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ABSTRACT: Semi-active damping control of oscillating devices and structures is a challenging field that conjugates a relative 
actuators simplicity together with the chance of studying new algorithms and system architectures. This paper proposes an 
overview of the investigation recently developed by the authors in the field of semi-active damping using the variational optimal 
control. The method produces a general class of controllers that can be applied to linear as well as nonlinear suspension systems 
and vibrating structures. Their performances are systematically investigated and compared with the sky-hook benchmark.  
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1 INTRODUCTION 
Control and actuation techniques are the basis for many 
innovations in vehicle dynamics, especially in vibration 
attenuation. Actual industrial production is populated by 
two families of actuation technology: active and semi-
active. While the first generally guarantees the finest 
performances, it is accompanied by several drawbacks 
related to heavy and large actuators, high power motors, 
heavy energy consumption and as a direct consequence, by 
expensive devices. The class of semi-active controls 
represents indeed a very valuable alternative and effective 
choice. These devices are in fact characterized by 
reasonable costs, light modification of the original passive 
mechanical design, limited dimensions and weight. 
Moreover, the combination of lightness and poor energy 
absorption, makes the semi-active technology tuned with 
market requirement of eco-compatibility and “green” 
standards.    

The active technology provides the designer with a 
complete freedom in following the performance 
requirements of vibration reduction with impressive results. 
On the other hand, the semi-active philosophy, because of 
the restraint imposed to the actuators to be energetically 
passive, would benefit, in a remarkable way, of suitable 
selections of the control strategy. In particular, the 
equations of the mechanical system under control is in this 
case characterized by the presence of time-varying 
mechanical damping and/or stiffness and in some cases of 
time-varying inertial properties. These modifications are 
indeed produced using a very low amount of energy, 
compared to the average energy of the vibrating masses. 

Automotive production in the last decade made a large 
use of semi-active vibration technology [1,2], because of 
the available techniques, for example, to simply modify the 
dissipation characteristics of the suspension systems. 
Therefore, one can find a wide scientific and technical 
literature on the subject together with many control 
algorithms [3-5]. Hydraulic, pneumatic and electrical 
solutions were patented along the last twenty years to 

control the mechanical damping and/or stiffness  in a semi-
active way, leading to many industrial products. Among 
them even purely mechanically controlled systems 
developed by Boge (the Nivomat system) are present. 
However, the advantage of an electrical control of damping 
at a reasonable low cost, discloses new possibilities for 
vibration attenuation and suitably designed control 
strategies. Among them, certainly the original magneto-
rheological (MR)  [6] technology developed originally by 
Lord Corporation [7] presents many advantages in terms of 
simplicity with electronic interfaces. One of the most 
successful control algorithm in this field is the famous sky-
hook [8].  

This paper is focused on dedicated control algorithms to 
be used in this industrial context, and finalized to produce a 
new controller to optimize the suspension performances. 
Some of these results, are part of a university project in 
progress at the Department of Mechanical and Aerospace 
Engineering of Sapienza, and have been recently patented 
as a part of an integrated semi-active technology for 
vibration suppression [9]. 

The present paper is finalized to the synthesis of a new 
algorithm for the optimal control of semi-active dampers in 
a prototype suspension system. The results are obtained 
using a variational approach to the optimal control, together 
with a special form for the objective function. The theory is 
developed in general but, interestingly, for particular cases 
of engineering interest, a closed form dependency of the 
damping on the actual measured states of the suspension 
system is obtained, the basis for a direct synthesis of a new 
controller. The presented control strategy is an original 
engineering application of variational control as part of a 
powerful mathematical field, the theory of control of partial 
differential equations [10-13]. In fact, although the theory 
of variational control is an established tool in the context of 
control theory [14-17], its systematic application to optimal 
semi-active damping has not yet explored in the technical 
literature. 
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The organization of the paper is as follows. In section 2, 
the theory is synthetically presented, illustrating its general 
mathematical basis,  the prototype equations of the 
controlled system, the master equation for the controller 
and the clipping technique to adapt the method to the semi-
active requirement. Section 3 shows indeed numerical 
simulations to test the effectiveness of the found control 
laws.       

2 A VARIATIONAL APPROACH TO DAMPING 
CONTROL 

Usually the variational approach is used in the control 
theory for finding an optimal control finalized to minimize 
or maximize some objective function in integral form. 

