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Abstract: Digitally controlled Dual-Input Doherty Power Amplifiers (DIDPAs) are becoming in-
creasingly popular due to the flexible input signal splitting between the main and auxiliary stages.
Nevertheless, the presence of many degrees of freedom, e.g., input amplitude split and phase dis-
placement as well as biasing for multiple stages, often involves inefficient trial-and-error procedures
to reach a suitable PA performance. This article presents automated parameter setting based on
coordinate descent or Bayesian optimizations, demonstrating an improvement in the performance in
terms of RF output power and power-added efficiency (PAE) in the presence of broadband-modulated
signals, yet maintaining suitable linear behavior for, e.g., communications applications.

Keywords: RF power amplifiers; Doherty amplifier; optimization; parameter search; digital input
control; dual-input power amplifiers

1. Introduction

With the advent of the fifth generation of telecommunications (5G) and its deployment
in Frequency Range 2 (FR2) as well as in new satellite-based telecom systems, Radio-
Frequency (RF) systems increasingly require energy-efficient and broadband power ampli-
fication at microwave frequencies. RF power amplifiers (PAs) must feature high linearity
to accommodate high-data-rate modulation standards while also displaying sufficient
power-added efficiency (PAE). To meet these contrasting specifications, multi-stage PA
transmitter topologies including features like dynamic load and supply modulation have
been investigated in the recent past [1]. These PA architectures exploit multiple active
devices and additional control signals to enhance PA performance across the wide dynamic
range required by signals with high peak-to-average power ratio (PAPR).

Among the architectures based on load modulation, the Doherty PA (DPA) has found
widespread application in the sub-6 GHz range [2], and it is nowadays being investigated
at microwaves in the form of Microwave Monolithic Integrated Circuits (MMICs) [3]. In
classical DPAs, the input signal is split by a 90-degree quadrature hybrid in order to feed
an auxiliary (peaking) PA aimed at modifying the output impedance of a main PA at
high power.

To establish proper DPA operation, the design flow should leverage accurate MMIC
process design kits (PDKs). However, the synthesis of optimal loadlines for broadband
signals at high operating frequencies is particularly problematic, as it is affected by the
mutual dynamic load-pulling of the transistors employed in the two branches as well
as the limited fractional bandwidth (BW) of the output combiner. While the availability
of wideband active load-pull characterization techniques [4—6] should in principle allow
the extraction of accurate models taking into account the global device behavior under
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dynamic active injection, PDKs for MMICs are often validated in nominal conditions only,
and may not be accurate enough for the successful design of MMIC DPAs at microwave
frequencies.

Rather than establishing the behavior in hardware at the design stage, an alternative
approach consists of leaving the additional parameters for load (or supply) modulation
as digitally controlled external inputs. One example of such kind is the dual-input DPA
(DIDPA) [7], where the input 90-degree quadrature hybrid is not implemented in hardware,
and the two PA branches are left to be digitally controlled as independent inputs. The
same applies to outphasing PAs [8], where the input signal separation network is often
implemented digitally. While still permitting to implement digitally the exact nominal
behavior of the corresponding hardware version, the availability of multiple control vari-
ables allows for higher flexibility in fine-tuning the overall PA performance. In effect, the
additional degrees of freedom could in principle be used to concurrently optimize other
Figures of Merit (FoMs), e.g., PAE. On the other hand, the identification of such an opti-
mum might involve inefficient trial-and-error approaches or the non-trivial formulation of
a high-dimensionality optimization problem. As a consequence, an active area of research
concerns approaches based on numerical optimization or machine learning for optimal
signal-input synthesis and operating point selection of digitally controlled PAs [9-13], and
DIDPAs in particular [14,15].

In this work, we implement and compare optimization approaches for the optimal
input splitting and biasing of a DIDPA under high-PAPR modulation. The DIDPA is
designed in state-of-the-art 150 nm gallium nitride (GaN) on silicon carbide (SiC) MMIC
technology with a center frequency of 24 GHz, targeting 5G FR2 applications. After
defining the DIDPA optimization problem in Section 2, various optimization approaches
are tested through a series of simulation-based experiments. A first approach (Section 3)
investigates single-objective optimization with the coordinate descent algorithm, where the
input variables are iteratively considered in pairs in order to maximize PAE. A second
methodological solution employs a Bayesian approach to implement both a single-objective
optimization (Section 4) as well as a global multi-objective optimization (MOO), where
both the PAE and the RF output power are considered as joint target FoMs (Section 5).
The latter leads to the extraction of a Pareto frontier of non-dominated solutions, namely
corresponding to the value sets of input variables for which neither PAE nor RF output
power can be improved without worsening the other. The performance of the PA optimal
configurations obtained from the different optimization frameworks are discussed and
evaluated for high-PAPR wideband-modulated signal excitation in Section 6.

