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ABSTRACT  

The interest for composites has constantly grown in recent years, especially in the aerospace and automotive industries, as they can be moulded 
in complex form and geometry, as well as exhibit enhanced engineering properties. Nevertheless, despite the accelerated diffusion of laminated 
composites, the design of these materials is often restrained by the lack of cost-effective modeling techniques. In fact, the existing numerical 
strategies allowing for cheap simulations of laminated structures usual ly fai l to directly capture out-of-plane through-the-thickness stresses, which 
are typically responsible for failure modes such as delamination. In this context, a stress recovery approach based on equilibrium has been recently 
shown to be an efficient modeling strategy in the framework of isogeometric analysis. Since immersed approaches like the finite cell method have 
been proven to be a viable alternative to mesh-conforming discretization for dealing with complex/dirty geometries as well as trimmed surfaces, 
we herein propose to extend the stress recovery approach combining the finite cell method, isogeometric analysis and equilibrium to model the 
out-of-plane behavior of Kirchhoff laminated plates. Extensive numerical tests showcase the effectiveness of the proposed approach. 
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tional IgA approach might show problems similar to classical 
FEA. Therefore, immersed boundary approaches have been ex- 
tensively studied in this context and have shown to be a valid 
alternative to mesh-conforming methods [ 9 –11 ]. In particular, 
the finite cell method ( FCM ) [ 12 , 13 ] seems to be a simple yet 
effective immersed boundary approach that can be easily com- 
bined together with IgA ( FCM-IgA ) , as extensively shown in the 
literature [ 14 –16 ]. 
Many other techniques can be found in the literature belong- 

ing to the family of the immersed boundary methods, for in- 
stance: the immersed boundary method by Peskin [ 17 ], the im- 
mersed boundary finite volume method [ 18 ], the fat-boundary 
method [ 19 ], XFEM [ 20 ], and CutFEM [ 21 ]. In particular, in 
this context, we recall the immersogeometric analysis method 
that has been successfully employed in fluid and fluid-structure 
interaction ( FSI ) simulations [ 22 , 23 ]. Such a method inherits 
its main features from the IgA version of the FCM but it has been 
further specialized to deal with FSI and fluid problems [ 24 –26 ]. 
Another very recently introduced method is the so-called Im- 
mersed Boundary-Conformal Method [ 27 ]. It takes advantage 
of both immersed and boundary conform approaches featuring 
a layer of conforming mesh and a background immersed bound- 
ary discretization using the minimal stabilization method intro- 
duced in [ 28 ]. Another interesting immersed-boundary/IgA 

computational framework for FSI can be finally found 
in [ 29 ]. 
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1 INTRODUCTION 

Traditional computer-aided engineering ( CAE ) procedure
starts from the geometry of a structure designed within a
computer-aided design ( CAD ) environment. To evaluate
stresses and other quantities of interest in the structure, CAE’s
workflow requires to generate a mesh, i.e. a discretized version
of the original ( exact ) geometry, suitable to perform finite
element analysis ( FEA ) . However, when considering complex
geometrical entities, such a mesh generation procedure turns
out to be the actual bottleneck in the CAE process [ 1 ], since it
is often hard to automatize and time consuming. 
Isogeometric analysis ( IgA ) was initially proposed to over-

come the mesh generation burden in structural analysis [ 2 ]. The
idea is to employ the same functions used in CAD environments
to represent geometrical entities ( B-splines and Non-Uniform
Rational B-splines ( NURBS ) ) as basis functions for the analysis.
Such an approach has demonstrated to have excellent properties
which can be exploited in many mathematical and engineering
applications [ 3 –5 ]. In fact, the higher inter-element continuity
that can be achieved by using B-splines basis functions yields a
higher accuracy per degree of freedom ( DOF ) compared to stan-
dard Lagrange polynomials. Moreover, it allows to directly solve
higher-order variational problems such as Kirchhoff-Love plates
and shells [ 6 –8 ]. 
However, when we have to deal with trimmed surfaces, “dirty”
geometries as well as volumetric mesh generations, the tradi- 
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Figure 1 Pagano’s problem setup. 

