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Abstract

We refer to the Technical Specifications provided by EIOPA to implement the package of long-

term guarantees measures which shall be included into the Solvency II Framework Directive.

One of these regulatory measures concernes the Application Ratio, a coefficient defining what

portion of the Maximum Matching Adjustment an insurance company can apply to the risk-

free rates for discounting her obligations, given the matching properties of the assigned asset

portfolio. In this paper we propose an optimization algorithm providing a reliable assessment

of the Application Ratio. The Application Ratio provided by the algorithm is optimal in the

sense that it has the maximum value given the structure of the asset-liability portfolio. This

value corresponds to the minimum attainable level for the losses incurred from forced sales

of defaultable bonds with mispriced market value. We show that under natural assumptions

this optimality problem has the form of a linear programming problem, which can be easily

solved using standard numerical procedures. A matching criterion defined in stronger form

can also be applied by imposing appropriate run-off constraints in the linear programming

problem. The value of the optimal Application Ratio can be used by a Supervisor as an

objective benchmark for checking the appropriateness of the Application Ratio adopted by
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the undertaking. The optimal liquidation policy provided by the algorithm can also be used

by an insurance undertaking which want to apply conservative management actions to her

asset-liability portfolio.

Keywords. Matching adjustment, Asset-liability management, Optimal matching, Management

actions, Credit risk.

1 Introduction

In the current negotiation between the European Parliament, the Council and the European

Commission on a Directive (Omnibus II) amending and implementing the Solvency II Frame-

work Directive (EC, 2009), the “trilogue parties” have agreed to include a Long-Term Guaran-

tees Package (LTGP), that is a package of regulatory measures concerning insurance products

with long-term guarantees.

One of the most relevant measures in LTGP is based on the following basic idea:

· if an insurance company holds defaultable bonds in an asset portfolio designed for backing

the expected insurance liabilities; and

· if it is Supervisor’s opinion that these assets are currently underpriced by the market with

respect to their correct default probability,

then the company is allowed to value these assets at the correct price – which is indicated by

the Supervisor – net of the losses for forced sales caused by mismatching with the outstanding

liabilities. The “Matching Adjustment” is the value adjustment, expressed or as a premium

on the assets or as a discount on the liabilities, which is appropriate taking into account the

matching properties of the asset-liability insurance portfolio.

The idea is a relevant one since in the current conditions of market distress it allows to

protect from distorting short term perceptions and artificial volatility important quantities of

government bonds, leaving the judgement on their credit standing to European supervisory

agencies (the European Insurance and Occupational Pensions Authority – EIOPA, and the

European Systemic Risk Board – ESRB), which could produce stabilising and countercyclical

effects.
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In order to provide a level playing field to all market participants however, the Matching

Adjustment must be determined in a verifiable and not distorting manner. While the “maxi-

mum matching adjustment” (the value adjustment without any early forced sale of assets) for

a given asset-liability portfolio can be easily identified, it could be very difficult to specify the

correct “application ratio”, that is the fraction of the maximum adjustment which is appropri-

ate to apply given the portfolio structure.

In the proposal emerging from the current negotiation the Matching Adjustment is defined

as a premium that (re)insurance undertakings will apply to the risk-free interest rates when

the present value of the outstanding liabilities is computed. The calculation details for deriving

the maximum matching adjustment and the application ratio are illustrated in a document

prepared by EIOPA (2012). This document provides the technical specifications for an impact

assessment which will be run for collecting information from the insurance industry on the

effects of the LTG package. In our opinion, however, some aspects of the current proposal for

defining and computing the Matching Adjustment are questionable.

In this paper an objective and verifiable methodology for determining the Matching Ad-

justment of an asset-liability insurance portfolio is proposed. The methodology is derived in

a semideterministic model for the portfolio management, where the current and future asset

prices are determined using typical market practices. The application ratio is obtained as the

solution of an optimization problem subject to natural portfolio constraints. The optimization

problem takes the form of a linear programming problem which can be easily solved using

standard algorithms. The obtained solution (and also the possible infeasibility of the problem)

is immediately understandable in economic terms, clearly reflecting the matching properties of

the portfolio.

2 Formulation of the reference model

We consider a given portfolio of outstanding insurance policies and an assigned portfolio of

assets. It is assumed for the moment that all the assets held are bonds with fixed cash flows.
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2.1 The asset-liability portfolio: basic definitions

The current date is t = 0. All the projected cash flows of both assets and liabilities are scheduled

on the same time grid:

t := {1, 2, . . . ,m} .

We denote by δ the length in years of the grid time step.

