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Abstract. The classical problem of the interaction of charged particles is considered
in the framework of the concept of short-range interaction. Difficulties in the
mathematical description of short-range interaction are discussed, for which it is
necessary to combine two models, a nonlinear dynamic system describing the motion
of particles in a field, and a boundary value problem for a hyperbolic equation or
Maxwell’s equations describing the field. Attention is paid to the averaging procedure,
that is, the transition from the positions of particles and their velocities to the charge
and current densities. The problem is shown to contain several parameters; when
they tend to zero in a strictly defined order, the model turns into the classical
many-body problem. According to the Galerkin method, the problem is reduced to
a dynamic system in which the equations describing the dynamics of particles, are
added to the equations describing the oscillations of a field in a box. This problem is
a simplification, different from that leading to classical mechanics. It is proposed to
be considered as the simplest mathematical model describing the many-body problem
with short-range interaction. This model consists of the equations of motion for
particles, supplemented with equations that describe the natural oscillations of the
field in the box. The results of the first computer experiments with this short-range
interaction model are presented. It is shown that this model is rich in conservation
laws.

Key words and phrases: many-body problem, Galerkin method, short-range
interaction

1. Interaction

Studying the motion of a beam of charged particles in an external elec-
tromagnetic field with the interaction of particles taken into account is one
of the most important and popular problems in plasma electronics. In the
framework of the generally accepted approach to its study [1, § 2.3], the time
interval is divided into discrete steps of length Δ𝑡. At each step, based on the
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current positions of the charges and their velocities that define the currents,
the induced field is calculated as a solution of Maxwell’s equations. Then this
‘induced’ field is added to the external field and the new positions and veloci-
ties of the particles are calculated, which they acquire in this field under the
action of the Lorentz force.
The described scheme allows for many variations [1]–[3]. However, these

details do not at all remove the division into processes: for one time step,
first, the charges and their velocities generate a field, and then the field acts
on the bodies through the Lorentz force.
It is quite obvious that what has been said gives a description of a numer-

ical method for studying a certain mathematical model of the many-body
problem with short-range interaction. The latter is explicitly taken into ac-
count in the model: at each step, the field is calculated and the interaction
between particles is carried out through this field, which is described using
the Maxwell’s equations, that is, hyperbolic equations that describe the prop-
agation of signals with the speed of light 𝑐. However, the model itself remains
undescribed; moreover, the issue of the convergence of the described numerical
method, i.e., the study of the limit at Δ𝑡 → 0, is usually avoided.
From a mathematical point of view, it is necessary to combine two models

into one system: a nonlinear dynamic system that describes the motion of
charges based on the Lorentz law, and a linear system of Maxwell’s equations
that describes the dynamics of the electromagnetic field. Separately, these
models are well studied. Dynamical systems with analytic right-hand sides
are solved in analytic functions, and the convergence of the finite-difference
method is proved in the 𝐶 norm [4]. Maxwell’s equations, as well as linear
partial differential equations in general, are naturally solved in Sobolev spaces,
and an approximate solution is also sought in one or another integral norm, for
example, in 𝐿2 over the space [5]. However, when combining these models, we
must consider dynamical systems, the right-hand sides of which are elements
of Sobolev spaces, and Maxwell’s equations, in which currents and charges
are combinations of 𝛿-functions. We do not have a theorem on the existence
of a solution for such problems.
A detailed description of the model, separated from the numerical method

of its study, is very useful, firstly, in order to be able to assess the quality of the
study in terms of closeness to the exact solution, and not in terms of closeness
to the expectations of the experimenters. Secondly, good mathematical models
always have a large number of symmetries, which correspond to conservation
laws. Checking their performance provides another important criterion for
assessing the quality of the numerical method. Finally, it cannot be ruled
out that less obvious, but more effective numerical methods for studying this
model can be found.
Thus, for example, by means of computer experiments it was found that

