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Abstract. Software Defined Networking (SDN) is an important technology that enables 

a new approach to how we develop and manage networks. SDN divides the data plane 

and control plane and promotes logical centralization of network control so that the 

controller can schedule the data in the network effectively through the OpenFlow 

protocol. The performance and capabilities of the controller itself are important. The 

impact of network topology type on controller performance can be very significant. In 

order to have better communication in SDN, it is essential to have an analysis of the 

performance of specific network topologies. In this paper, we simulate ONOS and RYU 

controllers and compare their different network parameters under the proposed complex 

custom Tree-based topology. A network topology has been designed using a Mininet 

emulator, and the code for topology is executed in Python. From the throughput, packet 

transmission rate, and latency analysis, the ONOS controller displayed better results than 

RYU, showing that it can respond to requests more efficiently under complex SDN 

topologies and traffic loads. On the contrary, the RYU controller provides better results for 

the less complex SDN networks. 
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1. INTRODUCTION 

To facilitate new networking evolution, a concept of programmable networks has 

been proposed. The fundamental idea has evolved into what today is called Software 

Defined Network (SDN). Compared to traditional networks, SDN decouples the control 

logic from network layer devices and centralizes it for efficient traffic forwarding and 

flow management. SDN is having the ability to separate the data and control functions of 

core devices and consolidates all the control in a single node called the network controller 

[1]. This centralized entity provides programmable control of the whole network and 

enables real-time control of all the underlying devices. The SDN controller is comprised 

of logically centralized “network intelligence” software and has a global view of the 

network. The controller architecture can be centralized or distributed. 

Centralized SDN controllers are mostly used in small-scale SDN networks, whereas 

distributed controllers can span across multiple domains. A single-threaded SDN controller is 

more suitable for less complex SDN deployments. In contrast, multi-threaded controllers are 

suitable for commercial purposes such as 4G/5G, SDN-WAN, ISP, and optical networks. 

The controller in a SDN is the core and critical component responsible for making 

decisions on managing traffic in the underlying network. The core functions of the controller 

are mainly related to network topology and traffic flow. In SDN networks, Ethernet switches 

are replaced by OpenFlow switches. Each OpenFlow switch dynamically maintains a flow 

table, which consists of flow rules that determine the handling of network packets [2]. In an 

SDN architecture, the infrastructure devices (switches and routers) have been designed to act 

like modules that process the incoming data packets to forward these packets towards their 

destinations. The forwarding of these packets is based upon the logic-based set of rules 

programmed into the SDN controller(s). 

Although the fundamental function of an SDN controller is flow management, several 

different metrics can be used for its performance analysis. In this paper, we presented a 

performance evaluation in both throughput and latency perspectives for the current well-

known OpenFlow controllers: RYU and ONOS. The controller benchmarking tool was 

implemented for the incremental number of switches connected to the controller under 

the simulation environment. We have compared RYU and ONOS controllers using the 

Mininet emulator, along with a detailed analysis of their performance in a custom Tree-

based network topology named as Fat-Tree. Topology influence on the SDN network 

performance is done by analysis and evaluation of different network parameters such as 

throughput, packet transmission rate, and latency.  

From the TCP throughput simulation, the ONOS controller displayed better results 

than RYU, showing that it can respond to requests more promptly under complex Fat-

Tree topology traffic loads. Simulation outcomes indicate that in round-trip propagation 

delay between end nodes ONOS exhibited better results than the RYU controller. The 

ONOS controller was found to outperform RYU in the proposed Fat-Tree topology 

environment regarding the throughput and time between packets sent to the end hosts. 

The rest of this paper is organized as follows. Section II presents the SDN and controller 

architecture and gives an overview of OpenFlow, RYU, and ONOS features. Section III 

presents the simulation environment, research methodology, and metrics. Section IV shows 

the results of the SDN controller analysis. The paper is then concluded in Section V. 
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Fig. 1 Overview of a typical layered SDN architecture (left) and SDN controller architecture 

(right) [3] 

2. BACKGROUND AND RELATED WORK 

A. SDN Network Architecture  

The architecture of a SDN network can be divided into three planes: data plane, control 

plane, and application plane. The work in [3] discussed a three-layer SDN architecture 

model, as we can see in Fig. 1 (left). SDN separates the control and data plane of a traditional 

network device. The control plane is implemented through one or more logically centralized 

controllers. Control functionality is removed from network devices, that will become simple 

packet forwarding network nodes. The application plane interacts with the control layer to 

program the whole network and enforce different policies. The interaction among these 

layers is done through interfaces that work as communication protocols. SDN Application 

consists of one Application Logic module and one or more Northbound Interface (NBI) 

