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Abstract: Breast density assessed from digital mammograms is a known biomarker related to a
higher risk of developing breast cancer. Supervised learning algorithms have been implemented
to determine this. However, the performance of these algorithms depends on the quality of the
ground-truth information, which expert readers usually provide. These expert labels are noisy
approximations to the ground truth, as there is both intra- and inter-observer variability among them.
Thus, it is crucial to provide a reliable method to measure breast density from mammograms. This
paper presents a fully automated method based on deep learning to estimate breast density, including
breast detection, pectoral muscle exclusion, and dense tissue segmentation. We propose a novel
confusion matrix (CM)—YNet model for the segmentation step. This architecture includes networks
to model each radiologist’s noisy label and gives the estimated ground-truth segmentation as well
as two parameters that allow interaction with a threshold-based labeling tool. A multi-center study
involving 1785 women whose “for presentation” mammograms were obtained from 11 different
medical facilities was performed. A total of 2496 mammograms were used as the training corpus,
and 844 formed the testing corpus. Additionally, we included a totally independent dataset from
a different center, composed of 381 women with one image per patient. Each mammogram was
labeled independently by two expert radiologists using a threshold-based tool. The implemented
CM-Ynet model achieved the highest DICE score averaged over both test datasets (0.82± 0.14) when
compared to the closest dense-tissue segmentation assessment from both radiologists. The level
of concordance between the two radiologists showed a DICE score of 0.76± 0.17. An automatic
breast density estimator based on deep learning exhibited higher performance when compared with
two experienced radiologists. This suggests that modeling each radiologist’s label allows for better
estimation of the unknown ground-truth segmentation. The advantage of the proposed model is that
it also provides the threshold parameters that enable user interaction with a threshold-based tool.

Keywords: mammography; breast density segmentation; deep learning; noisy labels

1. Introduction

Mammogram screening is a highly standardized method used in breast cancer early
detection programs, with obtained mammograms examined in batches of up to 50 per hour
by qualified radiologists [1]. Full field digital mammography (FFDM) is one of the most
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used screening methods for breast cancer. Improved imaging features are now available
due to technological advancements, allowing early diagnosis of breast cancer.

Percent density (PD), which assesses the proportion of fibroglandular tissue in the
whole breast, is recognized to be a risk factor for breast cancer [2,3]. The American College
of Radiology Breast Imaging Reporting and Data System (BI-RADS) has published a breast
classification system based on density, shape, granularity of dense tissue, and probability
of masking [4]. The classification criteria imply that not only the overall amount of dense
tissue, but also its distribution and ability to hide lessions, is relevant [5,6]. Furthermore,
inter- and intra-observer variability is one of the major issues in PD evaluation [7–10].

The development of an automated technique that has a high degree of concordance
with several radiologists might be one of the first steps towards standardizing breast
density readings. The authors of [11] point out that an automated tool may be used as an
independent second reader of screening mammograms when double reading is required.
A second human reader would only be needed to resolve differences between the first
human reader and the system, reducing the effort for any screening program that uses
double reading.

Convolutional neural networks (CNNs) are one of the most used paradigms in com-
puter vision issues handled using deep learning [12]. They are based on the extraction
of higher-order characteristics as the images pass through successive layers. For many
recognition and detection tasks, CNNs are currently the state-of-the-art [13–15].

In a previous study [16], we introduced a fully automated framework for dense-tissue
segmentation. It included breast detection, pectoral muscle exclusion, and dense-tissue
segmentation. The dense-tissue segmentation step was implemented as a regression deep
learning architecture, named the entirely convolutional neural network (ECNN), whose
output was the two parameters used as intrinsic segmentation features.

In the present investigation, we explore further the dense-tissue segmentation step by
implementing a new architecture, which we named “confusion matrices-YNet” (CM-YNet)
as it is based on the state-of-the-art technology [17,18] for medical image segmentation
when the ground-truth label is unknown. This model learns the characteristics of the individ-
ual expert annotators (e.g., tendency to over- or under-segment) by estimating the pixel-wise
confusion matrices on a per-image basis, and outputs the estimated pixel-wise segmentation
mask and the two aforementioned segmentation parameters for threshold-based segmen-
tation. The availability of the segmentation parameters is essential to retain compatibility
with threshold-based tools so that users can easily edit inaccurate segmentations.

Among the contributions of this work, we can highlight: (1) a new segmentation
architecture CM-YNet that generates an estimation of the ground-truth dense-tissue seg-
mentation mask and two parameters for compatibility with threshold-based segmentation
tools; (2) the proposed model outperforms other deep learning architectures when com-
pared on the same dataset; (3) a loss function that jointly learns the segmentation mask,
threshold parameters; and, finally, (4) the ability to manually modify the segmentation
using threshold-based software such as DMScan [19,20].