Remark. In order to obtain a good precision when mapping the cash flows on the grid time

points the choice δ = 1/12 (monthly grid) is usually the most appropriate. It turns out however

that a monthly time grid can be demanding by a computational point of view. Then quarterly,

semi-annual or annual grids (δ = 0.25, 0.5, 1) can also be considered.

The risk-free discount factor observed on the market at time 0 for maturity date k is given by:

v(0, k) := (1 + ik)
−kδ = e−kδ rk ,

where ik and rk is the risk-free interest rate and the yield-to-maturity, respectively, on annual

basis for maturity kδ years.

The stream of the expected net liability cash flows (benefits minus premiums) is denoted

by:

y := {y1, y2, . . . , ym} , with yk ∈ R , k = 1, 2, . . . ,m .

We denote by my the terminal date of the liability stream, i.e. my := max{k : yk > 0}.

Remark. If one adopts the point of view of the replicating portfolio for modelling the insurance

obligations (see Daul et al., 2009, or Sandström, 2011 chapter 8), y can be interpreted as

the cash flows stream generated by that portfolio. Since we interpret yk as an expected cash

flow, we refer to the replicating portfolio in the “central” scenario. However we could also use a

different representations of the obligations, considering the liability stream ystress corresponding

to “stressed” scenarios, i.e. stemming from applying the stresses prescribed by the Supervisor

to the underwriting risks to which the insurance portfolio is exposed.

Remark. Generally, the liability cash flow Yk to be paid at date k is exposed to both actu-

arial (“technical”) and financial uncertainty, where usually the second type of uncertainty is
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generated by profit-sharing clauses1. In the framework of the arbitrage-free stochastic pricing

models, if Yk is affected only by financial uncertainty yk should be interpreted as the expectation

of Yk with respect to the forward risk-neutral probabilities.

At the current date n assets are held in the assigned portfolio for backing the liabilities. These

assets are bonds with fixed cash flows exposed to credit risk. The notional cash flows generated

by asset i are denoted as:

xi := {xi,1, xi,2, . . . , xi,m} , i = 1, 2, . . . , n , with xi,k ≥ 0 ∀i, k .

We denote by mi the maturity date of asset i, i.e. mi := max{k : xi,k > 0}. It is natural to

pose m = max{my,mi, i = 1, 2, . . . , n}. The quantity of asset i held at time 0 is:

qi ≥ 0 , i = 1, 2, . . . , n .

The current market price of one unit of asset i is denoted as:

Pi,0 , i = 1, 2, . . . , n ,

and the market credit spread of asset i is given by:

σi , i = 1, 2, . . . , n .

We also consider the fundamental spread of asset i given at time 0 by EIOPA:

σ̂i , i = 1, 2, . . . , n .

Remark. Here σi and σ̂i represent the constant spread which is equivalent to term structure of

credit spreads corresponding to rating, sector and time-to-maturity of asset i.

1For a joint modelling of the two types of uncertainties see e.g. De Felice et al., 2005.
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2.2 The current definition of the Matching Adjustment

In the current Solvency II regulation the Matching Adjustment is defined as a premium applied

to the basic risk-free interest rates when computing the present value of the insurance liabilities.

The details for calculation are contained in a technical specifications document provided by

EIOPA (2012), where the prescriptions of articles 77 c (“Classical Matching Adjustment”) and

77 e (“Extended Matching Adjustment”) of the Directive are implemented. This specifications,

which can be referred to as “the current proposal”, can be summarized as follows.

At time 0 the Best Estimate of the liabilities is defined as:

B :=
m∑
k=1

yk v(0, k) ,

and the market value of the asset portfolio, the assigned portfolio, is given by:

A :=
n∑
i=1

qi Pi,0 .

For simplicity sake we assume that all the assets held are admissible. The maximum matching

adjustment, defined as a premium on the rates for discounting liabilities, is obtained as:

∆rmax := r(A) − r − σavg ,

where:

r(A) :
m∑
k=1

yk e
−r(A) k δ = A ,

r :
m∑
k=1

yk e
−r k δ = B ,

and where:

σavg :=
n∑
i=1

σ̂i
qi Pi,0
A

is the average fundamental spread.

Remark. The rationale of the definition of the maximum matching adjustment is not completely

clear. For example, if A > B one has r(A) < r and then ∆rmax < 0, which seems to be
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counterintuitive. Actually ∆rmax has the expected positivity property only when the asset

value A is sufficiently lower than the best estimate B, in order to have r(A) > r + σavg. Some

additional consistency conditions required in EIOPA’s document do not seam sufficient to avoid

these drawbacks.