2. DIDPA Optimization by Surrogate Modeling
2.1. DIDPA Design

The DIDPA here under analysis is designed exploiting the Win Semiconductors
NP15-00 150 nm GaN process manufactured on 100 mm SiC wafers. This process is
well suited for mm-wave high-power applications featuring f; = 34.5 GHz. The break-
down voltage exceeds 100 V thanks to a source-coupled field plate. At 28 V operation, the
maximum power density is 4 W/mm at 29 GHz. The DIDPA block diagram is shown in
Figure 1, while its layout is shown in Figure 2. A two-stage amplification is used to target
25 dB of gain at 24 GHz. The devices of the driving stage are 2 x 75 um HEMTs whereas, in
the final stage, 6 x 75 pm HEMTs were used both for the main and the auxiliary PAs. The
nominal drain voltage is Vp = 28 V for all the stages. In Figure 2, it is possible to visualize
the asymmetry of the output combiner that provides the required 90-degree phase shift in
the combination of the output signals. The chip dimensions are 3.8 mm x 4.2 mm.

The performance of the DIDPA enforcing the nominal input split and bias by applying
the values from Table 1 (thus resulting in this case in a classical single-input DPA) is shown
in Figure 3a,b, which respectively display the S-parameters and the continuous-wave (CW)
large-signal characteristics. With a peak PAE of 40% and PAE of 30% at 6 dB of output
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backoff, the performance of the presented PA is in line with similar K-band high-gain
(two-stage) DPAs found in the literature, e.g., [16-18].

Digital
Splitter

Digital Front-end

Figure 1. Block diagram of the DIDPA schematic with explicit labeling of the optimization variables
(w, ¢, Vé\AC’D , Vévép , V(’%D ,and Vé‘g ), the main and auxiliary branch RF inputs (respectively, uy; and
u,), and the RF output (y). The block diagram highlights the two-stage DIDPA with the input and
output matching networks (IMN and OMN) of each stage, and the quarter-wave output combiner.

Main Amplifier

RFout

Auxiliary Amplifier

Figure 2. Layout of the simulated DIDPA MMIC with labeling of the main and auxiliary branch RF
inputs (respectively, uys and uy), and the RF output (y).
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Figure 3. (a) S-parameters and (b) CW large-signal characteristic of the DIDPA when the nominal
bias and input splitting are applied.
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2.2. Definition of the Optimization Problem

The search for a set of best input variables resulting in optimal PA performance can
be generally described as a MOO problem where the control inputs define a set x of
variables, while the PA performance is quantified by multiple scalar FoMs (e.g., output
power, PAE, gain) that constitute the multiple objectives of the problem and, as such,
need to be maximized (or equivalently minimized). The definition of variables x clearly
depends on the PA topology under study, e.g., the amplitude/phase split of the inputs
in outphasing PAs or the injection ratio and input-referred phase displacement in load-
modulated balanced amplifiers (LMBAs) [19].

For a DIDPA (see Figure 1), it is effective to consider as optimization variables the
parameters of the input splitter, namely the amplitude ratio & and the phase displacement
¢ between the two split signals [14]. Moreover, the behavior of the DIDPA will critically
depend on the biasing voltages of all stages, as they will determine the amplitude level
at which the peaking amplifier will impact the main amplifier (and vice versa). Hence, it
makes sense to consider all bias voltage values as additional optimization variables. For the
case here under study, we consider the gate bias voltages for the driver and for the final PA
of each of the DPA branches, namely for the main PA (VgéD and VéV(I;'F , respectively) and
for the auxiliary PA (VééD and Vég , respectively). The six real variables here considered,
along with their nominal values set in the design phase (prior to any optimization), are
reported in Table 1.

Table 1. Nominal values of the parameters considered for DIDPA optimization.

