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Abstract 
The aim of this thesis is to bridge the gap between the state-of-the-art bioinformatic tools and 

resources, currently at the forefront of epigenetic analysis, and their emerging applications to non-

model species in the context of plant ecology. New, high-resolution research tools are presented; 

first in a specific sense, by providing new genomic resources for a selected non-model plant species, 

and also in a broader sense, by developing new software pipelines to streamline the analysis of 

bisulfite sequencing data, in a manner which is applicable to a wide range of non-model plant 

species. The selected species is the annual field pennycress, Thlaspi arvense, which belongs in the 

same lineage of the Brassicaceae as the closely-related model species, Arabidopsis thaliana, and yet 

does not benefit from such extensive genomic resources. It is one of three key species in a Europe-

wide initiative to understand how epigenetic mechanisms contribute to natural variation, stress 

responses and long-term adaptation of plants. 

 

To this end, this thesis provides a high-quality, chromosome-level assembly for T. arvense, alongside 

a rich complement of feature annotations of particular relevance to the study of epigenetics. The 

genome assembly encompasses a hybrid approach, involving both PacBio continuous long reads 

and circular consensus sequences, alongside Hi-C sequencing, PCR-free Illumina sequencing and 

genetic maps. The result is a significant improvement in contiguity over the existing draft state 

from earlier studies. 

 

Much of the basis for building an understanding of epigenetic mechanisms in non-model species 

centres around the study of DNA methylation, and in particular the analysis of bisulfite sequencing 

data to bring methylation patterns into nucleotide-level resolution. In order to maintain a broad 

level of comparison between T. arvense and the other selected species under the same initiative, a 

suite of software pipelines which include mapping, the quantification of methylation values, 

differential methylation between groups, and epigenome-wide association studies, have also been 

developed. Furthermore, presented herein is a novel algorithm which can facilitate accurate variant 

calling from bisulfite sequencing data using conventional approaches, such as FreeBayes or 

Genome Analysis ToolKit (GATK), which until now was feasible only with specifically-adapted 

software. This enables researchers to obtain high-quality genetic variants, often essential for 

contextualising the results of epigenetic experiments, without the need for additional sequencing 
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libraries alongside. Each of these aspects are thoroughly benchmarked, integrated to a robust 

workflow management system, and adhere to the principles of FAIR (Findability, Accessibility, 

Interoperability and Reusability). Finally, further consideration is given to the unique difficulties 

presented by population-scale data, and a number of concepts and ideas are explored in order to 

improve the feasibility of such analyses. 

 

In summary, this thesis introduces new high-resolution tools to facilitate the analysis of epigenetic 

mechanisms, specifically relating to DNA methylation, in non-model plant data. In addition, 

thorough benchmarking standards are applied, showcasing the range of technical considerations 

which are of principal importance when developing new pipelines and tools for the analysis of 

bisulfite sequencing data. The complete “Epidiverse Toolkit” is available at 

https://github.com/EpiDiverse and will continue to be updated and improved in the future. 
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1 Introduction 

1.1 About this work 
The expanding scope and scale of next generation sequencing (NGS) experiments in the study of 

ecological plant epigenetics brings new challenges for computational analysis. Model organisms 

such as Arabidopsis thaliana have helped lay the foundation for much of our current 

understanding in regard to specific molecular pathways, mechanisms and functional consequences 

(Bossdorf et al. 2010; Boyko et al. 2010; Cokus et al. 2008). Now, the increasingly competitive costs 

of NGS have opened the door for plant ecologists to apply these lessons and gain more specific 

insight into non-model species, particularly on the population and community level. A recent 

perspective by Richards et al. (2017) highlights the need in this topic to better integrate the fields 

of molecular genetics and evolutionary ecology, by adding more ecological context and ecological 

questions to model species research (e.g. Latzel et al. 2013; Hagmann et al. 2015), and by adopting 

higher resolution tools in non-model species research (e.g. Platt et al. 2015; Xie et al. 2015; Gugger 

et al. 2016; van Gurp et al. 2016; Trucchi et al. 2016). Under the purview of the EpiDiverse project 

(https://epidiverse.eu), this thesis attempts to address the latter point; first in a specific sense, by 

providing new genomic resources for a selected non-model plant species, and also in a broader 

sense, by developing new pipelines and software tools to facilitate high-resolution analysis 

applicable to a wide range of non-model plant species. 