The corresponding Matching Adjustment ∆r is equal to the maximum matching adjustment

multiplied by the Application Ratio α:

∆r := α∆rmax ,

where the Application Ratio is given by:

α := max

{
0, 1− Lstress

B

}
,

Lstress being the discounted-cash-flow-shortfall, which “reflects the losses through forced sales

caused by the incidence of lapse risk, mortality risk, disability-morbidity risk and/or life catas-

trophe risk” (EIOPA, 2012 p. 28). The shortfall Lstress is obtained by aggregating, via a pre-

scribed correlation matrix, the individual shortfalls computed under prescribed stressed condi-

tions on each of the four risk drivers considered.

Remark. One can define the adjusted best estimate of the liabilities as:

B̂ :=
m∑
k=1

yk v(0, k) e−∆r kδ .

In terms of Net Asset Value, applying this Matching Adjustment ∆r is the same as increasing

the value of the asset by ∆B = B − B̂. If α = 1 one should have:

B̂ ≈
m∑
k=1

yk e
−(r(A)−σavg) kδ .
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2.3 Matching Adjustment defined on the asset prices

Some aspects of the current proposal on the Matching Adjustment are questionable. In par-

ticular, the definition of the Application Ratio does not correctly take into account the actual

matching structure between assets and liabilities. In order to better implement prescriptions

of article 77 e, we propose a formulation of the Matching Adjustment derived as a premium

on the price of the assets, instead of on the rates for discounting liabilities (a premium-based

approach has also been proposed in CRO-CFO, 2012). Using a simple model with very natural

assumptions, the matching properties of the asset-liability portfolio can be defined and mea-

sured in a reliable and objective manner. However, all the results of the approach can be easily

reformulated in terms of adjustment on rates instead of prices.

In order to apply our approach we need to model the management of the asset portfolio

during the lifetime of the outstanding policies, then we need to slightly extend the asset-liability

model. The approach we propose can be defined semi-deterministic, in the sense that the de-

fault probabilities are properly modelled, while the interest rates are deterministic, the future

interest rates being given by the forward rates implied by the current term structure.

2.3.1 The semi-deterministic model: additional definitions

When considering the management actions on the asset portfolio, we denote by:

si,k , i = 1, 2, . . . , n , k = 0, 1, . . . ,m , with 0 ≤ si,k ≤ qi ,

the amount of asset i sold at date k < mi.

We then consider the price P̂i,0 of asset i associated at time 0 to the fundamental spread σ̂i.

Using the market best practice, this fundamental price, or EIOPA price, is computed as:

P̂0,i :=
m∑
k=1

xi,k v(0, k) e−kδ σ̂i , i = 1, 2, . . . , n .
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We also consider the stream x̃i := {x̃i,1, x̃i,2, . . . , x̃i,m, } of the de-risked cash flows of asset i

consistent with the market spread, which are given by:

x̃i,k := xi,k e
−kδ σi , k = 1, 2, . . . ,m ,

and the stream x̂i := {x̂i,1, x̂i,2, . . . , x̂i,m, } of the de-risked cash flows of asset i consistent with

the fundamental spread:

x̂i,k := xi,k e
−kδ σ̂i , k = 1, 2, . . . ,m .

Remark. In standard stochastic models for credit risk (see e.g. Duffie et al., 2003), the factors

e−kδ σi and e−kδ σ̂i provide the risk-neutral “probability of survival” (i.e., not-default) of the

bond i consistent with the credit spread σi and σ̂i, respectively. For simplicity sake, assume

that the credit spreads include only the default event. Let τi denote the default time of asset

i and let 1E be the indicator function of the event E . If one considers the stochastic cash flow

Xi,k := xi,k 1τi>kδ, one finds that the de-risked cash flow x̃i,k (or x̂i,k) is the expectation of Xi,k

with respect to the risk-neutral probabilities corresponding to the spread σi (or σ̂i, resp.). Since

we assumed that xi,k is deterministic, this is also the expectation with respect to the forward

risk-neutral probabilities. Therefore the price of Xi,k is obtained by discounting x̃i,k (or x̂i,k)

with the risk-neutral rate (see Appendix 1).

Using the de-risked cash flows, we can compute the future market price and the future EIOPA

price of asset i, which are defined as, respectively:

Pi,k =
m∑

h=k+1

x̃i,hm(k, h) , P̂i,k =
m∑

h=k+1

x̂i,hm(k, h) , k = 1, 2, . . . ,m .

where:

m(k, h) :=
v(0, h)

v(0, k)
, h ≥ k ,

is the forward risk-free capitalization factor from date k to date h.

