
FACTA UNIVERSITATIS

Series: Automatic Control and Robotics Vol. 21, No 1, 2022, pp. 25 - 35

https://doi.org/10.22190/FUACR211223003C

© 2022 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

Regular Paper

INVESTIGATING THE IMPACT OF TREE-BASED NETWORK

TOPOLOGY ON THE SDN CONTROLLER PERFORMANCE

UDC ((004.3/.4:0.034.2)+004.78)

Danijel Čabarkapa1, Dejan Rančić2,

Petar Pavlović1, Miodrag Milićević1

1Academy of Professional Studies Šabac,

Department of Medical and Business-Technological Studies, Republic of Serbia
2University of Niš, Faculty of Electronic Engineering,

Department of Computer Science, Republic of Serbia

Abstract. Software Defined Networking (SDN) is an important technology that enables

a new approach to how we develop and manage networks. SDN divides the data plane

and control plane and promotes logical centralization of network control so that the

controller can schedule the data in the network effectively through the OpenFlow

protocol. The performance and capabilities of the controller itself are important. The

impact of network topology type on controller performance can be very significant. In

order to have better communication in SDN, it is essential to have an analysis of the

performance of specific network topologies. In this paper, we simulate ONOS and RYU

controllers and compare their different network parameters under the proposed complex

custom Tree-based topology. A network topology has been designed using a Mininet

emulator, and the code for topology is executed in Python. From the throughput, packet

transmission rate, and latency analysis, the ONOS controller displayed better results than

RYU, showing that it can respond to requests more efficiently under complex SDN

topologies and traffic loads. On the contrary, the RYU controller provides better results for

the less complex SDN networks.

Key words: Software defined networking, OpenFlow, software switching, Mininet, ONOS

controller, RYU controller

Received December 23, 2021 / Accepted April 05, 2022

Corresponding author: Danijel Čabarkapa

Academy of Professional Studies Šabac, Department of Medical and Business-Technological Studies, Hajduk
Veljkova 10, 15000 Šabac, Republic of Serbia

E-mail: d.cabarkapa@elfak.rs

26 D. ČABARKAPA, D. RANČIĆ, P. PAVLOVIĆ, M. MILIĆEVIĆ

1. INTRODUCTION

To facilitate new networking evolution, a concept of programmable networks has

been proposed. The fundamental idea has evolved into what today is called Software

Defined Network (SDN). Compared to traditional networks, SDN decouples the control

logic from network layer devices and centralizes it for efficient traffic forwarding and

flow management. SDN is having the ability to separate the data and control functions of

core devices and consolidates all the control in a single node called the network controller

[1]. This centralized entity provides programmable control of the whole network and

enables real-time control of all the underlying devices. The SDN controller is comprised

of logically centralized “network intelligence” software and has a global view of the

network. The controller architecture can be centralized or distributed.

Centralized SDN controllers are mostly used in small-scale SDN networks, whereas

distributed controllers can span across multiple domains. A single-threaded SDN controller is

more suitable for less complex SDN deployments. In contrast, multi-threaded controllers are

suitable for commercial purposes such as 4G/5G, SDN-WAN, ISP, and optical networks.

The controller in a SDN is the core and critical component responsible for making

decisions on managing traffic in the underlying network. The core functions of the controller

are mainly related to network topology and traffic flow. In SDN networks, Ethernet switches

are replaced by OpenFlow switches. Each OpenFlow switch dynamically maintains a flow

table, which consists of flow rules that determine the handling of network packets [2]. In an

SDN architecture, the infrastructure devices (switches and routers) have been designed to act

like modules that process the incoming data packets to forward these packets towards their

destinations. The forwarding of these packets is based upon the logic-based set of rules

programmed into the SDN controller(s).

Although the fundamental function of an SDN controller is flow management, several

different metrics can be used for its performance analysis. In this paper, we presented a

performance evaluation in both throughput and latency perspectives for the current well-

known OpenFlow controllers: RYU and ONOS. The controller benchmarking tool was

implemented for the incremental number of switches connected to the controller under

the simulation environment. We have compared RYU and ONOS controllers using the

Mininet emulator, along with a detailed analysis of their performance in a custom Tree-

based network topology named as Fat-Tree. Topology influence on the SDN network

performance is done by analysis and evaluation of different network parameters such as

throughput, packet transmission rate, and latency.