2. Materials and Methods
2.1. Datasets

A multi-center study covered women from 11 medical centers of the Generalitat Va-
lenciana (GVA) as part of the Spanish breast cancer screening network. It included 1785
women with ages from 45 to 70. The cranio-caudal (CC) and medio lateral-oblique (MLO)
views were available for 10 out of 11 of the centers, while one center only collected the CC
view. This dataset was used for training, validation, and testing. The dataset was randomly
partitioned into 75% (2496 mammograms) for training and validation (10%), and 25% for
testing (844 mammograms). The mammograms of the same patient were always included
in the same set.

Additionally, an independent dataset composed of 381 images obtained at the Institut
Hospital del Mar d’Investigacions Mèdiques (IMIM) was included only for testing to obtain a
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better evaluation of the generalization performance of the models. Because the researchers
at IMIM had a particular interest in testing the fully automated tool in various types of
images, 283 out of the 381 images at IMIM were obtained from old acquisition devices with
lower image quality, making the segmentation task more challenging. Only CC views were
provided for this dataset.

Since in Spain “raw” mammograms are not routinely stored, all the mammograms are
of the type “for presentation”. All mammograms were segmented independently by two
expert radiologists (referred to in this paper as R1 and R2) using DMScan [19,20].

A summary of the data used in this study is presented in Table 1.

Table 1. Summary of the screening centers, their mammography devices and the number of women
and mammograms per device.

Id Center Device #Women #Images

01 Castellón FUJIFILM 191 382
02 Fuente de San Luis FUJIFILM 190 380
04 Alcoi IMS s.r.l./Giotto IRE (*) 66 132
05 Xàtiva FUJIFILM 159 318
07 Requena HOLOGIC/Giotto IRE (*) 28 56
10 Elda SIEMENS/Giotto IRE (*) 311 622
11 Elche FUJIFILM 278 556
13 Orihuela FUJIFILM 117 234
18 Denia IMS s.r.l./Giotto IRE (*) 38 76
20 Serrería (**) 177 354
99 Burjassot Senography 2000D 230 230
21 IMIM-1 FUJIFILM 98 98
22 IMIM-2 Lorad/Hologic Selenia 283 283

Total 2166 3721
(*) Implies the use of a new device [Gioto IRE] since 2015. (**) The device is unknown.

2.2. Segmentation Pipeline

The segmentation pipeline consists of the steps summarized in Figure 1: a first step
covering breast detection and pectoral muscle exclusion, a second step to exclude armpit
and pectoral muscle, a third step to normalize the histogram variability between acquisition
devices, and finally, a deep learning model carrying out the dense-tissue segmentation
task. The focus of the present work is the dense-tissue segmentation step as we compare
different deep learning-based approaches.

Figure 1. Segmentation pipeline. The last step is the deep-learning-based model for dense-tissue
segmentation, which is the focus of the present investigation.

2.2.1. Background and Breast Detection

An iterative algorithm based on connected components obtains the gray level threshold
that distinguishes the breast from the background [21]. Based on the premise that the most
frequent pixel value has to belong to the background, a range of possible breast thresholds
is determined by taking all the unique values in the image. Then, this range of thresholds
is covered until only two homogeneous components are detected. The breast must be left-
oriented, and the image is binarized using the first possible threshold before the connected
component labeling algorithm, named scan-plus-array-based union-find (SAUF), is applied.
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Finally, if only two components are obtained, the algorithm ends, otherwise, the range of
possible thresholds is continuously covered.

2.2.2. Armpit and Pectoral Muscle Exclusion

Assuming that the pectoral muscle appears in a triangle in one of the top corners of the
image, an algorithm based on negative gradient changes is implemented. The algorithm
requires the breast image to be left-oriented. A Gaussian filter with σ = 3 and a 50-pixel
moving window is then applied to smooth edges and remove isolated bright pixels. We
empirically chose the optimal values after several trials as these parameters depend on
the image resolution and object size. As the muscle border is well-defined, it tends to be
the last remaining part after the smoothing process. We iteratively built a polygon that
encloses the exclusion area by selecting the pixel with the lowest gradient every 50 rows
until the column of the selected pixel was close enough to the left image border. Finally, the
vertex that closed the polygon was taken to be the first pixel from the top left corner.

2.2.3. Histogram Normalization

The different mammogram acquisition devices show huge variability in the quality
of mammograms. As demonstrated previously in [16], this variability was found to be
significant and negatively impacted the training of a machine learning model. Therefore,
normalization among acquisition devices was performed by applying the following steps:

1. Normalize the pixel values of the image between [0, 1].
2. Shift the histogram to set the minimum breast tissue pixel to 0.
3. Normalize the pixel values again between [0, 1].
4. Standardize the breast pixel values to a normal distribution Z∼N(0, 1).
5. Adjust the pixel values so that the mode is 0.
6. Assuming that most typical percent density values are below 30% (above the 70th

percentile), and values under the 30th percentile only belong to fatty tissue, apply a
linear stretching from percentile 30 to −1 and from percentile 70 to 1.