Remark. Therefore the future prices Pi,k and P̂i,k (k > 0) are computed under forward rate

assumption: at date k the residual (ex-coupon) cash flow stream, de-risked under Pi,0 and
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P̂i,0 respectively, is discounted with the forward risk-free rates. Of course, for “non eligible

assets” one has P̂i,k = Pi,k. By the computational point of view, it is useful to observe that for

i = 1, 2, . . . , n one has Pi,k = P̂i,k = 0 for k ≥ mi.

Using the previous definitions we can introduce our proposal for a Matching Adjustment based

on prices.

2.3.2 The alternative Matching Adjustment definition

In our proposal, the maximum matching adjustment (as a premium on the market value of

assets) is defined as:

∆Amax :=
n∑
i=1

qi (P̂i,0 − Pi,0) .

Remark. This definition of the maximum matching adjustment can be expressed equivalently

in terms of a discount rate applied to the liabilities. One has ∆Amax = Â−A. If ∆Amax would

be applied, one would obtain a Net Asset Value Ŝ = Â − B instead of S = A − B. The Net

Asset Value Ŝ can also be obtained as S = A− B̂ with B̂ := B −∆Amax. Then one can define

a discount rate spread ∆r̂max as the solution of:

m∑
k=1

yk v(0, k) e−∆r̂max k δ = B̂ .

This is conceptually analogous to ∆rmax, without having the same inconsistencies however.

Observe in particular that ∆r̂max > 0 (< 0) if and only if ∆Amax > 0 (< 0), independently of

whether A is greater or less than B.

The maximum matching adjustment ∆Amax can be applied only in the case of “perfect match-

ing”, i.e. if it is not necessary to liquidate any amount of the assets held at time 0 during the

lifetime of the liabilities. Any early liquidation of assets forced by liquidity problems will cause

a loss and a consequent reduction of ∆Amax.
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We introduce an estimate of the present value of the losses caused by forced sales by defining:

L :=
n∑
i=1

m∑
k=1

si,k (P̂i,k − Pi,k) v(0, k) . (1)

Once a criterion for defining a reference liquidation pattern {s∗i,k} has been chosen, the Appli-

cation Ratio is naturally defined as:

α∗ := max

{
0, 1− L∗

∆Amax

}
,

where L∗ is the loss through forced sales generated by {s∗i,k}. Hence the Matching Adjustment

(in term of value) is given by:

∆A∗ := α∗∆Amax = ∆Amax − L∗ .

Remark. In terms of value, one can compare ∆A∗ with the quantity ∆B considered in section

(2.2). For a comparison in terms of rates, one can derive:

r∗ :
m∑
k=1

yk e
−r∗ k δ = B −∆A∗ ,

and then consider ∆r∗ := r∗− r. This difference is conceptually analogous to the difference ∆r

obtained with the current proposal, in the framework of article 77 e.

2.3.3 An optimality criterion

We define α by choosing {s∗i,k} (and L∗) as the solution of the following optimization problem:

min
si,k

n∑
i=1

m∑
k=1

si,k (P̂i,k − Pi,k) v(0, k) ,

under a set of appropriate constraints. The objective function L is linear in the liquidation

pattern. Moreover, as it will be shown in section (2.4), a natural choice of the optimization

constraints produce inequalities which also involve only linear functions of {si,k}. Then the

optimization problem is a linear programming problem.
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Remark. We choose L as the objective function to be minimized in order to derive an upper

bound for α, given the matching properties of assets and liabilities. If one considers the lia-

bility stream ystress corresponding to the stressed scenarios prescribed by the Supervisor for

computing the discounted-cash-flow-shortfall, then L∗ provides an objective estimate of Lstress,

consistent with the requirement of the technical specifications in EIOPA (2012).

2.4 The optimization problem

In order to formulate the optimization problem in a slightly more general form, we denote by

b := {b1, b2, . . . , bm} the liability stream and by ai := {ai,1, ai,2, . . . , ai,m} the cash flow stream

generated by the asset i, i = 1, 2, . . . , n. We can assume b = y or b = ystress according to

whether the central or the stressed scenario for the liabilities is assumed. Moreover we pose

ai = x̂i, since in our model we are interested in considering the de-risked cash flows of asset i

consistent with the fundamental spread σ̂i. The objective function (1) must be minimized with

respect to {si,k}, for i = 1, 2, . . . , n , 1 ≤ k < mi, under appropriate constraints.