From the TCP throughput simulation, the ONOS controller displayed better results

than RYU, showing that it can respond to requests more promptly under complex Fat-

Tree topology traffic loads. Simulation outcomes indicate that in round-trip propagation

delay between end nodes ONOS exhibited better results than the RYU controller. The

ONOS controller was found to outperform RYU in the proposed Fat-Tree topology

environment regarding the throughput and time between packets sent to the end hosts.

The rest of this paper is organized as follows. Section II presents the SDN and controller

architecture and gives an overview of OpenFlow, RYU, and ONOS features. Section III

presents the simulation environment, research methodology, and metrics. Section IV shows

the results of the SDN controller analysis. The paper is then concluded in Section V.

 Investigating the Impact of Tree-based Network Topology on the SDN Controller Performance 27

Fig. 1 Overview of a typical layered SDN architecture (left) and SDN controller architecture

(right) [3]

2. BACKGROUND AND RELATED WORK

A. SDN Network Architecture

The architecture of a SDN network can be divided into three planes: data plane, control

plane, and application plane. The work in [3] discussed a three-layer SDN architecture

model, as we can see in Fig. 1 (left). SDN separates the control and data plane of a traditional

network device. The control plane is implemented through one or more logically centralized

controllers. Control functionality is removed from network devices, that will become simple

packet forwarding network nodes. The application plane interacts with the control layer to

program the whole network and enforce different policies. The interaction among these

layers is done through interfaces that work as communication protocols. SDN Application

consists of one Application Logic module and one or more Northbound Interface (NBI)

Drivers. The SDN is programmable through applications that interact with the underlying

data plane devices. Higher-level logic can be implemented directly through these applications

on top of controllers, which communicate through NBI Agents (REST, JSON, etc.) [4]. The

SDN Datapath is a logical network device that comprises a Southbound Interface (SBI)

Agent and a set of one or more traffic forwarding engines and traffic processing functions.

The SBI defined as an interface between controller and Datapath, provides event notification,

statistic reporting, capabilities advertisement, and high-level control of all forwarding

operations. SBI interface is generally implemented using the OpenFlow protocol.

OpenFlow is the most widely accepted and deployed SBI standard for SDN and

represents a protocol that is used for the communication between the controller and

forwarding devices. OpenFlow modifies the SDN network in the sense that data plane

nodes become simple devices that forward packets according to rules given by the

controller. The main components of a SDN network are OpenFlow switches which can

communicate with the controller via an OpenFlow protocol. An OpenFlow protocol can

handle high-level routing, packet forwarding, and secure connection between the control

plane and data plane. OpenFlow switch consists of one or more flow tables. Flow tables

28 D. ČABARKAPA, D. RANČIĆ, P. PAVLOVIĆ, M. MILIĆEVIĆ

determine data processing and forwarding with the help of flow entries. Each flow entry

determines how data will be processed and forwarded in a network. The current version

of OpenFlow is 1.5.1. as described in [5].

Fig. 1 (right) shows the architecture of the SDN controller. The core functions of the

SDN controller are mainly related to topology and traffic flow, device management, and

statistics tracking. All the controller functions are implemented via changeable modules,

and the feature set of the controller may be adjusted to specific requirements of SDN

networks. The topology itself is maintained by the topology manager. This provides the

decision-making module to find optimal paths between nodes of the network. The

controller tracks the topology by learning the existence of OpenFlow switches and other

SDN devices and tracking the connectivity between them. Currently, there is a variety of

open-source SDN controllers available for the community: POX, RYU, FloodLight, ONOS,

ODL, OpenDayLight, etc. [6]. There is a lack of a standard for NBI, which has been

implemented in several different forms. The ONOS and FloodLight controllers both use a

Java and REST/RESTful API, while RYU and POX use Python API, etc. [7].