« ¢ (deg) vee V) Ves (V) Veg V) Vet V)
0.5 —90 ~17 ~17 -23 ~21

The performance of the DIDPA can be evaluated through different FOMs, depending
on the final application. The DIDPA here under analysis is targeted at wideband communi-
cation signals, so it should be assessed in terms of the compromise among PAE, RF output
power, and linearity. More precisely, the FoMs to be optimized are here embodied by the
following performance quantities:

RF RF
Py — Py,

1 N-1
o/\ _ _out . RF _ 2.
PAE (/0) - Pd(j 4 Pﬂllt (W) 2NR0ut n;O |y71‘ 4

YN [yn — Grintin]?
ZnNz_ol |Glinun‘2

)

NMSE (dB) = 101og;,

where Py is the total power absorbed from the DC supply, PRF is the sum of the RMS
absorbed power at RF at the two inputs, Ry, = 50 () is the output resistance, 1, and v, are,
respectively, the complex envelope samples of the input (before digital split) and output
signals, N is the number of time-domain signal samples, and Gy, is the desired linear
gain for the device. It is important to note that the functional relationships underlying the
FoMs in (1) are generally not known in an explicit mathematical formulation, since they
depend on the complex nonlinear interactions taking place within the PA. Therefore, it
is not typically feasible to solve the optimization problem in a closed form. On the other
hand, the FoMs in (1) can be retrieved by direct evaluation for a set of given values of the
input parameters by means of simulation- or measurement-based experiments.

An intuitive method for finding the maximum (or a minimum) of an objective func-
tion g(x) describing a particular FOM without any hypothesis on the function itself (e.g.,
convexity) would consist of sweeping all variables (factorial sweep) across suitable value
ranges. These can indeed be defined for the DIDPA variables in Table 1, namely « € [0, 1],
¢ € [—180,180] (deg), while the remaining four bias voltage variables have limited ranges
in order to respect the safe operating area of the transistors. However, the need for a suitable
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resolution and the high dimensionality of the problem prevents the performing of a full
factorial sweep. For example, a uniform factorial sweep would require r® FoM evaluations,
with r being the number of evaluation points for each dimension, easily leading to several
hundred-thousand FoM evaluations, which are clearly unbearable in either simulation- or
measurement-based experiments.

While there exist suitable experiment designs for an efficient exploration of the vari-
ables’ space [20], they would still require an excessively large number of evaluations for the
application under study, still without any certainty of detecting the actual optima. Other
optimization approaches available in the literature [21] are based on iterative algorithms,
for example, including the calculation, at each iteration, of numerical gradients of the
objectives and constraints. Gradient-based optimizers can be more efficient in selecting the
actual direction for the optimum, and might be considered as an effective tool for DIDPA
optimization [11]. However, gradient calculation requires a number of evaluations that is
proportional to the number of the considered optimization variables (six in this case), and
it is hence too unwieldy for a feasible implementation.

2.3. Surrogate Modeling and Considerations for Linearity with Modulated Signals

Beyond the considerations above, the evaluation of a PA FoM, i.e., of the objective func-
tion g(x), either using measurements or envelope-transient simulations, can be particularly
time consuming for orthogonal-frequency-division-multiplexing (OFDM) modulations
involving a large number of carriers and long signal frames, as adopted in modern high-
data-rate telecommunication standards. In order to make optimization feasible, in [13]
it was proposed to exploit surrogate models (SUMOs) of the FoMs in (1), namely models
that are fast in terms of extraction and evaluation, while also accurate enough to enhance
convergence and steer the iterations towards the global optimum. In this work we follow
the same approach by using multi-variable quasi-static AM/AM-AM /PM characteristics
as the basis for DIDPA surrogate modeling. Such a surrogate description can jointly handle
the six considered variables, and can be straightforwardly and efficiently evaluated by
standard CW single-tone experiments.

To calculate FoM prediction in the presence of modulated signals from the quasi-static
SUMO, the DIDPA quasi-static CW characteristics should be weighted by the probability
density function (PDF) of the stationary stochastic process corresponding to the excita-
tion signal class of interest [22,23]. In the case under consideration, the class of OFDM-
modulated signals asymptotically corresponds to a Gaussian complex envelope [24], thus
to a signal amplitude matching a Rayleigh distribution. Therefore, the RF output power
(PRE) and the PAE can be written as follows:

out
d d
fo+ Pfuif f fuif(P)dp_

® 2)
fQJr Pdc(p)Pfutf(p)dp

out

out - / def dp, PAE =

where Pfutf (p) is the probability density function of the desired output-modulated signal,
Py, (p) is the static relationship between the output p and the input P, power of the
DIDPA, and Py(p) is the static relationship between the output p and the absorbed power
at DC. Calculating FoMs with Equation (2) is conceptually equivalent to exciting the
quasi-static SUMO model with a modulated signal. While such a quasi-static SUMO
representation might be suboptimal for wideband signals, it will be shown that for the
case under examination it provides sufficient ability to sort out the main interdependencies
among the input variables and it proves effective for the optimization. The actual DIDPA
broadband behavior can always be checked with a final experimental assessment under
a wideband signal excitation. In this context, the aim is to see the FoMs calculated with
the PDF-based SUMO in (2) converge to the values calculated under a wideband signal
excitation in (1).