Before describing how a variational approach can be 
suitably used in our context, some preliminary concepts are 
introduced. In control theory the mathematical description 
of the system is expressed as a set of 𝑛𝑛 coupled first-order 
ordinary differential equations, known as the state 
equations, in which the time derivative of each state 
variable is expressed in terms of the state variables 
𝑥𝑥1(𝑡𝑡), . . . , 𝑥𝑥𝑛𝑛(𝑡𝑡) and the system inputs 𝑢𝑢1(𝑡𝑡), . . . ,𝑢𝑢𝑟𝑟(𝑡𝑡). In 
the general case, the form of the 𝑛𝑛-state equations is: 

�̇�𝑥1 = 𝑓𝑓1(𝒙𝒙,𝒖𝒖, 𝑡𝑡)  
�̇�𝑥2 = 𝑓𝑓2(𝒙𝒙,𝒖𝒖, 𝑡𝑡) 
 ⋮   =        ⋮
�̇�𝑥𝑛𝑛 = 𝑓𝑓𝑛𝑛(𝒙𝒙,𝒖𝒖, 𝑡𝑡)

 (1) 

where �̇�𝑥𝑖𝑖 = 𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

  and each of the functions 𝑓𝑓𝑖𝑖(𝒙𝒙,𝒖𝒖, 𝑡𝑡), (𝑖𝑖 =
 1, . . . ,𝑛𝑛) may be a general nonlinear, time varying function 
of the state variables, the system inputs, and time. It is 
common to express the state equations in a vector form, in 
which the state variables are collected into the  vector 
𝒙𝒙(𝑡𝑡)  =  [𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡), . . . , 𝑥𝑥𝑛𝑛(𝑡𝑡)]𝑇𝑇, and the set of 𝑟𝑟 inputs 
into the vector 𝒖𝒖(𝑡𝑡)  =  [𝑢𝑢1(𝑡𝑡),𝑢𝑢2(𝑡𝑡), . . . ,𝑢𝑢𝑟𝑟(𝑡𝑡)]𝑇𝑇.  

Given a set of initial conditions (the values of the 𝑥𝑥𝑖𝑖 at a 
given time 𝑡𝑡0) and the inputs for 𝑡𝑡 ≥  𝑡𝑡0,  the evolutionary 
equation for the state is: 

�̇�𝒙 = 𝒇𝒇(𝒙𝒙,𝒖𝒖, 𝑡𝑡)   (2) 

where 𝒇𝒇(𝒙𝒙,𝒖𝒖, 𝑡𝑡) is a vector function with 𝑛𝑛 components 
𝑓𝑓𝑖𝑖(𝒙𝒙,𝒖𝒖, 𝑡𝑡). The system (2) can represent, for example, a 
mechanical system, written as first order differential 
equation where 𝒖𝒖  is the control action.  

Note that in many cases, the inputs undergo some 
restrictions, that is 𝒖𝒖 ∈  𝐶𝐶 where 𝐶𝐶 represents a subset of 
ℝ𝑟𝑟, is the set of admissible controls. This restriction is 
always encountered in technical applications, and also in 
our devices, since, whatever the physical nature of the 
control systems, actuators have limits in their performances 
like forces, currents, voltages that cannot exceed prescribed 
values.  

In general, the optimal control problems, 𝑜𝑜𝑜𝑜𝑡𝑡 𝐽𝐽, 
considered in the variational approach can be summarized 
as a control algorithm that minimizes or maximizes, for a 
given dynamic system, an objective function (also called 
cost function) of the form 𝐽𝐽 = ∫ 𝐿𝐿(𝒙𝒙,𝒖𝒖, 𝑡𝑡)𝑑𝑑𝑡𝑡𝑑𝑑𝑓𝑓

𝑑𝑑0
 that may 

depend on the status of the system and the vector of inputs. 
In this way a control algorithm minimizing or maximizing a 

given cost function with possible constraints is introduced 
and in particular, in the present work, we state the problem 
as: 

𝑜𝑜𝑜𝑜𝑡𝑡 𝐽𝐽 = � 𝐿𝐿(𝒙𝒙,𝒖𝒖, 𝑡𝑡)𝑑𝑑𝑡𝑡
𝑑𝑑𝑓𝑓

𝑑𝑑0
   

𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑑𝑑 𝑡𝑡𝑜𝑜 

�̇�𝒙 = 𝒇𝒇(𝒙𝒙,𝒖𝒖, 𝑡𝑡)   

(3) 

In order to encompass the constraint conditions, the cost 
function can be completed by using Lagrangian multipliers 
𝝀𝝀(𝑡𝑡) =  [𝜆𝜆1(𝑡𝑡), 𝜆𝜆2(𝑡𝑡), . . . , 𝜆𝜆𝑛𝑛(𝑡𝑡)]𝑇𝑇, which are also called 
adjoint variables. The modified cost function becomes: 

𝐽𝐽 = � 𝐿𝐿(𝒙𝒙,𝒖𝒖, 𝑡𝑡) + 𝝀𝝀𝑇𝑇��̇�𝒙 − 𝒇𝒇(𝒙𝒙,𝒖𝒖, 𝑡𝑡)�𝑑𝑑𝑡𝑡
𝑑𝑑𝑓𝑓

𝑑𝑑0
 (4) 

In general, these types of problems of the calculus of 
variations are called bounded problems, or Lagrange-
Pontryagin problems that can be generalized in this way: 