Drivers. The SDN is programmable through applications that interact with the underlying 

data plane devices. Higher-level logic can be implemented directly through these applications 

on top of controllers, which communicate through NBI Agents (REST, JSON, etc.) [4]. The 

SDN Datapath is a logical network device that comprises a Southbound Interface (SBI) 

Agent and a set of one or more traffic forwarding engines and traffic processing functions. 

The SBI defined as an interface between controller and Datapath, provides event notification, 

statistic reporting, capabilities advertisement, and high-level control of all forwarding 

operations. SBI interface is generally implemented using the OpenFlow protocol. 

OpenFlow is the most widely accepted and deployed SBI standard for SDN and 

represents a protocol that is used for the communication between the controller and 

forwarding devices. OpenFlow modifies the SDN network in the sense that data plane 

nodes become simple devices that forward packets according to rules given by the 

controller. The main components of a SDN network are OpenFlow switches which can 

communicate with the controller via an OpenFlow protocol. An OpenFlow protocol can 

handle high-level routing, packet forwarding, and secure connection between the control 

plane and data plane. OpenFlow switch consists of one or more flow tables. Flow tables 
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determine data processing and forwarding with the help of flow entries. Each flow entry 

determines how data will be processed and forwarded in a network. The current version 

of OpenFlow is 1.5.1. as described in [5]. 

Fig. 1 (right) shows the architecture of the SDN controller. The core functions of the 

SDN controller are mainly related to topology and traffic flow, device management, and 

statistics tracking. All the controller functions are implemented via changeable modules, 

and the feature set of the controller may be adjusted to specific requirements of SDN 

networks. The topology itself is maintained by the topology manager. This provides the 

decision-making module to find optimal paths between nodes of the network. The 

controller tracks the topology by learning the existence of OpenFlow switches and other 

SDN devices and tracking the connectivity between them. Currently, there is a variety of 

open-source SDN controllers available for the community: POX, RYU, FloodLight, ONOS, 

ODL, OpenDayLight, etc. [6]. There is a lack of a standard for NBI, which has been 

implemented in several different forms. The ONOS and FloodLight controllers both use a 

Java and REST/RESTful API, while RYU and POX use Python API, etc. [7].  

B. ONOS and RYU Controller 

The Open Network Operating System (ONOS) is an open-source distributed SDN 

control platform, developed by the Open Networking Lab (ON Lab) [8]. The specific 

protocol feature of the system core makes ONOS available to be used for networks for 

various purposes such as company networks, campus networks, data center networks, etc. 

ONOS is specifically oriented to Internet Service Provider (ISP) networks, due to its 

distributed architecture and natively supports a distributed version of the controller, 

running on a cluster of servers. Each controller in the cluster is responsible for managing 

the OpenFlow switches under its domain. Each switch can connect to multiple ONOS 

controllers for reliability, but only one will be its master with full control over it in terms 

of read/write capabilities on the switch forwarding tables. The other controllers are 

denoted as slaves and one of them takes the control of a switch whenever the master 

controller fails. Generally, ONOS consists of NBI, SBI, and the Distributed Core. As a 

multi-threaded controller, ONOS is convenient for commercial purposes such as ISP and 

Data Center networks, SDN-WAN, and optical networks. 

RYU controller is an open-source and component-based SDN framework implemented 

entirely in Python. RYU provides software components with well-defined APIs that make it 

simple to create control applications and SDN network management. RYU allows an event-

driven programming paradigm in which the flow of the program is determined by events, and 

supports various protocols for managing network infrastructure, such as OpenFlow, Netconf 

(RFC 6241), OF-config, etc. [9]. The controller uses NBI APIs such as Restful, REST, 

REST/RPC user-defined API, etc. RYU provides a set of specific components such as 

OpenStack/Quantum virtualization, Firewall, OFREST, etc. for SDN applications. 

