РАСЧЕТЫ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ БЕТОННОЙ ПЛОТИНЫ БОГУЧАНСКОЙ ГЭС С ПРИМЕНЕНИЕМ РАЗНЫХ МОДЕЛЕЙ БЕТОНА И СКАЛЬНОГО ОСНОВАНИЯ

Ю.П. Ляпичев, Р.А. Захаров

Российский университет дружбы народов ул. Миклухо-Маклая, 6, Москва, Россия, 117198

Представлены результаты расчетов напряженно-деформированного состояния (НДС) бетонной плотины строящейся Богучанской ГЭС, выполненные с помощью программы ADINA с использованием разных моделей бетона и скального основания: упругой, идеально упруго-пластической Мора-Кулона и нелинейной хрупкой. Рассмотрены основные свойства нелинейной хрупкой модели с учетом разупрочнения бетона и скального основания. Напряженно-деформированное состояние плотины при действии статически нагрузок оценивается как благоприятное, но низкие зимние наружные температуры могут перевести это состояние в неблагоприятное.

Ключевые слова: усиление плотины, напряженно-деформированное состояние, модель бетона и скального основания.

Численные расчеты (методом конечных элементов) напряженно-деформированного состояния (НДС) и прочности бетонной плотины Богучанской ГЭС было выполнено с целью оценки ее нынешнего состояния и безопасности [1] в связи с возобновлением ее строительства на р. Ангара после 17 лет остановки строительства из-за отсутствия финансирования.

Были выполнены обширные расчетные исследования НДС и прочности в условиях плоской деформации ряда секций бетонной плотины ГЭС различного профиля высотой около 90 м совместно со скальным основанием из трещиноватых долеритов на действие основных нагрузок (статических и температурных).

Эти расчеты выполнялись с помощью программного комплекса ADINA (версия 7.5.4, США, 2003 г.), реализующего МКЭ с твердотельными 2-D конечными элементами (КЭ) второго порядка с промежуточными узлами и шовными КЭ. В качестве моделей бетона и скального основания использовались: 1) упругая модель; 2) идеально упругопластическая модель Мора-Кулона; 3) модель нелинейного хрупкого разрушения бетона с учетом его разупрочнения, используемая в программе ADINA [2]. Поскольку две первые модели хорошо известны, кратко остановимся на основных характеристиках последней модели.

Основные характеристики модели бетона в программе ADINA:

— разрушение от растяжения при низких максимальных главных напряжениях;

разрушение от сжатия при высоких сжимающих напряжениях;

— деформационное разупрочнение при разрушении от сжатия приводит к предельной деформации, при которой материал полностью разрушается;

— разрушения от растяжения и сжатия определяются огибающими поверхностями этих разрушений. Модель бетона в программе ADINA содержит все основные характеристики бетона, эта модель весьма эффективна и проста и достаточно гибка для моделирования большинства бетонных и скальных материалов.

При формулировке этой модели используются следующие обозначения:

- \tilde{E} эквивалентный тангенциальный модуль упругости в момент t (левый верхний индекс t относится ко времени t);
- \tilde{E}_0 одноосный начальный тангенциальный модуль упругости (все одноосные величины обозначаются значком ~ над ними);
- \tilde{E}_s одноосный секущий модель, соответствующий одноосному максимальному напряжению, $\tilde{E}_s = \tilde{\sigma}_c / \tilde{e}_c$;
- \tilde{E}_u одноосный секущий модуль, соответствующий одноосному предельному напряжению, $\tilde{E}_u = \tilde{\sigma}_u / \tilde{e}_u$;
- ${}^{t}\tilde{E}_{pi}$ одноосный тангенциальный модуль в направлении ${}^{t}\sigma_{pt}$;
 - e_{ii} полные деформации;
 - *е_{іі}* приращение деформаций;
 - \tilde{e}_{ij} одноосная деформация;

 \tilde{e}_{c} — одноосная деформация, соответствующая $\tilde{\sigma}_{c}$ ($\tilde{e}_{c} < 0$);