The choice of the optimization algorithm is critical as it determines the number of
iterations and FoM evaluations needed to reach a solution, and the complexity involved
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becomes particularly high when considering multiple objectives. In this context, the RF
output power and the PAE as defined in (2) will be used as the key FoMs to evaluate PA
performance. Regarding linearity, let us exploit the adopted SUMO representation consider-
ing that the typical AM/AM-AM/PM characteristics of a well-designed PA are monotonic
and thus biunivocal, and hence analytically invertible [13,25]. In other words, given a
theoretically infinite complexity for the predistorter, the AM/AM-AM/PM characteristics
can be exactly linearized, and hence always respect any required NMSE constraint.
Although the hypothesis of exact linearization (i.e., resulting in infinite DPD complex-
ity) is clearly unrealistic, non-parametric DPD methods like Iterative Learning Control
(ILC) [26] allow to find the ideal predistorted waveform (up to the numeric precision) for a
given PA regime. While the actual parametric predistorter implementation (with a finite set
of DPD coefficients) will clearly entail higher NMSEs, DPD complexity nowadays available
in hardware for communications applications can typically accommodate sufficient lin-
earization performance. Therefore, the NMSE constraint will not be explicitly accounted for
in the optimization methods described in Sections 3 and 4 to be applied to the quasi-static
AM/AM-AM/PM SUMO. The optima found with these methods will then be tested in
Section 6 under wideband modulated excitation in order to validate this assumption.

3. Coordinate Descent Optimization

The coordinate descent (CD) algorithm finds the local optimum of the target objective
function g(x) by successively solving a maximization (or minimization) problem along
a limited set of coordinate directions. In practice, a subset of the six control variables x
of the DIDPA is selected, and the optimum is searched across this subset while blocking
the other variables to fixed values. The procedure is then repeated by cycling through the
other subsets of variables, optimizing one subset at a time. Provided that the multivariable
dependency of the objective function g(x) (i.e., the target FOM) is smooth, as expected in
the considered DIDPA configuration, the method allows for a drastic reduction of FoM
evaluations, as each of the iterations deals with a problem of lower dimensionality.

In particular, the six variables in Table 1 are divided into three subsets of two variables

each, namely the splitting variables («,¢), the biasing of the main PA (VévéD ,VC];VIG’F ), and

the biasing of the auxiliary PA (Vé(’;D,Vé(’;P). This configuration makes it feasible to find
the optimum across a 2D space by means of 2D factorial sweep with sufficient resolution
(Table 2). Figure 4 reports an example of the 2D sweeps for each iteration, showing that
the dependency of PAE on the variables is sufficiently regular in the application domain,

allowing to easily select the maximum point at each cycle.

Table 2. Resolutions of the variables employed in the 2D factorial sweeps.

w ¢ (deg) Vog (V) Vog (V) Veg V) Veg (V)
0.01 1 0.1 0.1 0.1 0.1

V2 240400%, ATTTTFR>
2SS 2000y N\ lllllll'l”\
Y 255220000 G\ JITPHLDON
N FAZIRONN iy
gL 120090900 %, A\
;”" 2 ’ "‘""'0.““1‘,“\\\\“'
N 3
- -3
) )
E 1A 1A
4 (deg) 03 4 Ves V) Vee () Ves V) Ves W)

Figure 4. Example of 2D sweeps cyclically realized by the coordinate descent optimization of PAE

for the DIDPA under study versus (a) input splitter parameters («, ¢), (b) auxiliary amplifier bias

voltages (Vé‘éD , VSC’;F ), and (c) main amplifier bias voltages (VGNéD , Vgép ).
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Figure 5 displays the flow chart for the CD algorithm applied to the quasi-static
AM/AM-AM/PM SUMO and aimed at the maximization of the PAE metric as defined
in (2). In the depicted flow chart, the sequence and selection of variables for optimization
is fixed in the order (x,¢) — (Vé(';D ,Vég ) — (VggD ,VgéF ). However, any other different

permutation could be adopted (see below).