C. Related works 

Research in [10] gives a comprehensive investigation of open-source controllers RYU, 

POX, ONOS, and ODL. The authors were focused on parameters such as throughput and 

latency using Cbench tool. In [11], five controllers (RYU, POX, Trema, Floodlight, 

OpenDayLight) are compared, and the authors collect properties of each controller under 

specific evaluation: REST API support, modularity, virtualization, etc. In [12] authors 
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describe and evaluate two ONOS prototypes. The first version implemented logically 

centralized global network view, scale-out, and fault tolerance modules. The second version 

focused on improving ONOS performance in core network traffic engineering and scheduling. 

In [13] authors use a comparison of performance metrics such as delay, bandwidth, and 

received packets using network monitoring tools like IPERF and D-ITG to analyze the 

functionality of the POX controller. The results of this research were the recommendation of 

using a POX controller. 

In [14], the authors have shown the performance comparison performed between the 

NOX, POX, Trema, and Floodlight in reactive and proactive modes. The results showed 

that the best performance is achieved when the controller is operating in the proactive 

mode because forwarding rules are installed on the switch. Authors in [15] presented a 

framework named HCprobe to compare seven controllers: RYU, Beacon, Maestro, MUL, 

FloodLight, NOX, and POX. To evaluate the efficiency of these controllers, the authors 

performed additional measurements like reliability, scalability, and security along with 

throughput and latency. The results show that FloodLight, Beacon, and MUL obtained 

minimum latency, while Beacon performed good results in the throughput test. Authors 

in [16] presented the crucial advantages and challenges of SDN security, flexibility, and 

performance against traditional TCP/IP networks. 

3. SIMULATION ENVIRONMENT 

The simulation hardware and software specifications are shown in Table 1. Performance 

analysis and network topology development were performed in an environment of a Windows 

10 PC. The VirtualBox 6.1.22 hypervisor is used to instantiate two separate Virtual Machines 

(VM). Each VM is allocated 6 GB of RAM, and runs on Ubuntu 18.04, as the host Operating 

System (OS). Each VM separately contains Mininet with predefined ONOS and RYU 

controllers. 

 

Table 1 Simulation hardware and software specifications  

 

 PC VM 

Hardware Processor AMD Ryzen 5 3600, 

3.6 GHz (6-core) 

1 CPU, 

6-core 

 RAM 16 GB DDR4 6 GB DDR4 

Software OS Windows 10 

(64-bit), ver. 21H1 

Ubuntu 

18.04 (64-bit) 

 VirtualBox - 6.1.22 

 Mininet - 2.3.0d6 

 RYU - 4.3.2 

 ONOS - 2.5.0 

 Python - 3.8.5 

The topology used in the simulation was based on Fat-Tree topology, as shown in Fig. 

2. The Fat-Tree topology can be thought of as a reference data center topology. In this 

research paper, all OpenFlow switches are interconnected to each other, forming 3-level 

architecture: core, aggregation, and edge. This simulation deals with the results obtained 
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by Mininet emulating a custom Fat-Tree topology with 12 OpenFlow switches (s1-s12) 

and 32 hosts (h1-h32), where the 8 edge switches (s5-s12) have four emulated hosts each. 

The ONOS or RYU controller has the role of the SDN controller in the proposed 

topology. Host h1 is denoted as Server, and h2 is denoted as Client. After controller 

initialization, Mininet loads a Python script to instantiate the custom topology. Each 

OpenFlow switch is assigned a unique port for keeping track of network traffic. 

Python 3.8 is used to write the network topology. Mininet Command Line Interface 

(CLI) is used to create the topology. Due to the topology complexity, we used a Mininet 

high-level API. We use Topo as the base class that provides the ability to create reusable 

and parametrized topology. We use methods self.addSwitch() and self.addHost() to import 

switches and hosts into topology and connect them. Further, method self.addLink(node1, 

node2,**link_options) is used for adding a bidirectional link that contains host and switch 

names and the number of options such as bandwidth or delay. 

 

Fig. 2 The Fat-Tree SDN network topology 

The Mininet CLI option --mac will automatically assign MAC addresses that match 

the host's names. All the nodes have been assigned a unique IP address from the 

10.0.0.0/24 address range and a unique MAC address. To make switches connect to 

ONOS or RYU controller, we have used localhost 127.0.0.1 loopback IP address. The 

RYU controller uses port number 6633 to send messages to the OpenFlow switches. 

ONOS requires the 8181 port number to access the CLI and for GUI and REST API. 

