FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. Vol. 37, No 1 (2022), 485–494 https://doi.org/10.22190/FUMI200810033K Original Scientific Paper

INTUITIONISTIC FUZZY *I*-CONVERGENT DIFFERENCE SEQUENCE SPACES DEFINED BY COMPACT OPERATOR

Esra Kamber

Sakarya University, Institute of Science and Technology Sakarya, Turkey

Abstract. In this paper, we have introduced and studied the intuitionistic fuzzy *I*-convergent difference sequence spaces $I^{(\mu,\nu)}(T,\Delta)$ and $I^{0}{}^{(\mu,\nu)}(T,\Delta)$ used by compact operator. Also, we have introduced a new concept, called closed ball in these spaces. With the help of these notions, we have establised a new topological space and investigated some topological properties in intuitionistic fuzzy *I*-convergent difference sequence spaces $I^{(\mu,\nu)}(T,\Delta)$ and $I^{0}{}^{(\mu,\nu)}(T,\Delta)$ used by compact operator. Key words: intuitionistic fuzzy space, compact operator, topological space.

1. Introduction

Fuzzy set theory introduced by Zadeh [1] has been applied in various fields of mathematics such as the theory of functions [2] and the approximation theory [3]. Fuzzy topology plays an important role in fuzzy theory. It copes with such conditions where the classical theories break down. The intuitionistic fuzzy normed space and intuitionistic fuzzy *n*-normed space which were introduced in [4]-[5] are the most contemporary improvements in fuzzy topology. Recently, the definition of *I*-convergence in intuitionistic fuzzy zweier *I*-convergent sequence spaces and intuitionistic fuzzy zweier *I*-convergent double sequence spaces have been studied in [10]-[14].

The notion of statistical convergence was given by Steinhaus [15] and Fast [16] using the definition of density of the set of natural numbers. Many years later,

Received August 10, 2020, accepted: April 28, 2022

Communicated by Jelena Ignjatović

Corresponding Author: Esra Kamber, Sakarya University, Institute of Science and Technology, Sakarya, Turkey | E-mail: e.burdurlu87@gmail.com

²⁰¹⁰ Mathematics Subject Classification. Primary xxxxx; Secondary xxxxx, xxxxx

^{© 2022} by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

statistical convergence was discussed by many researchers in the theory of fourier analysis, ergodic theory and number theory. Related studies can be found in [32]-[36]. Some statistical convergence types in intuitionistic fuzzy normed spaces and intuitionistic fuzzy *n*-normed spaces were studied in [6]-[9] and [28]-[37]. As an extended definition of statistical convergence, definition of *I*-convergence was introduced by Kostyrko, Salat and Wilczynski [17] by using the idea of *I* of subsets of the set of natural numbers. Recently, *I*- and *I**- convergence of double sequences have been studied by Das et. al. [18].

New sequence spaces were introduced by means of various matrix transformations in [24]-[32]. Kızmaz [21] defined the difference sequence spaces with the difference matrix as follows:

$$X(\Delta) = \{x = (x_k) : \Delta x \in X\}$$

for $X = l_{\infty}$, c, c₀, where $\Delta x_k = x_k - x_{k+1}$ and Δ denotes the difference matrix $\Delta = (\Delta_{nk})$ defined by

$$\Delta_{nk} = \begin{cases} (-1)^{n-k}, & \text{if } n \leq k \leq n+1, \\ 0, & \text{if } 0 \leq k < n. \end{cases}$$

Recently, Kamber has studied intuitionistic fuzzy difference sequence spaces and intuitionistic fuzzy difference double sequence spaces in [26] and [27].

In this paper, we introduce the intuitionistic fuzzy *I*-convergent difference sequence spaces $I^{(\mu,\upsilon)}(T,\Delta)$ and $I^{0}{}^{(\mu,\upsilon)}(T,\Delta)$ using by compact operator and investigate some topological properties of these new spaces.

2. Basic definitions

In this section, we give some definitions and notations which will be used for this study.

Definition 2.1. [19] A binary operation $* : [0,1] \times [0,1] \rightarrow [0,1]$ is said to be a continuous *t*-norm if it satisfies the following conditions:

- (i) * is associative and commutative,
- (ii) * is continuous,
- (iii) a * 1 = a for all $a \in [0, 1]$,
- (iv) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$ for each $a, b, c, d \in [0, 1]$.