[ Start ]
|

Obtain PAE for all swept values of («, ¢) keeping
(VC‘?C’;D , Vé‘g ) and (VCI;VéD , Vgé’F ) at initial values

|

Select the point (&, ¢)max with maximum PAE

|

Obtain PAE for all swept values of (VgéD , VC’?(/;F ) keeping
(&, ¢)max fixed and (Vé/éD , VéVIG’F ) at initial values

Select the point (VGA’GD , Vég )max With maximum PAE

|

Obtain PAE for all swept values of (VgéD,VééF)

keeping (&, ¢)max and (Vé‘(’;D ,Vé(’;F Jmax fixed

|

Select the point (VgéD , VgIG/F )max With maximum PAE ‘

Evaluate stopping criteria Update initial values

( Stop )

Figure 5. Flow chart for the coordinate descent optimization algorithm for the case of descent order
AD y;AF M,D y,M,F
(o, ) — (Ve Ve ) — (Voé Vad )-

Firstly, the splitter parameters («, ¢) are swept while keeping the biasing parameters
fixed at nominal values (Table 1) so as to identify a point (oc, 4)) max corresponding to the
maximum PAE across the 2D domain defined by the splitter. Then, the same procedure is

applied to the bias voltages of the auxiliary amplifier (VééD , Vég ), while the splitter param-

eters are fixed at («, ¢)max. Once the point (Véq(’;D , Vé‘ép )max corresponding to the maximum
PAE among the swept values has been identified, the same procedure is eventually repeated
for the main amplifier bias voltages (VggD , V(];V(I;’F ).

The adopted descent order may clearly have an impact on the optimum found by the
algorithm. Thus, all the permutations have been tested, and the results after one iteration
of the flow chart in Figure 5 are reported in Table 3. The relatively small differences
suggest that all orders identify a similar optimum, making CD a reliable solution for this
optimization problem.

In addition, the same flow chart can also be iterated. Thus, as further tested, we

considered the order achieving the best PAE in the first iteration, namely (VévéD ,Vévép ) —

(VéqéD ,Vég ) — (a,¢), and left it iterating until no incremental improvement could be seen
between two successive iterations. In Table 4, we compare the results between the case
with only one iteration and the iterative case (six iterations in total, with a proportional
number of PAE evaluations involved), reporting only a small increment in PAE. It is worth
highlighting that the retrieval of the PAE value for a given set of input variables corresponds
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to the evaluation of the quasi-static PAE expression in (2), which is very quick in a classical
PC simulation environment (in the order of a few seconds), thus making it feasible to realize
the high number of PAE evaluations as the ones reported in Table 4.

Table 3. Comparison among optimum DIDPA performance obtained by applying the coordinate
descent algorithm to the quasi-static SUMO for PAE maximization. All optimized performances
involve the ILC-based analytical linearization of the quasi-satic SUMO during the optimization.

Coordinate Descent Order PRE (dBm) PAE (%)
(@,¢) — (VAL vAE) = (VLD v L) 24.0 245
(@) — (VILD yME) _y (vAD yAF) 23.9 24.1
(VAP VEEF) 5 () — (VAP VA 242 o3
(VAD VAF) s (VD VL) (,0) 24.0 252
(VYD VILEY s (a,) — (VAL VAT 23.8 25.0
(VMD yME) L (vAD yAF) s (a,9) 23.9 253

Table 4. Comparison among nominal and optimum DIDPA performance obtained by applying the
various single-objective optimization algorithms to the quasi-static SUMO for PAE maximization.
All optimized performances involve the ILC-based analytical linearization of the quasi-static SUMO
during the optimization.

Nr of PAE
s RF 0,
Algorithm P, (dBm) PAE (%) Evaluations
Nominal (no optim) 24.2 18.2 -

D A(i%ordinati (Izljescgr}rt 239 25.3 1730
(Ve Vee ) = (Veg Vas) — ()

M%oorlc\l/Ii?ate desgel:r;t (ijei:rated) 23.4 26.2 10,380
(Vg Vot ) = (Vas Vas ) = (wg)

Bayesian 23.6 26.1 100

4. Bayesian Optimization

The Bayesian optimization (BO) algorithm aims at minimizing an unknown scalar
objective function that is expensive to evaluate (e.g., the evaluation is expensive in terms
of time or resources, or the number of times the objective function can be evaluated is
otherwise limited). The approach itself may be placed in the general class of surrogate
methods as it exploits a SUMO to find the expected minimum at every iteration. The SUMO
is extracted from a dataset D composed by the previous evaluations exploiting a regression
algorithm and updated with new samples at every iteration.

The peculiar aspect of BO consists of using a stochastic model ¢(x) as SUMO [27].
In this context, §(x) does not directly provide a deterministic prediction of the value of
g(x) in the evaluated point, but it represent a stochastic process. Therefore, §(x) assigns to
every possible x a random variable whose distribution represents the probability of g(x)
assuming a particular value. The typical SUMO for Bayesian optimization is the Gaussian
Regression Model (RGM) which, in this work, is extracted on top of the baseline quasi-static
SUMO made of AM/AM-AM/PM characteristics of the DIDPA, as discussed in Section 2.
The RGM is based on the class of Gaussian processes, which are fully characterized by their
covariance function [28].