⎩
⎪
⎨

⎪
⎧𝐽𝐽 = � 𝐿𝐿(𝒙𝒙(𝑡𝑡),𝒖𝒖(𝑡𝑡), 𝑡𝑡)𝑑𝑑𝑡𝑡

𝑑𝑑𝑓𝑓

𝑑𝑑0
  ∶    𝑜𝑜𝑜𝑜𝑡𝑡𝒖𝒖 ∈ ∁  𝐽𝐽

�̇�𝒙 = 𝒇𝒇(𝒙𝒙,𝒖𝒖, 𝑡𝑡)
𝒙𝒙(𝑡𝑡0) = 𝒙𝒙𝑑𝑑0

  (5) 

that is it specifies physical limits for the control variables 
𝑢𝑢1(𝑡𝑡),𝑢𝑢2(𝑡𝑡), . . . ,𝑢𝑢𝑟𝑟(𝑡𝑡). 

The problem (5) is called optimal control and its solution 
𝒖𝒖∗, in the maximum case, specifies the condition: 

𝐽𝐽(𝒖𝒖) ≤  𝐽𝐽(𝒖𝒖∗) , 𝒖𝒖∗ ∈  ∁  𝑎𝑎𝑛𝑛𝑑𝑑     ∀    𝒖𝒖 ∈  ∁ (6) 

𝒙𝒙∗ associated to 𝒖𝒖∗ is called optimal trajectory. 
The approach to determine the optimal control leads to 

the Euler-Lagrange equations, that permits conceptually to 
determine simultaneously 𝒙𝒙∗ and 𝒖𝒖∗. The form and 
characteristics of these equations, and additionally the 
chance of finding a closed form for 𝒖𝒖∗ in terms of 𝒙𝒙∗, much 
depends on the considered problem and related constraints. 

This paper is specifically devoted to establish an optimal 
control algorithm acting on a variable damping of a 
mechanical system. In fact, the existing technology, 
especially that based on the use of magneto-rheological 
dampers, allows for a very effective modification of the 
viscosity of a fluid through the control of electric currents 
in solenoids. 

The following section 2.1 is therefore devoted to the 
statement of the prototype equations of this type of control. 
In section 2.2, the explicit form of Euler-Lagrange 
equations, is derived, focusing on closed form solution for 
𝒖𝒖∗, indeed an important aspect in engineering. In fact, the  
controller is required to act in real-time, without the chance 
of solving complicated differential equations at any instant 
t to determine the control action at the following time step 
𝑡𝑡 + 𝛥𝛥𝑡𝑡. 𝛥𝛥𝑡𝑡, in practical cases of interest, should be as small 
as possible, since the frequency of the controllable 
mechanical vibration is of order 1/𝛥𝛥𝑡𝑡: the larger 𝛥𝛥𝑡𝑡, the 
slower the dynamic of the control system. 
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2.1 Prototype equations of the controlled system 
In this section we specialize the calculus of variation to the 
case of semi-active control by the Euler-Lagrange 
equations. Before to start with a detailed analysis, the 
benefits that this method provides are briefly illustrated.  

First of all, the evolutionary equations of the system are 
very general and any nonlinear effect can be included, so 
frequently appearing in mechanical systems, such as those 
due to the kinematic linkages in the suspension architecture 
or/and those related to constitutive relationships of elastic 
and visco-elastic components. Moreover, the optimal 
control may include any type of nonlinear control laws.  

Based on these observations we can start from a general 
approach of one degree of freedom system (Figure 1) that 
consists of a damper located between a sprung mass and the 
incoming noise signal 𝑦𝑦(𝑡𝑡). 

 
 

Figure 1: A sprung mass with a damper controlled 
suspension system. 

As a very general statement, that will be specified later 
for different required control strategy, we let: 

𝐽𝐽 = � 𝐸𝐸(𝑧𝑧, �̇�𝑧, 𝑦𝑦, �̇�𝑦, 𝑠𝑠)𝑑𝑑𝑡𝑡
𝑑𝑑𝑓𝑓

𝑑𝑑0
 

𝑂𝑂𝑜𝑜𝑡𝑡
𝑐𝑐∈∁

𝐽𝐽     

𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑑𝑑 𝑡𝑡𝑜𝑜  

�
𝑚𝑚�̈�𝑧 + 𝑠𝑠(𝑡𝑡) 𝑓𝑓𝑐𝑐(�̇�𝑧 − �̇�𝑦) + 𝑘𝑘 𝑓𝑓𝑘𝑘(𝑧𝑧 − 𝑦𝑦) = 0  
𝑧𝑧(𝑡𝑡0) = 𝑧𝑧𝑑𝑑0 ;  �̇�𝑧(𝑡𝑡0) = �̇�𝑧𝑑𝑑0 
𝑠𝑠(𝑡𝑡) ∈ [𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑠𝑠𝑚𝑚𝑚𝑚𝑥𝑥] , 𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛 > 0 ,  𝑠𝑠𝑚𝑚𝑚𝑚𝑥𝑥 > 𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛

 

(7) 

where: 
- 𝐸𝐸(𝑧𝑧, �̇�𝑧,𝑦𝑦, �̇�𝑦, 𝑠𝑠) is an objective function that will be 

chosen in function of some physical intuition;  
- 𝑓𝑓𝑐𝑐(�̇�𝑧 − �̇�𝑦) and 𝑓𝑓𝑘𝑘(𝑧𝑧 − 𝑦𝑦) are nonlinear functions of 

the argument (�̇�𝑧 − �̇�𝑦) and (𝑧𝑧 − 𝑦𝑦) respectively, 
typically such nonlinearity include geometric or 
constitutive nonlinearity of the suspension system; 

-  𝑠𝑠(𝑡𝑡) describes the control action and 𝑠𝑠(𝑡𝑡) ∈
[𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑠𝑠𝑚𝑚𝑚𝑚𝑥𝑥] , 𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛 ≥ 0, which implies the device is 
semi-active; 

- 𝑘𝑘 is the spring constant; 
- 𝑚𝑚 is the sprung mass; 
- 𝑧𝑧(𝑡𝑡) is the absolute sprung mass displacement; 

- 𝑦𝑦(𝑡𝑡) the noise signal. 
Note that the initial conditions 𝑧𝑧(𝑡𝑡0) = 𝑧𝑧𝑑𝑑0 and 𝑧𝑧(𝑡𝑡𝑓𝑓) =

𝑧𝑧𝑑𝑑𝑓𝑓  are substituted by 𝑧𝑧(𝑡𝑡0) = 𝑧𝑧𝑑𝑑0 and �̇�𝑧(𝑡𝑡0) = �̇�𝑧𝑑𝑑0 .  
The procedure to extract the optimal control law is 

described in the following. 
Considering the equation (4) we have: 

𝛿𝛿 𝐽𝐽 = 𝛿𝛿 � 𝐸𝐸(𝑧𝑧, �̇�𝑧, 𝑦𝑦, �̇�𝑦, 𝑠𝑠)
𝑑𝑑𝑓𝑓

𝑑𝑑0
+ 𝜆𝜆�𝑚𝑚�̈�𝑧 + 𝑠𝑠(𝑡𝑡) 𝑓𝑓𝑐𝑐(�̇�𝑧 − �̇�𝑦)
+ 𝑘𝑘 𝑓𝑓𝑘𝑘(𝑧𝑧 − 𝑦𝑦)�𝑑𝑑𝑡𝑡 = 0 

(8) 

In the problem of actual interest, we are faced with the 
restraint 𝑠𝑠(𝑡𝑡) ∈ [𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑠𝑠𝑚𝑚𝑚𝑚𝑥𝑥].  This is not explicitly included 
in the minimization analysis that leads to a solution in 
terms of 𝑧𝑧∗(𝑡𝑡) and 𝑠𝑠∗(𝑡𝑡) that does not satisfy the condition 
𝑠𝑠(𝑡𝑡) ∈ [𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑠𝑠𝑚𝑚𝑚𝑚𝑥𝑥] at any 𝑡𝑡. However, the actual value of 
𝑠𝑠∗(𝑡𝑡) is managed by the simple clipping procedure:  

�
𝑠𝑠(𝑡𝑡) = 𝑠𝑠∗(𝑡𝑡)          ∀       𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛 ≥ 𝑠𝑠∗(𝑡𝑡) ≥ 𝑠𝑠𝑚𝑚𝑚𝑚𝑥𝑥
𝑠𝑠(𝑡𝑡) = 𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛           ∀               𝑠𝑠∗(𝑡𝑡) < 𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛
𝑠𝑠(𝑡𝑡) = 𝑠𝑠𝑚𝑚𝑚𝑚𝑥𝑥           ∀                𝑠𝑠∗(𝑡𝑡) > 𝑠𝑠𝑚𝑚𝑚𝑚𝑥𝑥

   (9) 

If equation (8) admits a solution for 𝑧𝑧∗ and 𝑠𝑠∗, then (9)  
provide the desired result.  

For some choices of the objective function 
𝐸𝐸(𝑧𝑧, �̇�𝑧,𝑦𝑦, �̇�𝑦, 𝑠𝑠), it may happen that the optimal solution does 
not exist. In this cases, the control is abandoned. These 
cases, under some conditions, could be approached by the 
Pontryagin’s theorem. However, because the application of 
the variational approach becomes very difficult, we prefer 
to skip the analysis of these cases in this engineering 
context. 