Definition 2.2. [19] A binary operation $\circ : [0,1] \times [0,1] \rightarrow [0,1]$ is said to be a continuous *t*-conorm if it satisfies the following conditions:

- (i) \circ is associative and commutative,
- (ii) \circ is continuous,

Intuitionistic Fuzzy I-Convergent Differece Sequence Spaces

- (iii) $a \circ 0 = a$ for all $a \in [0, 1]$,
- (iv) $a \circ b \leq c \circ d$ whenever $a \leq c$ and $b \leq d$ for each $a, b, c, d \in [0, 1]$.

Definition 2.3. [4] The five-tuple $(X, \mu, v, *, \circ)$ is said to be intuitionistic fuzzy normed linear space (or shortly IFNLS) is where X is a linear space over a field F, * is a continuous t-norm, \circ is a continuous t-conorm, μ , v are fuzzy sets on $X \times (0, \infty)$, μ denotes the degree of membership and v denotes the degree of nonmembership of $(x,t) \in X \times (0,\infty)$ satisfying the following conditions for every $x, y \in X$ and s, t > 0:

- (i) $\mu(x,t) + \upsilon(x,t) \le 1$,
- (ii) $\mu(x,t) > 0$,
- (iii) $\mu(x,t) = 1$ if and only if x = 0,

(iv)
$$\mu(\alpha x, t) = \mu\left(x, \frac{t}{|\alpha|}\right)$$
 if $\alpha \neq 0$

(v)
$$\mu(x,t) * \mu(y,s) \leq \mu(x+y,t+s),$$

- (vi) $\mu(x,.): (0,\infty) \to [0,1]$ is continuous,
- $(\text{vii}) \quad \lim_{t \to \infty} \mu\left(x,t\right) = 1 \text{ and } \lim_{t \to 0} \mu\left(x,t\right) = 0,$

(viii)
$$v(x,t) < 1$$
,

- (ix) v(x,t) = 0 if and only if x = 0,
- (x) $\upsilon(\alpha x, t) = \upsilon\left(x, \frac{t}{|\alpha|}\right)$ if $\alpha \neq 0$,
- (xi) $\upsilon(x,t) \circ \upsilon(y,s) \ge \upsilon(x+y,s+t),$
- (xii) $\upsilon(x,.):(0,\infty)\to [0,1]$ is continuous,

(xiii)
$$\lim_{t \to \infty} v(x,t) = 0$$
 and $\lim_{t \to 0} v(x,t) = 1$.

In this case (μ, v) is called intuitionistic fuzzy norm.

Example 2.1. [4] Let $(X, \|.\|)$ be a normed space, and let a * b = ab and $a \circ b = \min \{a + b, 1\}$ for all $a, b \in [0, 1]$. For all $x \in X$ and every t > 0, consider

$$\mu\left(x,t\right):=\tfrac{t}{t+\|x\|} \text{ and } \upsilon\left(x,t\right):=\tfrac{\|x\|}{t+\|x\|}.$$

Then $(X, \mu, \upsilon, *, \circ)$ is an IFNLS.

Definition 2.4. [4] Let $(X, \mu, v, *, \circ)$ be an IFNLS. A sequence $x = (x_k)$ in X is convergent to $L \in X$ with respect to the intuitionistic fuzzy norm (μ, v) if, for every $\varepsilon > 0$ and t > 0, there exists $k_0 \in \mathbb{N}$ such that $\mu(x_k - L, t) > 1 - \varepsilon$ and $v(x_k - L, t) < \varepsilon$ for all $k \ge k_0$ where $k \in \mathbb{N}$. It is denoted by $(\mu, v) - \lim x = L$.

Theorem 2.1. [20] Let $(X, \mu, v, *, \circ)$ be an IFNLS. Then, a sequence $x = (x_k)$ in X is convergent to $L \in X$ if and only if $\lim_{k \to \infty} \mu(x_k - L, t) = 1$ and

 $\lim_{k \to \infty} \upsilon \left(x_k - L, t \right) = 0.$

Definition 2.5. [17] If X is a non-empty set, then a family of sets $I \subset P(X)$ is called an ideal in X if and only if

- (i) $\emptyset \in I$,
- (ii) for each $A, B \in I$ implies that $A \cup B \in I$, and
- (iii) for each $A \in I$ and $B \subset A$ we have $B \in I$,

where P(X) is the power set of X.

Definition 2.6. [17] If X is a non-empty set, then a non-empty family of sets $F \subset P(X)$ is called a filter on X if and only if

- (i) $\emptyset \notin F$,
- (ii) for each $A, B \in F$ implies that $A \cap B \in F$, and
- (iii) for each $A \in F$ and $B \supset A$, we have $B \in F$.