Two key elements must be defined for implementing BO:

1. A parametric model for the Gaussian process covariance function. The parameters of
this model represent the hyperparameters of the SUMO, which are updated at every
iteration using the samples of ¢(x). The basis functions that are typically used in these
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applications are the radial basis functions or squared exponential functions. In this
work, the covariance model is based on the Matern functions (the Matern functions
are the default basis functions adopted by the MATLAB bayesopt routine used in this
work) [28].

2. Theacquisition function (AF) is used to estimate the location of the minimum /maximum
of interest. Since the RGM does not provide a deterministic value for the SUMO es-
timation, it is necessary to choose a function that selects the predicted value among
all possible ones. Therefore, the AF takes the stochastic process as the input, and it
provides a deterministic function, whose minimum /maximum is the point that will
be evaluated by the objective function. One possible strategy is to choose the AF
that calculates the expected improvement or the probability of improvement in the
evaluated point [29]. The AF used in this work is called lower confidence bound:

a(x) = p(x) —wo(x), ®)

where y(x) and o(x) are, respectively, the mean and the variance of the Gaussian
process in the evaluated point x, while w is a scalar parameter used to select the
tradeoff between exploring unknown points or searching new optima close to the
previously expected ones.

Figure 6 outlines the basic steps of the adopted algorithm. At every iteration #, the
method extracts the Gaussian process used as SUMO from the dataset D;, which is the
collection of all the evaluations of the objective function g(x) at that iteration. Then, it
selects the point x,; that should be evaluated next by minimizing the AF. At the end of
every iteration, the method evaluates the exit conditions, which in this case are set as a
maximum number of iterations without an improvement of the objective function.

The result of applying this algorithm to maximize the PAE of (2) from the baseline
quasi-static SUMO (AM/AM-AM/PM characteristics) of the DIDPA is shown in Table 4.
The BO results in a similar optimal point as the iterative version of CD, but it requires much
less evaluations of the objective function.

[ Start ]

¥
n = 0
Collect initial dataset Dy = [xo,g(x0)]
¥

Update the posterior probability distribu-

tion of the Gaussian process g(x) using D

|

’ Compute AF using g(x) distribution ‘

|

’ Find x; minimizing AF ‘

|

’ Evaluate g¢(xy) ‘

n = n+1

Evaluate stopping criteria
PPIng Update dataset D, = [Dy—1;Xn—1,§(Xn—1)]

[ Stop ]

Figure 6. Flow chart for single-objective Bayesian optimization.
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5. Multi-Objective Bayesian Optimization

It is of clear interest for PA application to optimize not only the PAE (single-objective
optimization), but the compromise between PAE and RF output power. Table 4 highlights
a trade-off between PAE and PR}, since the points found optimizing the PAE show a lower
level of PRE. In order to preliminarily visualize such a trade-off for the DIDPA under
study, Figure 7 reports an extensive sampling of the variables’ space from a high number of
evaluations of the quasi-static SUMO, reporting the ILC-based linearized performance on
the 2D plane of the objectives. The solution points highlighted with red circles identify the
non-dominated points (Pareto frontier) representing best PAE-RF output power trade-offs.

Rather than performing an unfeasibly high amount of function evaluations, an efficient
way to identify the Pareto frontier consists of combining the FoMs to be optimized in a single
scalar objective function g(x) and thus adopt a single-objective optimization algorithm
such as in the previously described CD or BO cases. In particular, the BO was chosen for
this test given that it compared favorably with respect to CD. A polynomial combination
among two different FoMs is considered:

g(x) =A[) + (1 =A) (x5, withA e [0,1]; (4)

where k is the polynomial order, A is the combination parameter, while f;(x) and f,(x) are
normalized scalar FoMs.
Considering the DIDPA, the scalar FoMs to be used in the problem in (4) are obtained

from the PAE and P££ in (2) by means of the following normalization:

PAE(x) — PAE, ; P (%) = Poe mi
fi0) =1 AR “PABuin, g ) "o,
PAE 4y — pAEmin Pout, max Pout,min

where PAE,;y is the result of single-objective PAE maximization, while PAE,,;,, is the PAE
value in the point that maximizes P&y. PXf  is the result of the single objective PX.
maximization, while P(ﬁﬁ i, is the PRE value in the point that maximizes PAE. The set of
optimal points have then be obtained by sweeping A from 0 to 1 with the aim to identify
the non-dominated points of the Pareto frontier. Each of the points is obtained through one
iterative single-objective optimization of the quasi-static SUMO of the DIDPA as depicted
in Figure 6, where A = 0 corresponds to PRE maximization (f, minimization), while A = 1
corresponds to PAE maximization (f; minimization).