B. ONOS and RYU Controller

The Open Network Operating System (ONOS) is an open-source distributed SDN

control platform, developed by the Open Networking Lab (ON Lab) [8]. The specific

protocol feature of the system core makes ONOS available to be used for networks for

various purposes such as company networks, campus networks, data center networks, etc.

ONOS is specifically oriented to Internet Service Provider (ISP) networks, due to its

distributed architecture and natively supports a distributed version of the controller,

running on a cluster of servers. Each controller in the cluster is responsible for managing

the OpenFlow switches under its domain. Each switch can connect to multiple ONOS

controllers for reliability, but only one will be its master with full control over it in terms

of read/write capabilities on the switch forwarding tables. The other controllers are

denoted as slaves and one of them takes the control of a switch whenever the master

controller fails. Generally, ONOS consists of NBI, SBI, and the Distributed Core. As a

multi-threaded controller, ONOS is convenient for commercial purposes such as ISP and

Data Center networks, SDN-WAN, and optical networks.

RYU controller is an open-source and component-based SDN framework implemented

entirely in Python. RYU provides software components with well-defined APIs that make it

simple to create control applications and SDN network management. RYU allows an event-

driven programming paradigm in which the flow of the program is determined by events, and

supports various protocols for managing network infrastructure, such as OpenFlow, Netconf

(RFC 6241), OF-config, etc. [9]. The controller uses NBI APIs such as Restful, REST,

REST/RPC user-defined API, etc. RYU provides a set of specific components such as

OpenStack/Quantum virtualization, Firewall, OFREST, etc. for SDN applications.

C. Related works

Research in [10] gives a comprehensive investigation of open-source controllers RYU,

POX, ONOS, and ODL. The authors were focused on parameters such as throughput and

latency using Cbench tool. In [11], five controllers (RYU, POX, Trema, Floodlight,

OpenDayLight) are compared, and the authors collect properties of each controller under

specific evaluation: REST API support, modularity, virtualization, etc. In [12] authors

 Investigating the Impact of Tree-based Network Topology on the SDN Controller Performance 29

describe and evaluate two ONOS prototypes. The first version implemented logically

centralized global network view, scale-out, and fault tolerance modules. The second version

focused on improving ONOS performance in core network traffic engineering and scheduling.

In [13] authors use a comparison of performance metrics such as delay, bandwidth, and

received packets using network monitoring tools like IPERF and D-ITG to analyze the

functionality of the POX controller. The results of this research were the recommendation of

using a POX controller.

In [14], the authors have shown the performance comparison performed between the

NOX, POX, Trema, and Floodlight in reactive and proactive modes. The results showed

that the best performance is achieved when the controller is operating in the proactive

mode because forwarding rules are installed on the switch. Authors in [15] presented a

framework named HCprobe to compare seven controllers: RYU, Beacon, Maestro, MUL,

FloodLight, NOX, and POX. To evaluate the efficiency of these controllers, the authors

performed additional measurements like reliability, scalability, and security along with

throughput and latency. The results show that FloodLight, Beacon, and MUL obtained

minimum latency, while Beacon performed good results in the throughput test. Authors

in [16] presented the crucial advantages and challenges of SDN security, flexibility, and

performance against traditional TCP/IP networks.

3. SIMULATION ENVIRONMENT

The simulation hardware and software specifications are shown in Table 1. Performance

analysis and network topology development were performed in an environment of a Windows

10 PC. The VirtualBox 6.1.22 hypervisor is used to instantiate two separate Virtual Machines

(VM). Each VM is allocated 6 GB of RAM, and runs on Ubuntu 18.04, as the host Operating

System (OS). Each VM separately contains Mininet with predefined ONOS and RYU

controllers.