An ideal I is called non-trivial if $I \neq \emptyset$ and $X \notin I$. A non-trivial ideal $I \subset P(X)$ is called an admissible ideal in X if and only if $\{\{x\} : x \in X\} \subseteq I$.

A relation between the concepts of an ideal and a filter is given by the following proposition:

Proposition 2.1. [17] Let $I \subset P(X)$ be a non-trivial ideal. Then the class $F = F(I) = \{M \subset X : M = X - A, \text{ for some } A \in I\}$ is a filter on X. F = F(I) is called the filter associated with the ideal I.

Definition 2.7. [25] Let $I \subset P(\mathbb{N})$ be a non-trivial ideal and $(X, \mu, v, *, \circ)$ be an IFNLS. Then a sequence $x = (x_k)$ in X is said to be *I*-convergent to $L \in X$ with respect to the intuitionistic fuzzy linear norm (μ, v) if, for every $\varepsilon > 0$ and t > 0, the set

 $\{k \in \mathbb{N} : \mu \left(x_k - L, t \right) \leq 1 - \varepsilon \text{ or } \upsilon \left(x_k - L, t \right) \geq \varepsilon \} \in I.$

In this case, we write $I^{(\mu,\nu)} - \lim x = L$.

Definition 2.8. [14] Let X and Y be two normed linear spaces and $T: D(T) \to Y$ be a linear operator, where $D \subset X$. Then the operator T is said to be bounded, if there exists a positive real k such that $||Tx|| \leq k||x||$, for all $x \in D(T)$. The set of all bounded linear operators B(X,Y) is a normed linear space normed by $||T|| = sup||Tx||(x \in X, ||x|| = 1)$ and B(X,Y) is a Banach space if Y is a Banach space.

Definition 2.9. [14] Let X and Y be two normed linear spaces. An operator $T: X \to Y$ is said to be a compact linear operator (or completely continuous linear operator,) if

- (i) T is linear,
- (ii) T maps every bounded sequence (x_k) in X onto a sequence $(T(x_k))$ in Y which has a convergent subsequence. The set of all compact linear operator C(X, Y) is a closed subspace of B(X, Y) and C(X, Y) is Banach space, if Y is a Banach space.

3. Weighted Norlund-Euler λ -statistical convergence in IFNLS

In this paper, we defined a variant of ideal convergent sequence spaces called intuitionistic fuzzy ideal difference convergent sequence spaces using by compact operator and investigated some topological properties of these spaces.

Intuitionistic fuzzy *I*-convergent difference sequence spaces using by compact operator are introduced as:

$$I^{(\mu,\upsilon)}(T,\Delta) = \{(x_k) \in I^{(\mu,\upsilon)}(T,\Delta) : \\ \{k \in \mathbb{N} : \mu\left(T(\Delta x_k) - L, t\right) \leq 1 - \varepsilon \text{ or } \upsilon\left(T(\Delta x_k) - L, t\right) \geq \varepsilon\} \in I\},$$

and

$$I^{0^{(\mu,\upsilon)}}(T,\Delta) = \{(x_k) \in I^{(\mu,\upsilon)}(T,\Delta) : \\ \{k \in \mathbb{N} : \mu \left(T(\Delta x_k), t \right) \leqslant 1 - \varepsilon \text{ or } \upsilon \left(T(\Delta x_k), t \right) \geqslant \varepsilon \} \in I \}.$$

Moreover, an open ball $B_x(r,t)(T,\Delta)$ with centre $x \in I^{(\mu,\upsilon)}(T,\Delta)$ and radius $r \in (0,1)$ with respect to t, is defined as:

$$B_x(r,t)(T,\Delta) = \{ y \in I^{(\mu,\upsilon)}(T,\Delta) : \\ \{ k \in \mathbb{N} : \mu \left(T(\Delta x_k) - T(\Delta y_k), t \right) \leqslant 1 - r \text{ or } \upsilon \left(T(\Delta x_k) - T(\Delta y_k), t \right) \geqslant r \} \in I \}.$$

Theorem 3.1. $I^{(\mu,\nu)}(T,\Delta)$ and $I^{0}{}^{(\mu,\nu)}(T,\Delta)$ are linear spaces.