Spanning-Tree Protocol (STP) is a link management protocol that provides path 

redundancy while preventing undesirable loops in the network. Due to 64 links, 12 

switches, and 32 hosts in our proposed topology “broadcast storms” are frequent. This 

undesirable network traffic circles endlessly in the network, due to the destination 

address in an unknown network. Both ONOS and RYU have a Python script for which 

the STP function is achieved using OpenFlow. 
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Latency Parameter: Latency is an important parameter to consider in the operation of 

a network, especially if it is used to transmit data from applications sensitive to delay or 

jitter. Round-Trip-Time (RTT) parameter identifies the time the packet spent on the up 

and downlinks, to and from the switches, and the time as a delay between end nodes. A 

performance comparison between RYU and ONOS controller in previously defined 

network topology is achieved by execution of ICMP query (Echo Request and Reply) 

connectivity test using the ping command. A ping test is performed between Client and 

Server hosts (h1 and h32 in topology). We make a latency analysis through the average 

RTT time for the first packet of the flow. We have chosen the average RTT of the first 

packet of a flow because the first packet going to the SDN network is first processed as a 

controller. Based on the first packet processing rule, the next packets are processed 

without connecting to the controller. Therefore, the first packet’s RTT time is critical.  

Throughput Parameter: Scalability in SDN can be achieved by improving the network 

throughput and creating a distributed network for data transmission. To evaluate 

throughput performance in the proposed SDN topology, we have considered TCP traffic 

between end hosts. A SDN throughput is generally defined as a rate for processing flow 

requests by the controller. For the performance analysis, we need to generate the TCP 

traffic between the Client and Server host and log the events using the IPERF networking 

tool. A typical IPERF output contains a timestamped report of the amount of data 

transferred through the network. With the IPERF tool, the TCP throughput and data loss 

are measured by sending and receiving TCP packets between pair of hosts (Client and 

Server host). Also, the time taken by TCP is calculated for data packets sent and received. 

For the OpenFlow packet capturing and analysis, we use Wireshark software [17-19]. 

4. SIMULATION RESULTS 

Considering SDN controller throughput, single-threaded RYU and multi-threaded 

ONOS show different results in the proposed Fat-Tree topology, where network traffic is 

significantly intensive. At first, we concluded that TCP throughput depends on the 

capabilities of the controller itself. The graph in Fig. 3 shows the results obtained by 

performing transmission between the farthest TCP Client h1 and TCP Server h32 in the 

proposed SDN topology. To measure ONOS and RYU controller throughput, the IPERF 

test has executed in 75 sec. on the Client, and data have been collected every 1 sec. on the 

Server host. TCP packets are sent from h1 to h32 with a default 1Mb/s sending rate. Let’s 

analyze the observed results. It is calculated the average throughput stays at 18.6 Gbps 

for RYU, and 29.1 Gbps for the ONOS controller. According to the observation, the 

average throughput in RYU is 36.08% less than the ONOS controller. The graph also 

shows that the TCP throughput variations moderately fluctuate within the duration of the 

simulation. For the ONOS controller, the throughput variations are scientifically uniform 

to the RYU case. There are a few instances of excessive variations in the throughput for 

the RYU. Dropping instances were observed frequently between 41-51 sec. of simulation 

time, leading to degraded performance of the simulation run. This large drop now occurs 

again at 67 sec. of simulation, and the value of throughput was only 11.3 Gbps. 
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Fig. 3 TCP throughput between the farthest hosts (h1 and h32) for the proposed topology 

with RYU or ONOS controller 

This TCP throughput behavior can be caused by two phenomena. At first, this result 
shows that the RYU controller has a packet broadcast storm problem when controlling a 
complex proposed network with loops and a large number of OpenFlow switches and hosts. 
By default, the STP Python script is not built into the RYU controller. STP function for RYU 
is achieved using OpenFlow, and we used the ryu.app.simple_switch_stp_13.py script to 
enable STP. On the other hand, it appears that RYU requires more hardware resources (CPU 
utilization and memory) than ONOS. Here, the ONOS controller exhibits a better throughput 
performance. This is likely because of its inherent support for very large-scale networks. We 
decided to do the same simulation three more times to confirm whether this Ryu throughput 
behavior is accidental or not, and Mininet always generates similar results. 

