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Abstract: Human mesenchymal stem cell (hMSC)-based therapy is an emerging resource in regenera-
tive medicine. Despite the innate ability of hMSCs to migrate to sites of injury, homing of infused
hMSCs to the target tissue is inefficient. It was shown that silica nanoparticles (SiO,-NPs), previously
developed to track the stem cells after transplantation, accumulated in lysosomes leading to a tran-
sient blockage of the autophagic flux. Since CXCR4 turnover is mainly regulated by autophagy, we
tested the effect of SiO,-NPs on chemotactic migration of hMSCs along the SDF1«/CXCR4 axis that
plays a pivotal role in directing MSC homing to sites of injury. Our results showed that SiO,-NP
internalization augmented CXCR4 surface levels. We demonstrated that SiO,-NP-dependent CXCR4
increase was transient, and it reversed at the same time as lysosomal compartment normalization.
Furthermore, the autophagy inhibitor Bafilomycin-A1 reproduced CXCR4 overexpression in control
hMSCs confirming the direct effect of the autophagic degradation blockage on CXCR4 expression.
Chemotaxis assays showed that SiO,-NPs increased hMSC migration toward SDF1ca. In contrast,
migration improvement was not observed in TNF«/TNEFR axis, due to the proteasome-dependent
TNER regulation. Overall, our findings demonstrated that SiO,-NP internalization increases the
chemotactic behaviour of hMSCs acting on the SDF1«x/CXCR4 axis, unmasking a high potential to
improve hMSC migration to sites of injury and therapeutic efficacy upon cell injection in vivo.

Keywords: human mesenchymal stem cells; regenerative medicine; silica nanoparticles; hMSC
homing; SDF1a/CXCR4 axis; tissue injury; autophagy; cell migration; TNFo./TNFRs axis

1. Introduction

Mesenchymal stem cells (MSCs) possess the capability for self-renewal, multilineage
differentiation, and also display angiogenic and immunomodulatory properties that make
them attractive for clinical applications [1-3]. Indeed, MSCs are widely used in regenerative
medicine in order to promote healing of damaged tissues and organs; as well, they represent
a promising cell source for ischaemic disease therapy [1,2]. An important premise of
successful MSC-based therapies is that these cells reach the site of injury and home to the
damaged area where they can participate in tissue regeneration in response to inflammatory
and ischaemic signals [3].

The majority of chemotactic stimuli activate cell surface receptors that belong to the
G protein-coupled receptor (GPCR) superfamily, with the stromal cell-derived factor 1o
(SDF1e)/C-X-C motif chemokine receptor 4 (CXCR4) axis representing the prototypic
signal system. SDF1«, a chemotactic factor encoded by the CXCL12 gene, is critical for
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stem/progenitor and mesenchymal cell recruitment [4—6]. The SDF1a/CXCR4 axis exerts a
pivotal role in chemotaxis during embryonic development, while after birth it recruits cells
to the sites of injury [5]. Indeed, SDF1« is upregulated in response to tissue injury [7] and
acts as a chemoattractant for recruiting circulating or resident MSCs to lesion sites through
interaction with its cognate receptor CXCR4 located on the membrane of MSCs [3,6,8-10].

Although MSCs are recognized as the best potential candidates for cell therapy, some
limitations still exist. In vivo experiments pointed out limited efficacy of MSC-based
therapies due to inefficient homing and very low (<2%) cell engraftment rate in the damaged
tissue [11], irrespective of the route of delivery (intravenous injection or transplantation).
This represents a major bottleneck in achieving the full therapeutic potential of MSC-
based therapies. One reason for the inefficient homing of MSCs could be due to the fact
that there is very low expression of SDF-1 receptor, CXCR4, on their surface [9,12-14].
Moreover, in vitro expansion of MSCs gradually leads to loss in expression of key receptors,
particularly CXCR4 [10,15,16], that further reduces the homing potential of engrafted MSCs.
Besides this, scarcity of nutrients and oxygen supply owing to insufficient vascularization,
together with ischemia-induced oxidative stress further contributes to low retention rate
and loss of transplanted MSCs [11,17]. In spite of these factors, MSCs are able to secrete
antioxidant molecules, paracrine factors (such as BFGF and VEGF) and extracellular vesicles
(containing various molecules among which miRNAs) which can favour vasculogenesis
and angiogenesis [1,18], that contribute to attaining a prompt homing of these cells, thus
ameliorating their engraftment potential as well.

Nanotechnologies can improve the efficacy of stem cell therapies. First, as imaging
agents they allow a direct observation of delivered cells from their injection to their en-
graftment sites [19,20]. Second, they may act as cargos for gene/drug delivery [21-23]. In
addition, very recent evidence suggests that NPs can act in a third way by directly affecting
stem cell behaviour [24,25]. Keeping this in view, previously we have developed a method
of fluorescent staining with silica NPs (5i0,-NPs) suited to tracking human MSCs (hMSCs),
and we have validated this approach both in vitro [26,27] and ex vivo [28]. We demon-
strated that SiO,-NP uptake by hMSCs was well tolerated in the long term, did not induce
cytotoxicity or genotoxicity, and did not alter the proliferation and differentiation potential
of hMSCs [26-28]. Moreover, we observed that SiO,-NPs directly improved adhesion
properties of hMSCs and positively modulated the expression of Connexin-43 [25]. Mecha-
nistically, we demonstrated that, after internalization, SiO,-NPs accumulated in lysosomal
compartments leading to a transient block of autophagic flux responsible for the increased
adhesive phenotype and Connexin-43 expression, being both processes modulated by
autophagic activity [25].