7. Apply oa normalization once more to ensure the inputs for the deep neural network
are between [0, 1].

2.3. Dense Tissue Segmentation

Dense tissue segmentation can be obtained using two different approaches: (a) para-
metric approximation, in which threshold parameters are applied to the image to obtain the
segmentation mask; and (b) mask approximation, which consists of directly assigning each
pixel in the image as dense tissue or not. The advantage of using the mask approximation
is that it can be used for any kind of segmentation as it is estimated at pixel level, but
the expert labels should be defined by manually contouring the region of interest (ROI).
Therefore, the parametric approximation is more convenient for manual interaction with
the expert as only a few (usually two or three) parameters need to be adjusted.

In a previous approach [16], the entirely convolutional neural network (ECNN) ar-
chitecture was presented for dense-tissue segmentation. The DICE scores obtained with
ECNN were close to the concordance achieved between the two radiologists. However,
the performance on images with low gray-level resolution was not optimal. Therefore, in
this study, we explore other architectures that directly estimate the segmentation mask
by modeling each annotator’s label independently. Finally, a new architecture named
”confusion matrices-YNet“ (CM-YNet) is proposed, which aims to estimate the dense-tissue
mask and the two segmentation parameters simultaneously.

2.3.1. ECNN: Parameter Estimation

The ECNN model estimates two segmentation parameters which are learned as
image-level features. The estimated parameters, the brightness corrector α and the fi-
brograndular tissue threshold thF, are then used to replicate the segmentation provided by
DMScan [19,20], the tool used to generate the labels by the expert radiologists.
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2.3.2. U-Net: Mask Estimation

To directly obtain the dense-tissue mask, we first experimented with the well-known
segmentation network U-Net [22]. U-Net is composed of an encoding network and a decod-
ing network. The encoding network consists of a stack of down-sampling blocks of double
convolutions, while the decoding network consists of up-sampling blocks. Skip-connections
between the encoder and the decoder allow information to be shared between them.

Our implementation uses three down-sampling stages with 24, 48, and 96 channels for
each encoder. We applied instance normalization [23] to each encoder and decoder layer.

2.3.3. Y-Net: Hybrid Approach

The Y-Net model proposed by Mehta et al. [18] jointly performs segmentation and
classification of different types of tissues in breast biopsy images. The U-Net architecture
was generalized by adding a parallel branch that outputs a classification label. The results
demonstrated that the joint learning implemented within Y-Net improved diagnostic
accuracy. Our implementation of Y-Net follows the same idea, but the parallel branch
predicts the segmentation parameters α and thF. Therefore, with the Y-Net model, we
can simultaneously estimate the dense-tissue mask and the segmentation parameters that
would allow manual modifications with a threshold-based tool.

The parameter estimation branch consists of several convolution layers added from
the last encoder layer of the U-Net. Similarly, as in ECNN, the convolutions reduce the
inputs until the segmentation parameters are extracted. Figure 2 shows a general diagram
of the U-Net and Y-Net architectures.

Figure 2. U-Net and Y-Net architectures. Y-Net jointly estimates the dense-tissue mask and the
segmentation parameters (α and thF) needed to segment the dense tissue with a threshold-based
tool. The channel width (w), kernel (k) and the stride (s) size for each layer are shown for the parallel
branch incorporated in Y-Net.

2.3.4. CM-Segmentation: Learning Noisy Labels

The lack of a unique ground truth due to inter-reader variability [11] means that it
is normally necessary to train the deep learning models using the segmentation of both
radiologists as independent annotations, or by fusioning both labels. Either approach can
yield a high degree of concordance between the model and the annotators. However, the
available expert labels are noisy approximations of the unknown ground-truth segmenta-
tion mask. To tackle this phenomenon, Zhang et al. [17] proposed an architecture consisting
of two coupled convolutional neural networks (CNNs):

1. The first is the segmentation network that estimates the true segmentation.
2. The second is the annotation network that models the characteristics of individual

experts by estimating the pixel-wise confusion matrices (CM).

The annotation network shares the same parameters as the segmentation network
apart from the last layers. It estimates the CMs at each spatial location, thus yielding a c× c
output, where c is the number of channels, which is two for a binary segmentation, as in
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our case. We carried out experiments incorporating the annotation network of different
segmentation networks: CM-ECNN, CM-UNet, and the proposed CM-YNet.

