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Abstract: The flanged, barbell, and rectangular squat reinforced concrete (RC) walls are broadly used
in low-rise commercial and highway under and overpasses. The shear strength of squat walls is the
major design consideration because of their smaller aspect ratio. Most of the current design codes or
available published literature provide separate sets of shear capacity equations for flanged, barbell,
and rectangular walls. Also, a substantial scatter exists in the predicted shear capacity due to a large
discrepancy in the test data. Thus, this study aims to develop a single gene expression programming
(GEP) expression that can be used for predicting the shear strength of these three cross-sectional
shapes based on a dataset of 646 experiments. A total of thirteen influencing parameters are identified
to contrive this efficient empirical compared to several shear capacity equations. Owing to the larger
database, the proposed model shows better performance based on the database analysis results and
compared with 9 available empirical models.

Keywords: flanged wall; barbell wall; rectangular walls; shear strength; gene expression programming

1. Introduction

Reinforced concrete squat walls are an efficient lateral force-resisting system situated
in various low-rise buildings having a height-to-length aspect ratio of less than 2, such as
commercial buildings and highways under and overpasses [1]. These walls are generally
classified according to their cross-sectional shapes, out of which the rectangular and flanged
walls are more commonly used. Because these walls are meant to resist the lateral force
on buildings, several empirical models have been proposed for the prediction of shear
strength [2–7]. Calculation guidelines for rectangular walls are widely available in the
design codes [8–10], however, provisions for flanged walls are limited [11,12]. A review of
the literature reveals a significant disparity in the available shear capacity equations of the
flanged squat walls [1,13–15]. This discrepancy is attributed to the interaction of flanged
and the web segment of these walls. Hence, it is justified to investigate the behavior of
rectangular and flanged squat walls to formulate prescriptive guidelines.

Consequently, extensive study has been conducted [5–7,15] and several empirical formulas
are proposed to predict the shear strength of squat flanged walls. These empirical models,
however, have limitations that have to be recognized to obtain good estimation. For example,
the model proposed by Gulec et al. [5] is restricted to squat flanged walls having an aspect
ratio less than 1.0. Whereas Kassem’s analytical formula [6], derived based on strut-and-tie
modeling, neglects the effect of the flange element, thus resulting in inconsistency between
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the experimental and predicted results. The underlying limitations of the empirical models
proposed by Adorno et al. [7] and Ma et al. [15] are that the dataset comprises less than
140 experiments, and also the aspect ratio of the shear walls in the dataset is less than 1.20.
Moreover, all of these previous investigations consider limited significant parameters because of
which the prediction does not represent experiment outcomes well.

The existing inconsistencies in the findings of the available shear capacity models of
the flanged shear walls, therefore, demand a robust solution in the light of careful research.
Machine learning algorithms have emerged as a strong candidate capable of accurately
predicting the uncertainties in material properties and configurations. Several evolutionary
algorithms have been employed to develop shear equations of squat walls [16]. For instance,
artificial neural network (ANNs) has been successfully applied by Ghaboussi et al. [17].
Many authors have used the artificial intelligence (AI) application to predict the shear
strength of RC squat walls under cyclic or monotonic loading [18–29].

A similar machine learning ML algorithm approach has been applied successfully to
predict the shear capacity of RC squat walls [30,31] and failure modes [32]. Chen et al. [30] have
proposed a hybrid model, which is developed on a dataset of 139 experiments. Although the
model accurately predicted the shear strength of RC rectangular walls, the formula suffered
the drawback of being highly impractical, a very prevalent characteristic of hybrid models.
Probably the most extensive database is constructed by Moradi and Hariri-Ardebili [31], which is
categorized into slender and squat walls of both rectangular and flanged types of cross-sections.
Similar to the hybrid modes, their ANN formula predicts the shear strength accurately, however,
a practical tool for the design process is still lacking.