Since CXCR4 turnover and its signalling are regulated mainly by the autophagic
process [29,30], in this work, we assessed whether SiO,-NP uptake would have an effect
on chemotactic migration of hMSCs acting on the SDF1a/CXCR4 axis. An approach that
induces CXCR4 expression enhancement on hMSCs would be a useful strategy to improve
their migration and subsequent engraftment in injured tissues.

2. Materials and Methods
2.1. Silica Nanoparticle Production

Pure SiO;-NPs and red fluorescent cyanine dye-doped SiOp-NPs were prepared by a
water-in-oil microemulsion, as detailed by Alberto et al. [31]. For the preparation of dye-
doped nanoparticles, IRIS3 cyanine (by Pianeta S.r.1., formerly Cyanine Technologies S.p.A.,
Torino, Italy) was added to the reaction system in the form of aminopropyltriethoxysilane
derivative. As typical for trimethine cyanine dyes, the absorption and photoluminescence
spectra of IRIS 3 range from ca. 450 to 575 nm and from 500 to 700 nm, respectively.
At the end of the process the cyanine molecules resulted were stably entrapped in the
bulk of NPs based on solvatochromism test, thus the surface chemistry of NPs was not
affected by the presence of IRIS3 molecules. Obtained SiO,-NPs (both pure and dye-doped)
exhibited a diameter of 50 + 2 nm and possessed elevated morphologic homogeneity,
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as well as good colloidal stability (Figure S1). When containing cyanine molecules, they
displayed bright fluorescence emission and high photostability [31,32]. SiO,-NPs were
almost monodispersed in water; in complete DMEM 1% FBS, S5iO,-NPs resulted in the
formation of agglomerates of ca. 1 pm in size [25]. Ultrasonic sonication was performed
prior to cell treatment.

2.2. Culture and Cell Treatments

The hMSCs isolated from the bone marrow of healthy donors were commercially
obtained from ATCC. For all the experiments cells between passages 4 to 8 were used.
hMSCs were cultured in DMEM supplemented with 1% sodium pyruvate, 1% nonessential
amino acids, 1% kanamycin, 1% L-glutamine, 0.1% (3-mercaptoethanol (complete DMEM)
and 10% foetal bovine serum (FBS) (standard medium) (all from Sigma Aldrich S.rl,
Milan, Italy) and kept in an atmosphere of 5% COy, 95% air at 37 °C in a humidified
incubator. Cells were expanded at a seeding density of 3500 cell/cm? and subcultured
twice a week. Exponentially growing hMSCs were seeded at 6500 cell/cm? 24 h before
the two following protocols: (a) SiO,-NPs: cells were exposed for 16 h to a suspension of
water dissolved dye-doped SiO,-NPs 50 pug/mL in complete DMEM 1% FBS; for some
in vitro experiments, utilized SiO,-NPs contained no fluorophore to avoid any possible
interference of fluorescence spectra; (b) Control (CTR): cells were incubated for 16 h in
complete DMEM 1% FBS supplemented with the same volume of sterile HyO in which SiO;-
NPs were dispersed. Subsequently, samples of both conditions were washed twice with
warm phosphate-buffered saline (PBS) and analysed immediately after treatment (Day 0)
or after 1, 4 and 8 days of in vitro recovery in standard medium; brightfield microscopy
images showing hMSCs under treatment with SiO,-NPs are available in the supplementary
data (Figure S2). For inhibition of lysosomal degradation activity hMSCs were starved for
2 h with DMEM 0% FBS and then treated using 100 nM Bafilomycin Al for 2 h. Human
umbilical vein endothelial cells (HUVECs) cells were isolated from donors and cultured in
EGM-2 media in an atmosphere of 5% CO,, 95% air at 37 °C in a humidified incubator. For
hypoxic experiments, cells were cultured in a hypoxic chamber with 1% O, and 5% CO,
conditions for 6 h. Cells were serum-starved in EBM-2 plus 0.5% FBS at least 6 h before
hypoxic culture to minimize the effects of growth factors in the expansion media.