I A E— .
5 10 15
PAE (%)

Figure 7. Sampling of the six-dimensional variable space showing many possible trade-off points
between RMS RF output power and PAE, highlighting the profile of non-dominated points
(Pareto frontier).
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Clearly, the way the FoMs are summed influences the results [30]. Figure 8 reports the
optimal points against the normalized FoMs, showing the effects of changing the order k of
the polynomial combination within the optimization. In particular, Figure 8a, reports the
use of a linear combination (k = 1), showing that, in this case, it is not possible to identify
optimal points laying in the non-convex region of the normalized Pareto front. Indeed, the
algorithm provides those optima best favouring either f; or f,, but not their concurrent
combination, given that the points in the non-convex region do not actually represent a
minimum for the combined objective function. Conversely, Figure 8b shows the estimated
Pareto frontier with k = 3, allowing to identify the non-dominated trade-off points in the
non-convex region.

[ - Observed Values © Estimated Pareto < Contour Lines|
1

0.8F

0.6 F

—~
x
=
~
[T

()

0.4r

0.2r

. 0 0.2 0.4 0.6 0.8 1
£, £,

Figure 8. Estimated optimal points (red circles) in a non-convex Pareto frontier with different FoM
combinations with contour lines of the combined objective function for A = 0.5. (a) Linear combina-
tion (k = 1), (b) non-linear combination (k = 3). The arrows indicate the combined minimization of
the two scaled FoMs.

Figure 9 displays the same results as Figure 8, yet de-normalized to the actual PR}

and PAE values. Figure 9a shows the trade-off points obtained by performing the MOO
based on a linear combination of the objectives (k = 1), which is not able to converge to the
optimal trade-off points in the non-convex region of the Pareto frontier previously reported
in Figure 7. The case using the non-linear combination (k = 3) is instead able to identify
the non-convex region of the Pareto front. The latter thus demonstrates the possibility of
extracting the Pareto frontier in an efficient way by BO.

] ‘ a ~—[ [ b
24.8} ( ) 98 ,ﬁ*ﬂ* P1 ( )
24.6 2a.6F + .,
— — T
E 244 £ 244 :P2 P3
= S * J
&%24.2 B &524_2 +
a . i
241 24+ 1
) o +
23.8 & 23.8 P4
: /
23.6 . : . L8 23.6 . . . . L
10 15 20 25 5 10 15 20 25
PAE (%) PAE (%)

Figure 9. Estimated Pareto frontier between RMS RF output power and PAE obtained with a (a) linear
combination (k = 1) and (b) non-linear combination (k = 3), while sweeping the combination factor A.

In Figure 9b, P1 and P4 are the values for maximum PRE and PAE, identified by
optimizing the combined objective function with A = 0 and A = 1, respectively. P2 and
P3 represent two possible compromises between PXf and PAE, and they are, respectively,

obtained with A = 0.16 and A = 0.84. The results related to these points are summa-
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rized in Table 5, where they are compared with the values previously obtained with the
CD algorithm.

Table 5. Comparison of PA performances obtained by means of PDF-based SUMO simulation at the
optimal points.

Nr of Function
s RF o
Algorithm A Pt (dBm) PAE (%) Evaluations

Nominal

(no optim) - 242 18.2 -
Coordinate

descent - 23.4 26.2 10,380

(iterated)
Bayesian P1 0 249 2.0 100
Bayesian P2 0.16 24.5 6.3 100
Bayesian P3 0.84 24.2 20.0 100
Bayesian P4 1 23.6 26.1 100

6. DIDPA Performance under Wideband Modulation

The optimal points based on the quasi-static SUMO (Table 4) must be validated under
actual wideband-modulated signals, thus accounting for the DIDPA dynamic effects. This
validation is here performed by circuit envelope (CE) simulations with a random phase
multitone as input test signal, whose statistics can be setup to faithfully reproduce modern
5G signals [31]. The adopted signal BW and tone spacing are 100 MHz and 10 kHz,
respectively, resulting in a 10k-tone signal with PAPR = 10.4 dB. Coherently with the
considerations in Section 2, the non-parametric ILC algorithm was applied in order to
linearize the DIDPA.