2.3.5. CM-YNet: Proposed Network

Based on the networks described above, we propose a CM-YNet architecture which
models each radiologist’s label to estimate the dense-tissue mask and segmentation param-
eters for compatibility with threshold-based tools. The structure of the proposed CM-YNet
model is shown in Figure 3.

Figure 3. Schematic representation of the proposed (CM-YNet) architecture showing how the total
loss function is computed. The segmentation and parametric convolutional neural networks (CNNs)
are integrated in the Y-Net model described above. At inference, the output of the segmentation
network ŷθ(x) is used to obtain a new prediction.

The loss function to jointly learn the segmentation mask, segmentation parameters,
and confusion matrices for each annotator is implemented as follows:

Ltotal(θ, φ, ρ) = L(θ) + α.L(φ) + β.L(ρ), (1)

where the segmentation, annotator, and parameter networks are represented by θ, φ, and ρ,
respectively. The parameter α is the weight of the annotation network loss, while β is the
weight of the parametric loss.

The first term of the total loss function is given by Equation (2):

L(θ) =
n

∑
r=1

DiceLoss(ŷ(r)
θ,φ(x), y(r)), (2)

where ŷ(r)
θ,φ(x) represents the estimated segmentation probability map of the corresponding

annotator, obtained by the element-wise matrix multiplication of the output of the segmen-
tation network ŷθ(x) and its corresponding confusion matrix, while y(r) is the label of the
annotator r. Minimizing this term encourages each annotator-specific prediction to be as
close as possible to the true noisy label distribution. However, this loss function alone is
not capable of separating the annotation noise from the true label distribution. There are
many possible combinations of the CM and the segmentation model that perfectly match
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the true annotator’s distribution for any input x. To deal with this problem, the trace of the
estimated CMs is added according to Equation (3):

L(φ) =
n

∑
r=1

tr(A(r)
φ (x)), (3)

where A(r)
φ (x) is the spatial CM for annotator r. Minimizing the trace encourages the

estimated annotators to have maximum unreliability, thus acting as a regularization term.
Finally, the last term of the total loss function is given by Equation (4):

L(ρ) = DiceLoss(ŷθ(x), ŷρ(x)), (4)

which corresponds to the parametric loss, namely, the DICE loss between the predicted
ground truth ŷθ(x) and the mask reconstructed with the predicted segmentation parameters
ŷρ(x). Minimizing this function ensures that the reconstructed mask is as close as possible
to the ground-truth mask estimated by the segmentation network θ.

2.4. Implementation Details

The algorithms were implemented in Pytorch and trained for a maximum of 500 epochs.
The epoch with the lowest validation loss was saved and used for test predictions. All the
models were trained on an NVIDIA Tesla V100 using a batch size of eight, a learning rate
of 0.0001, and the AdamW [24] optimizer with default parameters.

The Dicom input images were resized to 256× 256 pixels. Data augmentation was
performed during training with random vertical flips assuming that all the images were
left-oriented, as described in Section 2.2.2.

We trained each of the described models (ECNN, U-Net, and Y-Net) in three differ-
ent ways:

• Using the segmentation of both radiologists as independent annotations. Each image
is seen twice during training with this approach, thus doubling the training corpus.

• Using the AND mask as the ground-truth label, obtained as the pixel-wise intersection
of both annotations.

• Using the CM approach described in Section 2.3.4.

We performed several experiments to search the optimal values for the parameters
α and β of the total loss function (Equation (1)). Both parameters were searched within
the values [0.1, 0.3, 0.5, 0.9], and those that yielded the best results in the validation data
were selected: α = 0.9 and β = 0.1. The annotation network in the CM-based models was
pre-trained for 10 epochs as a warm-up to maximize the trace of the CMs to encourage
diagonal dominance, as suggested in [17].

2.5. Evaluation

To measure the performance of the models, we chose the widely used Sørensen–Dice
similarity coefficient [25] which measures how much two masks M1 and M2 overlap,
according to Equation (5).

DICE(M1, M2) =
2|M1 ∩M2|
|M1|+ |M2|

(5)

Our experiments were based on the assumption that the ground-truth (GT) label is not
known. Therefore, we compared the results against each expert annotation independently
and also obtained the mean DICE score between the estimated mask and the expert label
which was closest to it. As we only had the labels of two experts available, the only label
fusion implemented for evaluation was the pixel-wise logical-AND between the binary
masks generated by the two radiologists.

The DICE scores obtained by the different models were compared using a one-way
ANOVA and Tukey’s range test statistic. The p-values were considered statistically signif-
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icant at the 0.05 cut-off. The Pearson correlation coefficient was used to compare breast
percent density (PD) as measured by our method and each radiologist’s assessment.