We can further manipulate equations (8):  

𝛿𝛿 𝐽𝐽 = � �𝜕𝜕𝐸𝐸
𝜕𝜕𝑧𝑧

 𝛿𝛿𝑧𝑧 +
𝜕𝜕𝐸𝐸
𝜕𝜕�̇�𝑧

 𝛿𝛿�̇�𝑧 +
𝜕𝜕𝐸𝐸
𝜕𝜕𝑠𝑠

 𝛿𝛿𝑠𝑠 + 𝜆𝜆𝑚𝑚 𝛿𝛿�̈�𝑧
𝑑𝑑𝑓𝑓

𝑑𝑑0
+ 𝜆𝜆𝑓𝑓𝑐𝑐(�̇�𝑧 − �̇�𝑦)𝛿𝛿𝑠𝑠

+ 𝜆𝜆𝑠𝑠
𝜕𝜕𝑓𝑓𝑐𝑐(�̇�𝑧 − �̇�𝑦)

𝜕𝜕�̇�𝑧
𝛿𝛿�̇�𝑧

+ 𝜆𝜆𝑘𝑘
𝜕𝜕𝑓𝑓𝑘𝑘(𝑧𝑧 − 𝑦𝑦)

𝜕𝜕𝑧𝑧
𝛿𝛿𝑧𝑧�  𝑑𝑑𝑡𝑡

= 0 

(10) 

Using the variational method and assuming that 𝛿𝛿𝑧𝑧(𝑡𝑡0) =
0, 𝛿𝛿𝑧𝑧�𝑡𝑡𝑓𝑓� = 0, 𝛿𝛿𝑠𝑠(𝑡𝑡0) = 0, 𝛿𝛿𝑠𝑠�𝑡𝑡𝑓𝑓� = 0, we obtain: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧�̈�𝜆𝑚𝑚 −

𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝐸𝐸
𝜕𝜕�̇�𝑧

+ 𝜆𝜆𝑠𝑠
𝜕𝜕𝑓𝑓𝑐𝑐(�̇�𝑧 − �̇�𝑦)

𝜕𝜕�̇�𝑧
� +

𝜕𝜕𝐸𝐸
𝜕𝜕𝑧𝑧

                                   +𝜆𝜆𝑘𝑘 
𝜕𝜕𝑓𝑓𝑘𝑘(𝑧𝑧 − 𝑦𝑦)

𝜕𝜕𝑧𝑧
= 0

𝑚𝑚�̈�𝑧 + 𝑠𝑠(𝑡𝑡) 𝑓𝑓𝑐𝑐(�̇�𝑧 − �̇�𝑦) + 𝑘𝑘 𝑓𝑓𝑘𝑘(𝑧𝑧 − 𝑦𝑦) = 0
𝜕𝜕𝐸𝐸
𝜕𝜕𝑠𝑠

+ 𝜆𝜆𝑓𝑓𝑐𝑐(�̇�𝑧 − �̇�𝑦) = 0

𝑧𝑧(𝑡𝑡0) = 𝑧𝑧𝑑𝑑0  ;  �̇�𝑧(𝑡𝑡0) = �̇�𝑧𝑑𝑑0

 (11) 

an algebraic-differential problem in terms of 𝑧𝑧, 𝑠𝑠, 𝜆𝜆. 

 

 

 

𝑘𝑘 𝑠𝑠(𝑡𝑡) 

𝑚𝑚 
𝑧𝑧(𝑡𝑡) 

𝑦𝑦(𝑡𝑡) 
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2.2 Master equation of the optimal controller 
It is important to remark the way equations (11) are used in 
this context. In fact, although they represent a system of 
algebraic-differential equations, our goal is not their 
solutions. The engineering goal is to determine how 𝑠𝑠(𝑡𝑡) 
should be modified depending on some measured quantities 
during the operating conditions. Therefore, equation (11) 
must be used considering they provides an implicit 
relationship between 𝑠𝑠(𝑡𝑡) and the variables 𝑧𝑧(𝑡𝑡), 𝑦𝑦(𝑡𝑡). 
Once these last quantities are measured by suitable sensors, 
equations (11) permit to determine the best values of 𝑠𝑠(𝑡𝑡) 
at any instant 𝑡𝑡 to minimize the desired objective function 
𝐽𝐽. Part of the following analysis is devoted to find explicit 
form of 𝑠𝑠(𝑡𝑡) in terms of 𝑧𝑧(𝑡𝑡) and 𝑦𝑦(𝑡𝑡), by suitable 
selection of the form of the function 𝐸𝐸.  

From equation (11), for 𝑓𝑓𝑐𝑐(�̇�𝑧 − �̇�𝑦) ≠ 0, we have: 

⎩
⎪⎪
⎨

⎪⎪
⎧�̈�𝜆𝑚𝑚 −

𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝐸𝐸
𝜕𝜕�̇�𝑧

+ 𝜆𝜆𝑠𝑠
𝜕𝜕𝑓𝑓𝑐𝑐(�̇�𝑧 − �̇�𝑦)

𝜕𝜕�̇�𝑧
� +

𝜕𝜕𝐸𝐸
𝜕𝜕𝑧𝑧

                                 +𝜆𝜆𝑘𝑘 
𝜕𝜕𝑓𝑓𝑘𝑘(𝑧𝑧 − 𝑦𝑦)