the Boris difference scheme for solving the equations of motion corresponds
to the expectations of experimenters more than others [1]. To explain this
effect, Hong Qin et al. [6] showed that this scheme is the phase volume
when integrating the equations of motion of one particle in an external
electromagnetic field. The question of whether the Boris scheme inherits the
properties of the original system in the many-many problem, which, we note,
is not Hamiltonian, was not raised.
In this paper, we consider the simplest formulation of the many-body

problem with short-range interaction described by the wave equation. To add
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boundary conditions to the wave equation, we consider the problem in a finite
domain. The question of setting the radiation conditions in such a problem
does not seem trivial to us, although to simplify the problem it is usually
assumed that the field in the far zone should be equal to zero.

2. Short-range interaction mathematical model

Let there be 𝑁 identical bodies of mass 𝑚, under the assumption of
short-range interaction between them, they produce a field with potential 𝑢
and move in it in accordance with the second Newton’s law. The simplest
formulation can be written as follows: the dynamics of particles is described
by the set of equations

𝑚 ̈⃗𝑟𝑛 = −∇𝑢∣
⃗𝑟= ⃗𝑟𝑛

, 𝑛 = 1, 2, … , 𝑁, (1)

and the field dynamics is described by a wave equation

1
𝑐2

𝜕2𝑢
𝜕𝑡2 = Δ𝑢 + 𝜌, (2)

where 𝜌 is the density of mass distribution:

𝜌 = 𝛾
𝑁

∑
𝑛=1

𝛿𝑠( ⃗𝑟 − ⃗𝑟𝑛). (3)

Here it is reasonable to consider 𝛿 as a smoothed prototype of Dirac delta
function that tends to the delta function in the limit 𝑠 → 0.
By virtue of the Poisson formula [7] and regardless of the boundary condi-

tions imposed on the field, this problem becomes classical if we first proceed
to the limit 𝑐 → ∞, and then to the limit 𝑠 → 0.

Theorem 1. Let there be a family of solutions to the system (1)–(2), param-
eterized by two parameters 𝑐 ⩾ 0 and 𝑠 > 0, and let it satisfy the condition

𝑢, 𝑢𝑡 ∈ 𝐿2(ℝ3)

at 𝑡 = 0. If we first proceed to the limit 𝑐 → ∞, and then to the limit 𝑠 → 0,
then this solution becomes the solution of the classical many-body problem.

Proof. According to the Poisson formula

𝑢( ⃗𝑟, 𝑡) = 1
4𝜋

∭
| ⃗𝑟|<𝑐𝑡

𝜌( ⃗𝑟′, 𝑡 − | ⃗𝑟 − ⃗𝑟′|/𝑐)
| ⃗𝑟 − ⃗𝑟′|

𝑑𝑣′+

+ 1
4𝜋𝑐

𝜕
𝜕𝑡

∬
| ⃗𝑟|=𝑐𝑡

𝑢( ⃗𝑟′, 0)
| ⃗𝑟 − ⃗𝑟′|

𝑑𝑠′ + 1
4𝜋𝑐

∬
| ⃗𝑟|=𝑐𝑡

𝑢𝑡( ⃗𝑟′, 0)
| ⃗𝑟 − ⃗𝑟′|

𝑑𝑠′. (4)
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Under the assumptions made about the initial conditions, the last two
terms tend to zero as 𝑐 → ∞ and we get

𝑢( ⃗𝑟, 𝑡) = 1
4𝜋

∭
ℝ3

𝜌( ⃗𝑟′, 𝑡)
| ⃗𝑟 − ⃗𝑟′|

𝑑𝑣′.

Substituting Eq. (3) here yields an expression that, at 𝑠 → 0, becomes

𝑢 = 𝛾
𝑁

∑
𝑛=1

1
| ⃗𝑟 − ⃗𝑟𝑛|

.