2.3. Cell Migration Assay
2.3.1. Transwell Assay

hMSCs were seeded at a density of 7 x 103 cells/cm? followed by treatment with
either CTR or SiO,-NPs protocols for 16 h. Afterwards cells were detached with trypsin
and seeded on polyethylene terephthalate (PET) membranes of 24-well BD Falcon culture
inserts (6.5 mm diameter of insert, 8.0 um pore size of membrane) at the final density of
5 x 10* cell/cm? in DMEM supplemented with 0.5% FBS. Fibronectin (Sigma Aldrich
S.rl) 50 ug/mL coating on membranes was performed by incubating the inserts for 2 h at
37 °C in a humidified 5% CO; atmosphere. Inserts were placed in 24 well plates, and
the lower chambers of 24-well systems were filled with 600 pL of either DMEM 0.5% FBS
(negative), DMEM 0.5% FBS with SDF1x (Miltenyi Biotec, Bologna, Italy) 100 pg/mL or
tumour necrosis factor « (TNF«) (Miltenyi Biotec) 10 ng/mL, conditioned media (EBM
plus 0.5% FBS) from HUVECSs cultured in different oxygen tensions and DMEM 30% FBS
(positive). The multiwells containing the cell culture inserts were incubated at 37 °C in
a humidified 5% CO, atmosphere for 24 h. Afterwards, culture inserts were rinsed with
PBS and cells attached to the upper side of the membrane were mechanically removed by
a cotton-tipped applicator. Cells that migrated to the lower side of the membrane were
fixed by treatment with 2.5% glutaraldehyde for 30 min at RT and stained with 2% crystal
violet for 1 h at RT. For each insert, five random fields were acquired with an inverted
microscope Motic AE 2000. Finally, the cells were counted by Image]® software (Available
online on http://rsb.info.nih.gov/ij/; accessed on 30 November 2021) and the total number
of migrated cells per membrane was calculated.
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2.3.2. p-Slide Chemotaxis Chamber Assay

Cell migration assays were performed using the p-Slide Chemotaxis (© ibidi, GmbH,
Martinsried, Germany) according to the manufacturer’s protocol. The hMSCs were seeded
at a density of 7 x 103 cells/cm? followed by treatment with either CTR or SiO»-NPs
protocols for 16 h. Afterwards cells were detached with trypsin and 12 x 10> hMSCs were
seeded in the central canal and incubated for 2 h at 37 °C in a humidified 5% CO, to allow
cell attachment. The directional gradient was created filling the first reservoir with FBS at
0.5% and the second with FBS at 0.5% and SDF1« (Miltenyi Biotec) 100 pug/mL. Live cells
imaging was performed for 60 h with Leica SP5 inverted confocal time-lapse microscope
in which cells remain alive at 37 °C and 5% CO, conditions. Images were analysed with
Image] Manual Tracking Plugin and Chemotaxis and Migration Tool.

2.4. Confocal Microscopy

Adhered hMSCs at the end of experiments were processed for confocal immunofluo-
rescence. Cells were fixed with 4% PFA, permeabilized with 1% Triton X-100 and blocked
with 6% (w/vol) BSA and 2.5% (vol/vol) normal goat serum. For CXCR4 analysis cells were
stained over night at 4 °C with the primary antibody mouse anti-CXCR4 (Abcam, Milan,
Italy) (1:50) and then incubated for 30 min at room temperature with the secondary anti-
body goat anti-mouse Alexa Fluor 488 (Thermo Fisher Scientific Inc., Monza, Italy) (1:500).
Quantification was assessed using Image]®. To mark late endosomes and lysosomes, cells
were incubated for 15 min at 37 °C with LysoTracker Green (2 pmol/L) (Thermo Fisher Sci-
entific Inc.) and analyzed with inverted confocal laser scanning microscope LSM 800 (Carl
Zeiss Inc., Oberkochen, Germany). Nuclear staining was performed with Hoechst-33342
(5 ng/mkL).

2.5. Flow Cytometry

For CXCR4 and TNF receptor (TNFR) surface expression, hMSCs were washed with
PBS, blocked with 5% FBS for 30 min at room temperature and stained for 30 min at
4 °C with anti-CXCR4 and anti-TNFR directly conjugated antibody APC (Miltenyi Biotec)
(1:50). Cells were acquired with CyAN ADP flow cytometer (Beckman Coulter, s.r]l. Milan,
Italy and analysed by software Flow]o® (Available online on https:/ /www.flowjo.com/;
accessed on line 30 June 2021). At least 50,000 events per sample were collected.

2.6. Western Blot Analysis

hMSCs were lysed with RIPA buffer and 12 pg of proteins were loaded. SDS-PAGE
(12% Bis-Tris gel, from Invitrogen, Thermo Fisher Scientific Inc.), Polyvinylidene difluoride
transfer membrane and quantification BCA assay (Thermo Fisher Scientific Inc.) were used.
Membranes were blocked in 5% milk for 1 h at room temperature and probed with the
primary antibodies (anti-LC3B, anti-p62/SQSTM1 purchased from Sigma-Aldrich S.r.1.)
(1:1000) overnight at 4 °C, followed by secondary antibodies (1:5000) for 1 h at RT. Bands
were visualized using an enhanced chemiluminescence kit (SuperSignal™ West Pico PLUS,
from Thermo Fisher Scientific Inc.). Quantification was assessed using Image Lab Software
(Bio-Rad Laboratories S.r.1., Segrate, Italy).