Table 1 Pagano’s benchmark parameters. 

Parameter Value [unit] 

Slenderness ( S ) 50 [-]
Thickness ( t ) 11 [mm] 
Length ( L ) 550 [mm]
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Table 2 Material parameters. 

E 1 E 2 E 3 G 23 G 13 G 12 ν23 ν13 ν12 

[GPa] [GPa] [GPa] [GPa] [GPa] [GPa] [-] [-] [-] 
25 000 1000 1000 200 500 500 0.25 0.25 0.25 
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Composite materials [ 30 , 31 ] have attracted a lot of atten-
ion especially for aerospace applications, as they can in fact be
oulded in various shapes and assembled in a multitude of lay-
p arrangements. Therefore, the design process of those materi-
ls faces rather complex challenges comprising shape optimiza-
ion, material compositions, architectures, and manufacturing
 32 ]. For example, in laminated composites each ply exhibits a
referred high-strength direction, which can be tuned accord-
ng to the fiber orientation, thereby giving designers the flexibil-
ty to tailor engineering properties of interest, such as laminate
tiffness and strength, while sti l l maintaining a reduced weight
nd matching even demanding structural requirements. Never-
heless, it is a well-known fact that laminated composites are
rone to damage even under simple loading conditions due to
 comparatively poorer strength in the out-of-plane direction as
hey typically exhibit a mismatch of material properties in differ-
nt layers [ 33 ]. As a result, between two adjacent plies an inter-
ace crack might grow eventually leading to delamination [ 34 ].
herefore, to properly assess the structural response of lami-
ated structures, an accurate evaluation of the out-of-plane stress
tate is of paramount importance. 
Standard approaches for the simulation of the behavior of

aminated plates/shells consist, in general, of two-dimensional
heories ( such as the equivalent single-layer ( ESL ) approach
 31 ] ) and layerwise ( LW ) theories ( see, e.g. [ 35 –38 ] ) . In
articular, LW theories typically show a comparatively higher
omputational cost with respect to ESL theories, especially for
tacking sequences comprising a significant number of plies.
owever, the existing strategies allowing for cheap simula-
ions, like the ESL approach, usually fail to directly capture
ut-of-plane through-the-thickness stresses. 
The high smoothness achievable by IgA functions guarantees
uperior approximation properties and opens the door to the
iscretization of high-order partial differential equations in
rimal form, such as in the classical laminated plate theory
 CLPT ) . In this study, we consider a displacement-based
LPT approach, which provides the lowest computational
ost among known literature strategies, within an FCM-IgA
ramework that allows us to break away from the complexity
f the geometry and possible complications in the meshing
rocedure. According to the CLPT, out-of-plane stresses are
eglected, while in the case of cross-ply laminates weaker
aterial strength properties in the stacking sequence cause
tress concentrations at the interface level, eventually leading
o premature failure. Nevertheless, interlaminar stresses may
e recovered coupling the obtained displacement solution with
 post-processing technique that directly imposes equilibrium
quations [ 39 ]. As this a posteriori approach involves high-
rder in-plane derivatives, IgA represents a natural simulation
ramework given its high continuity properties and excellent
ccurac y-to-efficienc y ratio. The adopted post-processing tech-
ique takes its origin in [ 40 –42 ] and has already been proven to
rovide good results for 3D solid plates and shells in the context
f both IgA Galerkin [ 43 ] and collocation [ 8 , 44 ] methods
 but also of finite element methods combined with Radial Basis
unctions [ 45 ] ) . 
The present work is structured as follows. Section 2 recalls the
ain concepts beneath the IgA stress recovery procedure first

ntroduced in [ 39 ]. In Section 3 , the interlaminar stress recon-
truction approach is extended to an immersed formulation by
eans of the FCM. In Section 4 , we present and discuss the re-
ults obtained adopting the presented numerical framework on
wo classical benchmarks: the Pagano’s plate problem and the
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Figure 2 Through-the-thickness in-plane stress profiles at x 1 = x 2 = 0 . 25 L . L represents the total length of the plate, that for this case is 
L = 550 mm ( being L = S t with t = 11 mm and S = 50 ) , while the number of layers is 11 ( Pagano’s analytical solution [ 49 ] versus ×
FCM-IgA solution obtained with degree of approximation p = q = 4 and 14 × 14 knot spans ) . 