However, we cannot substitute it directly into (1) because this would lead
to dividing by zero. However, for 𝑠 ≠ 0, the expression for 𝑢 is a sum of terms
of the form 𝜙𝑠( ⃗𝑟 − ⃗𝑟𝑛), having an extreme at ⃗𝑟 = ⃗𝑟𝑛. So

∇𝜙𝑠( ⃗𝑟 − ⃗𝑟𝑛)| ⃗𝑟= ⃗𝑟𝑛
= 0

and there is no division by zero:

∇𝑢∣
⃗𝑟= ⃗𝑟𝑚

= 𝛾 ∑
𝑛≠𝑚

∇𝜙𝑠( ⃗𝑟𝑚 − ⃗𝑟𝑛).

Now, proceeding to the limit, we get in the right-hand side of equation (1)
exactly an expression that should be in the many-body problem

𝑚 ̈⃗𝑟𝑛 = −𝛾∇ ⃗𝑟𝑛
∑
𝑚≠𝑛

1
| ⃗𝑟𝑛 − ⃗𝑟𝑚|

.

The proved theorem allows us to hope that for large 𝑐 the solutions of
the system under consideration resemble the classical many-body problem.
However, it is important to emphasize that the order of proceeding to the
limit is important.
We are interested in constructing a model of many-body motion, in which

short-range interaction is explicitly taken into account, rather than in the
classical limit itself. For our purpose, it is necessary to supplement the
differential equations with initial and boundary conditions.
Let the bodies occupy fixed positions up to 𝑡 < 0, then for 𝑡 < 0 we know

𝑢 as a solution to the Poisson equation

Δ𝑢 = −𝜌.

At the moment 𝑡 = 0 the bodies are given initial velocities. Adding the
initial condition 𝑢𝑡 = 0 to the wave equation, we get the classical initial value
problem for finding the potential 𝑢, if we assume that the density 𝜌 is known.
Let us turn to the boundary conditions. We assume that the bodies do

not radiate waves that are noticeable in the far zone. To treat this problem
numerically, we place the systems in a Dirichlet box 𝐺 and set the conditions

𝑢∣
𝜕𝐺

= 0 on its boundary. This box will replace the boundary conditions at

infinity.
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The complete problem is formulated as follows. Given initial positions

⃗𝑟(0)
𝑛 and initial velocities ⃗𝑣(0)

𝑛 of the bodies, the solution is calculated to the
boundary value problem

⎧{
⎨{⎩

Δ𝑢0 = −𝛾
𝑁
∑
𝑛=1

𝛿𝑠( ⃗𝑟 − ⃗𝑟(0)
𝑛 ),

𝑢∣
𝜕𝐺

= 0.
(5)

It is required to find the functions ⃗𝑟𝑛(𝑡) and 𝑢(𝑥, 𝑦, 𝑧, 𝑡) satisfying the initial
and boundary value problem:

⎧
{
⎨
{
⎩

𝑚 ̈⃗𝑟𝑛 = −∇𝑢∣
⃗𝑟= ⃗𝑟𝑛

, 𝑛 = 1, 2, … , 𝑁,

1
𝑐2

𝜕2𝑢
𝜕𝑡2 = Δ𝑢 + 𝛾

𝑁
∑
𝑛=1

𝛿𝑠( ⃗𝑟 − ⃗𝑟𝑛),
(6)

with the initial conditions

⃗𝑟𝑛 = ⃗𝑟(0)
𝑛 , ̇⃗𝑟𝑛 = ⃗𝑣(0)

𝑛 , 𝑢 = 𝑢0, 𝑢𝑡 = 0 (𝑡 = 0)

and the boundary conditions 𝑢∣
𝜕𝐺

= 0.
We believe that this problem has a unique solution for small 𝑡. However,

the proof of this assertion requires a more careful description of the class
of functions in which the solution is sought. We confine ourselves to a few
computer experiments with this model.