Table 1 Simulation hardware and software specifications

 PC VM

Hardware Processor AMD Ryzen 5 3600,

3.6 GHz (6-core)

1 CPU,

6-core

 RAM 16 GB DDR4 6 GB DDR4

Software OS Windows 10

(64-bit), ver. 21H1

Ubuntu

18.04 (64-bit)

 VirtualBox - 6.1.22

 Mininet - 2.3.0d6

 RYU - 4.3.2

 ONOS - 2.5.0

 Python - 3.8.5

The topology used in the simulation was based on Fat-Tree topology, as shown in Fig.

2. The Fat-Tree topology can be thought of as a reference data center topology. In this

research paper, all OpenFlow switches are interconnected to each other, forming 3-level

architecture: core, aggregation, and edge. This simulation deals with the results obtained

30 D. ČABARKAPA, D. RANČIĆ, P. PAVLOVIĆ, M. MILIĆEVIĆ

by Mininet emulating a custom Fat-Tree topology with 12 OpenFlow switches (s1-s12)

and 32 hosts (h1-h32), where the 8 edge switches (s5-s12) have four emulated hosts each.

The ONOS or RYU controller has the role of the SDN controller in the proposed

topology. Host h1 is denoted as Server, and h2 is denoted as Client. After controller

initialization, Mininet loads a Python script to instantiate the custom topology. Each

OpenFlow switch is assigned a unique port for keeping track of network traffic.

Python 3.8 is used to write the network topology. Mininet Command Line Interface

(CLI) is used to create the topology. Due to the topology complexity, we used a Mininet

high-level API. We use Topo as the base class that provides the ability to create reusable

and parametrized topology. We use methods self.addSwitch() and self.addHost() to import

switches and hosts into topology and connect them. Further, method self.addLink(node1,

node2,**link_options) is used for adding a bidirectional link that contains host and switch

names and the number of options such as bandwidth or delay.

Fig. 2 The Fat-Tree SDN network topology

The Mininet CLI option --mac will automatically assign MAC addresses that match

the host's names. All the nodes have been assigned a unique IP address from the

10.0.0.0/24 address range and a unique MAC address. To make switches connect to

ONOS or RYU controller, we have used localhost 127.0.0.1 loopback IP address. The

RYU controller uses port number 6633 to send messages to the OpenFlow switches.

ONOS requires the 8181 port number to access the CLI and for GUI and REST API.

Spanning-Tree Protocol (STP) is a link management protocol that provides path

redundancy while preventing undesirable loops in the network. Due to 64 links, 12

switches, and 32 hosts in our proposed topology “broadcast storms” are frequent. This

undesirable network traffic circles endlessly in the network, due to the destination

address in an unknown network. Both ONOS and RYU have a Python script for which

the STP function is achieved using OpenFlow.

 Investigating the Impact of Tree-based Network Topology on the SDN Controller Performance 31

Latency Parameter: Latency is an important parameter to consider in the operation of

a network, especially if it is used to transmit data from applications sensitive to delay or

jitter. Round-Trip-Time (RTT) parameter identifies the time the packet spent on the up

and downlinks, to and from the switches, and the time as a delay between end nodes. A

performance comparison between RYU and ONOS controller in previously defined

network topology is achieved by execution of ICMP query (Echo Request and Reply)

connectivity test using the ping command. A ping test is performed between Client and

Server hosts (h1 and h32 in topology). We make a latency analysis through the average

RTT time for the first packet of the flow. We have chosen the average RTT of the first

packet of a flow because the first packet going to the SDN network is first processed as a

controller. Based on the first packet processing rule, the next packets are processed

without connecting to the controller. Therefore, the first packet’s RTT time is critical.

Throughput Parameter: Scalability in SDN can be achieved by improving the network

throughput and creating a distributed network for data transmission. To evaluate

throughput performance in the proposed SDN topology, we have considered TCP traffic

between end hosts. A SDN throughput is generally defined as a rate for processing flow

requests by the controller. For the performance analysis, we need to generate the TCP

traffic between the Client and Server host and log the events using the IPERF networking

tool. A typical IPERF output contains a timestamped report of the amount of data

transferred through the network. With the IPERF tool, the TCP throughput and data loss

are measured by sending and receiving TCP packets between pair of hosts (Client and

Server host). Also, the time taken by TCP is calculated for data packets sent and received.