 \tilde{e}_u — предельная деформация одноосного сжатия ($\tilde{e}_u < 0$);

^{*t*} σ_{ij} — полные напряжения;

σ_{*ii*} — приращения напряжений;

- t $\tilde{\sigma}$ одноосное напряжение;
- $\tilde{\sigma}_t$ прочность на одноосное растяжение ($\tilde{\sigma}_t > 0$);
- $\tilde{\sigma}_{tp}$ прочность на одноосное растяжение после образования трещины ($\tilde{\sigma}_{tp} > 0$) (при $\tilde{\sigma}_{tp} = 0$ $\tilde{\sigma}_{tp} = \tilde{\sigma}_{t}$);
- $\tilde{\sigma}_{c}$ максимальное напряжение одноосного сжатия ($\tilde{\sigma}_{c} < 0$);
- $\tilde{\sigma}_u$ предельное напряжение одноосного сжатия ($\tilde{\sigma}_u < 0$);
- $\tilde{\sigma}_{pi}$ главное напряжение по направлению і (${}^{t}\tilde{\sigma}_{p1} \geq {}^{t}\tilde{\sigma}_{p2} \geq {}^{t}\tilde{\sigma}_{p3}$).

Модель бетона характеризуется тремя основными свойствами:

— нелинейной зависимостью напряжения-деформации, позволяющей учесть разупрочнение бетона с ростом сжимающих напряжений;

— огибающими поверхностями разрушения, определяющими разрушение бетона при растяжении и сжатии;

— возможностью моделирования поведения бетона после образования в нем трещин при растяжения и его дробления при сжатии.

Зависимости напряжения-деформации. Общие зависимости напряжениядеформации в трехмерном пространстве получены из зависимости $\tilde{\sigma}_t = f({}^t \tilde{e})$ в одноосном изображении. Типичная зависимость одноосного напряжения ${}^t \tilde{\sigma}$ от одноосной деформации $f({}^{t}\tilde{e})$ показана на рис. 1. Эта зависимость показывает три стадии деформирования бетона: ${}^{t}\tilde{e} \ge 0, 0 > {}^{t}\tilde{e} \ge \tilde{e}_{c}$ и $\tilde{e}_{c} > {}^{t}\tilde{e} \ge \tilde{e}_{u}$, где \tilde{e}_{c} деформация при минимальной напряжении (дроблении) материала $\tilde{\sigma}_{c}$, которое может быть достигнуто, и \tilde{e}_{u} — предельная деформация одноосного сжатия.

от такой же деформации $f({}^t \tilde{e})$

Если ${}^{t}\tilde{e} > 0$, то бетон растянут и зависимость напряжения-деформации линейна до его разрушения от растяжения при напряжении $\tilde{\sigma}_{t}$. Тогда принимаем постоянный модуль \tilde{E}_{0} , т.е.

$$\tilde{\sigma}_t = \tilde{E}_0^{\ t} \tilde{e} \,. \tag{1}$$

Если ${}^{t}\tilde{e} \leq 0$, то принимается выражение:

$$\tilde{\mathbf{\sigma}}_t / \tilde{\mathbf{\sigma}}_c = [(\tilde{E}_0 / \tilde{E}_s)({}^t \tilde{e} / \tilde{e}_c)] / [1 + \mathrm{A}({}^t \tilde{e} / \tilde{e}_c)^2 + \mathrm{C}({}^t \tilde{e} / \tilde{e}_c)^3]$$

и, следовательно,

$${}^{t}\tilde{E} = \{ (\tilde{E}_{0} [1 - B({}^{t}\tilde{e}/\tilde{e}_{c})^{2} - 2C({}^{t}\tilde{e}/\tilde{e}_{c})^{3}] \} / \{ [1 + A({}^{t}\tilde{e}/\tilde{e}_{c}) + B({}^{t}\tilde{e}/\tilde{e}_{c})^{2} + C({}^{t}\tilde{e}/\tilde{e}_{c})^{3}] \},$$
(2)