2.7. Statistical Analysis

Data were expressed as a mean =+ standard error of the mean (SEM) of at least three
different experiments or as the mean + standard deviation (SD) of representative experi-
ments. Statistical comparisons were performed with unpaired Student’s ¢-test. Differences
with p < 0.05 were regarded as statistically significant.
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3. Results
3.1. 5i0,-NP Internalization Increases Expression of CXCR4 in hMSCs by Inducing a Transient
Block of Lysosomal Degradation

CXCR4 fluorescence intensity was measured by flow cytometry in NP-treated and
untreated hMSCs, and data showed that SiO,-NP internalization significantly increased
CXCR4 cell surface expression (p < 0.05) compared to control cells after 16 h of SiO,-NP
treatment (Figure 1a). We then evaluated CXCR4 total expression by immunofluorescence
and confocal microscopy analysis. Qualitative observation of images strongly suggested
that, after SiO,-NP internalization hMSCs increased CXCR4 expression and, indeed, quanti-
tative analysis of fluorescence showed a significant (p < 0.001) increase in CXCR4 expression
in 5i0,-NP-treated hMSCs compared to control cells (Figure 1b).

Bafilomycin-Al is a drug widely used in in vitro studies as it blocks the activity of the
autophagic flux via inhibition of the autophagosome-lysosome fusion [33] a mechanism
similar to that described for SiO,-NPs [25,34,35]. We thus investigated whether Bafilomycin-
Al treatment could induce the same phenotypes observed in SiO,-NP-treated hMSCs, as
this would confirm the hypothesized mechanism of action. Bafilomycin-A1l was able to
block the autophagic flux in control hMSCs, as showed by the increase of LC3I1/LC3I ratio
accompanied by increased p62 expression (Figure S3). Bafilomycin-A1l, instead, did not
induce any additive effect on SiO,-NP-treated cells, whose autophagic flux was already
compromised by the accumulation of nanoparticles in lysosomes (Figure S3). These data
support our hypothesis suggesting a common mechanism for both Bafilomycin-A1 and
Si0,-NPs accumulation.

We then evaluated CXCR4 total expression on Bafilomycin-Al treated hMSCs by
immunofluorescence and confocal microscopy analysis. Qualitative observation of images
indicated that the pharmacological blockade of autophagy flux increased CXCR4 expression
(Figure 1c, left panels) and quantitative analysis confirmed a significant (p < 0.001) increase
in cells treated with Bafilomycin-Al compared to control cells (Figure 1c, right graph).

In agreement with our previously published results [25,28], we observed that in
NP-treated hMSCs there is strong colocalization between S5iO,-NPs and lysosomes. Fur-
thermore, control cells were characterized by the presence of a low number of small-
sized lysosomes while hMSCs treated with SiO,-NPs exhibited many larger lysosomes
(Figure 1d).

The time course analysis of LysoTracker experiments in SiO,NP-treated hMSCs indi-
cated that on day 1 accumulation of larger organelles was still present, and this phenomenon
began to attenuate on day 4 (Figure le, days 1 and 4). On day 8 confocal analysis displayed
normalized lysosomal compartment, confirming that SiO,-NPs transiently disrupt the
lysosomal compartment, and that lysosomal compartment perturbation spontaneously
recovers within 8 days from SiO,-NP treatment (Figure 1e, day 8).

To investigate the involvement of SiO,-NP-mediated autophagic flux blockade in the
observed functional effects, we evaluated whether CXCR4 increases in SiO,-NP-treated
hMSCs followed a similar kinetics. CXCR4 fluorescence intensity was measured by flow
cytometry after 1, 4 and 8 days during which hMSCs remained in complete 10% FBS
standard medium. Results highlighted that the enhanced CXCR4 expression was still
evident on day 1 (p < 0.01) (Figure 1f), while it progressively returned to control levels
when lysosomal compartment normalization occurs (Figure 1f, days 4 and 8).

These results indicated that (1) SiO,-NP internalization increased surface expression
of CXCR4 in hMSCs, (2) pharmacological inhibition of lysosomal degradation activity
obtained using Bafilomycin-A1, reproduced in hMSCs the same effect as NPs, and (3) the
augmented CXCR4 expression phenotype observed in SiO,-NP-treated hMSCs was released
within 8 days coincident with the lysosomal compartment normalization, thus confirming
a transient block of lysosomal degradation as the most possible mechanism of action.
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Figure 1. SiO,-NP internalization increases CXCR4 expression in hMSCs. (a) Fifty thousand of both
living untreated (CTR) and SiO,-NP-treated hMSCs were incubated with anti-CXCR4 antibody and
fluorescence intensity was measured by flow cytometry after 16 h of SiO,-NP treatment. Data shown
are cytometric profiles of a representative sample from each experimental group: background signal of
cells without antibody incubation (grey), control cells (red), SiO,-NP-treated cells (blue). Representative
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histogram of flow cytometry analysis was obtained from Flow]Jo software. Box plot shows the
fluorescence intensity expressed as mean + SD. (b) Representative images of CTR and SiO,-NP-
treated hMSCs. Cells fixed on coverslips were stained with anti-CXCR4 primary antibody, followed
by 488-conjugated (Green) secondary anti-rabbit antibody, and then analysed by confocal microscopy.
Nuclei were stained with DAPI (Blue). Magnification 63 x; scale bar 10 um. Quantitative evaluation
of fluorescence intensity was expressed as fold changes of SiOp-NP-treated hMSCs versus untreated
cells. At least 700 cells were analysed for each group. Bars show mean + SEM. (c) Representative
images of hMSCs treated with Bafilomycin-A1 (100 nM) and CTR. Cells fixed on coverslips were
stained with anti-CXCR4 primary antibody, followed by 488-conjugated (Green) secondary anti-
rabbit antibody, and then analysed by confocal microscopy. Nuclei were stained with DAPI (Blue).
Magnification 63 x; scale bar 10 pm. Quantitative evaluation of fluorescence intensity was expressed
as fold changes of SiO,-NP-treated hMSCs versus CTR cells. At least 350 cells were analysed for
each group. Bars show mean + SEM. (d) Representative confocal images of control or SiO,-NP-
treated (red) hMSCs stained with LysoTracker (green) and DAPI (Blue). Magnification 63x; scale
bar 10 um. (e) Representative images of CTR and SiO,-NP-treated hMSCs. Cells fixed on coverslips
were labelled with Lysotracker (green) and DAPI (Blue) at different time points (days 1, 4 and 8) and
acquired by confocal microscopy. Magnification 63 x; scale bar 10 um. (f) CTR and SiO,-NP-treated
hMSCs were allowed to recover for 1, 4, and 8 days after treatment and then CXCR4 expression was
evaluated by flow cytometry. Histogram shows the fluorescence intensity expressed as fold changes
of SiO,-NP-treated hMSCs versus untreated cells. Bars show mean £+ SEM. * p < 0.05; ** p < 0.01;
**p <0.001;n=3.