 

The EpiDiverse consortium has identified three plant species by which to help expand the current 

understanding of plant epigenetics in the context of ecology and evolution. These include the 

deciduous broadleaf tree species black poplar, Populus nigra cv. ‘Italica’, and two flowering 

herbaceous plants: the perennial wild strawberry, Fragaria vesca, and the annual field pennycress, 

Thlaspi arvense. Each species represents a variation in life cycle, mode of reproduction, and zygosity, 

and are widely distributed in the wild throughout Europe. Studies are underway to investigate 

natural epigenetic variation, stress-response and transgenerational inheritance, and interactions 

among genomic elements such as transposons and populations of small RNA. Each species 

however has a varying level of quality in terms of available genomic resources, ranging from a 

chromosome-level assembly to a highly-fragmented draft, or no available genome at all. As such, 
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the first part of this thesis encompasses efforts to improve the existing draft genome of T. arvense, 

making use of state-of-the-art technology in a hybrid assembly approach. 

 

In addition, existing software tools built for model species may not address the needs of researchers 

looking to apply similar techniques to non-model species, particularly on a population or 

community level. The latter part of this thesis thus presents a toolkit suitable for plant ecologists 

working with whole genome bisulfite sequencing (WGBS) in order to study patterns in DNA 

methylation; it includes pipelines for mapping, the calling of methylation values and differential 

methylation between groups, epigenome-wide association studies, and a novel implementation for 

variant calling. The tools presented herein are implemented with the workflow management system 

Nextflow (Di Tommaso et al. 2017), building on best-practice concepts outlined by nf-core (Ewels 

et al. 2020). They are intended to be efficient, intuitive for novice users, optimisable for laptops, 

high performance computing clusters, or the cloud, and scalable from small lab studies to field 

trials with large populations. On a POSIX compatible system, setup is as simple as installing 

Nextflow itself, alongside one of either Bioconda (Grüning et al. 2018), Docker (Merkel 2014), or 

Singularity (Kurtzer, Sochat, and Bauer 2017), which allow for automated management of pipeline 

dependencies through the use of software containers and environments, thus facilitating a high 

level of reproducibility. The platform will be maintained and expanded upon as new tools are 

developed in the future. 

 

1.2 Biological background 

1.2.1 Epigenetics in plant ecology 
The term “epigenetics” refers broadly to the molecular mechanisms and processes which can 

regulate phenotypic changes in an organism without alteration of the underlying genomic sequence. 

More precisely, an epigenetic mark should exhibit some level of heritability through mitotic or 

meiotic cell division, and be reversible (Riggs and Porter 1996). Such changes are usually driven 

instead by conformational differences in DNA structure and organisation, for example by histone 

modification, or on the nucleotide-level through base modifications such as with DNA 

methylation. The resulting influence on DNA-binding molecules and nuclear architecture can in 

turn have functional consequences for the regulation of gene expression and imprinting, cellular 

differentiation during development, genome stability, for example through the repression of 

transposable elements (TEs), and processes of nuclear maintenance such as DNA replication and 

repair (Richards et al. 2017; Pikaard and Mittelsten Scheid 2014; Feng, Jacobsen, and Reik 2010).  
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Epigenetic patterns can be either transient or stable, and much consideration has been given to the 

transgenerational heritability of certain epigenetic marks in reference to the evolutionary 

consequences under modern evolutionary synthesis. Heritable genetic variation alone is often not 

sufficient to explain the range of phenotypic diversity that can be observed for individuals of the 

same species, or within individuals that reproduce clonally, for example. This is especially true for 

quantitative traits, and has been referred to as the genotype-to-phenotype gap (Fernie and 

Gutierrez-Marcos 2019) and the missing heritability problem (Manolio et al. 2009). Epigenetic 

variation, albeit often confounded by genetic variation, has been recognised as another potential 

source of natural diversity (Riddle and Richards 2002; Cervera, Ruiz-García, and Martínez-Zapater 

2002; Vaughn et al. 2007). 

 

In contrast to traditional genetic inheritance, the concept of epigenetic inheritance has two 

important distinctions under its current understanding: i) the rate of 

stochastic epimutation (Johannes and Schmitz 2019), which can be much faster than genetic 

mutation, and ii) that epimutation is more easily reversible (Becker et al. 2011). Typically, this 

manner of heritability is related to the mode of reproduction, as in the case of DNA methylation 

patterns for example, many of which are preserved under cell division by mitosis but reset in the 

germline due to “epigenetic reprogramming” (Feng, Jacobsen, and Reik 2010). Particularly in 

mammals, where DNA methylation patterns are erased first during gametogenesis and again during 

early embryogenesis, the capacity for transgenerational epigenetic inheritance is limited (Heard and 

Martienssen 2014). Under sexual reproduction in flowering plants, however, meiocytes are 

differentiated from somatic cells, giving rise to an alternative pathway for epigenetic 

reprogramming whereby the methylation states of some genomic elements are perhaps more able 

to persist across generations (Kawashima and Berger 2014). Clonal propagation provides another 

means by which some plants can reproduce without germline passage at all. For example, in A. 

thaliana, a sexually reproducing plant, the epigenetic reprograming during germline formation can 

be avoided through asexual reproduction, and a new epigenetic state maintained in the progeny 

(Wibowo et al. 2018). A broad exploration of such transitory and/or heritable effects resulting 

from epigenetic mechanisms across a range of plant species offers a unique insight into our 

understanding of evolutionary processes. 