We use Wireshark to represent network traffic between the RYU/ONOS controller and the 
SDN nodes. Fig. 4 provides the results generated based on packets captured on the proposed 
Fat-Tree topology. As the controller and switch share the same VM guest the control channel 
is via the loopback interface, so monitoring the loopback lo0 interface will give access to these 
packets. In this simulation, the messaging is using OpenFlow 1.3 so using the filter 
openflow_v4 will show the communications between the hosts h1 and h32. We have created a 
graph of the real-time captured network OpenFlow packets (ofpt_packet_in, ofpt_packet_out, 
ofpt_stats_reply). From the statistical analysis results, the continuous polling of data causes 
controller overhead. Fig. 4. shows the I/O graph for the proposed topology with ONOS (above 
graph), and RYU controller (bottom graph). Y-axis defines the number of transmitted packets, 
whereas X-axis denotes the time of simulation in seconds.  As we can see from the graphs, the 
ONOS controller enables more network traffic and faster processing of packets. By making 
use of the I/O graph statistic evaluation, it was found that ONOS has a transmission rate that 
exceeds 1000 packets/sec, while RYU has a transmission rate that slightly exceeds only 100 
packets/sec. This is because having a large number of OpenFlow switches causes conflict at 
the RYU controller data layer which demands high processing power and a worst packet 
transmission rate than ONOS. Furthermore, ONOS shows significantly better results in packet 
processing operations than Ryu, and the main reason is a multithread feature. 



 Investigating the Impact of Tree-based Network Topology on the SDN Controller Performance 33 

 

 

Fig. 4 I/O graph of OpenFlow packets transmitted per second for the proposed topology 

with ONOS (above) and RYU controller (below) 

In the second part of the simulation, we observe the latency against ICMP packet size, 

from 100B to 1000B. In each performance test, we send 8 ping packets with the 

following sizes: 100, 500, and 1000 Bytes. We send the ping command from Server h1 to 

Client h32, and the test is performed between the farthest nodes in the proposed topology. 

These ping commands are cycled 10 times for each test. Then we calculated the average 

values of measured RTTs of the first packet of the flow per test. These average values of 

the measured RTTs for both ONOS and RYU controllers are shown graphically in Fig. 5. 

It is visible that the propagation delay between nodes in the proposed topology is very 

different. From Fig. 5, the average RTT is the minimum for the ONOS controller and 

ICMP=100B packet size (RTT=7.89 ms). Therewith, the highest RTT value (RTT=15.3 

ms) was measured for a RYU topology and ICMP=1000B. 

From the obtained results, it is clear that a RYU controller is taking more time for 

transmission of the packet to its destination. The fact is that the RYU controller introduces 

larger latency in the network. In the RYU controller, the initial process of establishing 

network flow consumes time that introduces latency in the network. When the first packet 

sent by h1 arrives at the OpenFlow switch, this switch does not know how to route it, 

encapsulate it, and forwards all the contents of the incoming packet to the controller, being 

responsible for managing the installation of the flow tables in each switch. From the above 

results, it can be concluded that longer ICMP packets require a longer processing time for 

the RYU controller, which affects the overall SDN network performance. 
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Fig. 5 Average RTT time for the first packet of the flow in proposed topology with RYU 

and ONOS controller 

5. CONCLUSIONS AND FUTURE WORKS 

RYU and ONOS are the two most powerful and widely used SDN controllers. There are 

many researchers currently working on the evaluation and comparison of these controllers. 

Both of them have their advantages and disadvantages. This paper can help researchers to 

choose between the RYU and ONOS in different use cases, especially for data centers and 

complex Tree-Based network environments with a large number of SDN controllers, 

switches, and links. The results of the simulation proved that ONOS performs better than 

RYU based on selected parameters. 

In total, the ONOS controller was found to outperform RYU in the proposed Fat-Tree 

topology environment, especially regarding the throughput, time between packets sent to the 

end hosts, and response received at the OpenFlow switch. More sophisticated embedded 

ONOS algorithms, distributed architecture, and proactive installation of rules on the whole 

path that the packet will take, certainly lead to an overwhelming behavior of the ONOS 

controller in our proposed topology. 

This research work opens opportunities for many other research directions. In the future, 

we plan to keep extending this study with the ONOS cluster multi-controller network 

environment and with some other SBI APIs. Furthermore, there were different sets of 

experiments that are left for future research. Some of the variations in experiments that can be 

conducted in the future to expand the scope of the investigations may include varying the size 

and/or numbers of the files being communicated. Moreover, it would also be interesting to 

investigate the results with different sizes of data packets and multi-controller topology in the 

experiments. 
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