σ(x, y) + θN(x, y))

=

(
(
x2

x+ 1
)2 + (

y2

y + 1
)2, x2 + y2 + θN(x, y)

)
.(3.30)

Here θ ≥ 0 and

N(x, y) = min{σ(x, Tx), σ(y, Ty), σ(x, Ty), σ(y, Tx)}

= min

{
x2 +

(
x2

x+ 1

)2

, y2 +

(
y2

y + 1

)2

, x2 + (
y2

y + 1

)2

, y2 +

(
x2

x+ 1

)2}
.

Since x, y ∈ [0, 1]

N(x, y) = 0(3.31)

from (3.30) and (3.31), we have

(α(Tx, Ty)β(Tx, Ty)σ(Tx, Ty), σ(x, y) + θN(x, y)) =

(( x2

x+ 1

)2

+
( y2

y + 1

)2

, x2 + y2
)
.

It follows that

ζ(α(Tx, Ty)β(Tx, Ty)σ(Tx, Ty), σ(x, y) + θN(x, y))

= ζ

((
x2

x+1

)2

+
(

y2

y+1

)2

, x2 + y2
)

= λ(x2 + y2)−
((

x2

x+1

)2

+

(
y2

y+1

)2)
.
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If we take λ = 1
2
, we get

ζ(α(Tx, Ty)β(Tx, Ty)σ(Tx, Ty), σ(x, y) + θN(x, y))

= 1
2
(x2 + y2)−

((
x2

x+1

)2

+

(
y2

y+1

)2)
≥ 0

i.e. ζ(α(Tx, Ty)β(Tx, Ty)σ(Tx, Ty), σ(x, y) + θN(x, y)) ≥ 0. Also let {xn} be a
sequence in X such that α(xn, xn+1) ≥ 1, β(xn, xn+1) ≥ 1 for all n and xn → x ∈ X.
Then, {xn} ⊂ [0, 1] and x2n +x2 → 2x2 as n→ +∞. Thus, xn → x as n→ +∞ in (X, |.|).
This implies that x ∈ [0, 1] and so α(xn, x) = 1, β(xn, x) = 1 for all n. Moreover, there
exists x0 ∈ X such that α(x0, Tx0) ≥ 1, β(x0, Tx0) ≥ 1. In fact, for x0 = 1, we have
α(1, T1) = α(1, 1/2) = 1 = β(1, T1). Thus, all the conditions of Theorem 3.1 are verified.
Here x = 0 is the unique fixed point of T .

4. Conclusions

In this paper, we studied (α, β)-admissible almost Z-contraction for a mapping
T over a nonempty set X endowed with a complete metric-like space. Based on
this a new contraction, some fixed point results are obtained. Our results are
generalization for many existing results in the literature. Finally, we show the
usability of our result by setting up one example.
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