 

In the context of plant ecology, epigenetic research is more specifically concerned with i) patterns 

of natural epigenetic variation, ii) the origins and drivers of this variation, and iii) its ecological and 
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evolutionary consequences (Richards et al. 2017). These questions centre chiefly around the study 

of “epigenomics” in natural populations, the interplay between genetic and epigenetic variation, 

and the influence (if any) of the surrounding environment. Current insight, however, is built upon 

a foundation of understanding from the molecular genetics of model organisms, such as A. thaliana. 

It remains unclear whether previous experimental findings hold true given the added complexity 

of natural conditions, particularly for non-model species, and it is a challenge to adapt existing 

methods to the expanded scope and scale of evolutionary ecology. This thesis seeks to address this 

challenge, first by generating new genomic resources for non-model species, and second by the 

implementation of novel software pipelines, with particular emphasis on the analysis of sequencing 

data intended to study patterns of DNA methylation. 

 

1.2.2 DNA methylation 
DNA methylation is most often characterised by the covalent attachment of a methyl group from 

S-adenosylmethionine to the carbon 5 of a cytosine nucleotide, thus converting it to 5-

methylcytosine (5mC) (Pikaard and Mittelsten Scheid 2014; Sahu et al. 2013). This epigenetic 

mechanism is itself involved in a broad range of molecular processes such as gene regulation 

(Jaenisch and Bird 2003), transposon silencing (Miura et al. 2001), and heterochromatin formation 

(Lippman et al. 2004); it plays a role in genome organisation (Zemach et al. 2013; Huff and 

Zilberman 2014), developmental processes (Finnegan, Peacock, and Dennis 1996; Ronemus et al. 

1996; Papareddy et al. 2021) and imprinting (Li et al. 1993; Kinoshita et al. 2004; Köhler et al. 2005; 

Gehring et al. 2006; Jullien et al. 2008; Pignatta et al. 2018). DNA methylation can also be 

considered a source of phenotypic variation, following the observation of natural variation among 

populations (Eichten et al. 2011; Heyn et al. 2013; Schmitz et al. 2013).  

 

In many eukaryotic organisms, cytosine (C) methylation typically occurs in a “CG” sequence 

context, i.e. when followed by a guanine (G). This form of DNA methylation is the most 

predominant in nature, and yet there is considerable variation in its genomic organisation between 

taxonomic kingdoms. In mammals, unmethylated CG dinucleotides tend to be concentrated 

together in so-called “CpG islands” (where "p" denotes the phosphodiester bond joining the two 

nucleotides), which are non-randomly distributed along the genome and play an important role in 

transcriptional regulation (Deaton and Bird 2011). The dinucleotides populating the remaining, 

“CG-deficient” fraction of the genome on the other hand are globally methylated. Plant genomes 

however typically exhibit “mosaicism”, i.e. regions of interspersed methylated and unmethylated 

domains, which can vary substantially between species (Suzuki and Bird 2008). Plant DNA 
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methylation is also further complicated by its prevalence in two additional sequence contexts: CHG 

and CHH (where H is any base but G). Methylation in each context is governed by an independent 

molecular machinery, dedicated to establishing, maintaining, and regulating it (Henderson and 

Jacobsen 2007; Law and Jacobsen 2010). The frequency of methylation along the genome therefore 

differs accordingly by context; in the model plant A. thaliana, for example, CGs are methylated 

most frequently (~24% of all CGs), followed by CHG (~6.7%) and CHH (~1.7%) relative to the 

total number of cytosines in each context (Cokus et al. 2008).   

 

The study of whole-genome methylation profiles across the plant and animal kingdoms has 

revealed both conserved and divergent features of DNA methylation in eukaryotes (Feng et al. 