Proof. We prove the result for $I^{(\mu,\upsilon)}(T,\Delta)$. Similarly, it can be proved for $I^{0(\mu,\upsilon)}(T,\Delta)$. Let $(x_k), (y_k) \in I^{(\mu,\upsilon)}(T,\Delta)$ and α, β be scalars. The proof is trivial for $\alpha = 0$ and $\beta = 0$. Let $\alpha \neq 0$ and $\beta \neq 0$. For a given $\varepsilon > 0$, choose s > 0 such that $(1-\varepsilon) * (1-\varepsilon) > 1-s$ and $\varepsilon \circ \varepsilon < s$. Hence, we have

$$A_1 = \{k \in \mathbb{N} : \mu\left(T(\Delta x_k) - L_1, t/2|\alpha|\right) \leqslant 1 - \varepsilon \text{ or } v\left(T(\Delta x_k) - L_1, t/2|\alpha|\right) \geqslant \varepsilon\} \in I,$$

$$A_2 = \{k \in \mathbb{N} : \mu\left(T(\Delta y_k) - L_2, t/2|\beta|\right) \leqslant 1 - \varepsilon \text{ or } v\left(T(\Delta y_k) - L_1, t/2|\beta|\right) \geqslant \varepsilon\} \in I,$$

$$A_1^c = \{k \in \mathbb{N} : \mu\left(T(\Delta x_k) - L_1, t/2|\alpha|\right) > 1 - \varepsilon \text{ and } \upsilon\left(T(\Delta x_k) - L_1, t/2|\alpha|\right) < \varepsilon\} \in F(I),$$

and

$$\begin{aligned} A_2^c &= \{k \in \mathbb{N} : \mu\left(T(\Delta y_k) - L_2, t/2|\beta|\right) > 1 - \varepsilon \text{ and } \upsilon\left(T(\Delta y_k) - L_2, t/2|\beta|\right) < \varepsilon\}\\ &\in F(I). \end{aligned}$$

Let define the set $A_3 = A_1 \cup A_2$. Hence $A_3 \in I$. It follows that A_3^c is a non-empty set in F(I). We will prove that for every $(x_k), (y_k) \in I^{(\mu, \nu)}(T, \Delta)$,

$$A_3^c \subset \{k \in \mathbb{N} : \mu\left(\left(\alpha.T(\Delta x_k) + \beta.T(\Delta y_k)\right) - \left(\alpha L_1 + \beta L_2\right), t\right) > 1 - s$$

and $v\left((\alpha .T(\Delta x_k) + \beta .T(\Delta y_k)) - (\alpha L_1 + \beta L_2), t\right) < s\}$. Let $m \in A_3^c$. In this case,

$$\mu\left(T(\Delta x_m) - L_1, t/2|\alpha|\right) > 1 - \varepsilon$$

and

$\upsilon \left(T(\Delta x_m) - L_1, t/2 \alpha \right) <$	ε
--	---

and

$$\mu\left(T(\Delta y_m) - L_2, t/2|\beta|\right) > 1 - \epsilon$$

and

$$\upsilon\left(T(\Delta y_m) - L_2, t/2|\beta|\right) < \varepsilon.$$

Then,

$$\mu((\alpha . T(\Delta x_m) + \beta . T(\Delta y_m) - (\alpha L_1 + \beta L_2), t) \ge \mu(\alpha . T(\Delta x_m) - \alpha L_1, t/2) * \mu(\beta . T(\Delta y_m) - \beta L_2, t/2) = \mu(T(\Delta x_m) - L_1, t/2|\alpha|) * \mu(T(\Delta y_m) - L_2, t/2|\beta|) \ge (1 - \varepsilon) * (1 - \varepsilon) > 1 - s$$

 $\quad \text{and} \quad$

$$\begin{aligned} &v((\alpha.T(\Delta x_m) + \beta.T(\Delta y_m)) - (\alpha L_1 + \beta L_2), t) \leq \\ &v(\alpha.T(\Delta x_m) - \alpha L_1, t/2) \circ v(\beta.T(\Delta y_m) - \beta L_2, t/2) = \\ &v(T(\Delta x_m) - L_1, t/2|\alpha|) \circ v(T(\Delta y_m) - L_2, t/2|\beta|) < \\ &\varepsilon \circ \varepsilon < s. \end{aligned}$$

This proves that

$$A_3^c \subset \{k \in \mathbb{N} : \mu\left(\left(\alpha . T(\Delta x_k) + \beta . T(\Delta y_k)\right) - \left(\alpha L_1 + \beta L_2\right), t\right) > 1 - s$$

and $v((\alpha .T(\Delta x_k) + \beta .T(\Delta y_k)) - (\alpha L_1 + \beta L_2), t) < s\}$. Hence $I^{(\mu, v)}(T, \Delta)$ is a linear space. \Box

Theorem 3.2. Every closed ball $B_x^c(r,t)(T,\Delta)$ is an open set in $I^{(\mu,\nu)}(T,\Delta)$.