For the OpenFlow packet capturing and analysis, we use Wireshark software [17-19].

4. SIMULATION RESULTS

Considering SDN controller throughput, single-threaded RYU and multi-threaded

ONOS show different results in the proposed Fat-Tree topology, where network traffic is

significantly intensive. At first, we concluded that TCP throughput depends on the

capabilities of the controller itself. The graph in Fig. 3 shows the results obtained by

performing transmission between the farthest TCP Client h1 and TCP Server h32 in the

proposed SDN topology. To measure ONOS and RYU controller throughput, the IPERF

test has executed in 75 sec. on the Client, and data have been collected every 1 sec. on the

Server host. TCP packets are sent from h1 to h32 with a default 1Mb/s sending rate. Let’s

analyze the observed results. It is calculated the average throughput stays at 18.6 Gbps

for RYU, and 29.1 Gbps for the ONOS controller. According to the observation, the

average throughput in RYU is 36.08% less than the ONOS controller. The graph also

shows that the TCP throughput variations moderately fluctuate within the duration of the

simulation. For the ONOS controller, the throughput variations are scientifically uniform

to the RYU case. There are a few instances of excessive variations in the throughput for

the RYU. Dropping instances were observed frequently between 41-51 sec. of simulation

time, leading to degraded performance of the simulation run. This large drop now occurs

again at 67 sec. of simulation, and the value of throughput was only 11.3 Gbps.

32 D. ČABARKAPA, D. RANČIĆ, P. PAVLOVIĆ, M. MILIĆEVIĆ

Fig. 3 TCP throughput between the farthest hosts (h1 and h32) for the proposed topology

with RYU or ONOS controller

This TCP throughput behavior can be caused by two phenomena. At first, this result
shows that the RYU controller has a packet broadcast storm problem when controlling a
complex proposed network with loops and a large number of OpenFlow switches and hosts.
By default, the STP Python script is not built into the RYU controller. STP function for RYU
is achieved using OpenFlow, and we used the ryu.app.simple_switch_stp_13.py script to
enable STP. On the other hand, it appears that RYU requires more hardware resources (CPU
utilization and memory) than ONOS. Here, the ONOS controller exhibits a better throughput
performance. This is likely because of its inherent support for very large-scale networks. We
decided to do the same simulation three more times to confirm whether this Ryu throughput
behavior is accidental or not, and Mininet always generates similar results.

We use Wireshark to represent network traffic between the RYU/ONOS controller and the
SDN nodes. Fig. 4 provides the results generated based on packets captured on the proposed
Fat-Tree topology. As the controller and switch share the same VM guest the control channel
is via the loopback interface, so monitoring the loopback lo0 interface will give access to these
packets. In this simulation, the messaging is using OpenFlow 1.3 so using the filter
openflow_v4 will show the communications between the hosts h1 and h32. We have created a
graph of the real-time captured network OpenFlow packets (ofpt_packet_in, ofpt_packet_out,
ofpt_stats_reply). From the statistical analysis results, the continuous polling of data causes
controller overhead. Fig. 4. shows the I/O graph for the proposed topology with ONOS (above
graph), and RYU controller (bottom graph). Y-axis defines the number of transmitted packets,
whereas X-axis denotes the time of simulation in seconds. As we can see from the graphs, the
ONOS controller enables more network traffic and faster processing of packets. By making
use of the I/O graph statistic evaluation, it was found that ONOS has a transmission rate that
exceeds 1000 packets/sec, while RYU has a transmission rate that slightly exceeds only 100
packets/sec. This is because having a large number of OpenFlow switches causes conflict at
the RYU controller data layer which demands high processing power and a worst packet
transmission rate than ONOS. Furthermore, ONOS shows significantly better results in packet
processing operations than Ryu, and the main reason is a multithread feature.