3. Results
3.1. Comparison of Different Models

The DICE scores for the different models are presented in Table 2 for the GVA and
IMIM datasets. The mask approximation models (U-Net and YNET-mask) achieved better
performance (p < 0.001) than their parametric counterparts (ECNN, YNet-param) for all
training variations. The parametric output of CM-Ynet did not achieve the performance
of the mask output. However, this was not so relevant as the parametric output was
only intended to maintain compatibility with the threshold-based tool when some user
interaction is needed. CM-Ynet (param.) outperformed the previously implemented ECNN
in this regard. Even though the expert labels used to train the model were obtained by
setting the parameters predicted by the parametric models, these only have two degrees of
freedom, and, therefore, the generalization performance could not outperform the mask
approximation models, which have the freedom to adjust all pixels individually.

Table 2. Comparison of different models for the GVA (844 samples) and IMIM (381) datasets.

GVA Dataset

Model R1 vs. Model R2 vs. Model AND vs.
Model

Closest
Radiologist

ECNN 0.71 ± 0.23 0.72 ± 0.23 0.72 ± 0.23 0.77 ± 0.21
UNet 0.76 ± 0.15 0.76 ± 0.15 0.76 ± 0.16 0.81 ± 0.12

YNet (param.) 0.70 ± 0.21 0.70 ± 0.21 0.70 ± 0.22 0.75 ± 0.20
YNet (mask) 0.80 ± 0.14 0.78 ± 0.15 0.78 ± 0.16 0.84 ± 0.12

AND-ECNN 0.68 ± 0.21 0.64 ± 0.21 0.62 ± 0.22 0.72 ± 0.20
AND-UNet 0.76 ± 0.15 0.79 ± 0.15 0.81 ± 0.14 0.83 ± 0.12

AND-YNet (param.) 0.65 ± 0.22 0.68 ± 0.22 0.69 ± 0.23 0.72 ± 0.21
AND-YNet (mask) 0.77 ± 0.15 0.79 ± 0.15 0.82 ± 0.14 0.84 ± 0.12

CM-ECNN 0.71 ± 0.20 0.72 ± 0.20 0.73 ± 0.20 0.78 ± 0.18
CM-UNet 0.80 ± 0.13 0.80 ± 0.13 0.79 ± 0.15 0.85 ± 0.10

CM-YNet (param.) 0.73 ± 0.18 0.75 ± 0.17 0.77 ± 0.17 0.80 ± 0.15
CM-YNet (mask) 0.79 ± 0.13 0.80 ± 0.13 0.79 ± 0.15 0.84 ± 0.10

IMIM Dataset

Model R1 vs. Model R2 vs. Model AND vs.
Model

Closest
Radiologist

ECNN 0.58 ± 0.24 0.59 ± 0.23 0.55 ± 0.25 0.65 ± 0.23
UNet 0.67 ± 0.22 0.69 ± 0.18 0.64 ± 0.23 0.74 ± 0.18

YNet (param.) 0.60 ± 0.27 0.60 ± 0.24 0.56 ± 0.27 0.66 ± 0.25
YNet (mask) 0.69 ± 0.24 0.69 ± 0.20 0.64 ± 0.24 0.76 ± 0.20

AND-ECNN 0.58 ± 0.26 0.57 ± 0.23 0.51 ± 0.26 0.64 ± 0.24
AND-UNet 0.68 ± 0.24 0.72 ± 0.21 0.68 ± 0.25 0.76 ± 0.20

AND-YNet (param.) 0.58 ± 0.26 0.60 ± 0.24 0.57 ± 0.26 0.65 ± 0.24
AND-YNet (mask) 0.68 ± 0.24 0.71 ± 0.21 0.68 ± 0.24 0.76 ± 0.21

CM-ECNN 0.63 ± 0.25 0.65 ± 0.21 0.60 ± 0.25 0.71 ± 0.21
CM-UNet 0.69 ± 0.22 0.72 ± 0.18 0.66 ± 0.24 0.77 ± 0.17

CM-YNet (param.) 0.67 ± 0.23 0.69 ± 0.20 0.65 ± 0.23 0.74 ± 0.19
CM-YNet (mask) 0.68 ± 0.23 0.70 ± 0.19 0.64 ± 0.24 0.76 ± 0.18

DICE scores are shown as mean ± standard deviation. The last column shows the mean score between the model
segmentation and the label of the closest radiologist for each sample. The highest value for each column is
highlighted in bold.
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We should also note that the implementation of the CM versions (CM-ECNN, CM-
UNet, and CM-YNet (param.)) outperformed those trained using each radiologist’s label
as independent ground truth and those trained with the AND masks (Figure 4). The
difference between CM-YNet (mask) with AND-YNet (mask) and YNet (mask) was not
statistically significant. However, the advantage of training the Y-Net model using the
confusion matrices approach is still supported based on the following:

1. The CM versions for ECNN, U-Net and Y-Net were more stable as they showed lower er-
rors.

2. Including more images for training with labels from different annotators is straight-
forward due to the network configuration. This functionality allows for easy im-
provement of the model generalization by adding images from other centers in “for
presentation” or “for processing” formats.