3.2. Internalization of SiO»-NPs Increases hMSC Migration Specifically in Response to SDF1u

Since cell recruitment at sites of injury is a key aspect of MSC-based therapy effective-
ness, based on our observation that CXCR4 expression was increased in SiO,-NP-treated
cells we further evaluated whether the chemotactic behaviour in response to SDF1«x gra-
dient was modified by SiO,-NP internalization. For this purpose, we performed both
tridimensional and bidimensional time-lapse chemotaxis assays. For the tridimensional
transwell migration assay, untreated and SiO,-NP-treated hMSCs were seeded on the top
wells of chemotaxis chambers in the presence of 0.5% FBS. Migration assay was performed
in different conditions: migration towards the lower chamber containing 0.5% FBS (negative
control; —), migration towards the lower chamber containing the relevant chemoattractant
(SDF1«, 100 pg/mL), and migration towards the lower chamber containing 30% FBS (pos-
itive control; +). After 24 h, the migrating cells were counted by Image]® software, thus
calculating total number of migrated cells per membrane. Both qualitative and quantitative
observations proved that SiO,-NPs enhanced chemotactic behaviour of hMSCs in response
to SDF1 in a statistically significant manner (p < 0.001) compared to the untreated cells
(Figure 2a). It was noted that there was no migration difference between the control cells
and the cells treated with nanoparticles towards 30% FBS, suggesting that SiO,-NPs did
not modify the migratory behaviour of the cells in a generic way towards growth factors,
but increased the migration specifically towards SDF1« (Figure 2a).

To further investigate how SiO,-NP internalization enhanced migratory capability of
hMSCs in response to directional gradient of SDF1x, we used p-Slide Chemotaxis Chambers
(© ibidi GmbH) in conjunction with time-lapse microscopy (Figure 1b). This powerful
tool allows us to follow the chemotactic cell response to a chemoattractant gradient in
real-time and to obtain a detailed analysis of specific migration behaviour from random
movement, thus providing more reliable and accurate results. To perform the experiments,
untreated and SiO,-NP-treated hMSCs were seeded in the central canal of a chemotaxis
chamber for 1 h to allow cell adhesion, then directional gradient was created filling the first
reservoir with FBS at 0.5% and the second one with FBS at 0.5% plus SDF1x 100 ug/mL.
Cell migration was followed through time-lapse microscopy for 60 h (Figure S4). We
analysed the center of mass (COM), a strong parameter for evaluating chemotaxis as it
represents the spatial averaged point of all cell endpoints. Depending on the direction
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in which the population of cells has drifted, COM coordinates can be either positive or
negative. The difference in the center of mass, at the beginning and end of the experiment,
is called the displacement (or length) of the center of mass. This value represents the
length of migration for all the cells. In the absence of chemotaxis, the COM coordinates
are not significantly different (0, 0), while strong chemotaxis effects are characterized by
a significant COM displacement. We analysed COM values at 60 h time point and we
highlighted a greater shift of the center of mass (represented with the symbol +) toward
SDFlax gradient in SiO,-NP-treated hMSCs (Figure 2b, left panel), confirming that the
internalization of SiO,-NPs enhanced chemotactic migration of cells in response to SDF1«.
Migration was evaluated in three independent experiments and the resulting COM values
were represented by the geometric figures proving that 5iO,-NPs enhance the displacement
of the COM from a mean value of 13.4 in control cells to 52.3 in SiO,-NP-treated hMSCs
(Figure 2b, right panel). In a typical chemotaxis experiment, the COM displacement is time
dependent, thus the longer the experimental time, the bigger the displacement of the center
of mass. This was indeed confirmed in our experiment, where a time-dependent increase
in the COM was evidenced over time (Figure S4, Videos V1 and V2).
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Figure 2. SiO,-NP internalization augments hMSC migration in response to SDFlo gradient.
(a) Representative images of migration of untreated (CTR) and SiO,-NP-treated hMSCs in the presence
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of chemoattractant SDF1« (100 pg/mL) or medium with either 0.5% FBS (negative control; —) or
30% FBS (positive control; +). Once fixed, hMSCs were stained with crystal violet. Magnification 4 x;
scale bar 150 um. Bar graphs represent the quantification of migrated cells normalized to untreated
experimental group and expressed as fold change of migrated cells. Bars show mean + SEM.
(b) Left panel: 2D trajectory plot of hMSCs in a representative experiment showing paths of 28 control
cells and 29 SiO,-NP-treated cells under 60 h SDF1c directional gradient indicated by the blue arrow.
Accumulated distance of cells is reported in a two-axis plot in which distances are expressed in
pm. Center of the axis is the starting point of all cells (starting center of mass), while black spots
indicate the position of cells at the end of the migration time (endpoints). Green cross is the center
of mass at the end of the experiment (60 h), which represents the spatial averaged point of all cell
migration endpoints. (b) Right panel: COM values of SiO,-NP-treated hMSCs compared to control
cells. Geometric figures represent COM value of three different experiments, for both control and
treated conditions, and on the right the corresponding mean of COM value is reported. ** p < 0.01;
***p<0.001. n=3.