где $A = \{ [\tilde{E}_0/\tilde{E}_u + (p^3 - 2p^2)\tilde{E}_0/\tilde{E}_u - (2p^3 - 3p^2 + 1)] \} / [(p^2 - 2p + 1)p]B = [(2\tilde{E}_0/\tilde{E}_s - 3) - 2A]; C = [(2 - \tilde{E}_0/\tilde{E}_s) + A]$ и параметры \tilde{E}_0 , $\tilde{\sigma}_c$, \tilde{e}_c , $\tilde{E}_s = \tilde{\sigma}_c/\tilde{e}_c$, $\tilde{\sigma}_u$, \tilde{e}_u , $p = \tilde{e}_u/\tilde{e}_c$, $\tilde{E}_u = \tilde{\sigma}_u/\tilde{e}_u$ получают из одноосных опытов на сжатие.

Зависимость напряжения-деформации в уравнении (2) предполагает монотонное нагружение плотины, что не вполне соответствует столбчатой схеме бетонирования Богучанской плотины. Для условий разгрузки и повторной нагрузки используется начальный модуль упругости \tilde{E}_0 . Для напряженного состояния за пределами \tilde{e}_u при сжатии принято, что напряжения линейно снижаются до нуля используя модуль $\tilde{E}_u = (\tilde{\sigma}_u - \tilde{\sigma}_c)/\tilde{e}_u - \tilde{e}_c)$. При пространственном напряженном состоянии зависимости напряжениядеформации описываются различно в зависимости от того, находится ли бетон в состоянии нагружения или разгрузки. Коэффициент Пуассона принят постоянным при растяжении и переменным при сжатии.

Для описания условий нагружения и разгрузки определяется скалярная величина нагружения ^{*t*}*g* для каждой точки интегрирования:

$${}^{t}g = {}^{t}\tilde{\sigma}_{e}, \tag{3}$$

где ${}^{t}\tilde{\mathbf{o}}_{e}$ — эффективное напряжение в момент времени t.

Бетон нагружается в точке интегрирования за исключением определения условия разгрузки в виде:

$$^{t}g < g_{\max}, \tag{4}$$

где g_{\max} — максимальное значение скалярной величины нагружения, которое достигнуто при полном решении задачи.

При разгрузке бетон принимается изотропным и начальный модуль деформации \tilde{E}_0 используется для формирования инкрементальной матрицы зависимости напряжения-деформации для расчета жесткости и напряжений.

При нагружении определяются главные напряжения $\tilde{\sigma}_{pi}$ при ${}^{t}\tilde{\sigma}_{p1} \geq {}^{t}\tilde{\sigma}_{p2} \geq {}^{t}\tilde{\sigma}_{p3}$. Для каждого направления *i* главного напряжения определяют с помощью зависимостей (1) и (2) тангенциальный модуль упругости ${}^{t}\tilde{E}_{pi}$, соответствующий данной деформации ${}^{t}e_{pt}$. Бетон рассматривается как изотропный с направлениями ортотропности, определяемыми направлениями главных напряжений. Если трещина появилась в любом направлении *z*, то это направление фиксируется от этой точки далее при расчете ${}^{t}\tilde{\sigma}_{pi}$.

Огибающие предельные поверхности бетона. Предельные поверхности, показанные на рис. 2—5, используются для установления связи одноосных напряжений и деформаций для трех или двухмерного напряженного состояния и для определения того, достиг ли бетон разрушения от растяжения или сжатия.

Предельная поверхность при растяжении. Эта предельная поверхность модели бетона при растяжении показана на рис. 2. Для определения наступления разрушения бетона текущее напряженное состояние располагают в пространстве главных напряжений. Разрушение от растяжения происходит, если текущее напряжение растяжения в направлении главного напряжения превосходит предельное напряжение растяжения. В этом случае принимается, что плоскость разрушения развивается перпендикулярно соответствующему направлению главного напряжения. Эффект этого разрушения бетона состоит в том, что нормальные и касательные жесткости и напряжения поперек плоскости разрушения снижены и условия плосконапряженного состояния существуют в плоскости разрушения от растяжения.