2010; Zemach et al. 2010). For example, CG methylation within protein-coding genes is 

preferentially concentrated in exons, which appears to be a conserved feature predating the 

divergence of plants and animals. In flowering plants (Arabidopsis, rice, and poplar), all three 

contexts (CG, CHG, and CHH) also show similar patterns, with high enrichment in repetitive 

DNA, transposons, and pericentromeric regions (Feng et al. 2010). DNA methylation is 

nevertheless highly variable in genome-wide levels and distribution, both within and between 

species, even down to the level of individual tissues and developmental stages. This variation has 

consequences for a variety of molecular processes. Some phenotypic traits, for example, including 

floral symmetry (Cubas, Vincent, and Coen 1999), fruit development and morphology (Manning 

et al. 2006; Zhong et al. 2013; Ong-Abdullah et al. 2015), plant height (Miura et al. 2009), and 

resistance to pathogens (Liégard et al. 2019), have been associated with naturally occurring 

epigenetic alleles (epialleles) in absence of linked genetic variants. Dysfunctions of stable DNA 

methylation patterns in plants have also been shown to lead to abnormalities, such as fruit ripening 

failure in tomato and orange, or vice versa to promote early fruit ripening in strawberry (Cheng et 

al. 2018; H. Huang et al. 2019; Lang et al. 2017). 

 

While genomic origin and sequence context broadly underpin the stability of 5mC patterns on a 

genetic basis in accordance with specific molecular mechanisms, there is yet further evidence from 

both plants and animals that patterns of DNA methylation variation can be inherited independently 

through mitosis and, at least partially, also through meiosis (Chong and Whitelaw 2004; Richards 

2006; Henderson and Jacobsen 2007; Law and Jacobsen 2010). Indeed, this transgenerational 

inheritance has been demonstrated for example in A. thaliana through the use of “epigenetic 

Recombinant Inbred Lines” (epiRILs), unveiling DNA methylation as a possible source of 

heritable phenotypic variation whereby epialleles can influence complex traits in the absence of 
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DNA sequence change (Johannes et al. 2009; Reinders et al. 2009). Moreover, mutation 

accumulation lines in A. thaliana have revealed that in addition to stable plant DNA methylation 

patterns which are able to persist over many generations, the rate of stochastic epimutation is both 

higher than can be explained by the (lower) rate of spontaneous genetic mutation, and far more 

susceptible to reverse epimutation (Becker et al. 2011; Schmitz et al. 2011). Understanding how 

epialleles become triggered and/or released under this apparent “transgenerational instability” will 

provide insight as to the evolutionary consequences arising from variation in DNA methylation, 

for example as a possible mechanism for local adaptation. 

 

Furthermore, DNA methylation variation is apparently responsive to environmental stimuli 

(Jaenisch and Bird 2003; Lloyd and Lister 2022). One notable example occurs during vernalisation 

in A. thaliana, the process by which flowering can be triggered in response to prolonged cold 

(winter) temperatures. The transcription factor FLOWERING LOCUS C (FLC) is a repressor of 

genes important for the transition to flowering, and its gradual silencing is the driving mechanism 

for inducing this change (Sheldon et al. 2000). Interestingly, a reduction in DNA methylation has 

been shown to regulate FLC in this manner (Sheldon et al. 1999), raising the postulation that 

phenotypic plasticity can be mediated in a “controlled” manner on an epigenetic basis. In the years 

that followed, the situation was discovered to be markedly more complex however, with 

vernalisation seeming to occur independently of DNA methylation (Jean Finnegan et al. 2005) but 

nevertheless still under epigenetic control (Bastow et al. 2004; De Lucia et al. 2008). Even so, there 

remain several less well-studied examples of the environment modulating plant development 

through DNA methylation (Lloyd and Lister 2022). Changes in DNA methylation brought about 

by biotic or abiotic stresses are of particular interest, with regards to whether such environmentally-

induced cues can be passed on through the germline to later generations (Secco et al. 2015; Wibowo 

et al. 2016). A complete understanding of the extent by which such a mechanism for local 

adaptation might occur in nature has thus far proven elusive, however (Alonso, Ramos-Cruz, and 

Becker 2019).  

 

1.2.3 Maintenance of 5mC patterns in plants 
Global DNA methylation patterns are responsible in part for regulating genome stability through 

the silencing of transposons, preserving cell type identity during development, and even to establish 

an “epigenetic memory” against environmental stresses, for example (Law and Jacobsen 2010). It 

is therefore essential for plants to maintain them. Typically, the regulation of genome-wide DNA 

methylation patterns is carried out by DNA methyltransferases, which differ by sequence context 
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(CG, CHG, and CHH) and may form cooperative or competing interactions (Meyer 2011; Zhang, 

Lang, and Zhu 2018). The efficiency of these different DNA methyltransferases is reflected in the 

methylation level at their preferred target sites. At the single position level, based on the proportion 

of overlapping sequencing reads which contribute to the estimation, methylated cytosines in CG 

context are frequently found to be 80-100% methylated, for example, whereas those methylated in 

CHG context vary uniformly between 20-80%, and those in CHH context peak at 10-30% (Cokus 

et al. 2008; Lister et al. 2008). 