In summary, a reappraisal of the shear capacity model of the squat wall is essential
to collecting the available experimental data. This consideration has given the current
study impetus to developing a simplified regression-based model using a machine learning
algorithm known as gene expression programming (GEP). The present investigation mainly
focuses on the rectangular, flanged squat walls of H shape and barbell squat wall because
they more efficiently resist seismic forces in both principal directions. Nevertheless, the
derived model can also predict the shear capacity of rectangular squat walls with reasonable
accuracy. An extensive experimental database of 646 tests is constructed to develop a GEP
model, which is statistically evaluated and compared against existing models. Also carried
out is the detailed assessment of various influencing parameters. Because of the improved
capability, the current shear capacity model can be beneficially employed for structural
analysis, design, and evaluation of flanged squat walls.

2. Research Significance

In a region of high seismic activity, low aspect ratio RC squat walls are key structural
elements in many low-rise commercial buildings and highways under and overpasses. This
has inspired many researchers to develop shear strength predictive models for rectangular
and flanged squat walls. Despite the preferable effect of flanges or boundary elements in
improving the strength of the flanged squat walls, the literature on the flanged and barbell
walls is rather limited. Most of the studies have focused only on rectangular wall shapes. Few
empirical studies have been carried out on wide-flanged squat walls, especially studies related
to barbell walls are almost nonexistent. In this respect, the current study is concerned with
deploying Gene Expression Programming (GEP) algorithm to develop a shear capacity model
for rectangular, flanged, and barbell wall shapes. This equation gives a highly reliable estimate
of the shear strength of flanged RC squat walls, thereby overcoming the failure of existing
predictive models to reliably estimate the shear strength of flanged RC squat walls. A larger
database and incorporation of all the influencing parameters in the GEP model play a key role
in improving the performance and accuracy of the model.

3. Effect of Barbells and Flanges on the Ultimate Shear Strength

Barbells and flange boundary effects on the shear strength of squat reinforced concrete
walls appear not to have been examined extensively, which leads to the expectation that
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their effect should be ignored. However, this expectation might not be realized because
it is well established from tests that these boundary elements attain higher peak shear
strength compared to rectangular walls. More specifically, it has been observed that more
than 50% of the horizontal load is received by barbells or flanges of a squat wall on a
stiff foundation. An analogous problem of steel W-shape beam to a column is studied by
Lee and Stojadinovic [33] and Kim et al. [34]. These authors have shown that a higher
percentage of shear force is transferred through the beam flanges.

The four predictive models proposed above have neglected the contribution of flanges
or barbells, thus predicting identical shear strength for squat walls with boundary elements
and rectangular walls. Therefore, these equations overestimate the shear capacity of rectangular
walls, as the equations were calibrated using a dataset of walls having boundary elements.

To substantiate the contribution of boundary elements in transferring the lateral force to
the foundation, the variation of normalized shear strength to moment-to-shear-arm ratio has
been discussed by Gulec et al. [14]. This research concluded that the normalized shear capacity
of walls with boundary elements is significantly higher than that of rectangular walls.

4. Factors Affecting Shear Strength

The selection of various influencing parameters is the essential step toward developing
a robust predictive model. Therefore, the following variables have been identified after
reviewing the literature pertaining to the factors affecting squat walls and the shear strength
of squat walls.

4.1. Aspect Ratio

The wall height to length ratio, that is the aspect ratio, has significant relevance to the
shear strength of squat walls subjected to lateral loading. One of the first studies in this
context was provided by Barda et al. [2], in which eight flanged walls were investigated
having aspect ratios of 0.25, 0.5, and 1.0. This study has shown that walls with a lower
aspect ratio exhibit higher shear strength—for example, 20% higher shear strength was
observed in the wall specimen with an aspect ratio of 0.5 than the walls having an aspect
ratio of 1.0. The authors used the term lattice action, or arch action, to describe this
increase in the shear strength. Lattice action involves transferring large shear force to the
foundation from the top of the wall that consists of vertical wall reinforcement carrying
the tie forces and the struts between the inclined cracks carrying the compressive forces.
Remembering that the angle between the struts and ties should be large enough to avoid
incompatibilities, it is principally because of the higher angle that the low aspect ratio walls
demonstrate higher shear strength. A similar observation associated with higher shear
strength resulting from a lower aspect ratio has been statistically validated by Gulec and
Whitaker [35]. Several other researchers have also investigated the effect of aspect ratio on
the shear strength of squat walls, some of these contributions are Hwang et al. [36], Gulec
and Whittakaer [5], and Kassem [6].