Proof. Let $B_x(r,t)(T,\Delta)$ be an open ball with centre $x \in I^{(\mu,\upsilon)}(T,\Delta)$ and radius $r \in (0,1)$ with respect to t, i.e.

$$B_x(r,t)(T,\Delta) = \{ y \in I^{(\mu,\nu)}(T,\Delta) : \\ \{ k \in \mathbb{N} : \mu\left(T(\Delta x_k) - T(\Delta y_k), t\right) \leq 1 - r \text{ or } \nu\left(T(\Delta x_k) - T(\Delta y_k), t\right) \geq r \} \in I \}.$$

Let $y \in B_x^c(r,t)(T,\Delta)$. Then $\mu(T(\Delta x) - T(\Delta y),t) > 1 - r$ and $\nu(T(\Delta x) - T(\Delta y),t) < r$. Since $\mu(T(\Delta x) - T(\Delta y),t) > 1 - r$, there exists $t_0 \in (0,t)$ such that $\mu(T(\Delta x) - T(\Delta y),t_0) > 1 - r$ and $\nu(T(\Delta x) - T(\Delta y),t_0) < r$.

Let $r_0 = \mu (T(\Delta x) - T(\Delta y), t_0)$. Since $r_0 > 1 - r$, there exists $s \in (0, 1)$ such that $r_0 > 1 - s > 1 - r$ and so there exists $r_1, r_2 \in (0, 1)$ such that $r_0 * r_1 > 1 - s$ and $(1 - r_0) \circ (1 - r_2) < s$.

Let $r_3 = max\{r_1, r_2\}$. Then $1 - s < r_0 * r_1 \leq r_0 * r_3$ and $(1 - r_0) \circ (1 - r_3) \leq (1 - r_0) \circ (1 - r_2) < s$.

Consider the closed balls $B_y^c(1-r_3,t-t_0)(T,\Delta)$ and $B_x^c(r,t)(T,\Delta)$. We prove that $B_y^c(1-r_3,t-t_0)(T,\Delta) \subset B_x^c(r,t)(T,\Delta)$. Let $z \in B_y^c(1-r_3,t-t_0)(T,\Delta)$. Then $\mu(T(\Delta y) - T(\Delta z),t-t_0) > r_3$ and $\nu(T(\Delta y) - T(\Delta z),t-t_0) < 1-r_3$. Hence

$$\begin{split} & \mu\left(T(\Delta x) - T(\Delta z), t\right) \geqslant \\ & \mu\left(T(\Delta x) - T(\Delta y), t_0\right) * \mu\left(T(\Delta y) - T(\Delta z), t - t_0\right) > \\ & r_0 * r_3 \geqslant r_0 * r_1 > 1 - s > 1 - r \end{split}$$

and

$$\begin{split} & v\left(T(\Delta x) - T(\Delta z), t\right) \leqslant \\ & v\left(T(\Delta x) - T(\Delta y), t_0\right) \circ v\left(T(\Delta y) - T(\Delta z), t - t_0\right) < \\ & (1 - r_0) \circ (1 - r_3) < s < r. \end{split}$$

Thus $z \in B_x^c(r,t)(T,\Delta)$ and hence $B_y^c(1-r_3,t-t_0)(T,\Delta) \subset B_x^c(r,t)(T,\Delta)$. Every closed ball $B_x^c(r,t)(T,\Delta)$ is an open set in $I^{(\mu,\nu)}(T,\Delta)$. It proves that $B_x^c(r,t)(T,\Delta)$ is an open set in $I^{(\mu,\nu)}(T,\Delta)$. \Box

Remark 3.1. It is clear that $I^{(\mu,\nu)}(T,\Delta)$ is an IFNLS. Define

$$\begin{aligned} \tau^{(\mu,v)}(T,\Delta) &= \\ \left\{ A \subset I^{(\mu,v)}(T,\Delta) : \text{ for each } x \in A \text{ there exist } t > 0 \text{ and } r \in (0,1) \\ \text{ such that } B_x^c(r,t)(T,\Delta) \subset A \right\}. \end{aligned}$$

Then $\tau^{(\mu,\upsilon)}(T,\Delta)$ is a topology on $I^{(\mu,\upsilon)}(T,\Delta)$.