 

Even beyond the described dinucleotide and trinucleotide contexts, the more specific sequence 

context can yet further influence DNA methylation efficiency in plants. For example, CG sites are 

undermethylated when the exact four-base context is ACGT (Cokus et al. 2008; Lister et al. 2008). 

In non-CG context, the cytosine is less efficiently methylated when followed by another cytosine, 

as in CCG context for example (Gouil and Baulcombe 2016). These more specific contexts seem 

to modulate the efficiency of DNA methyltransferases, though the reason is not well understood. 

For example, in A. thaliana, different methyltransferases share similar sequence specificities to 

perhaps provide a methylation backup system and avoid harmful alterations in the plant genome 

(Law and Jacobsen 2010; Li et al. 2018; Meyer 2011). 

 

DNA methylation in CG and CHG context is symmetrical, i.e. the complementary sequences on 

the opposite strand mirror the methylation state. CHH methylation, on the other hand, is 

asymmetric and occurs on just one strand at each particular locus. The consequence of this is 

reflected mainly in the capacity to re-establish methylation on the daughter strand following semi-

conservative DNA replication, whereby DNA methyltransferases operating on symmetric 

sequence contexts can be recruited depending on the methylation state of the original strand (Law 

and Jacobsen 2010; Zhang, Lang, and Zhu 2018).  

 

Maintenance of CG methylation. In plants, CG methylation is maintained via the methyltransferase 

METHYLTRANSFERASE 1 (MET1) that, akin to its mammalian homolog DNA 

METHYLTRANSFERASE 1 (DNMT1), shows substrate preference to hemimethylated DNA 

(Kankel et al. 2003; Saze, Mittelsten Scheid, and Paszkowski 2003; Jeltsch 2006). To do this, MET1 

is probably recruited to the replication complex by the VARIANT IN METHYLATION (VIM) 

protein family of SRA (SET- and RING-associated) domain proteins (Law and Jacobsen 2010; 

Zhang, Lang, and Zhu 2018), following the observation that VIM1 loss-of-function mutants lose 

the DNA methylation of their centromeres in A. thaliana (Kim et al. 2014). The chromatin-
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remodelling protein DECREASED DNA METHYLATION 1 (DDM1) is also important for 

maintaining methylation in CG context, wherein loss of DDM1 function has been shown to cause 

a 70% reduction of genomic cytosine methylation (Jeddeloh, Stokes, and Richards 1999), though 

it is involved in the methylation of other contexts as well. 

 

Maintenance of non-CG methylation. In contrast to CG methylation, non-CG methylation is 

maintained by plant-specific enzymes in the CHROMOMETHYLASE (CMT) family 

(Kenchanmane Raju, Ritter, and Niederhuth 2019), and depends on additional factors such as 

histone modifications and small RNAs. The DNA methyltransferases CMT3 and, to a lesser 

extent, CMT2 catalyse the maintenance of CHG methylation in A. thaliana (Zhang, Lang, and Zhu 

2018), and are reciprocally dependent on H3K9 dimethylation (Jackson et al. 2002; J. Du et al. 

2012). Interestingly, CMT3 appears to have a role also in gene-body methylation (gbM) in several 

plant species. This has been demonstrated in Eutrema salsugineum, a plant that naturally lacks both 

gbM and CMT3, where the experimental gain of CMT3 triggered a new establishment of gbM in 

genes homologous to naturally-methylated genes in A. thaliana, which were maintained even in 

following generations (Wendte et al. 2019). 

 

Asymmetric DNA methylation. Without opposite-strand information by which to re-establish 

DNA methylation patterns in CHH context, maintenance is solely dependent on mechanisms for 

de novo methylation instead. The methyltransferases CMT2 (Zemach et al. 2013; Stroud et al. 

2014) and DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), which also 

facilitate de novo methylation in symmetric sequence contexts, are as of yet the only known 

mechanisms responsible for CHH methylation. DRM2 is mediated by small RNAs through the 

RNA-directed DNA methylation (RdDM) pathway (Aufsatz et al. 2002; Cao and Jacobsen 2002; 

Cao et al. 2003; Wassenegger et al. 1994; Matzke and Mosher 2014), whereby it is recruited to 

RdDM target regions, preferentially located at transposons or other repeat sequences in the 

euchromatin, as well as the edges of long transposons usually located in the heterochromatin 

(Zhang, Lang, and Zhu 2018). CMT2 on the other hand targets histone H1-containing 

heterochromatin sites, where RdDM is inhibited, in coordination with DDM1 (Zemach et al. 2013; 