Предельная поверхность при сжатии. Эта предельная поверхность модели бетона при трехосном сжатии показана на рис. 4. Сперва вводятся величины ${}^{t}\tilde{\sigma}_{p1}/\tilde{\sigma}_{c}$, которые определяют при каких уровнях напряжений ${}^{t}\tilde{\sigma}_{p1}$ в двухмерное поле предельного состояния вводятся главные напряжения ${}^{t}\tilde{\sigma}_{p2}$ и ${}^{t}\tilde{\sigma}_{p3}$. Должны быть определены шесть поверхностей разрушения, каждая с тремя точками, соответствующими расположению ${}^{t}\tilde{\sigma}_{p2} = {}^{t}\tilde{\sigma}_{p1}, {}^{t}\tilde{\sigma}_{p2} = \beta {}^{t}\tilde{\sigma}_{p3}$.

Рис. 4. Предельная поверхность сжатия модели бетона в трехмерном изображении

Для фиксирования разрушения при сжатии используют максимальное главное напряжение ${}^{t}\tilde{\sigma}_{p1}$, для установления функции огибающей предельной поверхности ${}^{t}\tilde{\sigma}_{p2}$ и ${}^{t}\tilde{\sigma}_{p3}$. — интерполяцию на рис. 5 а. Если напряженное состояние, соответствующее ${}^{t}\tilde{\sigma}_{p2}$ и ${}^{t}\tilde{\sigma}_{p3}$, лежит за пределами этой огибающей двухосного разрушения, то материал разрушается от сжатия. Необходимо вводить достоверные данные по всем предельным поверхностям растяжения и сжатия и другим параметрам, взятым из проверенных данных испытаний бетонных образцов.

Основные результаты расчетов НДС бетонной секции № 16 с использованием модели бетона для плотины и модели Мора-Кулона для основания.

В зоне контакта «бетон — скала» с верховой стороны секции № 16 напряженное состояние — сжатое (рис. 6—10). Отмечается небольшая зона нормальных вертикальных растягивающих напряжений $\sigma_y = 0,27$ МПа в основании вблизи верховой грани секции. Зона максимальных сжимающих напряжений с величиной 2,1 МПа возникает в основании плотины с низовой стороны, что составляет 15% расчетного сопротивления бетона на сжатие. Максимальное значение сдвигающих напряжений составляет 1,2 МПа.

Рис. 6. Изолинии нормальных вертикальных напряжений σ, Па

Ляпичев Ю.П., Захаров Р.А. Расчеты напряженно-деформированного состояния бетонной плотины...

Рис. 7. Изолинии вертикальных перемещений Z, м

Рис. 8. Изолинии нормальных горизонтальных напряжений σ_{x^3} Па

Рис. 9. Изолинии горизонтальных перемещений Ү, м

Рис. 10. Изолинии максимальных сдвигающих напряжений τ_{max} , Па

Оценка воздействия низких зимних температур на НДС секции № 16. В целом, НДС бетонных секций № 16 и 23 с использованием различных моделей материалов плотины и основания благоприятное, растяжение в основании напорной грани очень небольшое или вообще отсутствует, что обеспечивает отсутствие раскрытия контактного шва. Однако следует иметь в виду, что с учетом зимних температурных воздействия НДС этих секций существенно ухудшится, как показывают ниже данные расчета секции № 16, защемленной в основание.

Рис. 11. Изолинии поля температур в бетоне секции № 16

Рис. 12. Изолинии вертикальных напряжений $\sigma_{y^{*}}$ (Па) с учетом зимних температурных воздействий

Максимальное значение температуры воздуха зимнего периода принято равным –33 °С. Температура со стороны верхнего бьефа на отметке НПУ при-

нята равной 0 °C. Коэффициент линейного расширения бетона αt) принят равным $1 \cdot 10^{-5}$ 1/град. Поле температур получено на основе натурных данных измерений. Температура внутри водовода принята равной +4 °C. Средняя установившаяся температура бетона внутри сооружения принята равной +8 °C.