3. Galerkin method

A natural method for solving the oscillation equation in a finite domain is
the Galerkin method [8]–[10]. Let 𝜙𝑛 be the normalized eigenfunctions of the

Laplace operator in 𝐺, and let 𝛼2
𝑛 be the corresponding eigenvalues. We seek

the solution of the wave equation in the form

𝑢(𝑥, 𝑦, 𝑧, 𝑡) =
∞

∑
𝑗=1

𝑢𝑗(𝑡)𝜙𝑗(𝑥, 𝑦, 𝑧), (7)

where 𝑢𝑗 are coefficients yet unknown. Then

1
𝑐2

𝑑2𝑢𝑗

𝑑𝑡2 + 𝛼2
𝑗 𝑢𝑗 = 𝛾

𝑁
∑
𝑛=1

∭
𝐺

𝛿𝑠( ⃗𝑟 − ⃗𝑟𝑛(𝑡))𝜙𝑗𝑑𝑥𝑑𝑦𝑑𝑧, 𝑗 = 1, 2, …

and

𝑚𝑑2 ⃗𝑟𝑛
𝑑𝑡2 = −

∞
∑
𝑗=1

𝑢𝑗(𝑡)∇𝜙𝑗∣ ⃗𝑟= ⃗𝑟𝑛
, 𝑛 = 1, 2, … , 𝑁.

If we truncate the sum over 𝑗 to any finite number of terms 𝐽, then the
system has a unique solution, taking into account the initial conditions.
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In the limit 𝑠 → 0 we get

1
𝑐2

𝑑2𝑢𝑗

𝑑𝑡2 + 𝛼2
𝑗 𝑢𝑗 = 𝛾

𝑁
∑
𝑛=1

𝜙𝑗∣ ⃗𝑟= ⃗𝑟𝑛
, 𝑗 = 1, 2, … , 𝐽 (8)

and

𝑚𝑑2 ⃗𝑟𝑛
𝑑𝑡2 = −

𝐽
∑
𝑗=1

𝑢𝑗(𝑡)∇𝜙𝑗∣ ⃗𝑟= ⃗𝑟𝑛
, 𝑛 = 1, 2, … , 𝑁. (9)

The initial conditions for ⃗𝑟𝑛 are given and for 𝑢𝑗 they are found from

equation (5) using the explicit formulae

𝛼2
𝑗 𝑢𝑗(0) = 𝛾

𝑁
∑
𝑛=1

∭
𝐺

𝛿𝑠( ⃗𝑟 − ⃗𝑟𝑛)𝜙𝑗𝑑𝑥𝑑𝑦𝑑𝑧

or

𝑢𝑗(0) = 𝛾
𝛼2

𝑗

𝑁
∑
𝑛=1

𝜙𝑗∣ ⃗𝑟= ⃗𝑟𝑛
(10)

and
�̇�𝑗(0) = 0. (11)

By virtue of the Weyl lemma [11], [12], the eigenfunctions of the Laplace
operator are twice continuously differentiable in the domain considered. There-
fore, the system of ordinary differential equations (8), (9) falls under the
conditions of the classical Cauchy theorem. This means that the initial value
problem for equations (8), (9) with initial conditions (10), (11) has a unique
solution, at least in the vicinity of the initial data. Moreover, standard numer-
ical methods can be applied to this problem, for example, the Runge-Kutta
method [4].
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Figure 1. The first body trajectory at 𝑐 = 1 and 𝑐 = 10

Example 1. For example, let us take the box in the form of a cube [0, 𝐿]3.
Then the eigenfunctions are expressed as

sin
𝜋𝑚𝑥

𝐿
sin

𝜋𝑛𝑦
𝐿

sin
𝜋𝑘𝑧
𝐿

, 𝑛, 𝑚, 𝑘 ∈ ℕ,
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with the corresponding eigenvalues

𝛼2
𝑚𝑛𝑘 = 𝜋2

𝐿2 (𝑚2 + 𝑛2 + 𝑘2).