Zhang, Lang, and Zhu 2018). The varying extent of specificity by which each of these mechanisms 

are involved in the methylation of different sequence contexts demonstrates an underlying natural 

complexity, whereby each sequence context cannot truly be considered truly independent of one 

another. 
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1.2.4 Distribution of 5mC patterns in plants 
Given that different molecular mechanisms are responsible for methylation of different sequence 

contexts, the distribution of methylation patterns along the genome therefore is expected to differ 

accordingly by context. (Cokus et al. 2008) demonstrated in the model plant A. thaliana, for 

example, that CGs are methylated most frequently (~24% of all CGs), followed by CHG (~6.7%) 

and CHH (~1.7%) relative to the total number of cytosines in each context. Moreover, it is 

important to note that - at least in some plant species, including A. thaliana - DNA methylation 

differs also in terms of the methylation level between the different sequence contexts, i.e. in the 

consistency of the methylation status of a given cytosine across different cells. CG cytosines for 

instance tend to have an almost binary methylation state, being either unmethylated (0%) or 

methylated (i.e 80-100%) in almost all cells of a given tissue (Cokus et al. 2008; Lister et al. 2008). In 

contrast, cytosines in CHG and CHH show more variable methylation status, with mean 

methylation rates across all methylated CHG and CHH cytosines of ~50% and ~30%, respectively.  

 

Furthermore, the distribution of 5mC patterns is species-specific and often dependent on 

neighbouring genomic features. Plant genomes are highly dynamic, with tremendous variation in 

content, size and complexity, brought about by multiple evolutionary processes including whole-

genome duplication events, the proliferation and loss of lineage-specific transposable elements, 

and various classes of small RNAs which help shape genomic architecture and function (Wendel 

et al. 2016). This in turn corresponds with the diversification of DNA methylation patterns 

between species. Plants typically adhere to a mosaic pattern of 5mC distribution characterised by 

regions of interspersed methylated and unmethylated domains (Suzuki and Bird 2008), whereby 

the DNA is often methylated at the body of genes (where the function is often unclear) and at 

repetitive regions, where it restricts the expression of TEs, which represent in some plant species 

more than 80% of the genome, e.g. barley, sunflower, and maize (Meyer 2011; Vitte et al. 

2014). Indeed, those with larger genomes due to extensive proliferation of TEs can appear almost 

akin to species from other kingdoms which are globally methylated. 

 

Among flowering plants, genome-wide methylome studies (Niederhuth et al. 2016) have 

highlighted how differences in aspects such as gene body DNA methylation, euchromatic silencing 

of transposons and repeats, as well as the silencing of heterochromatic transposons, can be 

reflective of evolutionary and life histories among clades. (Niederhuth et al. 2016) demonstrate for 

example that the Brassicaceae have generally reduced CHG methylation levels, and also reduced 

or lost CG gene body methylation, whereas the Poaceae are characterised by a lack or reduction of 
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heterochromatic CHH methylation and enrichment of CHH methylation in genic 

regions. Furthermore, low levels of CHH methylation were observed in a number of species, 

especially in those which undergo clonal propagation. The variation in 5mC patterns between 

different plant species opens new areas of study to understand the role of DNA methylation and 

its correlation with evolutionary distance as well as biological diversity (Niederhuth et al. 2016; 

Feng et al. 2010; Zemach et al. 2010). 

 

1.3 Technical background 

1.3.1 DNA sequencing 
In order to garner insight into the mechanisms linking both genetics and epigenetics to changes in 

phenotype, it is necessary to study DNA at the nucleotide-level. Sequencing technology provides 

the means by which to observe variations in DNA at such a resolution, and has rapidly evolved 

over the years since its conception into a number of techniques with a wide range of 

applications (Metzker 2010). One of the first approaches, the Sanger sequencing method (Sanger, 

Nicklen, and Coulson 1977; Sanger et al. 1977), involves the use of both standard deoxynucleotides 

(dNTPs) and dideoxy-modified dNTPs (ddNTPs). Following a standard PCR reaction, any random 

incorporation of a ddNTP during synthesis of a new DNA strand results in its termination, 

inhibiting further elongation. The resulting product therefore contains a number of newly-

synthesised DNA fragments at a range of different sizes, terminated at various stages of synthesis, 

which can then be separated accordingly by gel electrophoresis. Given four concurrent PCR 

reactions, each with a homogenous mixture of dNTPs but with only one type of ddNTP (e.g. 

ddATP, ddCTP, ddGTP, or ddTTP), the resulting fraction from each nucleotide can be run side-

by-side on the polyacrylamide gel in order to infer the original template sequence by comparison. 

This strategy was a pioneer of “sequencing-by-synthesis”, and is still adopted even today due to its 

exceedingly low error rate (~99.99% accuracy). Modern variations often make use of radioactive 

or fluorescent labels to differentiate ddNTPs within a single PCR reaction (Smith et al. 1986; 

Prober et al. 1987), but the method overall is yet limited to a low yield of short sequences up to 

approximately 100-1000 bp. 