Theorem 3.3. The topology $\tau^{(\mu,\upsilon)}(T,\Delta)$ on $I^{0^{(\mu,\upsilon)}}(T,\Delta)$ is first countable.

Proof. It is clear that $\{B_x^c(\frac{1}{n},\frac{1}{n})(T,\Delta): n \in \mathbb{N}\}$ is a local base at $x \in I^{(\mu,\nu)}(T,\Delta)$. Then the topology $\tau^{(\mu,\nu)}(T,\Delta)$ on $I^{0(\mu,\nu)}(T,\Delta)$ is first countable. \Box

Theorem 3.4. $I^{(\mu,\nu)}(T,\Delta)$ and $I^{0}{}^{(\mu,\nu)}(T,\Delta)$ are Hausdorff spaces.

Proof. Let $x, y \in I^{(\mu, v)}(T, \Delta)$ such that $x \neq y$. Then $0 < \mu (T(\Delta x) - T(\Delta y), t) < 1$ and $0 < v (T(\Delta x) - T(\Delta y), t) < 1$.

Let define r_1, r_2 and r such that $r_1 = \mu (T(\Delta x) - T(\Delta y), t)$,

 $r_2 = v (T(\Delta x) - T(\Delta y), t)$ and $r = max\{r_1, 1 - r_2\}$. Then for each $r_0 \in (r, 1)$ there exist r_3 and r_4 such that $r_3 * r_4 \ge r_0$ and $(1 - r_3) \circ (1 - r_4) \le (1 - r_0)$.

Let $r_5 = max\{r_3, (1-r_4)\}$ and consider the closed balls $B_x^c(1-r_5, \frac{t}{2})(T, \Delta)$ and $B_y^c(1-r_5, \frac{t}{2})(T, \Delta)$. Then clearly $B_x^c(1-r_5, \frac{t}{2})(T, \Delta) \cap B_y^c(1-r_5, \frac{t}{2})(T, \Delta) = \emptyset$.

Suppose that $z \in B_x^c(1-r_5, \frac{t}{2})(T, \Delta) \cap B_y^c(1-r_5, \frac{t}{2})(T, \Delta)$. Then

$$\begin{split} r_1 &= \mu \left(T(\Delta x) - T(\Delta y), t \right) \geqslant \\ \mu \left(T(\Delta x) - T(\Delta z), \frac{t}{2} \right) * \mu \left(T(\Delta y) - T(\Delta z), \frac{t}{2} \right) \geqslant \\ r_5 * r_5 \geqslant r_3 * r_4 \geqslant r_0 > r \end{split}$$

and

$$\begin{aligned} r_2 &= \upsilon \left(T(\Delta x) - T(\Delta y), t \right) \leqslant \\ \upsilon \left(T(\Delta x) - T(\Delta z), \frac{t}{2} \right) \circ \upsilon \left(T(\Delta y) - T(\Delta z), \frac{t}{2} \right) \leqslant \\ (1 - r_5) \circ (1 - r_5) \leqslant (1 - r_3) \circ (1 - r_4) \leqslant (1 - r_0) < 1 - r, \end{aligned}$$

which is a contradiction. Hence $I^{(\mu,\upsilon)}(T,\Delta)$ is a Hausdorff space. \Box

Theorem 3.5. Let $I^{(\mu,\upsilon)}(T,\Delta)$ be an IFNLS, $\tau^{(\mu,\upsilon)}(T,\Delta)$ be a topology on $I^{(\mu,\upsilon)}(T,\Delta)$ and (x_k) be a sequence in $I^{(\mu,\upsilon)}(T,\Delta)$. Then a sequence (x_k) is Δ -convergent to Δx_0 with respect to the intuitionistic fuzzy linear norm (μ,υ) if and only if $\mu(T(\Delta x_k) - T(\Delta x_0), t) \longrightarrow 1$ and $\upsilon(T(\Delta x_k) - T(\Delta x_0), t) \longrightarrow 0$ as $k \longrightarrow \infty$.