Our hypothesis suggests that only chemotactic receptors whose turnover and activity
are mainly regulated by autophagy, such as CXCR4, would show changes upon SiO;-NP
internalization by hMSCs. For this reason, we studied the cell surface expression of TNFR
that is degraded by the proteasome, and the TNF«/TNFR chemotactic axis to understand
whether enhanced migration was peculiar of the SDF1«/CXCR4 axis or could include
other chemotactic axis indiscriminately. To evaluate whether SiO,-NPs could change TNFR
expression on hMSC surface, we measured TNFR fluorescence intensity by flow cytometry
in control and treated cells. In accordance with our hypothesis, the results showed that SiO;-
NP internalization did not increase TNFR expression (Figure 3a). To analyse TNFo/TNFRs
chemotactic axis in hMSCs, control and SiO;-NP-treated hMSCs were seeded on the top
well of a chemotaxis chamber and transwell migration assay was carried out on cells
migrating towards 3 different conditions: the lower chamber containing medium with 0.5%
FBS (—), containing the chemoattractant TNF«x (10 ng/mL) or containing 30% FBS (+). After
16 h both qualitative and quantitative analyses highlighted that SiO,-NP internalization did
not change the migratory behaviour toward TNF«x compared to control cells (Figure 3b).
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Figure 3. SiO,-NPs do not modify either TNFR surface expression or migration toward TNF1x in
hMSCs. (a) Fifty thousand of both untreated (CTR) and SiO,-NP-treated hMSCs were incubated with
anti-TNFR antibody and fluorescence intensity was measured by flow cytometry after 16 h of SiO;-
NP treatment. Data shown are cytometric profiles of a representative sample of each experimental
group: background signal of cells without antibody incubation (grey), control cells (red), SiO,-
NP-treated cells (blue). Box plot shows the mean fluorescence intensity expressed as mean + SD.
(b) Representative images of migration of both CTR and SiO,-NP-treated hMSCs in the presence of
chemoattractant TNF« (10 ng/mL) or medium with either 0.5% FBS (negative control; —) or 30% FBS
(positive control; +). Once fixed, hMSCs were stained with crystal violet. Magnification 4 x; scale bar
150 pm. Bar graphs represent the quantification of migrated cells normalized to CTR experimental
group and expressed as fold change of migrated cells. Bars show mean + SEM. n = 3.

3.3. 5i0,-NPs Augment hMSC Migration in Response to Hypoxia-Induced SDF1a in HUVECs

Hypoxia is a fundamental mechanism governing recruitment and retention of stem
and progenitor cells and indeed, hypoxic microenvironments (such as injured tissue)
facilitate cell recruitment and retention in ischemic tissues [36,37].

Hence, in order to reproduce in vitro a condition that occurs in vivo after an ischaemic
event, in which cells exposed to hypoxic stress release SDF1« to recruit progenitor and
stem cells to the damage area, we used HUVECs. These cells produce SDF1oc when
undergoing hypoxia [38] and we investigated whether SiO,-NP-treated hMSCs migrated
more efficiently towards hypoxia-induced SDF1x compared to control cells. For this
purpose, we performed a transwell assay seeding on the top well of a chemotaxis chamber
either SiO,-NP-treated hMSCs or control cells, whereas the lower chamber was filled with
either conditioned media from HUVECs cultured in hypoxic conditions (HM) or media
from HUVECs grown in normal oxygen tension (NM). After 24 h, the migrated cells were
counted calculating the total number of migrated cells per membrane. As expected, cells
migrating towards NM did not show any migration differences (Figure 4). However,
both qualitative and quantitative analyses demonstrated that control cells increase their
migration with a significant statistical difference (p < 0.05) in response to HM since hMSCs
expressing CXCR4 are competent to migrate toward SDF1« released from hypoxic culture
HUVECs (Figure 4). Importantly, the migration of hMSCs was further increased (p < 0.0001)
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after treatment with SiO,-NPs, underlining the efficacy of nanoparticles to increase the
recruitment of hMSCs in damaged tissues subjected to hypoxic stress (Figure 4).
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Figure 4. SiO,-NP internalization promotes hMSC migration in response to hypoxia-induced SDF1
in HUVECs. (a) Representative images of migration of untreated (CTR) and SiO,-NP-treated hMSCs
to conditioned media from HUVECs cultured in hypoxic conditions (HM) or media from HUVECs
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grown in normal oxygen tension (NM). Once fixed, hMSCs were stained with crystal violet. Magnifi-
cation 4 x; scale bar 150 um. (b) Bar graphs represent the quantification of migrated cells normalized
to the NM migrating CTR experimental group and expressed as fold change of migrated cells. Bars
show mean + SEM. * p < 0.05; **** p < 0.0001. n = 3.