Figure 3 L 2 relative percentage error evaluation ( e ( σ i 3 ) [%], i = 1, 2, 3 ) at x 1 = x 2 = 0 . 25 L . Different number of knot spans ( i.e. 3 × 3, 5 × 5, 
7 × 7, 9 × 9, 11 × 11, 14 × 14 ) are investigated for a number of layers equal to 11 and S = 50 ( e ( σ 13 ) [%] , e ( σ 23 ) [%] , e ( σ 33 ) [%] 

) . 

 

 

 

 

 

 

 

 

 

 

1 We restrict our analysis to symmetric cross-ply laminates, thereby neglecting 
bending-stretching coupling coefficients and bending-twisting contributions. However, 
the proposed modeling approach provides reasonable approximations to more complex 
laminates such as antisymmetric cross-ply laminates [ 39 ]. 
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quarter of annulus problem. Finally, in Section 5 , we draw the
main conclusions of the present contribution. 

2 LAM INATED  COM POSITE STRESS  

RECOVERY  

The stress-recovery for conforming IgA laminated plates in lin-
ear elasticity may be regarded as a two-step procedure. First
the usual balance of linear momentum is solved adopting a
displacement-based CLPT 

1 which features homogenized mate-
rial properties of the stacking sequence of the composite accord-
ing to [ 46 ]. This allows to obtain an immediate assessment of
the in-plane stress state only using the constitutive equations.
In fact, due to the kinematic assumptions in Kirchhoff ’s theory,
out-of-plane stresses are identically zero. Then, starting from the
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Figure 4 Through-the-thickness σ̄13 profiles for several in-plane sampling points. L represents the total length of the plate, that for this case is 
L = 550 mm ( being L = S t with t = 11 mm and S = 50 ) , while the number of layers is 11 ( Pagano’s analytical solution [ 49 ] versus 
recovered numerical solutions obtained with degree of approximation p = q = 4, and 14 × 14 knot spans: FCM-IgA, • conforming IgA ) . 
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btained transverse displacement solution w ( even a coarse
ne ) , we can compute a posteriori the necessary high order
erivatives of the in-plane stresses relying on the properties of
he shape functions and impose equilibrium equations which
llow for an accurate description also of the interlaminar stress
tate of the composite through the thickness. 
Thus, if the considered deformable body is in equilibrium,
tresses must satisfy the following equations: 

σ11 , 1 + σ12 , 2 + σ13 , 3 = −b 1 , ( 1a ) 

σ12 , 1 + σ22 , 2 + σ23 , 3 = −b 2 , ( 1b ) 

σ13 , 1 + σ23 , 2 + σ33 , 3 = −b 3 , ( 1c ) 

here in Eqs. ( 1a ) –( 1c ) and hereinafter we adopt the conven-
ion that the portion of a subscr ipt pr ior to a comma indicates
he components of a tensor, while the portion after the comma
efers to partial derivatives; e.g. σ13 , 3 = 

∂σ13 
∂x 3 

. 
Following [ 39 , 43 ], an accurate solution can be obtained not
nly in terms of in-plane displacements and stresses, but also
f derivatives of in-plane stresses with respect to in-plane co-
rdinates. Therefore, the out-of-plane derivatives of the stress
omponents in system ( 1 ) are decoupled from the in-plane
nes. As a result, we can reformulate ( 1 ) in terms of interlam-
nar stresses, which we numerically integrate along the plate
hickness coordinate ζ using a composite trapezoidal quadrature
ule as 

σ13 (x 3 ) = −
∫ x 3 

x̄ 3 
(σ11 , 1 (ζ ) + σ12 , 2 (ζ ) + b 1 (ζ ))d ζ

+ σ13 ( ̄x 3 ) , ( 2a ) 