 Investigating the Impact of Tree-based Network Topology on the SDN Controller Performance 33

Fig. 4 I/O graph of OpenFlow packets transmitted per second for the proposed topology

with ONOS (above) and RYU controller (below)

In the second part of the simulation, we observe the latency against ICMP packet size,

from 100B to 1000B. In each performance test, we send 8 ping packets with the

following sizes: 100, 500, and 1000 Bytes. We send the ping command from Server h1 to

Client h32, and the test is performed between the farthest nodes in the proposed topology.

These ping commands are cycled 10 times for each test. Then we calculated the average

values of measured RTTs of the first packet of the flow per test. These average values of

the measured RTTs for both ONOS and RYU controllers are shown graphically in Fig. 5.

It is visible that the propagation delay between nodes in the proposed topology is very

different. From Fig. 5, the average RTT is the minimum for the ONOS controller and

ICMP=100B packet size (RTT=7.89 ms). Therewith, the highest RTT value (RTT=15.3

ms) was measured for a RYU topology and ICMP=1000B.

From the obtained results, it is clear that a RYU controller is taking more time for

transmission of the packet to its destination. The fact is that the RYU controller introduces

larger latency in the network. In the RYU controller, the initial process of establishing

network flow consumes time that introduces latency in the network. When the first packet

sent by h1 arrives at the OpenFlow switch, this switch does not know how to route it,

encapsulate it, and forwards all the contents of the incoming packet to the controller, being

responsible for managing the installation of the flow tables in each switch. From the above

results, it can be concluded that longer ICMP packets require a longer processing time for

the RYU controller, which affects the overall SDN network performance.

34 D. ČABARKAPA, D. RANČIĆ, P. PAVLOVIĆ, M. MILIĆEVIĆ

Fig. 5 Average RTT time for the first packet of the flow in proposed topology with RYU

and ONOS controller

5. CONCLUSIONS AND FUTURE WORKS

RYU and ONOS are the two most powerful and widely used SDN controllers. There are

many researchers currently working on the evaluation and comparison of these controllers.

Both of them have their advantages and disadvantages. This paper can help researchers to

choose between the RYU and ONOS in different use cases, especially for data centers and

complex Tree-Based network environments with a large number of SDN controllers,

switches, and links. The results of the simulation proved that ONOS performs better than

RYU based on selected parameters.

In total, the ONOS controller was found to outperform RYU in the proposed Fat-Tree

topology environment, especially regarding the throughput, time between packets sent to the

end hosts, and response received at the OpenFlow switch. More sophisticated embedded

ONOS algorithms, distributed architecture, and proactive installation of rules on the whole

path that the packet will take, certainly lead to an overwhelming behavior of the ONOS

controller in our proposed topology.

This research work opens opportunities for many other research directions. In the future,

we plan to keep extending this study with the ONOS cluster multi-controller network

environment and with some other SBI APIs. Furthermore, there were different sets of

experiments that are left for future research. Some of the variations in experiments that can be

conducted in the future to expand the scope of the investigations may include varying the size

and/or numbers of the files being communicated. Moreover, it would also be interesting to

investigate the results with different sizes of data packets and multi-controller topology in the

experiments.

 Investigating the Impact of Tree-based Network Topology on the SDN Controller Performance 35

REFERENCES

[1] V. Nguyen, A. Brunstrom, K. Grinnemo, and J. Taheri, “SDN/NFV- Based Mobile Packet Core Network
Architectures: A Survey,” IEEE Communications Surveys Tutorials, vol. 19, no. 3, pp. 1567–1602, 2017.

doi: 10.1109/COMST.2017.2690823

[2] N. Gude, T. Koponen, J. Pettit, “Nox: Towards an Operating System for Networks,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 3, p. 105, 2008.