𝜕𝜕𝑧𝑧
= 0

𝜆𝜆 = −
𝜕𝜕𝐸𝐸
𝜕𝜕𝑠𝑠

1
𝑓𝑓𝑐𝑐(�̇�𝑧 − �̇�𝑦)

 (12) 

When substituting the second equation into the first one 
equation: 

�̈�𝜆𝑚𝑚 −
𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝐸𝐸
𝜕𝜕�̇�𝑧

−
𝜕𝜕𝐸𝐸
𝜕𝜕𝑠𝑠

1
𝑓𝑓𝑐𝑐(�̇�𝑧 − �̇�𝑦) 𝑠𝑠

𝜕𝜕𝑓𝑓𝑐𝑐(�̇�𝑧 − �̇�𝑦)
𝜕𝜕�̇�𝑧

�

+
𝜕𝜕𝐸𝐸
𝜕𝜕𝑧𝑧

−
𝜕𝜕𝐸𝐸
𝜕𝜕𝑠𝑠

𝑘𝑘
𝑓𝑓𝑐𝑐(�̇�𝑧 − �̇�𝑦) 

𝜕𝜕𝑓𝑓𝑘𝑘(𝑧𝑧 − 𝑦𝑦)
𝜕𝜕𝑧𝑧

= 0 

(13) 

and integrating two times 

𝜆𝜆𝑚𝑚

= ��
𝜕𝜕𝐸𝐸
𝜕𝜕�̇�𝑧

−
𝜕𝜕𝐸𝐸
𝜕𝜕𝑠𝑠

1
𝑓𝑓𝑐𝑐(�̇�𝑧 − �̇�𝑦) 𝑠𝑠

𝜕𝜕𝑓𝑓𝑐𝑐(�̇�𝑧 − �̇�𝑦)
𝜕𝜕�̇�𝑧

� 𝑑𝑑𝑑𝑑

− ���
𝜕𝜕𝐸𝐸
𝜕𝜕𝑧𝑧

−
𝜕𝜕𝐸𝐸
𝜕𝜕𝑠𝑠

𝑘𝑘
𝑓𝑓𝑐𝑐(�̇�𝑧 − �̇�𝑦) 

𝜕𝜕𝑓𝑓𝑘𝑘(𝑧𝑧 − 𝑦𝑦)
𝜕𝜕𝑧𝑧

� 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑′ + 𝑠𝑠0 𝑡𝑡

+ 𝑠𝑠1 

(14) 

Substituting this last expression into the second of (12), 

𝜕𝜕𝐸𝐸
𝜕𝜕𝑠𝑠

𝑚𝑚
𝑓𝑓𝑐𝑐(�̇�𝑧 − �̇�𝑦)

+ ��
𝜕𝜕𝐸𝐸
𝜕𝜕�̇�𝑧

−
𝜕𝜕𝐸𝐸
𝜕𝜕𝑠𝑠

1
𝑓𝑓𝑐𝑐(�̇�𝑧 − �̇�𝑦) 𝑠𝑠

𝜕𝜕𝑓𝑓𝑐𝑐(�̇�𝑧 − �̇�𝑦)
𝜕𝜕�̇�𝑧

� 𝑑𝑑𝑑𝑑

− ���
𝜕𝜕𝐸𝐸
𝜕𝜕𝑧𝑧

−
𝜕𝜕𝐸𝐸
𝜕𝜕𝑠𝑠

𝑘𝑘
𝑓𝑓𝑐𝑐(�̇�𝑧 − �̇�𝑦) 

𝜕𝜕𝑓𝑓𝑘𝑘(𝑧𝑧 − 𝑦𝑦)
𝜕𝜕𝑧𝑧

� 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑′ + 𝑠𝑠0 𝑡𝑡

+ 𝑠𝑠1 = 0 

(15) 

This equation, together with equation (11), is the basis to 
derive several control laws for different choices of the 
objective function 𝐸𝐸 extracting the control function 𝑠𝑠(𝑡𝑡) 
from the equation (15), as in the following examples.  

However, it is useful to remark that this equation does 
not always provide the desired optimal control solution. 
The first obvious case is met when none relative maximum 
or minimum exists for the functional 𝐽𝐽. A second case is 
met when not a unique solution can be determined. 

2.3 Semi-active active implementation and the clipping 
technique 

One must observe we adopted a Lagrangian approach that 
skipped the use of the Pontryagin’s theorem, in that the 
condition 𝑠𝑠(𝑡𝑡) ∈ [𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑠𝑠𝑚𝑚𝑚𝑚𝑥𝑥] is not directly included into 
the problem formulation, but indeed introduced a posteriori 
through the clipping operation. Although this simplifies the 
method, a legitimated question arises about the 
characteristic of the solution we found. It is possible to 
show easily, that (i) if the solution is unique, in the sense 
that a single relative minimum or maximum exists for 𝐽𝐽, 
and (ii) under some reasonable regularity conditions for 𝐽𝐽, 
then the clipping procedure produces the best solution, 
compatible with the restraints on the control function. This 
means 𝑠𝑠∗(𝑡𝑡) found solving equations (11) or (15), and 
subjected to the clipping restriction (9) produces the 
smallest (or the largest) possible value for 𝐽𝐽 within the 
admissible range for 𝑠𝑠(𝑡𝑡), i.e. an absolute minimum (or 
maximum) is obtained for 𝐽𝐽.  