Taking the first 𝐽 functions from this set, the initial positions and velocities
of the bodies, we uniquely determine the initial problem (8)–(11), which we
will solve by the classical Runge-Kutta method of the 4th order.
Let us take, for example, 𝑐 = 1, 𝑚 = 1, 𝛾 = 1, 𝐿 = 10 and consider the

problem of two bodies. We place the first body at the point (6, 5, 5) and the
second one at the point (4, 5, 5). Let the first body be at rest, and the second
one have an initial velocity ⃗𝑣2 = (0, 1, 0) In the classical case, this leads to
the rotation of bodies along ellipses around their center of gravity (5, 5, 5),
and the motion occurs in the 𝑥𝑦 plane. Our computer experiment shows that
in the case of short-range interaction, the motion also turns out to be planar,
but instead of ellipses, more complex non-closed curves are obtained. If we
set the velocity in the direction of the 𝑂𝑧 axis, the motion still remains flat,
only the plane itself changes. Therefore, our system is rich in integrals of
motion.

4. Conclusion

The initial value problem (8)–(11) can and should be considered as a mathe-
matical model describing the many-body problem with short-range interaction.
Equation (9) has a very simple physical meaning of a mechanical equation of
motion (the second Newton law), and equation (8) describes the natural oscil-
lations of the field in the resonator 𝐺. The transformation of the box 𝐺 into
a resonator seems quite natural in the framework of the theory of short-range
interaction.
A few computer experiments that we have managed to perform demonstrate

that this system is rich in conservation laws. However, it is not yet clear to
us how to study them analytically. We hope that further experiments with
this new problem will clarify the issue.
With respect to the system (1), (2), this problem is a simplification, however,

a simplification different from that leading to classical mechanics. By virtue
of theorem 1, we will pass to classical mechanics if we first proceed to the
limit 𝑐 → ∞ (long-range interaction), and then to the limit 𝑠 → 0 (narrowing
the charge density to 𝛿-functions). When deriving the system (8)–(11), we
restrict the number of oscillations in the box to a finite number of modes
(Galerkin method) and immediately proceed to the limit 𝑠 → 0. In this case,
the limit 𝑐 → ∞ makes the singularity problem perturbed, and, from the
point of view of the Tikhonov and Vasilieva theory [13], [14], slow variables
correspond to the bodies, and fast variables correspond to the field.
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О задаче многих тел с близкодействием

М. М. Гамбарян1, М. Д. Малых1, 2

1 Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

2Лаборатория информационных технологий им. М.Г. Мещерякова
Объединённый институт ядерных исследований

ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

Аннотация. В статье рассматривается классическая задача о взаимодействии
заряженных частиц в рамках представления о близкодействии. Обсуждаются
трудности математического описания близкодействия, для чего необходимо объ-
единение двух моделей — нелинейной динамической системы, описывающей
движение частиц в поле, и краевой задачи для гиперболического уравнения
или уравнений Максвелла, описывающих поле. Уделено внимание процедуре
осреднения, то есть перехода от положений частиц и их скоростей к плотно-
стям заряда и тока. Показано, что задача содержит несколько параметров, при
стремлении которых к нулю в строго определённом порядке рассматриваемая
модель переходит в классическую задачу многих тел. По методу Галёркина эта
задача сведена к динамической системе, в которой к уравнениям, описывающим
динамику частиц, добавляются уравнения, описывающие колебания поля в ящи-
ке. Эта задача представляет собой упрощение, отличное от того, которое ведёт
к классической механике. Её предлагается рассматривать как простейшую мате-
матическую модель, описывающую задачу многих тел с близкодействием. Эта
модель состоит из уравнений движения частиц, к которым добавлены уравнения,
описывающие собственные колебания поля в ящике. Представлены результаты
первых компьютерных экспериментов с этой моделью близкодействия. Показано,
что модель богата законами сохранения.
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