On the other hand, it is shown that a lower aspect ratio can result in stiffer structures
and be susceptible to shear sliding [37–46]. Thus, the lower aspect ratio walls have low
energy dissipation levels than that of the higher aspect ratio.

4.2. Horizontal and Vertical Web Reinforcement

The study of horizontal and vertical web reinforcement has received considerable attention,
and the literature devoted to this subject is vast. However, after decades of extensive research,
there is a disagreement about this reinforcement’s underlying effect on the shear strength of
squat walls. According to some researchers, the tensile strain of the squat walls can be controlled
by the provision of appropriate horizontal web reinforcement [39,47–52]. Other researchers
argue that the vertical web reinforcement contributes to resisting the tensile strains [3,44,53–57].
Nevertheless, all these investigations agree that the wall aspect ratio influences both the horizon-
tal and vertical reinforcements. For instance, vertical web reinforcement becomes more effective
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than horizontal web reinforcement when the aspect ratio is more than 1, resulting in enhanced
energy dissipation and improved deformational capacity.

Similarly, consideration of horizontal and vertical web reinforcement has been emphasized
by various codes of practices. Codes such as ACI 318-14 [8] advocate vertical and horizontal web
reinforcement for walls with an aspect ratio less than 1.0. In addition, both codes recommend
minimum horizontal and vertical web reinforcement to control crack propagation.

4.3. Axial Load

Experimental investigation of axial load on the response of squat wall is somewhat
limited [42,56,58,59]. Most of these studies are based on the axial load ratio to concrete
compressive strength ranging from 0.0 to 40%. Studies show that the axial load can improve
the lateral stiffness and shear resistance of the wall. The presence of axial load can also
enhance the energy dissipation of the wall due to a substantial increase in the aggregate
interlock. In contrast to energy dissipation, the wall deformability is adversely affected due
to the presence of axial load.

However, the benefits of axial load on squat walls are overruled because these walls
typically carry a small proportion of axial load [60–62]. The contribution of axial load is
therefore ignored during the design of the squat walls.

5. Previously Proposed Models

Various researchers and codes of practice have proposed several empirical models that
calculate the shear strength of squat flanged RC walls. Table 1 lists the selected equations
and definitions of various parameters employed in these equations. These equations are
derived from experimental investigations, and they lead to different answers to shear
strength capacity. Therefore,

Table 1. Previously proposed shear strength models of RC squat wall.