 

1.3.1.1 Next-generation sequencing 

The next major development in sequencing technology was brought about by the arrival of next-

generation sequencing (NGS). In contrast to early sequencing approaches, significant advances in 

overall yield were made at the expense of sequenced fragment length and the accuracy of individual 
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base calls (Metzker 2010; Goodwin, McPherson, and McCombie 2016). Perhaps the most 

prominent among these NGS approaches is the cyclic reversible termination (CRT) method of 

Illumina (Figure 1), now the market leader of NGS technologies in comparison to other platforms. 

Similar to the Sanger method in that it is sequencing by synthesis, the CRT method affixes each 

DNA template to a “flow cell” by adapter ligation, forming clusters of identical sequences which 

are then elongated in a cyclical manner through a process of “reversible termination”, using dNTPs 

which are blocked at the ribose 3’-OH group to prevent the next dNTP from binding. The 

unbound dNTPs are then washed from the flow cell, and the incorporated dNTP in each cluster 

can be identified by excitation of a bound fluorophore molecule, emitting a specific wavelength for 

each nucleotide which can be captured by an imaging system. The fluorophore and blocking group 

can then be removed and a new cycle can begin. As of a review by (Goodwin, McPherson, and 

McCombie 2016), the throughput on Illumina machines ranges from ~0.5-900 Gb, producing 

individual “sequencing reads” which are equal to the number of cycles (~25-300 bp) - a vast 

improvement on overall yield in comparison to Sanger sequencing. Yet more modern machines 

such as the NovaSeq 6000 are even capable of a throughput of up to ~6000 Gb with 150 bp paired-

end reads (Levy and Boone 2019). The error profile for Illumina sequencing ranges from a rate of 

Figure 1. Under Illumina sequencing, DNA is fragmented, size selected, then immobilized to a flow cell by 
a process of adapter ligation. Bridge amplification by PCR enables the generation of clusters, which are then 
sequenced-by-synthesis following a cyclic reversible termination method. At each incorporation of a new 
nucleotide, a resulting fluorescent signal is captured by the imaging system in order to perform base calling. 
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<0.1% to <1% incorrect base calls, which is among the best for NGS methods (Goodwin, 

McPherson, and McCombie 2016). 

 

Further methods of sequencing by synthesis include single nucleotide addition (SNA), utilised for 

example in 454 pyrosequencing and Ion Torrent machines, which typically result in longer reads 

than Illumina, but lower throughput. Alternatively, “sequencing by ligation” is a method employed 

for example by SOLiD (Sequencing by Oligonucleotide Ligation and Detection) and Complete 

Genomics. These approaches depend on fluorescent-labelled probes with complementary 

nucleotides which are hybridised to the DNA template on a slide, and ligated to an upstream anchor 

sequence. Following ligation, the slide is imaged to identify the nucleotide sequence based on its 

associated label and the probes cleaved. This series of probe-anchor binding, ligation, imagining 

and cleavage is repeated in each instance following single-nucleotide offsets to ensure every base 

in the DNA template is sequenced. Sequencing reads from SOLiD and Complete Genomics 

typically have comparable throughput to Illumina, but reduced read length (Goodwin, McPherson, 

and McCombie 2016). 

 

The limitations of NGS methods thus far manifest predominantly in the reliability of individual 

base calls, and the length of the sequencing reads which are produced. Once sequencing is 

completed, it becomes a non-trivial bioinformatic task to determine how the library of sequencing 

reads correspond to the original contiguity of the sequenced DNA. Short reads originating from 

highly-repetitive regions in particular are a challenge for both downstream alignment and assembly 

approaches, which are common next steps in sequencing analysis, due to the ambiguity arising 

from the numerous potential loci which a given read could have come from. This can be mitigated 

for example through the use of “paired-end” sequencing. Under the Illumina method, each DNA 

template can be ligated at both ends with different adapters, and the entire sequencing procedure 

repeated in each case. Given that the DNA template is affixed to the same cluster on the flow cell 

in both instances, this approach results in the formation of “mate pairs”, of equal length, which 

correspond to either end of the same DNA fragment. Taken together with the known distribution 

of sequenced DNA fragment lengths, this information can be used to infer a plausible distance 

between two mate pairs which thus reduces the level of ambiguity during downstream alignment 

and assembly procedures. 
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1.3.1.2 Single-molecule long-read sequencing 

The benefit of longer sequencing reads for applications such as read alignment, RNA transcript 

reconstruction and assembly has given rise to third-generation sequencing approaches such as 