При расчете секции № 16, защемленной в основание, на воздействие зимних температур нормальные растягивающие напряжении σ_y возникают не только в контактном шве, но и в основании низовой грани ($\sigma_y = 1,0$ МПа), а нормальные растягивающие напряжения ($\sigma_x = 0,5$ МПа) возникают в верхней части напорной грани и несколько меньшие — по всей низовой грани и на наклонном участке подошвы плотины. В то же время на отдельных участках в подошве плотины и внутри ее возрастают нормальные сжимающие напряжения, которые достигают 3,3 МПа, что составляет 25% расчетного сопротивления бетона на сжатие.

Таким образом, зимние температуры резко ухудшают НДС секции № 16 плотины, в верховой части контактного шва возникают растягивающие нормальные вертикальные напряжения в 1,0 МПа, что может привести к раскрытию контакта, нарушению работы цемзавесы и росту противодавления в основании плотины, что уже опасно для ее устойчивости. В верховой зоне плотины такие же растяжения могут привести к трещинообразованию в бетоне.

Основные выводы и рекомендации. Напряженно-деформированное состояние секции \mathbb{N} 16 с использованием разных моделей материалов плотины и основания (включая модель нелинейного хрупкого разрушения) — благоприятное, растяжение в основании напорной грани отсутствуют (контактный шов закрыт). Однако с учетом зимних температурных воздействия НДС секций \mathbb{N} 16 и \mathbb{N} 23 существенно ухудшается до опасного, как это было установлено выше в расчетах этих секций, защемленных в скальное основание.

Следует тщательно проверить безопасность бетонной плотины в результате детальных пространственных расчетов НДС системы «плотина—основание— водохранилище», с учетом следующих важных факторов:

— отрицательного влияния не зацементированных межстолбчатых швов на состояние контакта «бетон—скала» у напорной грани;

— наличия вертикальных растягивающих напряжений в контакте «бетон скала» напорной грани ряда секций и его раскрытия на глубину 5 м, что может привести к нарушению работы цемзавесы и росту противодавления;

— возникновения вертикальных растягивающих напряжений зимой на открытых низовых и верховых гранях плотины, приводящего к раскрытию горизонтальных строительных швов (характерно для подобных плотин в Сибири, [3]).

Для глубокой и достоверной оценки безопасности достраиваемой бетонной плотины с учетом ее нынешнего состояния необходима разработка пространственной конечно-элементной модели системы «плотина—основание—водохранилище» или отдельных типовых секций плотины, включая геомеханическую модель основания, основанную на геологических исследованиях.

ЛИТЕРАТУРА

- [1] Ляпичев Ю.П. Экспертный анализ и оценка рекомендаций Банковского ТЭО Богучанской ГЭС, разработанного фирмой Коин и Белье (Франция), 2006.
- [2] Инструкция пользователя программы ADINA (версия 7.5.4). США, 2003.
- [3] Дурчева В.Н. Натурные исследования монолитности высоких бетонных плотин // Библиотека гидротехника. — Вып. 90. — М.: Энергоатомиздат, 1988.

USE OF VARIOUS MODELS OF CONCRETE AND ROCK FOUNDATION IN STRESS STATE ANALYSIS OF BOGUCHANSK CONRETE DAM

Yu.P. Lyapichev, R. Zakharov

Peoples' Friendship University of Russia Mikluho-Maklaja str., 6, Moscow, Russia, 117198

The 2-D stress-strain state analyses of Boguchansk concrete dam was performed using ADINA program with various models of concrete and rock foundation: elastic, ideally elasto-plastic with Mohr-Column criterion and nonlinear brittle models. The main properties of the nonlinear brittle model with strength softening of concrete and rock foundation were considered. The stress-strain state of dam sections under actions of hydrostatic and uplift pressures was analyzed and assessed as a favorable, but severe cold winter temperatures can transfer the dam state into unfavorable.

Key words: concrete dam, stress-strain state, models of concrete and rock, cold temperatures.