23 (x 3 ) = −
∫ x 3 

x̄ 3 
(σ12 , 1 (ζ ) + σ22 , 2 (ζ ) + b 2 (ζ ))d ζ + σ23 ( ̄x 3 ) ,

( 2b )
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Figure 5 Through-the-thickness σ̄23 profiles for several in-plane sampling points. L represents the total length of the plate, that for this case is 
L = 550 mm ( being L = S t with t = 11 mm and S = 50 ) , while the number of layers is 11 ( Pagano’s analytical solution [ 49 ] versus 
recovered numerical solutions obtained with degree of approximation p = q = 4, and 14 × 14 knot spans: FCM-IgA, • conforming IgA ) . 
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σ33 (x 3 ) = 

x̄ 3 x̄ 3 
(σ11 , 11 (ξ ) + σ22 , 22 (ξ ) + 2 σ12 , 12 (ξ ) 

+ b 1 , 1 (ξ ) + b 2 , 2 (ξ ))d ξ

] 

d ζ

−
∫ x 3 

x̄ 3 
b 3 (ζ )d ζ −(x 3 −x̄ 3 )(σ13 , 1 ( ̄x 3 ) 

+ σ23 , 2 ( ̄x 3 )) + σ33 ( ̄x 3 ) . ( 2c )

In Eqs. ( 2a ) –( 2c ) , the integral constants should be chosen to ful-
fill the boundary conditions at the top or bottom surface ̄x 3 ( see,
[ 43 ] for further details ) . 
Hereinafter, Einstein’s notation on repeated indices is used, as

well as the convention for which indices in Greek letters take val-
ues {1,2}. Accordingly, in Eq. ( 2 ) the derivatives of the in-plane
stress components can be evaluated as 

σαβ,γ = C 

(k) 
αβζη(x 3 )(−x 3 κζη,γ ) = C 

(k) 
αβζη(x 3 )(−x 3 w ,ζηγ ) , 

( 3a )

σαβ,γ δ = C 

(k) 
αβζη(x 3 )(−x 3 κζη,γ δ) = C 

(k) 
αβζη(x 3 )(−x 3 w ,ζηγ δ) ,

( 3b )
where κγ δ = w , γ δ are the curvatures of the deflected plate mid-
surface, while C 

(k) 
αβζη are the material tensor components for the

( k ) -th layer. In Eqs. ( 3a ) and ( 3b ) , we remark that the post-
processing step involves second derivatives of the plate curva-
tures κζη, γ δ , thereby requiring the displacement solution to be
at least C 

3 -continuous. Such a continuity can be achieved in a
straightforward manner by means of IgA. Finally, we highlight
that the material tensor components C 

(k) 
αβγ δ need to be trans-

formed in the basis of the problem coordinate system { E α} [ 31 ] as 
C 

(k) 
αβγ δ = D αa D βb D γ c D δd C 

(k) 
abcd , ( 4 )

where C 

(k) 
abcd are the material tensor components in the ba-

sis of the principal material coordinates { e a } ( namely e 1 , e 2 ,
and e 3 are taken as the fiber, matrix, and normal directions,
respectively ) which find a convenient representation adopting
Voigt’s notation as 

C 

(k) = 

⎡ 

⎣ 

C 11 C 12 0 
C 22 0 

symm. C 66 

⎤ 

⎦ = 

⎡ 

⎢ ⎢ ⎣ 

1 
E 1 

− ν12 
E 1 

0 
1 
E 2 

0 

symm. 1 
G 12 

⎤ 

⎥ ⎥ ⎦ 

−1 

, ( 5 )
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Figure 6 Through-the-thickness σ̄33 profiles for several in-plane sampling points. L represents the total length of the plate, that for this case is 
L = 550 mm ( being L = S t with t = 11 mm and S = 50 ) , while the number of layers is 11 ( Pagano’s analytical solution [ 49 ] versus 
recovered numerical solutions obtained with degree of approximation p = q = 4, and 14 × 14 knot spans: FCM-IgA, • conforming IgA ) . 
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hile D αa are the components of the basis change operator de-
ned as: 