4. Discussion

Based on our previous published results, that highlighted a transient block of au-
tophagic flux mediated by SiO,-NP internalization [25], in this work we hypothesized
that S5iO,-NPs would have effect on the chemotactic migration of hMSCs acting on the
SDF1o/CXCR4 axis, since CXCR4 turnover and signalling are regulated mainly by the
autophagic process [29,30]. Here, for the first time, we have demonstrated an increased
expression of CXCR4 and an improved migratory capability of hMSCs toward synthetic
and natural SDF1x mediated by silica nanoparticles.

The importance of this finding derives from the observation that despite the innate
migration capacity of hMSCs; unfortunately, the homing of MSCs is inefficient, with only
a small percentage of cells reaching the target tissue after systemic administration and
consequently in the clinical studies MSCs have shown limited therapeutic benefit [11,39].
Many strategies have been employed in the hope of improving this process [3]; specifically,
the increase of CXCR4 in MSCs was obtained through genetic modification [18,40-43], cell
surface engineering [44], in vitro priming of MSCs [45—49] and ultrasound techniques [50].
Interestingly, iron oxide-based NPs have also demonstrated an impact on MSC chemotaxis,
yet through radically different mechanisms of action involving iron ions release from NPs
after cellular uptake, which in turn enhanced hypoxia-inducible factor-1 (HIF-1) and CXCR4
expression [51,52]; however, full details on how iron oxide NPs can impact chemotaxis in
MSCs remain to be fully elucidated.

Furthermore, we observed a similar mechanism between SiO,-NP accumulation and
Bafilomycin-Al treatment that leads to CXCR4 overexpression, confirming the direct effect
of the autophagic degradation blockage on CXCR4. Indeed, autophagy inhibition has a
great impact on chemotactic cell migration and the functional connection between these
two processes is exemplified by the action of CXCR4 itself on the autophagy machinery [53].
Upon ligand-binding, CXCR4 triggers a marked reduction in the biogenesis of autophago-
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somes impairing recruitment of ATG16L1, a component of LC3 conjugation system that
mediates the elongation and closure of the phagophore, to the initial endocytic vesicles;
in this way, CXCR4 blocks the autophagic flux in the initial step of the process [54]. This
anti-autophagic action of CXCR4 is crucial for maintenance of correct balance between as-
sembly and disassembly of adhesion complexes at cell front required for chemotaxis. Coly
et al. reported that in both HEK-293 and U87 glioblastoma cells the impact on autophagy
induced by GPCRs is confined at the front of migrating cells, where the receptor is activated,
as it required a local action to favour the efficient formation of adhesions, while in the rest
of the cell the autophagic process remains active [55]. Mechanistically, we propose that
the autophagic block produced by SiO,-NP internalization renders hMSCs more prone
to perform chemotaxis, working in combination with the autophagic inhibition induced
by CXCR4 upon ligand binding, contributing to generate the observed effect. Further, we
suggest that SiO,-NPs improve chemotaxis by both augmenting CXCR4 surface expression
and optimizing lamellipodial adhesions, propaedeutic for chemotaxis, in our cell model.
This would be coherent with our previous findings [25] demonstrating a largely increased
hMSC adhesion ability following treatment with SiO,-NPs.

We showed that after SiO,-NP treatment the increase of CXCR4 in the membrane
is a swift and transient effect. In fact, as in hMSCs the block of the autophagic flux is
released within 8 days from the treatment with 5iO,-NPs, the expression of CXCR4 returns
to the control levels in the same time interval. On one hand, these validated the hypothesis
that the effects produced by the treatment with nanoparticles on the increase of CXCR4
can be explained by the impact that the accumulation of SiO,-NPs in lysosomes has on
autophagy. On the other hand, they evidenced a kinetics of SiO2-NP-induced CXCR4
overexpression that is indeed clinically relevant, as predicted by a physiologically-based
pharmacokinetic model for the in vivo kinetics of MSCs characterizing and predicting
the organ distribution of administered MSCs [56]. Furthermore, CXCR4 kinetics has also
been predicted by a more recently developed mathematical model that considers both the
kinetics of MSCs and SDF1 in blood and organs, assuming that MSCs arrest in organs via
both passive homing through blood flow and active homing through the organ-released
SDF1 attracting CXCR4-expressing MSCs [57]. In both models, 1-3 days was the crucial
time within which efficient homing takes place, which coincides with the SiO,-NP-induced
overexpression of CXCR4 that we observed in the hMSC experiments. Further, in vivo
studies pointed out that while a transient enhancement of SDF1 level occurred immediately
after an ischaemic episode, the upregulation of CXCR4 on bone marrow and resident stem
cells started to increase only 4 days after this event when the chemotactic factor was almost
absent [58-60]. The limited tissue regeneration was attributed to this temporal discrepancy,
which might be overcome by early induction of CXCR4 expression, achievable through the
5i0,-NP-induced overexpression of CXCR4 in hMSCs.