Proof. Let $B_{x_0}(r,t)(T,\Delta)$ be an open ball with centre $x_0 \in I^{(\mu,\nu)}(T,\Delta)$ and radius $r \in (0,1)$ with respect to t, i.e.

$$B_{x_0}(r,t)(T,\Delta) = \{(x_k) \in I^{(\mu,\upsilon)}(T,\Delta) : \\ \{k \in \mathbb{N} : \mu\left(T(\Delta x_k) - T(\Delta x_0), t\right) \leqslant 1 - r \text{ or } \upsilon\left(T(\Delta x_k) - T(\Delta x_0), t\right) \geqslant r\} \in I\}.$$

Suppose that a sequence (x_k) in $I^{(\mu,\nu)}(T,\Delta)$ is Δ -convergent to Δx_0 with respect to the intuitionistic fuzzy linear norm (μ, ν) . Then for $r \in (0,1)$ and t > 0, there exists $k_0 \in \mathbb{N}$ such that $(x_k) \in B^c_{x_0}(r,t)(T,\Delta)$ for all $k \ge k_0$. Thus

$$\{k \in \mathbb{N} : \mu\left(T(\Delta x_k) - T(\Delta x_0), t\right) > 1 - r \text{ and } \upsilon\left(T(\Delta x_k) - T(\Delta x_0), t\right) < r\} \in F(I).$$

So $1 - \mu (T(\Delta x_k) - T(\Delta x_0), t) < r$ and $v (T(\Delta x_k) - T(\Delta x_0), t) < r$, for all $k \ge k_0$. Then $\mu (T(\Delta x_k) - T(\Delta x_0), t) \longrightarrow 1$ and $v (T(\Delta x_k) - T(\Delta x_0), t) \longrightarrow 0$ as $k \longrightarrow \infty$.

Conversely, for each t > 0 and $k \in \mathbb{N}$, suppose that $\mu (T(\Delta x_k) - T(\Delta x_0), t) \longrightarrow 1$ and $v (T(\Delta x_k) - T(\Delta x_0), t) \longrightarrow 0$ as $k \longrightarrow \infty$. Then for $r \in (0, 1)$, there exists $k_0 \in \mathbb{N}$ such that $1 - \mu (T(\Delta x_k) - T(\Delta x_0), t) < r$ and $v (T(\Delta x_k) - T(\Delta x_0), t) < r$ for all $k \ge k_0$. So, $\mu (T(\Delta x_k) - T(\Delta x_0), t) > 1 - r$ and $v (T(\Delta x_k) - T(\Delta x_0), t) < r$ for all $k \ge k_0$. Hence $(x_k) \in B_{x_0}^c(r, t)(T)$ for all $k \ge k_0$. This proves that a sequence (x_k) is Δ -convergent to Δx_0 with respect to the intuitionistic fuzzy linear norm (μ, v) . \Box

REFERENCES

- 1. L.A. ZADEH: Fuzzy Sets. Inform. Cont. 8 (1965).
- K. WU: Convergences of fuzzy sets based on decomposition theory and fuzzy polynomial function, Fuzzy Sets and Systems, 109 (2000), 173-185.
- G.A. ANASTASSIOU: Fuzzy approximation by fuzzy convolution type operators, Comput. Math. Appl., 48 (2004), 1369-1386.
- R. SAADATI and J.H. PARK: On the intuitionistic fuzzy topological spaces, Chaos Soliton. Fractal., 27 (2006), 331-344.
- S. VIJAYABALAJI, N. THILLAIGOVINDAN and Y.B. JUN, Intuitionistic fuzzy n- normed linear space, Bull. Korean. Math. Soc., 44 (2007), 291-308.
- S. ALTUNDAĞ and E. KAMBER, Weighted statistical convergence in intuitionistic fuzzy normed linear spaces, J. Inequal. Spec. Funct., 8(2017), 113-124.
- S. ALTUNDAĞ and E. KAMBER, Weighted lacunary statistical convergence in intuitionistic fuzzy normed linear spaces, Gen. Math. Notes, 37(2016), 1-19.
- E. KAMBER, On Applications of Almost Lacunary Statistical Convergence in Intuitionistic Fuzzy Normed Linear Spaces, IJMSET, 4(2017), 7-27.
- S. ALTUNDAĞ and E. KAMBER, Lacunary Δ-statistical convergence in intuitionistic fuzzy n-normed linear spaces, Journal of inequalities and applications, 40 (2014) 1-12.
- V.A. KHAN and K. EBADULLAH, Intuitionistic fuzzy zweier I-convergent sequence spaces, Func. Anal. TMA 1, (2015) 1-7.
- V.A. KHAN and YASMEEN, Intuitionistic Fuzzy Zweier I-convergent Double Sequence Spaces, New Trends in Mathematical Sciences, 4(2) (2016) 240-247.
- V.A. KHAN, YASMEEN, H. FATIMA and A. AHMED, Intuitionistic Fuzzy Zweier Iconvergent Double Sequence Spaces defined by Orlicz function, EJPAM, 10(3) (2017) 574-585.
- V.A. KHAN, A. EŞI and YASMEEN, Intuitionistic Fuzzy Zweier I-convergent Sequence Spaces defined by Orlicz function, Ann. Fuzzy Math. Inform, 12(2) (2016) 1-9.
- V.A. KHAN, YASMEEN, H. FATIMA, H. ELTAF and Q.M.D. LOHANI, Intuitionistic fuzzy I-convergent sequence spaces defined by compact operator, Cogent Math., 3(1) (2016) 1-8.
- H., STEINHAUS ,Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74.
- 16. H., FAST, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.