2.4.1 The optimization constraints

The constraints to be considered in the optimization problem are quite natural. Of course we

have:

· Non-negativity constraints:

si,k ≥ 0 , i = 1, 2, . . . , n, k = 1, 2, . . . ,m ,

since short-selling are precluded, and:

· Quantity constraints:
m∑
k=1

si,k ≤ qi , i = 1, 2, . . . , n . (2)

Moreover at each date k of the time grid we have to include a matching constraint, requiring

that there is enough liquidity to pay-out the corresponding insurance obligations. These re-

quirements are obviously specified as follows.
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· Matching constraint at date k = 1: z1 ≥ 0, with:

z1 : =
n∑
i=1

qi ai,1 +
n∑
i=1

si,1 Pi,1 − b1 .

Remark. Since Pi,k = 0 for k ≥ mi, double counting of ai,mi is avoided.

· Matching constraint at date k = 2: z2 ≥ 0, with:

z2 : = z1m1,2 +
n∑
i=1

(qi − si,1) ai,2 +
n∑
i=1

si,2 Pi,2 − b2 .

· Matching constraint at date k = 3: z3 ≥ 0, with:

z3 : = z2m2,3 +
n∑
i=1

(qi − si,1 − si,2) ai,3 +
n∑
i=1

si,3 Pi,3 − b3 .

Therefore the following recursive equation holds:


z0 = 0

zk = mk−1, k zk−1 +
n∑
i=1

[
(qi − si,[k−1]) ai,k + Pi,k si,k

]
− bk , k = 1, 2, . . . ,m ,

(3)

where si,[k] :=
∑k

h=1 si,h.

As it is shown in Appendix 2, the solution of recursion (3) can be written as:

zk = ϕk +
n∑
i=1

k∑
h=1

λi,h,k si,h − βk , k = 1, 2, . . . ,m , (4)

where:

ϕk :=
n∑
i=1

qi

k∑
h=1

mh,k ai,h (5)

are the proceeds at date k from the bond cash in-flows,

βk :=
k∑

h=1

mh,k bh (6)
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is the cumulated cash out-flows at date k from the insurance obligations and:

λi,h,k := mh,k Pi,h −
k∑

j=h+1

mj,k ai,j (7)

are the sales net proceeds at date k from one unit of asset i sold at date h.

2.4.2 Formulation of the linear programming problem

Taking into account that the liquidation of asset i only makes sense previously to the date mi

or my, the linear programming problem can be formulated as:



min
si,k

n∑
i=1

myi∑
k=1

si,k (P̂i,k − Pi,k) v(0, k) ,

under :

1) Matching constraints

n∑
i=1

ki∑
h=1

λi,h,k si,h ≥ (βk − ϕk) ,

k = 1, 2, . . . ,my ,

2) Quantity constraints

myi∑
k=1

si,k ≤ qi , i = 1, 2, . . . , n ,

3) Non-negativity constraints

si,k ≥ 0 , i = 1, 2, . . . , n, k = 1, 2, . . . ,mi ,

(8)

where, for i = 1, 2, . . . , n:

my
i := min{mi − 1 ,my} , ki = min{mi − 1 , k} , k = 1, 2, . . . ,my ,

and when the coefficients ϕk, βk and λi,h,k are given by (5), (6) and (7) (consistently changing

the upper limit of the summations).

Remark. Once the solution {s∗i,k} of problem (8) has been obtained, the value of α∗ is immedi-
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ately derived. However the solution {s∗i,k} itself, and the corresponding dual solution, can have

useful interpretations and applications.

2.4.3 The feasibility issue

While constraints 2) and 3) are obvious consistency requirements, the matching constraint 1)

has a fundamental solvency meaning, requiring that the asset portfolio provides sufficient cash

flows to meet the insurance obligations. So it is interesting to consider the feasibility of the

optimization problem assuming that constraints 2) and 3) are fulfilled. In this case problem

(8) is feasible if:
n∑
i=1

qi Pi,0 ≥
m∑
k=1

bk v(0, k) ,

i.e. if the market value of the asset portfolio is not lower that the best estimate of the liabilities.

The weaker condition:
n∑
i=1

qi P̂i,0 ≥
m∑
k=1

bk v(0, k)

should be sufficient for the feasibility only if liquidation of mispriced assets (i.e. with P̂i,0 > Pi,0)

is not forced, that is if s∗i,k = 0 for all k < mi and for i such that P̂i,0 > Pi,0.