[3] L. Zhu, Md M. Karim, K. Sharif, Fan Li, X. Du, M. Guizani, “SDN Controllers: Benchmarking &

Performance Evaluation”, ACM Computing Surveys, Vol. 53, Issue 6, Article No. 133, pp. 1–40, 2020,
https://doi.org/10.1145/3421764

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford: “OpenFlow: enabling

innovation in campus networks”, ACM SIGCOMM Comp. Communication Review, vol. 38, no. 2, pp.
69–74, 2008. doi: 10.1145/1355734.1355746

[5] ONF Foundation: “OpenFlow Switch Specification”, Version 1.5.1 (Protocol version 0x06), 2015,
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf

[6] T. Zhang, F. Hu: “Controller architecture and performance in software-defined networks”, in Network

Innovation through OpenFlow and SDN, CRC Press, 1st edition, 2014, doi: https://doi.org/10.1201/b16521
[7] W. Zhou, Li Li, Min Luo, Wu Chou: “REST API Design Patterns for SDN Northbound API”, 28th

International Conference on Advanced Information Networking and Applications Workshops, 2014,

doi:10.1109/WAINA.2014.153
[8] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O. Connor, P. Radoslavov, W.

Snow: “ONOS: towards an open, distributed SDN OS”, in Proceedings of the third workshop on Hot topics in

software defined networking, pp. 1-6, 2014, https://doi.org/10.1145/2620728.2620744
[9] Md. T. Islam, N. Islam, Md. Al Refat: “Node to Node Performance Evaluation through RYU SDN

Controller”, Wireless Personal Comm., issue 1/2020, pp. 550-570, 2020, doi: 10.1007/s11277-020-07060-4

[10] P. Bispo, D. Corujo and R. L. Aguiar: “A Qualitative and Quantitative assessment of SDN Controllers”,
International Young Engineers Forum (YEF-ECE), pp. 6-11, 2017, doi: 10.1109/YEF-ECE.2017.7935632

[11] R. Khondoker, A. Zaalouk, R. Marx, K. Bayarou: “Feature-based comparison and selection of Software

Defined Networking (SDN) controllers”, WCCAIS, 2014, doi: 10.1109/WCCAIS.2014.6916572

[12] P. Berde, M. Gerola, J. Hart, Yuta Higuchi, M. Kobayashi, T. Koide, Bob Lantz, B. O'Connor, P. Radoslavov,

“ONOS: Towards an Open, Distributed SDN OS”, HotSDN '14: Proceedings of the third workshop on Hot

topics in software defined networking, pp.1–6, 2014, https://doi.org/10.1145/2620728.2620744
[13] H. M. Noman, M. N. Jasim: “POX Controller and Open Flow Performance Evaluation in Software

Defined Networks (SDN) Using Mininet Emulator,” 3rd International Conference on Sustainable

Engineering Techniques (ICSET 2020), vol. 881, 2020, doi:10.1088/1757-899X/881/1/012102
[14] M. P. Fernandez: “Comparing openflow controller paradigms scalability: reactive and proactive”, IEEE

27th International Conference on Advanced Information Networking and Applications (AINA), 2013,

doi: 10.1109/AINA.2013.113
[15] A. Shalimov, D. Zuikov, D. Zimarina, V. Pahskov, R. Smeliansky: “Advanced Study of SDN/OpenFlow

Controllers,” Proceedings of the Central Eastern European Software Engineering Conference CEE-SECR

'13, no. 1, pp. 1-6, 2013, doi:10.1145/2556610.2556621
[16] S. H. Haji1, S. R. M. Zeebaree, R. H. Saeed, S. Y. Ameen et. all: “Comparison of Software Defined

Networking with Traditional Networking,” Asian Journal of Research in Computer Science, 9(2), 1-18.

https://doi.org/10.9734/ajrcos/2021/v9i230216
[17] Wireshark User’s Guide, Version 3.5.0, https://www.wireshark.org/docs/wsug_html_chunked

[18] R. Barrett, A. Facey: “Dynamic traffic diversion in SDN: test bed vs Mininet,” in International

Conference on Computing, Networking and Communications (ICNC): Network Algorithms and

Performance Evaluation (2017). https://doi.org/10.1109/iccnc.2017.7876121

[19] S. H. Yeganeh, A. Tootoonchian and Y. Ganjali, "On scalability of software-defined networking," in

IEEE Communications Magazine, vol. 51, no. 2, pp. 136-141, 2013, doi: 10.1109/MCOM.2013.6461198.

javascript:;
javascript:;
javascript:;