No. Reference Proposed Formula Comments

1 ACI 318-14 [8] Vu = Aw
(
αc
√

f ′c + ρh fyh
)
≤ 0.83Aw

√ f ′c
Can be used for rectangular and

flanged RC walls

2 ASCE 43-05 [9] Vu =

(
8.3
√

f ′c − 3.4
√

fc

(
Hw
Lw
− 0.5

)
+ N

4Lwbw
+ ρse fyw

)
dbw ≤ 20

√
f ′cdbw,

ρze = Aρv + Bρh

Can be used for rectangular and
flanged RC walls

3 EN 1998-1 [10] VRs = bwzρh fyhcotθ, VR,max = αcwbwz f ′c v
(cotθ+tanθ)

Can be used for rectangular and
flanged RC walls

4 Gulec and
Whittaker [5]

Vu =
1.5
√

f ′c Aw+0.25Fv+0.20Fbe+0.40N√
Hw
Lw

≤ 10
√

f ′c Aw, For 1.0 ≤ Aw,tot
Aw
≥ 1.25,

Vu =
0.04 f ′c Aw,tol+0.40Fv+0.15Fbe+0.35N√

Hw
Lw

≤ 15
√

f ′c Aw,tol , For Aw,tol
Aw
≥ 1.25

Can be used for rectangular and
flanged RC walls

5 Ma et al. [15]
Vu =

(0.32 fy f ρ f t f l f +0.18 fyvρv twzw+
p
2 )dw

hw
+ 0.54 fyhρhtwhw ≤ 1.44At

√
f ′c ,

dw = lw − t f − 0.5
( 0.32 fy f ρ f t f l f +P

0.59 f ′c tw
− t f l f

tw

) Can be used for flanged RC walls

6 Wood et al. [3] 0.5Acv
√

f ′c ≤ Vu =
Av f fy

4 ≤ 0.83Acv
√

f ′c Can be used for flanged RC walls

7 Barda et al. [2] Vu =

(
0.67

√
f ′c −

0.21
√

f ′c hw
lw

+ P
4lw tw

+ ρv fy

)
twd (d = 0.6lw) Can be used for flanged RC walls

8 Adorno-Bonilla [7]

Vu =
(

0.54 + 0.19 f ′c −
0.17 f ′c hw

lw
+ 0.45P

Ag
+ 0.39ρse fyse + 0.31ρbe fybe

)
Acv,

fyse = A fyv + B fyh, ρse = Aρv + Bρh, ρbe =
Asbe
Acv

, i f hw
lw
≤ 0.5 A = 1 and B = 0,

i f 0.5 < hw
lw

< 1.5 A = − hw
lw

+ 1.5 and B = hw
lw
− 0.5, i f hw

lw
≥ 1.5 A = 0 and B = 1

Can be used for flanged RC walls

9 Kassem 2015 [6]

Vu = 0.47 f ′c
[
ψks sin(2α) +

0.15ωh Hw
dw

+ 1.76ωvcotα
]

At ≤ 1.25
√

f ′c At,

ψ = 0.95− f ′c
250 , ks =

as
dw

, as =
(

0.25 + 0.85N
Aw f ′c

)
Lw, ωh =

ρh fyh
f ′c

, ωv =
ρv fyv

f ′c
,

α = tan−1
(

Hw
dw

)
, dw = d− as

3
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6. Experimental Database

For developing an empirical model, a dataset of 646 experiments of squat flanged
and barbell RC walls is cataloged, out of which 60% of randomly selected experimental
data is used to construct the model and the remaining portion is used for model validation.
The database indicates thirteen variables that are candidates for inclusion in the functional
relationship. Table 1 clearly shows the shear strength of squat flanged walls are varied
according to height (hw), web length (lw), web thickness (tw), flange elements length (lf),
flange thickness (tf), aspect ratio (hw/lw), compressive strength of concrete ( fc

′), yield
strength of the horizontal steel (fyh), and yield strength of vertical steel (fyv).

The histogram of Figure 1 provides the frequency distribution of thirteen variables
selected from the dataset of 646 experiments. Conforming to the classification of squat
walls, the aspect ratio (hw/lw) of all the selected walls is equal to or less than 2.0. The
figure shows that concrete compressive strength ( fc

′) varies from 10 to 137 MPa, while the
horizontal bars yield strength (fyh) and the vertical bars yield strength (fyv) ranges from
224 to 1420 MPa. Similarly, the horizontal bars reinforcement ratio (ρh) and the vertical
bars reinforcement ratio (ρv) vary between 0.01% and 2.98%, while the flange element’s
longitudinal reinforcement ratios (ρf) vary between 0.074% and 9.57%. Also considered in
the database is the axial load (P) which varies from 0 to 2770 kN.

Figure 1. Cont.
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Figure 1. Cont.
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Figure 1. Ranges of dataset parameters. (a) Height of wall (hw), (b) Web length (lw), (c)Web thickness
(tw), (d) Flange thickness (tf), (e)Flange elements length (lf), (f) Compressive strength of concrete (fc′),
(g) Longitudinal reinforcement ratios of the flanged element (ρf), (h) Yield strength of longitudinal
reinforcement (fyf), (i) Reinforcement ratio of wall in the horizontal direction (ρh), (j) Reinforcement
ratios of wall in vertical direction (ρv), (k) Yield strength of the horizontal bars (fyh), (l) Yield strength
of vertical bars (fyv), (m) Axial load in wall (P).

7. Gene Expression Programming Algorithm

Gene expression programming (GEP) has been employed in this study to process the
supplied data in a domain-independent mode [63]. GEP is different from other available
artificial intelligence (AI) based algorithms as regards chromosome representation. The
term chromosomes are linear strings of fixed length in GAs but are nonlinear entities of
different sizes and shapes in GPs. GEP, on the other hand, encapsulates both the linear
string of fixed length, as well as ramified structures of different sizes and shapes.