2.5 Including the run-off constraints

Constraints in problem (8) are quite natural in our model. One can consider however to

set also a run-off condition to the Matching Adjustment. By “run-off condition” we mean

the requirement that only the assets in the assigned portfolio which are actually backing the

liabilities are allowed to be valued at price P̂i,k instead of Pi,k. Therefore assets eventually

held in the portfolio after the liability run-off (i.e. after all the liabilities have been settled)

must be priced at Pi,k. The run-off condition is clearly inspired by a definition in stronger

form of the asset-liability matching. It can be easily included in our model by modifying the

quantity constraints 2), requiring that the constraint for asset i holds as an equality, instead

of an inequality, if the maturity date mi of the asset is greater than the terminal date my of

the liability stream. Therefore under the run-off condition the linear programming problem is
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re-formulated as follows.

min
si,k

n∑
i=1

myi∑
k=1

si,k (P̂i,k − Pi,k) v(0, k) ,

under :

1) Matching constraints

n∑
i=1

ki∑
h=1

λi,h,k si,h ≥ (βk − ϕk) ,

k = 1, 2, . . . ,my ,

2) Quantity/run-off constraints

For i = 1, 2, . . . , n :

myi∑
k=1

si,k ≤ qi if mi ≤ my ,

myi∑
k=1

si,k = qi if mi > my ,

3) Non-negativity constraints

si,k ≥ 0 , i = 1, 2, . . . , n, k = 1, 2, . . . ,mi .

(9)

2.6 Including stocks in the assigned portfolio

A portfolio containing also a stock component could be considered by including an additional

asset, indexed as i = 0. If P0,0 is the market price at time 0 of one unit of stock and if q0 ≥ 0 is

the corresponding quantity, the stock component is modelled in the programming problem by

posing:

a0,k = 0 , k = 1, 2, . . . ,m ,

and: 
P0,k = P̂0,k = P0,0m(0, k) , k = 1, 2, . . . ,my ,

P0,k = P̂0,k = 0 , k = my + 1, . . . ,m .

All the previous relations hold extending the formulae to i = 0.

Remark. To be conservative, the market price P0,0 could be reduced by applying the relevant
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equity shock, as prescribed in the Standard Formula for the 5-th Quantitative Impact Study

(QIS5, see EC, 2010).

3 Numerical example

Numerical examples can be easily produced using the software MatchRace, which we have

specifically designed for solving the programming problems (8) and (9).

3.1 The data

We provide here a simple example where the stream b of the expected net liabilities is defined

on an annual time grid with 20 years length (δ = 1, my = 20). The liability cash flows are

reported in the third column of Table 1 and illustrated in the first figure of Panel 1. In the

fourth column of the table the corresponding cash flows under the stressed scenario are also

reported; this liability pattern is illustrated in the third figure of Panel 1. In the second column

of Table 1 the current term structure of risk-free interest rates is provided. With these discount

rates the best estimate of the liabilities is B = 100 000. To simplify the exposition the stream

of stressed liabilities bstress has been chosen in order that one also has Bstress = 100 000.

The characteristics of the assigned asset portfolio are illustrated in Table 2. A number of

n = 18 assets are held in the portfolio, one zero-coupon bond and 17 coupon bonds. The

principal of all the assets is 100 and the coupon rate is 4% for all the coupon bonds. The asset

maturities are given in the third column of the table. We assume a market spread σi of 200 basis

points and an EIOPA spread σ̂i of 30 basis points for all the assets. The corresponding market

and EIOPA prices at time zero are reported in the sixth and seventh column, respectively (the

future prices are not reported for brevity). Given the quantities qi provided in the last column

of Table 2, the corresponding streams of asset cash flows on the time grid t are as in columns

5-7 of Table 1. The nominal cash flows are given in column 5, while the market and EIOPA

de-risked cash flows are reported in column 6 and 7, respectively.

As one can see, the assets have been chosen in order to have some degree of matching between

the de-risked asset cash flows xk :=
∑

i x̂i,k (illustrated in the second figure of Panel 1) and
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the liability cash flows (under the best estimate scenario) bk. However the asset portfolio also

includes a coupon bond maturing two years later than the liability run-off my (m = m19 = 22).

3.2 Matching adjustment according to the current proposal

It results that the market value of the assets is A = 91 500 (NAV = −8 500). Given the liability

structure and the risk-free rates, one obtains r = 1.46% and, given the asset value A, one has

r(A) = 2.93%. Since σavg = 0.30% we have ∆rmax = 1.17%. In order to derive the Application

Ratio α according to the current EIOPA proposal, we need to compute Lstress. Using the figures

in the first row of Table 1 (columns 4, 3, 5, respectively) one has Lstress = 20 817−9 799 = 11 018.