D αa = E α · e a . ( 6 ) 

3 FINITE  CELL  METHOD  

CM is an embedded domain method, which allows to treat
omplex geometrical entities in a rather simple way. The ba-
ic idea of such a method consists of embedding a complex
hape domain phys within a fictitious domain fict such that
he resulting domain  = fict ∪ phys with fict ∩ phys � = ∅
an be directly discretized by means of a Cartesian grid, whose
omponents are referred to as finite cells to be distinguished
rom traditional boundary conforming finite elements. The im-
ersed boundary nature of such an approach requires to impose
irichlet-type boundary conditions in a weak sense, since no
oundary-conforming elements are usually present. We refer to
 47 ] for further details. 
The out-of-plane stress recovery formulation presented in
ection 2 has to be modified accordingly as follows: 
σ13 (x 3 ) = −
∫ x 3 

x̄ 3 
α(σ11 , 1 (ζ ) + σ12 , 2 (ζ ) + b 1 (ζ ))d ζ

+ ασ13 ( ̄x 3 ) , ( 7a ) 

σ23 (x 3 ) = −
∫ x 3 

x̄ 3 
α(σ12 , 1 (ζ ) + σ22 , 2 (ζ ) + b 2 (ζ ))d ζ

+ ασ23 ( ̄x 3 ) , ( 7b ) 

σ33 (x 3 ) = 

∫ x 3 

x̄ 3 
α

[ ∫ ζ

x̄ 3 
(σ11 , 11 (ξ ) + σ22 , 22 (ξ ) + 2 σ12 , 12 (ξ ) 

+ b 1 , 1 (ξ ) + b 2 , 2 (ξ ))d ξ
]
d ζ

−
∫ x 3 

x̄ 3 
αb 3 (ζ )d ζ − α(x 3 − x̄ 3 )(σ13 , 1 ( ̄x 3 ) 

+ σ23 , 2 ( ̄x 3 )) + ασ33 ( ̄x 3 ) , ( 7c ) 
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Figure 7 Quarter of annulus problem setup. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/jom

/article/doi/10.1093/jom
/ufac005/6553117 by U

niversita' degli Studi di Pavia user on 25 July 2022
where α is a discrete parameter defined as 

α = 

{
1 in phys , 

δ in  f ict \ phys . 
( 8 )

The value of the parameter δ should be zero but, for practical ap-
plications, it is set to be within the interval [10 −14 , 10 −10 ]; this
choice is necessary to avoid i l l-conditioning of the linear system.
The extended domain  is then discretized with a simple Carte-
sian grid, where each cell of the grid defines either a local support
for the shape functions ( as in classical FEM ) or a knot span ( as
in conforming IgA ) . 
In each cell the field variable w can be approximated using the

extension 

w ≈ w h = 

p+1 ∑ 

i =1 

ψ i ̃  w i , ( 9 )

where p is the maximum polynomial order of the i − th shape
function ψ i and ˜ w i is the corresponding DOF. Different choice
of the Ansatz space of the shape functions are possible for FCM;
in the following, we employ NURBS basis functions [ 1 ] as ba-
sis for the analysis, i.e. we adopt the so-called IgA-version of the
FCM [ 48 ]. 

4 NUM ERIC  AL  RESULTS  

In this section, we discuss the results obtained with the previ-
ously described methodology for two classical numerical tests,
namely the Pagano’s benchmark and the problem of a quarter of
annulus with an uniform distributed load. 