It should be noted that our migration experiments proved that SiO,-NP internalization
increases hMSC migration in response to SDF1« gradient but did not display any migration
difference between the control cells and the cells treated with nanoparticles towards 30%
FBS used as positive control. These results suggest that SiO,-NPs do not modify the
migratory behaviour of the cells generically towards growth factors, but they increase the
migration specifically towards SDF1a.

On the basis of our working hypothesis, SiO,-NPs inducing a block of autophagic flux
would cause effects only on receptors whose turnover is regulated by autophagy such as
CXCR4. To confirm this hypothesis, we studied TNFR that is degraded by the proteasome
and the TNFo/TNFRs chemotactic axis to understand whether enhanced migration was
peculiar for SDF1/CXCR4 axis or could include another chemotactic axis indiscriminately.
Unlike CXCR4, there is no evidence in the scientific literature of a direct involvement of
autophagy in either the turnover or the activity of TNFRs, but instead, TNFR signalling is
modulated by proteasomal activity [61]. In agreement with our hypothesis, we showed
that treatment with SiO,-NPs did not modify the expression of TNFR in the membrane and
did not induce any effect on cell migration towards TNF«. These data confirmed that the
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effects on the chemotactic phenotype in hMSCs treated with S5iO,-NPs are specific for those
chemotactic axes that are directly modulated by autophagy.

One common element in the environments of injured or ischemic tissue is the presence
of a hypoxic stimulus. SDF1 and its receptor CXCR4 are critical mediators for the ischemia-
specific recruitment of circulating progenitor cells. The endothelial expression of SDF1
acts as a signal indicating the presence of tissue ischemia, and its expression is directly
regulated by HIF-1 [7,62]. Interestingly, both SDF1 and hypoxia are present in the bone
marrow niche, suggesting that hypoxia may be a fundamental requirement for progenitor
cell trafficking and function. As such, ischemic tissue may represent a conditional stem
cell niche, with recruitment and retention of circulating progenitors regulated by hypoxia
through differential expression of SDF1.

Given these premises, to test the effects of nanoparticles in hMSCs in a condition
of hypoxic stimulus, we generated in vitro a hypoxic condition typical of environments
of injured or ischemic tissue. We used HUVECs that produce SDF1x when subjected
to hypoxia [38]. Ceradini and colleagues showed in fact that SDF1 gene expression is
regulated by the transcription factor HIF-1 in endothelial cells, resulting in selective in vivo
expression of SDF1 in ischemic tissue in direct proportion to reduced oxygen tension [38].
The HIF-1-induced SDF1 expression increased the adhesion, migration and homing of
circulating CXCR4-positive progenitor cells to ischemic tissue and the blockade of SDF1
in ischemic tissue or CXCR4 on circulating cells prevented progenitor cell recruitment
to sites of injury [38]. We observed that, irrespectively from SiO,-NP internalization,
cells migrating to media from HUVECs cultured in normoxia were very few. Instead,
control cells increased their migration in response to media from HUVECs cultured in
hypoxia since hMSCs expressing CXCR4 are competent to migrate to SDF1« released from
HUVECs cultured in hypoxic condition. Importantly, we highlighted that the migration
of hMSCs was further increased after treatment with SiO,-NPs, underlining the efficacy
of nanoparticles to increase the recruitment of hMSCs in damaged tissues subjected to
hypoxic stress.

The optimal biosafety profile of SiO,-NPs previously demonstrated in hMSCs along
with preservation of their stemness, proliferation and differentiation properties [28] allows
one to include the clinical application of SiO,-NP treated hMSCs among future prospects.
The first goal would be to test the therapeutic efficacy of hMSCs treated with SiO,-NPs
in vivo in a preclinical model of induced myocardial infarction. Indeed, we have already
demonstrated ex vivo in a beating heart model subjected to ischemia the ability of SiO,-
NPs to increase hMSC engraftment as well as to improve formation of functional gap
junctions with consequent improvement of intercellular communication between hMSCs
and HI9C2 cells [25]. Considering the modified microenvironment due to a myocardial
infarction, in which cells exposed to hypoxic stress will release SDF1c, the augmented
CXCR4 expression demonstrated in this work would increase the homing of cells treated
with SiO,-NPs towards the injured area, potentially improving the therapeutic efficacy of
the transplanted cells.

5. Conclusions

In conclusion, our results demonstrate that SiO,-NP internalization increases CXCR4
expression and the migratory capacity of hMSCs towards SDF1x, unmasking a high
potential to improve the homing of hMSCs to the lesion sites. Interestingly, we proved that
treatment with S5iO,-NPs may be a suitable method to functionalize hMSCs without the
need to use other approaches that involve cell manipulation or specific culture conditions,
improving the therapeutic efficacy of hMSCs after cell injection in vivo while, at the same
time, allowing efficient fluorescent tracking of injected cell distribution.
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