- P. KOSTYRKO, T. SALAT and W. WILCZYNSKI, *I-convergence*, Real Analysis Exchange, 26(2) (2000), 669-686.
- P. DAS, P. KOSTYRKO, W. WILCZYNSKI and P. MALIK, *I* and *I*^{*}- convergence of double sequences, Math. Slovaca (58)(2008), 605-620.
- B., SCHWEIZER and A., SKLAR, Statistical metric spaces, Pac. J. Math., 10(1960), 313-334.
- T.K., SAMANTA, JEBRIL and H., IQBAL, Finite Dimensional Intuitionistic Fuzzy Normed Linear Space, Int. J. Open Problems Compt. Math., 2 (2009), 574-591.
- 21. H. KIZMAZ, On certain sequence spaces, Canad. Math. Bull., 24 (1981), 169-176.
- M. ŞENGÖNÜL, On the Zweier sequence space, Demonstratio Mathematica, Vol. XL No.(40)(2007), 181-196.
- 23. C. S. WANG, On Nörlund sequence spaces, Tamkang J. Math., 9(1978), 269-274.
- E. MALKOWSKY, Recent results in the theory of matrix transformation in sequence spaces, Math. Vesnik, 49(1997), 187-196.
- V. KUMAR and K. KUMAR, On ideal convergence of sequences in intuitionistic fuzzy normed spaces, Selçuk J. Appl. Math., 10(2009), No. 2., 27-41.
- E. KAMBER, Intuitionisic fuzzy *I*-convergent difference sequence spaces defined by modulus function, J. Inequal. Spec. Funct., Volume 10 Issue 1(2019), 93-100.
- E. KAMBER, Intuitionisic fuzzy *I*-convergent difference double sequence spaces, Research and Communications in Mathematics and Mathematical Sciences, Vol. 10, Issue 2, 2018, 141-153.
- S. KARAKUŞ, K. DEMIRCI and O. DUMAN, Statistical convergence on intuitionistic fuzzy normed spaces, Chaos, Solitons Fractals 35 (2008), 763-769.
- 29. E. SAVAŞ and M. GÜRDAL, Certain summability methods in intuitionistic fuzzy normed spaces, Journal of Intelligent and Fuzzy Systems **27**(2014), 1621-1629.
- E. SAVAŞ, λ- statistical convergence in intuitionistic fuzzy 2-normed space, Appl. Math. Inf. Sci., 9(2015), 501-505.
- 31. E. SAVAŞ, On I_{θ} statistical convergence of order α in intuitionistic fuzzy normed spaces, Proceedings of the Romanian Academy 16 (2015) 121-129.
- EKREM A. ALJIMI and VALDETE LOKU, Generalized Weighted Norlund-Euler Statistical Convergence, Int. Journal of Math. Analysis, 8(2014), no7, 345-354.
- S. KARAKUŞ, Statistical convergence on probabilistic normed space, Math. Commun. 12 (2007), 11-23.
- M. MURSALEEN, Statistical convergence in random 2-normed spaces, Acta Sci. Math., 76 (2010), 101-109.
- 35. H. ALTINOK and M. ET, Statistical convergence of order (β, γ) for sequences of fuzzy numbers, Soft Computing, **23**(2019), 6017-6022.
- 36. M. ET, H. ALTINOK and Y. ALTIN, On generalized statistical convergence of order α of difference sequences, J. Funct. Spaces Appl., (2013), Art. ID 370271, 7 pp..
- E. KAMBER, Weighted Norlund-Euler statistical convergence in intuitionistic fuzzy normed linear spaces, J. Inequal. Spec. Funct., Volume 11 Issue 2(2020), 1-9.