This can be easily understood from Figure 2 where a 
simplified illustration of the question in two dimensions is 
represented. 

 

Figure 2:Control law in the case of limited ranges 

𝐽𝐽 is on the vertical axis, while 𝑠𝑠(𝑡𝑡) is on the horizontal 
one. If there is a unique relative minimum for 𝐽𝐽 determined 
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by an unconstrained Lagrangian approach, then we can 
distinguish three cases. If the minimum is located within 
the interval [𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑠𝑠𝑚𝑚𝑚𝑚𝑥𝑥], (Figure 2: case 1), then the 
Lagrangian approach keeps directly 𝑠𝑠(𝑡𝑡) = 𝑠𝑠∗(𝑡𝑡), that is 
the minimum for 𝐽𝐽. If the minimum falls outside of the 
interval [𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑠𝑠𝑚𝑚𝑚𝑚𝑥𝑥], (Figure 2: case 2 and case 3), then the 
Lagrangian approach identifies again 𝑠𝑠(𝑡𝑡) = 𝑠𝑠∗(𝑡𝑡) as the 
minimum solution, but the clipping operation puts the 
solution on the boundary of the interval [𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑠𝑠𝑚𝑚𝑚𝑚𝑥𝑥] closest 
to 𝑠𝑠∗(𝑡𝑡). However, this is still the best minimum solution 
compatible with the control function restraint. 

2.4 Analysis of special class of objective functions 
Let us specify the objective function as: 

𝐸𝐸(𝑧𝑧, �̇�𝑧, 𝑦𝑦, �̇�𝑦, 𝑠𝑠) = 𝛼𝛼�̈�𝑧2 + 𝛽𝛽�̇�𝑧2 + 𝛾𝛾𝑧𝑧2 (16) 

In this case, a combination of acceleration, speed and 
displacement are considered for the optimization. The 
coefficients 𝛼𝛼, 𝛽𝛽 and 𝛾𝛾 are responsible for the weights the 
designer desires to assign to each of the three terms.  

Therefore: 

𝑂𝑂𝑜𝑜𝑡𝑡 𝐽𝐽 

𝐽𝐽 = � 𝛼𝛼�
𝑠𝑠(𝑡𝑡)
𝑚𝑚

 𝑓𝑓𝑐𝑐(�̇�𝑧 − �̇�𝑦) +
𝑘𝑘
𝑚𝑚

 𝑓𝑓𝑘𝑘(𝑧𝑧 − 𝑦𝑦)�
2𝑑𝑑𝑓𝑓

𝑑𝑑0
+ 𝛽𝛽�̇�𝑧2 + 𝛾𝛾𝑧𝑧2𝑑𝑑𝑡𝑡     

�
𝑚𝑚�̈�𝑧 + 𝑠𝑠(𝑡𝑡) 𝑓𝑓𝑐𝑐(�̇�𝑧 − �̇�𝑦) + 𝑘𝑘 𝑓𝑓𝑘𝑘(𝑧𝑧 − 𝑦𝑦) = 0  
𝑧𝑧(𝑡𝑡0) = 𝑧𝑧𝑑𝑑0 ;  �̇�𝑧(𝑡𝑡0) = �̇�𝑧𝑑𝑑0  

(17) 

where the equation of motion is used to replace �̈�𝑧 in (16). 
Using equation (15) with 𝑠𝑠0 = 0, we obtain, for 𝑓𝑓𝑐𝑐(�̇�𝑧 −
�̇�𝑦) ≠ 0, 

𝑠𝑠∗(𝑡𝑡)  = −𝑘𝑘
𝑓𝑓𝑘𝑘(𝑧𝑧 − 𝑦𝑦)
𝑓𝑓𝑠𝑠(�̇�𝑧 − �̇�𝑦)

+
𝑔𝑔1

𝑓𝑓𝑠𝑠(�̇�𝑧 − �̇�𝑦)
� ż 𝑑𝑑𝑑𝑑
𝑑𝑑

𝑡𝑡0

+
𝑔𝑔2

𝑓𝑓𝑠𝑠(�̇�𝑧 − �̇�𝑦)
� � 𝑧𝑧𝑑𝑑𝑑𝑑

𝑑𝑑

𝑡𝑡0

𝑑𝑑𝑑𝑑′
𝑑𝑑

𝑑𝑑0
+ 𝑔𝑔3 

(18) 

The coefficients  𝑔𝑔1, 𝑔𝑔2 and 𝑔𝑔3 are tuning parameters: 

⎩
⎪
⎨

⎪
⎧𝑔𝑔1 = −

𝑚𝑚𝛽𝛽
𝛼𝛼

𝑔𝑔2 =
𝑚𝑚𝛾𝛾
𝛼𝛼

 
𝑔𝑔3 = −𝑠𝑠1

 (19) 

In the section 3 the control law (18) is analyzed by using 
numerical simulations. 