The test results of the single-objective optimization for PAE maximization by CD
(Section 3) and BO (Section 4) are reported in Table 6. First of all, it should be noted that
the nominal DIDPA configuration without optimization displays a reduction of more than
2% in terms of PAE and 0.4 dB of RMS RF output power with respect to the PDF-based
evaluation of the quasi-static SUMO in Table 4. This difference is expected, due to the
dynamics accounted for by the multitone CE simulation.

Also under actual high-PAPR-modulated excitation, the optimized performance ob-
tained provides a substantial improvement with respect to the nominal conditions (up to
~ 8% of absolute PAE increase), although slightly worse than the one predicted by the
PDE-based quasi-static SUMO in Table 4. The results are similar between CD and BO,
although BO takes much fewer evaluations. The hypothesis of sufficient linearization is
demonstrated by the fact that both the adjacent-channel power ratio (ACPR) and NMSE
are low enough with respect to the typical specifications of telecom standards.

Figure 10 shows the spectra before and after the ILC-based linearization of the DIDPA
with nominal parameters, and for the optimal points identified by the CD and the BO,
corresponding to the performance FoMs reported in Table 6. The same data are depicted in
Figure 11 in terms of dynamic gain and AM/PM characteristics.

Those optimal trade-off points identified by the MOO described in Section 5 were also
validated under the same modulated excitation. In particular, optimal points P1-P4 are
reported in Table 6, demonstrating a very good alignment with Table 5 and the effectiveness
of the SUMO-based optimization, despite the slightly reduced overall performance. Also
in these cases, the linearity performance is satisfactory with respect to the specifications by
telecom standards. Table 7 reports the values of the optimization variables corresponding
to the FoMs shown in Table 6. In the case of single-objective PAE maximization (i.e., in the
CD method and Bayesian P4 point), Table 7 highlights that BO and iterated CD deliver
almost the same operating point, although many fewer function evaluations are needed for
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BO (see Table 5). This relatively fast convergence property allows the efficient exploration
of the Pareto frontier by means of a series of single-objective optimization. In order to show
the linearization performance achieved in the optimal point P3 by BO, Figures 12 and 13,
respectively, show the spectra, gain and AM/PM characteristics of the DIDPA before (blue
curves) and after (red curves) the ILC-based linearization.
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-100 0 100 200
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-100 0 100 200 300 i

-200

Il il |
-100 0 100 200 300
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Figure 10. Spectra of the output RF signal before (blue lines) and after linearization (red lines) with
PA parameters at (a) nominal values, (b) after coordinate descent (iterated) optimization, and (c) after

Bayesian optimization (P4).
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Figure 11. PA gain and AM/PM characteristics before (blue lines) and after linearization (red lines)
with PA parameters at (a) nominal values, (b) after coordinate descent (iterated) optimization, and

(c) after Bayesian optimization (P4).

Table 6. Comparison of PA performances obtained by means of envelope simulation with modulated
signals at the optimal points found running the coordinate descent or Bayesian optimizations on the

PDEF-based SUMO.
Algorithm A PRE. (dBm) PAE (%) ACPR (dB)  NMSE (dB)
Nominal - 23.8 16.7 —65.6 —-59.0
Coordinate
descent (best - 23.5 24.0 —56.7 —50.1
permutation)
Coordinate
descent - 23.4 24.6 —54.5 —47.8
(iterated)
Bayesian P1 0 25.0 2.0 —52.8 —46.1
Bayesian P2 0.16 24.1 6.0 —56.2 —47.8
Bayesian P3 0.84 23.7 20.0 —60.2 —53.6
Bayesian P4 1 234 24.6 —52.2 —45.7
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Table 7. Nominal values of the parameters considered for DIDPA optimization.

Algorithm x pdey VMP (W) VMFw)  vAD(v) VAL (W)
Nominal 0.5 —-90 -1.7 -1.7 —-23 -2.1
Coordinate
descent (best 0.5 —80 —-1.8 -23 —-25 —2.7
permutation)
Coordinate
descent (iterated) 0.6 -75 -1.9 —25 —24 -29
Bayesian P1 0.49 —87 —0.6 -0.3 —0.5 —0.1
Bayesian P2 0.21 —69 -1.1 -2.0 -1.0 —14
Bayesian P3 0.43 —81 -17 —22 —22 —22
Bayesian P4 0.61 —75 -1.9 —-2.6 —24 -29
10 T T T T T
0

N e
© o

401 o ik | il

PSD (dBm/Hz)
w
o

! il
e [K‘l ‘ ; I
-50 lm ’
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Figure 12. RF output spectrum before (blue lines) and after linearization (red lines) at optimal
point P3.
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Figure 13. PA gain and AM/PM characteristics before (blue lines) and after linearization (red lines)
at optimal point P3.
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