Then one gets:

α := max

{
0, 1− Lstress

B

}
= max

{
0, 1− 11 018

100 000

}
= 88.98% ,

and therefore ∆r = α∆rmax = 1.043%. This corresponds to an adjusted value of the liabilities

B̂ = 93 962, with a monetary adjustment ∆B̂ = 6 038.

k ik bk bstressk

∑
i xi,k

∑
i x̃i,k xk zk

1 0.805% 10615 20817 9799 9607 9770 0

2 0.504% 10615 9414 10299 9899 10237 0

3 0.593% 10474 9289 9519 8970 9434 0

4 0.759% 10332 9163 9799 9053 9682 0

5 0.953% 9907 8787 9519 8622 9377 0

6 1.151% 9270 8222 9239 8204 9074 0

7 1.332% 8492 7531 8459 7364 8283 0

8 1.493% 7784 6904 8199 6998 8005 21

9 1.637% 7077 6276 7899 6609 7689 436

10 1.761% 6369 5649 6024 4942 5847 0

11 1.866% 5378 4770 4529 3643 4383 0

12 1.972% 4246 3766 5800 4573 5595 0

13 2.038% 3185 2824 4600 3556 4424 0

14 2.105% 2123 1883 4440 3365 4258 0

15 2.173% 1415 1255 3280 2437 3136 0

16 2.186% 1062 941 2160 1573 2059 900

17 2.200% 708 628 1080 771 1026 1203

18 2.215% 354 314 40 28 38 878

19 2.229% 142 126 40 27 38 759

20 2.245% 71 63 40 27 38 707

21 2.245% 0 0 40 26 38 0

22 2.245% 0 0 1040 673 974 0

Table 1: Cash-flow streams of liabilities and assets
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i coupon mi σi σ̂i P0,i P̂0,i qi

1 0% 1 2.00% 0.30% 97.271 98.907 65

2 4% 2 2.00% 0.30% 102.871 106.303 70

3 4% 3 2.00% 0.30% 104.009 109.155 65

4 4% 4 2.00% 0.30% 104.673 111.494 70

5 4% 5 2.00% 0.30% 104.905 113.344 70

6 4% 6 2.00% 0.30% 104.785 114.771 70

7 4% 7 2.00% 0.30% 104.448 115.909 65

8 4% 8 2.00% 0.30% 103.969 116.837 65

9 4% 9 2.00% 0.30% 103.394 117.600 65

10 4% 10 2.00% 0.30% 102.779 118.261 48

11 4% 11 2.00% 0.30% 102.174 118.879 35

12 4% 12 2.00% 0.30% 101.455 119.301 50

13 4% 13 2.00% 0.30% 100.958 119.944 40

14 4% 14 2.00% 0.30% 104.547 125.036 40

15 4% 15 2.00% 0.30% 99.787 120.854 30

16 4% 16 2.00% 0.30% 99.587 121.742 20

17 4% 17 2.00% 0.30% 99.378 122.582 10

18 4% 22 2.00% 0.30% 98.495 126.517 10

Table 2: Assigned asset portfolio (principal = 100)

3.3 Matching adjustment under the optimality approach

While the market price of the assets is A = 91 500, using the EIOPA prices one has Â =∑n
i=1 qi P̂0,i = 101 867. Therefore the maximum matching adjustment is ∆Amax = Â − A =

10 367, which corresponds to a maximum interest rate spread ∆rmax = 1.85%.

Since with the EIOPA prices one has Â > B and since Bstress = B (the NAV is = 1 867 in

both cases), the feasibility of the optimization problem is not precluded, both with respect to

the central and the stressed liabilities. We study the linear programming problem (9), then

requiring that also the run-off condition is fulfilled.

In a first step we consider the optimal matching problem with respect to the central liability

stream b. Running the problem solver MatchRace, the programming problem turns out to be

feasible. The resulting values of zk, which are reported in the last column of Table 1, show that

all the quantity/run-off constraints have been satisfied, with the equality on 15 of the 22 dates

of t and with the inequality on the remaining 7 dates.

By inspection of the problem solution, it results that in order to match the liabilities the

assets have been sold according to Table 3. The minimum loss corresponding to these sales

is L∗ = 1 383. Since the maximum matching adjustment is ∆Amax = Â − A = 10 367 (cor-

responding to an interest rate spread ∆rmax = 1.85%), the matching adjustment is ∆A∗ =
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Panel 1. Cash flow streams of assets and liabilities

10 367 − 1 383 = 8.985, corresponding to an interest rate spread ∆r∗ = 1.59%. This corre-

sponds to an Application Ratio α∗ = 1− 1 383/10 367 = 86.66%.