4.1 Pagano’s benchmark 
The first numerical example is the well-known Pagano’s problem
as depicted in Fig. 1 a, for which an analytical solution is available
[ 49 ]. The problem coefficients are reported in Table 1 , the ma-
terial parameters in Table 2 , and the distributed external load is
defined as 

q (x 1 , x 2 ) = q 0 sin 
(πx 1 

L 

)
sin 

(πx 2 
L 

)
, 

where q 0 = 1 MPa. The FCM-IgA discretization is obtained by
simply extending the patch length by a factor 1/3 in both di-
rections, i.e. the patch length of the immersed domain is L FCM
= 733.315 mm ( see Fig. 1 b ) . All results hereinafter in terms of
stress profiles are normalized according to the slender parameter
S and the maximum external load q 0 as 

σ̄i j = 

σi j 

q 0 S 2 
i, j = 1 , 2 , ( 10a )

σ̄i 3 = 

σi 3 

q 0 S 
i = 1 , 2 , ( 10b )

σ̄33 = 

σ33 

q 0 
. ( 10c )

In Fig. 2 , we present the in-plane solution profiles computed
with p = q = 4 and 14 × 14 knot spans at a point of the plate do-
main P = [0.25 L , 0.25 L ]. The normalized stresses obtained with
an FCM-IgA approach prove in all cases to accurately capture the
in-plane behavior of the structure also at the interface level where
discontinuities in the solution are typically observed. Similar re-
sults can also be found in the literature making us confident of
the effectiveness of the proposed approach ( see, e.g. [ 50 , 51 ] ) . 
The plot in Fig. 3 shows instead the L 

2 relative error conver-
gence with respect to the analytical solution of the FCM-IgA dis-
cretization at the same sampling point for three different choices
of in-plane approximation degrees: p = q = 3, p = q = 4, and
p = q = 6. In the interlaminar shear stress convergence plots,
a cubic in-plane approximation exhibits a pronounced osci l lat-
ing behavior and high errors for the considered levels of refine-
ment. This is most likely due to the minimum inter-element con-
tinuity in the in-plane stress derivatives. This loss of information
is even more evident in the recovery of σ 33 which provides a
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Figure 8 Post-processed interlaminar stress profiles for the quarter of annulus problem evaluated at x 1 = 0 . 75 R e , x 2 = π/ 4 . Quarter of 
annulus plate case with 11 layers and radius-to-thickness ratio S = 50 ( conforming reference solution obtained with p = q = 6, and 
27x27 control points, FCM-IgA computed with p = q = 4 and increasing number of knot spans, i.e. 5 × 5, 7 × 7, 9 × 9, 11 × 11 ) . 
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onstant error around 10%. For this reason, we recommend
dopting at least a quartic in-plane approximation. In fact, using
 = q = 4, we obtain a quite high relative error ( approx. 8% ) for
he σ 13 and σ 23 components only when the coarsest grid ( 3 ×
 knot spans ) is employed, while such an error suddenly drops
nd then keeps osci l lating around 1% for all three out-of-plane
tress components. With p = q = 6, instead, even adopting the
oarsest mesh of 3 × 3 knot spans, the relative error is steadily
round 1% for σ 13 and σ 23 , whereas it is osci l lating around
 . 2% for σ 33 . Since a similar behavior has been observed also
or a conforming IgA discretization ( cfr. [ 39 ] ) , we assume such
n error associated to the out-of-plane stress recovery proce-
ure and not to the immersed boundary nature of the numerical
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Figure 9 Post-processed interlaminar stress profiles for the quarter of annulus problem evaluated at x 1 = 0 . 75 R e , x 2 = π/ 4 . Quarter of 
annulus plate case with 11 layers and radius-to-thickness ratio S = 50 ( conforming reference solution obtained with p = q = 6, and 
27x27 control points, • FCM-IgA computed with p = q = 6 and increasing number of knot spans, i.e. 5 × 5, 7 × 7, 9 × 9, 11 × 11 ) . 
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The above observation is further validated by the results re-
ported in Figs. 4 –6 , where the analytical, conforming IgA, and
FCM-IgA out-of-plane stress solutions are reported at different
sampling points. It can be observed that the analytical solution
is well approximated by both conforming IgA and FCM-IgA
discretizations showing negligible differences between them. In
particular, the point-wise error in the displacement solution
within the physical domain between the conforming and the im-
mersed solutions is in the order of 10 −6 . 