3. The overall performance (parametric and mask outputs) was better than for the other
methods as shown in Figure 5.

Figure 4. Comparison of models trained with different strategies (R1 + R2, AND mask and confusion
matrices (CM)). ns: not significant, *: p ≤ 0.05, ***: p ≤ 0.001, ****: p ≤ 0.0001.

Figure 5. Percent success for each model. A sample in the test set is counted as successful if the
Dice score between the estimated mask and the closest radiologist is higher than the concordance
between the radiologists (0.77 for GVA and 0.72 for IMIM). The Y-Net includes the parametric and
mask outputs.

3.2. Comparison per Acquisition Device

The results per mammography facility are shown in Table 3. The ECNN model only
achieved better performance in mammography facility 07. Notably, the agreement between
radiologists was the highest for this acquisition center. The mask approximation yielded
higher scores in all other centers. Centers 04, 18, and 22 corresponded to devices with low
gray-level resolution. In these cases, the improvement with CM-YNet over ECNN was
much higher.

These results demonstrate a good level of concordance of CM-YNet with the segmen-
tation provided by experienced radiologists. As can be seen in Table 1, the mammography
facilities with a FUJIFILM device (centers 01, 02, 05, 11, 13 and 21) were those that presented
better results for ECNN, while performance dropped significantly on most of the other
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devices. In contrast, CM-YNet (mask) performed similarly on all devices (DICE > 0.8 with
the exception of center 22 whose images were of very low quality. It is noteworthy that
images from centers 21 and 22 were never seen during training as these corresponded to
the IMIM dataset that was used only for testing. CM-YNet (mask) also outperformed both
ECNN and the radiologists in all cases except for center 07.

Table 3. Comparison of DICE scores according to the different acquisition centers.

Center Id #Images R1 vs. R2 ECNN CM-YNet
(param.)

CM-YNet
(mask)

01 96 079 ± 0.16 0.81 ± 0.16 0.75 ± 0.19 0.81 ± 0.11
02 96 0.79 ± 0.14 0.83 ± 0.15 0.81 ± 0.15 0.83 ± 0.13
04 34 0.75 ± 0.17 0.57 ± 0.23 0.74 ± 0.20 0.83 ± 0.08 *
05 80 0.64 ± 0.17 0.84 ± 0.13 0.81 ± 0.16 0.84 ± 0.10
07 14 0.88 ± 0.15 0.85 ± 0.15 0.73 ± 0.18 0.82 ± 0.14
10 156 0.77 ± 0.16 0.68 ± 0.24 0.79 ± 0.15 0.85 ± 0.10 *
11 140 0.82 ± 0.12 0.87 ± 0.10 0.84 ± 0.10 0.87 ± 0.07
13 60 0.78 ± 0.12 0.86 ± 0.12 0.82 ± 0.13 0.86 ± 0.11
18 20 0.74 ± 0.14 0.51 ± 0.27 0.80 ± 0.13 0.86 ± 0.08 *
20 90 0.78 ± 0.16 0.61 ± 0.27 0.78 ± 0.16 0.83 ± 0.12 *
99 58 0.79 ± 0.13 0.78 ± 0.20 0.83 ± 0.13 0.89 ± 0.09 *
21 98 0.76 ± 0.14 0.80 ± 0.15 0.82 ± 0.17 0.86 ± 0.10
22 283 0.71 ± 0.22 0.59 ± 0.22 0.72 ± 0.19 0.74 ± 0.19 *

Total 1225 0.76 ± 0.17 0.73 ± 0.22 0.78 ± 0.17 0.82 ± 0.14
Images from the centers 21 and 22 are from the independent IMIM dataset in which id 22 corresponds to images
acquired with old devices. The highest value for each row is highlighted in bold. * The difference between
CM-YNet (mask) and ECNN is statistically significant (p < 0.001).

Segmentation examples for representative devices are shown in Figure 6. As can be
seen in the example for center 11, the approach implemented in the current study does not
manage the presence of abdomen tissue at the bottom of the image. This may have led to
an additional increase in the errors reported in this study.

3.3. Histogram Normalization Importance

The previous paper [16] highlighted the importance of the normalization step de-
scribed in Section 2.2.3. The results of this study further support the need for normalization
of gray-level values from different sources, as can be seen in Figure 7. This plot shows the
DICE scores, with and without histogram normalization, where a substantial increment in
performance is seen, especially for the low-quality images of device 22 of the IMIM dataset
(p < 0.05).