We consider then the optimization problem with respect to the stressed liability stream

bstress. Under the constraints given by the different liability stream the linear programming

i k = 1 k = 2 k = 2 k = 4 k = 5 k = 6 k = 7 k = 10 k = 11

12 8.627 2.574

13 1.802 8.752

14 1.492 3.429 15.426

15 3.316 8.613 4.968

16 0.597

18 2.290 4.406 3.304

Table 3: Quantity s∗i,k of asset i optimally sold at date k to match unstressed liabilities
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problem results to be infeasible. This means that despite of the advantages given by the fun-

damental spread, the liability stream bstress cannot be matched by the asset cash flows. As it

seems natural, if one requires that the matching properties also hold under a stressed scenario,

in these conditions no matching adjustment should be applied. This is different from the re-

sults of the current EIOPA approach which turns out to be insensitive to the actual matching

properties of the asset-liability stream.

Appendix 1

Let vi(0, k) be the discount factor for date k ≥ 0 corresponding to the credit rating of asset i.

The constant spread σi is such that:

vi(0, k) = v(0, k) e−kδσi . (10)

Let us denote by V (0, Xi,k) the market price at time 0 of Xi,k to be paid at date k. In a standard

stochastic model (see Duffie et al., 2003 pp. 100-118) one also has (assuming for simplicity sake

a 0% recovery rate):

V (0, Xi,k) = EQ
(
e−

∫ kδ
0 rtdt 1τi>kδ Xi,k

)
,

where EQ denotes the expectation with respect to the risk-neutral probabilities and rt is the

instantaneous risk-free interest rate. Under independence assumptions one has:

V (0, Xi,k) = EQ
(
xi,k e

−
∫ kδ
0 rtdt

)
EQ (1τi>kδ) = v(0, k) EFk (xi,k) pi(k) ,

where EFk denotes the expectation with respect to the forward risk-neutral probabilities and

pi(k) := EQ (1τi>kδ) is the risk-neutral probability that the asset survives at time kδ. Since xi,k

is deterministic we simply have:

V (0, Xi,k) = xi,k v(0, k) pi(k) .
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Given that the expression V (0, Xi,k) = xi,k vi(0, k) also holds, by (10) one obtains e−kδσi = pi(k).

The same argument holds referring to the fundamental spread, i.e. one has e−kδ σ̂i = p̂i(k), where

p̂i(k) is the survive probability corresponding to σ̂i.

Appendix 2

The solution (4) of recursion (3) can be found by induction.

Equation (3) is verified for k = 1. Given k > 1, suppose that the equation is verified for

k − 1; one has:

zk = mk−1,k

[
n∑
i=1

k−1∑
h=1

λi,h,k−1 si,h + ϕk−1 − βk−1

]
+

n∑
i=1

[
(qi − si,[k−1]) ai,k + Pi,k si,k

]
− bk

=
n∑
i=1

[
k−1∑
h=1

mk−1,k λi,h,k−1 si,h + Pi,k si,k − ai,k si,[k−1] + qi ai,k

]
+mk−1,k (ϕk−1 − βk−1)− bk

=
n∑
i=1

[
k−1∑
h=1

mk−1,k λi,h,k−1 si,h + Pi,k si,k − ai,k si,[k−1]

]
+ ϕk − βk .

Using (7), the term is square brackets is given by:

=
k−2∑
h=1

[
mh,kPi,h −

k−1∑
j=h+1

mj,k ai,j

]
si,h +mk−1,kPi,k−1si,k−1 + Pi,k si,k − ai,k

k−1∑
h=1

si,h

=
k−2∑
h=1

[
mh,k Pi,h −

k−1∑
j=h+1

mj,k ai,j − ai,k

]
si,h + (mk−1,k Pi,k−1 − ai,k)si,k−1 + Pi,k si,k

=
k−2∑
h=1

[
mh,k Pi,h −

k∑
j=h+1

mj,k ai,j

]
si,h + (mk−1,k Pi,k−1 − ai,k)si,k−1 + Pi,k si,k

=
k−1∑
h=1

[
mh,k Pi,h −

k−1∑
j=h+1

mj,k ai,j

]
si,h + Pi,k si,k ;

therefore one has:

zk =
n∑
i=1

{
k−1∑
h=1

[
mh,k Pi,h −

k−1∑
j=h+1

mj,k ai,j

]
si,h + Pi,k si,k

}
+ ϕk − βk

=
n∑
i=1

k∑
h=1

λi,h,k si,h + ϕk − βk .
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