As with other genetic algorithms, for executing the evolutionary process, several
trials are conducted by iteratively altering the number of chromosomes, the number of
genes, head size, and linking functions. Thus, GEP optimizes solutions by selecting the
best candidates among the supplied initial population based on their fitness. Notably,
a complicated function can stem from increasing the number of genes and number of
chromosomes, but the function can precisely fit the results. Therefore, several iterations are
needed to simplify the model and attain reasonable accuracy.
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A key step in the GEP algorithm is the convergence to the global optimal solution. It
can sometimes happen that the algorithm is not able to select an optimal solution among
several competing candidate solutions. In this state, the algorithm can lead to an indefinite
sequence of steps resulting in either a non-terminating program or yielding an illogical
expression. This predicament can be resolved by either varying the number of genes and
chromosomes or adjusting the linking function. In this context, the role of an analyst comes
into play for deciding if and what solution proposed by GEP should be further utilized for
statistical analysis [64].

The benefits of GEP have attracted extensive applications in the field of structural
engineering over the last decade [16]. Several authors have elegantly employed GEP to
develop models for estimating the capacity of various structural components [65]. Recently,
a regression-based model has been successfully used for predicting the behavior of RC
corner joints, especially where the code formulations are not available [64]. A GEP-based
model for corner joints is in progress and will be reported in due course.

The different steps of GEP optimization are illustrated in Figure 2. Prior to the
execution of the evolutionary algorithm, the fitness function is prescribed, which leads to
the creation of a random string of initial population, or in Genetic Programming parlance
‘Chromosomes’. These strings translate into an expression tree, whose results are compared
with the fitness score of each chromosome. If the fitness criterion is not satisfied, roulette-
wheel sampling is employed to select some chromosomes and then mutate them to get
new generations. Whereas, if the variables are optimally tuned to the fitness function, the
chromosomes are decoded following the best solution to the problem [63,65].

Figure 2. Range of different parameters in the dataset.

Machine learning (ML) algorithms have been widely used to tackle real-world prob-
lems in the last ten years, particularly in civil engineering. ML algorithms have been
successfully used in a variety of real situations, paving the way for several promising
opportunities in civil engineering and other domains such as geotechnical, and structural
engineering [65–74].
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8. Proposed GEP Model for Estimating Joint Shear

The following simple GEP model is generated by employing the dataset of the flanged
squat wall discussed in Section 6. Each Equation from (1) to (4) is extracted from relevant
genes are shown in Figure 3a–d respectively. Finally, the four equations extracted from four
genes are added in as shown in Equation (5). Moreover, the model construction parameter
to run the gene expression programming is shown in Table 2.

V1 =
f ′ctwlw

5160.69
(1)

V2 = lw −
(337.82− lw)(9.46 f ′c)[
−9.28−

(
fy f − f ′c

)] (2)

V3 =
[(

12.06− ρ f

)
− (2.16ρv − 10.29)

][
3.02ρv − ρ f − f ′c

]
(3)

V4 =
t f ρh

hw

(
P + 24.89 + fy f

)
(4)

Vn = |V1 + V2 + V3 + V4| kN (5)

where hw, lw, tw are the height, length, and thickness of the wall, respectively. t f and l f
represent the thickness and length of the flange and barbell fyh, fyv and fy f define the steel
yield strength of horizontal, and vertical reinforcement of wall and flange reinforcement
respectively. Moreover, f ′c and P represent the concrete compressive strength and axial load
on the wall respectively. The term ρ f defines the reinforcement ratio of the flange. Finally,
ρh and ρv represent the horizontal and vertical reinforcement ratios, respectively.

Table 2. Parameters setting for GEP model.

Parameter Setting

General Setting

Chromosomes 130
Head sizes 16

Genes 3
Linking function Multiplication

Function set Abs, Exp, Ln, +, −, /, ×, sqrt

Numerical Setting

Data type Floating numbers
Constants per gene 10

Lower/Upper bound of constants −20/20

Genetic Operators

Mutation rate 0.0014
Inversion rate 0.1

One-point recombination rate 0.0027
Two-point recombination rate 0.0027

Gene recombination rate 0.0027
Gene transposition rate 0.0027

Notes: Abs stands for absolute value, Exp stands for exponentiation, Ln stands for Natural Log, Sqrt stands for
square root.
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Figure 3. Cont.
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Figure 3. Gene Expression Tress (a) Sub-ET 1 (b) Sub-ET 2 (c) Sub-ET 3 (d) Sub-ET 4.