4.2 Quarter of annulus 
As a second numerical example, we consider a more com-
plex geometry, namely the multilayered quarter of annulus de-
picted in Fig. 7 a, setting the total thickness t = 11 mm and the
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Figure 10 L 2 relative percentage error evaluation ( e ( σ i 3 ) [%], i = 1, 2, 3 ) at x 1 = 0 . 75 R e , x 2 = π/ 4 . Different number of knot spans ( i.e. 5 ×
5, 7 × 7, 9 × 9, 11 × 11 ) are investigated for a number of layers equal to 11 and S = 50 ( e ( σ 13 ) [%] , e ( σ 23 ) [%] , e ( σ 33 ) [%] ) . 
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adius-to-thickness ratio S = 50, such that the internal radius
 i = t [mm] and the external one R e = S t [mm]. The struc-
ure features a cross-ply distribution of N l = 11 layers, namely
 90 ◦/0 ◦/... stacking sequence from the bottom to the top of
he plate. For each ply the material parameters remain the same
s in the previous example, whereas the quarter of annulus is
ubjected to a constant distributed external load p ( x 1 , x 2 ) =
1 MPa and is simply supported at the straight edges while the
urved edges are free. In this case, the FCM-IgA discretization
s easily obtained by immersing the quarter of annulus geometry
nto a squared-patch of side L = R e such that the straight edges
f the conforming geometry partially coincide with two of the
atch sides ( see Fig. 7 b ) . 
For this example, all numerical simulations are carried out
or a sampling point located at x 1 = 0 . 75 R e , x 2 = π/ 4 using a
adius-to-thickness ratio S = 50 and 11 layers, whereas as a refer-
nce solution we take a conforming IgA discretization compris-
ng an in-plane degree of approximation p = q = 6 and 27 ×
7 control points. Figs 8 and 9 report the recovered interlaminar
tresses obtained starting from a displacement-based FCM-IgA
olution for in-plane degrees of approximation p = q = 4 and
 = q = 6 for several in-plane discretizations comprising 5 × 5,
 × 7, 9 × 9, and 11 × 11 knot spans, respectively. In all cases,
e are able to accurately capture the out-of-plane behavior of the
late, except in the case of the coarsest FCM-IgA discretizations.
In Fig. 10 , we assess the validity of the method in terms of L 

2 

elative error convergence through the laminate thickness for the
CM-IgA discretizations with respect to the reference conform-
ng IgA solution at x 1 = 0 . 75 R e , x 2 = π/ 4 and investigating p
 q = 4 and p = q = 6. For a degree of approximation p = q
 4, the post-processing approach provides errors in the order
f 0.2% for interlaminar shear stresses and rather coarse meshes
 i.e. 7 × 7 knot spans ) , while for the recovery of σ 33 we need to
ccount for the finest discretization considered in this example
 i.e. 11 × 11 knot spans ) to attain the same level of accuracy as
or σ 13 and σ 23 . This behavior may be expected as the recovery
f σ 33 component involves higher order derivatives than for the
ost-processing of the interlaminar shear stresses. Thus, these re-
ults suggest that using p = q = 4 and 11 × 11 knot spans seems
o be a reasonable choice to correctly reproduce the complete
tress state for this plate example. Instead, taking into account a
egree of approximation p = q = 6, the error evolution high-
ights that the modeling error given by the recovery dominates
ver the approximation one. 

5 CONCLUSIONS  

n the present work, we have combined the IgA stress recovery
rocedure for CLPT and the FCM in order to provide an organic
umerical framework able to treat complex geometrical entities
n a simple yet effective way. The presented results show the ef-
ectiveness of such an approach, which is able to return approxi-
ately the same accuracy achieved by means of conforming IgA
eshes using a more simple and flexible geometrical treatment. 
The prospective of the present work are manifold: firstly,
he recovery stress procedure can be extended to more com-
lex variational formulations ( e.g. Kirchhoff-Love shells ) ; sec-
ndly, the FCM implementation can be enriched by including
rimmed surface treatment ( see, [ 16 ] ) and more efficient adap-
ive integration schemes ( e.g. the smart octtree approach pre-
ented in [ 52 ] ) ; finally, the approach can be extended to include
ore complex material models, such as plastic or visco-plastic
odels. 
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