3.4. Percent Density Estimation

Breast PD was calculated as the percentage of breast pixels segmented as dense tissue.
Figure 8 shows the scatterplots for the PD estimated by CM-YNet (mask) and the PD
obtained from the radiologists’ annotations. The PD estimated by our method correlated
highly with both expert readers (Pearson’s coefficient, 0.85).
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Figure 6. Segmentation examples for ECNN and CM-YNet compared to radiologist labels on different
devices. The device of center 01 is of higher pixel-image resolution than the device of center 04. The
example from center 22 is a low quality image from the IMIM dataset where the higher performance
of CM-YNet (mask) is easily identified. Medio-lateral oblique mammograms were selected so the
exclusion of the pectoral muscle could be seen; however, the abdomen was not excluded (center 11).

Figure 7. Comparison of CM-YNet (mask) segmentation with and without the preprocessing step
on the IMIM dataset. The results using the proposed histogram normalization outperformed those
obtained without any preprocess, especially for the low-quality images of Center 22 (p < 0.05).
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Figure 8. Correlations between the breast percent density (PD) calculated by our CM-YNet (mask)
method and the radiologists’ annotations (R1 and R2).

In Table 4, we included the Dice score and the PD for each radiologist to further
analyze the variability. The PD calculated by R1 was larger than R2 in 73% of the samples in
the training dataset and the difference in means was statistically significant (p < 0.00001).
This indicates that R1 tended to over-segment in comparison to R2. Figure 9 shows the
distributions for each radiologist and the mask output of the CM-YNet model.

Table 4. Percent density (PD) and generalized energy distance (GED) for CM-YNet (mask).

Dataset #Images R1 vs. R2 PD-R1 PD-R2 %(R1 > R2) GED

GVA(train) 2496 0.76 ± 0.17 0.19 ± 0.13 * 0.16 ± 0.12 73.31 3.13 ± 0.44
GVA(test) 844 0.77 ± 0.15 0.19 ± 0.14 * 0.16 ± 0.13 68.36 3.16 ± 0.40

IMIM 381 0.72 ± 0.20 0.17 ± 0.15 0.14 ± 0.11 62.2 2.80 ± 0.56
The DICE score between R1 and R2, and the percent density (PD) for each annotator are shown as mean ± standard
deviation. The percentage of samples in which PD-R1 was larger than PD-R2 is shown in the column %(R1 > R2).
The last column shows the generalized energy distance (GED) between the annotator’s labels and the estimated
segmentation for each annotator. * The difference between the percent density (PD) obtained by R1 and R2 was
statistically significant (p < 0.00001).

Figure 9. Density plots for the percent density (PD) annotated by the two experts (R1 and R2) and
the mask output of the CM-YNet model.

3.5. INbreast Dataset

The INbreast database [26] is a well-known publicly available dataset that includes
440 mammograms from 115 patients. It has ground-truth annotations for mass location, mass
type, and breast density classification labels. However, annotations for the dense tissue mask
are not available. We have estimated the dense tissue masks with our CM-YNet model—some
examples are shown in Figure 10. To allow other research groups to evaluate and compare
their segmentation results with the masks generated by our model, we have made the masks
for all INbreast images publicly available (https://doi.org/10.34740/KAGGLE/DS/2207184
accessed on 24 July 2022).

https://doi.org/10.34740/KAGGLE/DS/2207184
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Figure 10. Segmentation examples for CM-YNet (mask) on the INbreast datastet.

4. Discussion

We have presented the CM-YNet model for joint estimation of the dense-tissue seg-
mentation mask and the parameters used for mask reconstruction in threshold-based
tools. We demonstrated that directly estimating the mask at pixel level achieved superior
performance to reconstructing it using the two segmentation parameters. However, the
availability of the segmentation parameters is still important to maintain compatibility
with threshold-based segmentation tools in cases when the radiologist disagrees with the
estimated segmentation, in which case manual modifications are required. In this regard, it
is important to highlight that, for clinical applications, the outputs of any automatic method
should be corroborated by a medical expert. Moreover, there is also interest in using au-
tomatic methods for longitudinal studies, where thousands of images are needed to be
segmented. For this latter application, any misestimation of the dense tissue segmentation
is expected to have minimal impact because of the large number of images.

We also corroborated that the inclusion of the annotation network, proposed by [17], to
counteract the spatial characteristics of labeling errors by multiple human annotators is more
stable and facilitates the retraining of the model with more images from different annotators.
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According to [27,28], one of the important tasks for computer-aided diagnosis systems
is to provide an accurate and reproducible assessment of mammographic breast density.
We consider that our multi-center study performed well (DICE > 0.8) regarding breast
density assessment using CM-Ynet, and that it constitutes a first step in the standardization
of how mammographic breast density is assessed. The automated PD scores obtained by
our method had a positive relationship with the manually annotated scores, and were
consistent with the correlation coefficient (0.85) reported in similar studies [29,30].