9. Statistical Performance Criteria

The performance of any empirical model is intimately related to the training and
validation of these models using the available dataset. So, a random sample of 60% from
the designated experiments of SFRC beams is used as training data (for model creation),
while a randomly selected 40% of the sample is used as validation data. A variety of
statistical approaches have been employed herein to gain quantitative insight into the
proposed GEP model.
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The coefficient of variation (CoV) is often used to measure data dispersion.

CoV (%) =

{
Standard Deviation (σ)

Mean (µ)

}
×100 (6)

Average absolute error (AAE) is another statistical approach to measure the mean
error in n test specimens.

AAE (%) =
1
n ∑


∣∣∣VExp

jh −VEst
jh

∣∣∣
VExp

jh

 (7)

The coefficient of determination (R2) is one of the most popular statistical approaches
to testing model reliability. The coefficient of determination equal to one is considered to
provide the best fit.

R2 = 1−
∑
[
VExp

jh −VEst
jh

]2

∑
[
VExp

jh −VExp
jh(Mean)

]2 (8)

It is worth noticing from Figure 4 that the coefficient of determination of 0.96, 0.94,
and 0.95 for training, validation, and overall data, respectively. Thus, the GEP model of
shear strength shows a strong relationship between the predicted and actual values.

Figure 4. Comparison of estimated and experimental shear strength of flanged and barbell squat
wall (a) Training Data (b) Validation Data (c) All Data.
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The reliability of the proposed GEP model can be further validated by performing
a sensitivity analysis. Notably, Figure 1 shows that the key parameters influencing the
shear strength of squat walls include geometric properties of walls and flanges, mechanical
properties of concrete, and properties and quantity of reinforcement. Figures 5 and 6
assess the relative contribution of key influencing parameters on the output results. From
Figure 5a, the model accuracy of wall height hw shows the value of 1.00 denoting suitable
performance of the proposed model in various levels of hw from 0.5–1.5. Similarly, the other
influencing parameters in Figure 5b–m, i.e., lw, tw, t f , l f , f ′c , fyh, fy f , ρh, ρv, ρ, fyh, fyv, P all
show an acceptable accuracy of 1.00. So, in the view of the experimental data, the predictive
ability of the proposed model can be affirmed.

Figure 5. Cont.
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Figure 5. The predictive performance of the proposed shear strength model based on the key
parameters. (a) Height of wall hw, (b) Web length (lw), (c)Web thickness (tw), (d) Flange thickness
(tf), (e) Flange elements length (lf), (f) Compressive strength of concrete (f′c), (g) Yield strength of
flenged reinforcement (fyf), (h) Reinforcement ratios of flenge (ρf), (i) Reinforcement ratio of wall
in the horizontal direction (ρh), (j) Reinforcement ratios of wall in vertical direction (ρv), (k) Yield
strength of the horizontal bars (fyh), (l) Yield strength of vertical bars (fyv), (m) Axial load in wall (P).
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Figure 6. Cont.
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Figure 6. Sensitivity of each influencing parameter on the shear strength of RC flanged and barbell
squat wall. (a) Height of wall (hw), (b) Web length (lw), (c) Web thickness (tw), (d) Flange thickness
(tf), (e) Flange elements length (lf), (f) Compressive strength of concrete (fc), (g) Reinforcement ratios
of flenge (ρf), (h) Yield strength of flenged reinforcement (fyf), (i) Reinforcement ratio of wall in the
horizontal direction (ρh), (j) Reinforcement ratios of wall in vertical direction (ρv), (k) Yield strength
of vertical bars (fyv), (l) Axial load in wall (P).
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10. Results and Discussion
10.1. Parametric Study

1. This section describes the parametric study for identifying the influence of input
variables on the shear strength capacity of squat walls. Therefore, a variable of interest
is perturbed whilst other variables are locked at the mean values, considering the
other variables are uncorrelated.

2. If the wall height (i.e., hw) is incrementally increased, the shear strength of the squat
flanged RC wall is expected to decrease, Figure 6a. This is because the lateral stiffness
of the wall reduces with the increase in wall height.