 

Figure 3: Diagram of the control system 

The synthesis of determined controller is depicted in the 
block scheme of Figure 3, emphasizing the structure of the 
determined feedback filter. 

3 NUMERICAL RESULTS 
The non-linear control law (18) is an explicit solution for 
𝑠𝑠(𝑡𝑡) in terms of 𝑧𝑧(𝑡𝑡), 𝑦𝑦(𝑡𝑡) and their derivatives, that are 
measured by suitable sensors.  In fact, the general control 
system is equipped, at least, with two sensors, as illustrated 
in Figure 3, to determine the best values of 𝑠𝑠(𝑡𝑡) that 
minimize the desired objective function 𝐸𝐸 specified by 
equation (16). The sensors 𝑆𝑆1 and 𝑆𝑆2 of Figure 3 are 
generally accelerometers. The sensors are connected to an 
electronic controller implementing the structure depicted in 
Figure 3. The performance  of the actual controller is 
applied to a quarter-car model and compared with the sky-
hook technique, synthesized as follows: 

𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠−ℎ𝑜𝑜𝑜𝑜𝑘𝑘(𝑡𝑡) = �𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛 𝑖𝑖𝑓𝑓 �̇�𝑧(�̇�𝑧 − �̇�𝑦) ≤ 0
𝑠𝑠𝑚𝑚𝑚𝑚𝑥𝑥 𝑖𝑖𝑓𝑓 �̇�𝑧(�̇�𝑧 − �̇�𝑦) > 0 (20) 

The numerical experiments reported are obtained using 
ISO8608, using  a power spectral density (PSD): 

𝐺𝐺(𝑛𝑛) = 𝐺𝐺(𝑛𝑛0) �
𝑛𝑛
𝑛𝑛0
�
−2

 (21) 

where 𝑛𝑛 is the spatial frequency 𝑠𝑠𝑦𝑦𝑠𝑠𝑐𝑐𝑠𝑠/𝑚𝑚𝑠𝑠𝑡𝑡𝑠𝑠𝑟𝑟𝑠𝑠, and 𝑛𝑛0 and 
𝐺𝐺(𝑛𝑛0) are constant, for the following simulation, equal to: 

𝑛𝑛0 = 0.1
𝑠𝑠𝑦𝑦𝑠𝑠𝑐𝑐𝑠𝑠
𝑚𝑚

  (22) 
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𝐺𝐺(𝑛𝑛0) = 32 ∙ 10−6
𝑚𝑚3

𝑠𝑠𝑦𝑦𝑠𝑠𝑐𝑐𝑠𝑠
 

In the figures 4 and 5 the displacement and acceleration 
of the sprung mass are reported. Note that the variational 
control law tested with the gain 𝑔𝑔1 = 𝑔𝑔2 = 𝑔𝑔3 = 0 
produces a very low acceleration, although, a higher value 
for the sprung mass displacement. 

In fact for 𝑔𝑔1 = 𝑔𝑔2 = 𝑔𝑔3 = 0 the objective function is: 

𝐸𝐸(𝑧𝑧, �̇�𝑧, 𝑦𝑦, �̇�𝑦, 𝑠𝑠) = 𝛼𝛼�̈�𝑧2 (23) 

that collapses into a simple acceleration requirement. 
 The same considerations are valid for the displacement 

and acceleration PSD represented in the figures 6 and 7. 
Finally a probability density function PDF of the two 
signals is presented in the figures 8 and 9. 

 

Figure 4: Displacement of the sprung mass 𝑧𝑧(𝑡𝑡). 

 

Figure 5: Acceleration of the sprung mass �̈�𝑧(𝑡𝑡). 

 

Figure 6: PSD displacement of the sprung mass 𝑧𝑧(𝑡𝑡). 

 

Figure 7: PSD acceleration of the sprung mass �̈�𝑧(𝑡𝑡). 

 

Figure 8: PDF displacement of the sprung mass 𝑧𝑧(𝑡𝑡). 

 

Figure 9: PDF acceleration of the sprung mass �̈�𝑧(𝑡𝑡). 

 

CONCLUSIONS 
The presented control is based on a variational formulation 
and applied to a simple suspension model. It introduces a 
general control  law that includes a variable damper with a 
semi-active device.  
The obtained Euler-Lagrange equations provide the 
damping in a closed form in terms of the suspension 
measured state variables. 
The new control strategy, minimizes the sprung mass 
acceleration. The numerical simulations show very good 
results and an excellent uniformity and robustness of the 
control. There are still many parameters to tune to improve 
the controller performances, the scope of future activities.  
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