In a recent study, Saffari et al. [31] presented a fully automated framework for segmen-
tation and classification using deep learning. The DICE score obtained for the dense-tissue
segmentation was 0.88. This score was calculated over the logical-AND between two expert
radiologists. Their conditional generative adversarial network (cGAN) was also trained
with the logical-AND masks. Their dataset included only 115 patients (33 for testing)
from the INbreast dataset [26]. This dataset size was substantially smaller than the dataset
used in our multi-center study (2166 patients), which may have yielded over-optimistic
results. In this regard, we have provided the estimated masks by our CM-YNet model for
all INbreast images so that other research groups can compare their results with ours.

The Deep-LIBRA algorithm was recently introduced [32]. It provides estimates of
the total dense tissue area and the breast PD. Deep-LIBRA was trained and validated on
a multi-racial, multi-institutional dataset of 15,661 images (4437 women) and released as
open-source software. One limitation of the Deep-LIBRA study is that the model was only
trained with images from a single manufacturer (Hologic). We tested Deep-LIBRA with our
dataset. However, the results were far from satisfactory: the breast masks were wrongly
estimated, and the dense tissue mask was not estimated at all in most cases. We experienced
these outcomes for all centers included in our test set, even for the Hologic ones (centers 07
and 22). The reason for this could be that all the images used to train Deep-LIBRA were raw
(“for processing”) FFDM images, in contrast with the “for presentation” images available
in our dataset.

The current standard practice in breast density assessment is to assign a four-class
categorisation according to BI-RADS (category A: almost entirely fat; category B: scattered
fibroglandular densities; category C: heterogeneously dense; and category D: extremely
dense), where each category corresponds to qualitative (and not quantitative) determi-
nations of breast density. We acknowledge that deep learning algorithms can be used
for direct prediction in each BI-RADS class. However, we advocate the importance of
breast density estimation for the following reasons: breast density is relevant to other tasks
beyond assessment of a woman’s risk for breast cancer, such as evaluating mammographic
sensitivity due to masking of tumors by dense tissue [33], or assessing the effects of aspirin
use and bariatric surgery on breast parenchymal patterns [34,35].

One of the main challenges of implementing automatic segmentation tools in medical
imaging is the wide variety of images due to different vendors, scanner technology, and
acquisition parameters [36]. This situation is even more challenging in digital mammogra-
phy, especially when we deal with “for presentation” images, as in our case. In this regard,
our study covered a total of 13 centers, including different vendors. We have demonstrated
that the histogram normalization implemented in our pipeline yielded good results even
on low-quality images.

The main contributions of the present paper can be summarized as:

1. Improvement of the previously presented ECNN model with the CM-YNet architec-
ture that jointly estimates the segmentation parameters, segmentation mask at the
pixel level, and the confusion matrices of each expert annotator.

2. Validation of the importance of the preprocessing protocol that standardizes the
histograms of breast images. This preprocessing reduces the impact of using different
acquisition devices, especially when images acquired with a specific device were
never seen during training.

3. The inclusion of a totally independent dataset used only for testing. This dataset
allowed us to further corroborate the validity of our multi-center study showing that
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the generalization performance was still acceptable (DICE > 0.7) even for low-quality
images, such as those of Center 22.

4. The approach followed achieves higher performance than the concordance between
the radiologists and also makes it easy for a radiologist to perform a fine-tuning of
the results by interactively modifying the segmentation parameters using a threshold-
based tool.

Limitations and Future Research

While the CM-YNet hybrid approach improved the results of the fully parametric
models, the results presented are based on comparing the DICE scores between the au-
tomatic model and the closest radiologist for each sample. This was performed due to
the absence of a unique ground truth. Future work will involve including more than two
expert labels in order to compare the results with fusion label methods such as majority
voting or STAPLE [37].

A second limitation is the pectoral muscle exclusion algorithm. The solution adopted
in the present work, although robust, could be improved by taking into account other
approaches mentioned in Section 2.2.2. The use of “for presentation” mammograms instead
of “raw” images may be the reason for some of the differences among the acquisition
devices. It would also be interesting to check if “raw” mammograms would avoid the
preprocessing step.

Finally, the estimation of the breast segmentation mask can be jointly estimated with a
dense-tissue mask which would probably increase performance and decrease the segmen-
tation time.

5. Conclusions

Our results show that directly estimating the dense-tissue mask at pixel level yielded
a better generalization performance than predicting two threshold parameters to later
reconstruct the mask, even when training samples were labeled using a threshold-based
tool. Our proposed model also estimates these parameters to maintain compatibility with
threshold-based segmentation tools. It was also shown that, considering each expert label
as a noisy approximation of the ground truth, by jointly learning the annotator’s confusion
matrices to capture each expert variability, yielded better results for each tested model.
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