3. The web dimensions, including the length and thickness, are one of the significant
parameters controlling the shear capacity of RC walls. As shown in Figure 6b,c, the
trend for shear strength is upward which is associated with an increase in shear area.

4. Similar to web dimensions, Figure 6c shows that the thickness and the length of
flanges vary sharply with respect to the shear strength of the wall. So, it can be argued
that an increase in flange dimensions significantly improves the shear capacity of the
squat flanged RC wall.

5. It can be seen from Figure 6d,e that the shear strength rises with the increase in flange
element thickness (tf) and flange element length (lf).

6. It can be observed in Figure 6g,i,j that the shear strength increases sharply with the
increase in reinforcements.

7. Figure 6h,k shows that the shear capacity slumps with the increase in the yield
strength of web reinforcement and climbs gradually with the increase in the yield
strength of flange reinforcement. These observations are consistent with the findings
of Baek et al. [46].

8. Figure 6f,l shows the compressive strength of concrete, and the axial load has a
marginal influence on the shear capacity of the walls.

10.2. Performance of GEP Models

The main objective of this section is to show that the proposed regression model can
defeat the existing models, as shown in Table 3. For instance, the proposed model has a
coefficient of determination R2 = 0.95, which outclass all the models as shown in Figure 7.
Moreover, the performance factor and the average absolute error of the proposed model are
statistically better than the previously proposed model. Among the previously proposed
model, the least predictive ability is obtained from the model proposed by Eurocode
and Ma et al. [15]. The main reason for its low performance is that the Eurocodes [10]
neglect the influence of flanges. Similarly, Figure 8 shows statistical performance checks of
various models. A clear satistical excellence of the proposed model is observed having a
performance factor of 0.9, coefficient of determination of 0.25, and average absolute error
of 1.1.

Table 3. Statistical analysis of shear strength prediction models of Squat wall.

Author PF=
v Exp

jh

v Est
jh

Mean
AAE (%) R2

ACI 318M-14 [8] 0.78 33.00 0.89
ASCE 43-05 [9] 1.18 37.00 0.87
EN 1998-1 [10] 1.25 45.00 0.78

Gulec &Whittaker [5] 0.92 25.00 0.89
Ma, et al. [15] 0.83 33.00 0.78

Wood, et al. [3] 0.65 39.00 0.85
Barda, et al. [2] 1.74 33.00 0.84

Adorno-Bonilla [7] 1.37 48.00 0.84
Kaseem [6] 1.57 61.00 0.88

Proposed Model 1.10 23.00 0.96
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Figure 7. Comparative results of test data and different available methods. (a) Proposed Model
(b) ACI 318M-14 [8], (c) ASCE 43-05 [9], (d) EN 1998-1 [10], (e) Gulec &Whittaker [5], (f) Ma, et al. [15],
(g) Wood, et al. [3], (h) Barda, et al. [2], (i) Adorno-Bonilla [7], (j) Kaseem [6].
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Figure 8. Comparison of previously proposed models based on statistical investigations.

11. Conclusions

This study focuses on developing a single evolutionary genetic model to predict
the shear capacity of barbell, flanged or rectangular squat RC walls. The test database
comprises 646 experiments out of which 40% of data are used for the validation of the
developed model. The model is also successfully calibrated against 9 existing empirical or
semi-analytical models. The results show significant improvement in the estimate of shear
resistance. The following conclusions are drawn:

1. An increase in the wall web and flange dimensions, and the reinforcement ratio
increase the shear capacity of the wall. Whereas, an increase in the wall height reduces
the wall shear capacity. Parameters such as concrete compressive strength and axial
load moderately influence the wall capacity.

2. The developed model successfully incorporates all the aforementioned key parameters
and, given the experimental data, these parameters show a high contribution to the
development of the model.

3. From statistical investigation, a high correlation (R2) of 0.96 is observed. Likewise,
the performance factor of 1.1 and average absolute error of 23%, all substantiate the
higher accuracy of the proposed.

4. An important benefit of the proposed model is that a single model can effectively
approximate the shear capacity of a barbell, flanged or rectangular wall.

5. Finally, it is asserted that the proposed model offers a better prediction than the
existing models of shear strength of flanged or barbed squat walls, leading toward
the development of design guidelines for squat walls.
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