Pacific Biosciences (PacBio) (Eid et al. 2009; Uemura et al. 2010) and Oxford Nanopore 

Technologies (ONT) (Cherf et al. 2012; Mikheyev and Tin 2014). Unlike Illumina, for example, 

read length is not limited by the number of cycles for reversible termination, which rapidly 

accumulate in errors beyond a short read length. Instead, read length is more limited to the size of 

the DNA template which can be obtained by chemical means during the specific library preparation 

procedures carried out in the lab. PacBio is similar to Illumina in that it is a sequencing by synthesis 

approach, making use of specialised flow cells (known as “SMRT cells”) whereby instead of affixing 

the DNA template through adapter ligation, the DNA polymerase molecule which catalyses the 

elongation is affixed at the base of a picolitre well known as a “zero-mode waveguide” (ZMW) 

(Figure 2). The template itself is ligated at each end with single-stranded hairpin adapter molecules, 

forming a “SMRTbell template” which is subsequently circular in nature. Together with their 

associated sequencing primers, the hairpin adapters provide a starting point for the DNA 

polymerase to begin elongation of the complementary sequence on either strand. As the 

polymerase incorporates fluorophore-labelled dNTPs to the template, a fluorescence pulse is 

produced by the polymerase retaining the cognate nucleotide with its colour-coded fluorophore in 

Figure 2. Under PacBio sequencing the DNA polymerase is transfixed to the base of each picolitre well, 
known as a zero-mode waveguide (ZMW), on the flow cell. Base calling is performed in real time as each 
nucleotide incorporated to the sequencing releases a fluorophore which is captured by the imaging system. 
Adapted from Metzker (2010) “Sequencing technologies – the next generation”. 
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the detection region of the ZMW, which ends upon cleavage of the dye-linker-pyrophosphate 

group. The colour and duration of emitted light is captured by an imaging system in real time. 

Interestingly, the kinetic variation emitted from the light signal during the base calling can even 

reveal base modifications such as DNA methylation (Flusberg et al. 2010). Typically, multiple 

passes of the same circular SMRTbell template are made to form an overall consensus of the 

underlying sequence, known as “circular consensus sequences” (CCS), which reduces the error rate 

in single base calls to <1%, down from approximately 10-15% in comparison to sequencing a 

single pass from one hairpin adapter to another, i.e. a “continuous long read” (CLR). High-fidelity 

CCS reads are thus more accurate, but tend to reliably sequence shorter insert sizes of 10-20 kbp, 

whereas CLR reads can sequence longer reads typically in the range of 25-175 kbp. The current 

Sequel II technology has a throughput of ~160 Gb per SMRT cell.  

 

ONT sequencing on the other hand employs a distinct approach which does not follow either 

sequencing by synthesis or by ligation (Figure 3). Nanopore technology instead takes a single 

stranded DNA molecule and passes it through a protein pore, wherein an electric current is applied 

and modulated according to the native composition of the DNA as it translocates from nucleotide 

to nucleotide through the action of a secondary motor protein. The signal trace (known as the 

Figure 3. Under Oxford Nanopore sequencing, an electric current differential is applied across a membrane 
lipid bilayer. A motor protein guides the DNA sequencing through a nanopore, which modulates the signal 
measured from the electric current according to the k-mer subsequence present at any given time in the 
nanopore. Base calling is derived from the documented signal known as the “squiggle space”. Adapted from 
Xie et al. (2021) “Applications and potentials of nanopore sequencing in the (epi)genome and 
(epi)transcriptome era”. 
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“squiggle space”) emitted in real time is characteristic to the particular k-mer DNA sequence (3-6 

bp) that is measured from the pore at that moment, according to the shifts in voltage that arise. 

One of the main difficulties is in reliably interpreting the emitted trace at single nucleotide 

resolution, but conversely this characterisation is in principle not only limited to the four 

nucleotides and can be extended even to identifying base modifications, similar to PacBio (Xie et 

al. 2021). As base calling algorithms improve in the future, this could have implications for the 

study of DNA methylation and epigenetics for example. 

 

1.3.1.3 FASTQ format and the concept of base quality 

In order to represent sequencing reads for computational processing, it is necessary to define a file 

format which is applicable for reads arising from any sequencing technology. The most common 

format for this purpose is FASTQ, whereby each read is represented by four lines: 1) a sequence 

identifier, beginning with an “@” character, often containing other metadata pertaining to the 

sequencing run, 2) the literal sequence itself (e.g. “ACTGTG…”), 3) some information regarding 

the base qualities, and 4) a string of ASCII characters of equal length to the sequence, representing 

each individual base quality score associated with each nucleotide. 

 

Base qualities scores are given as a measure of confidence for whether the base caller involved in 

the sequencing experiment made the correct call during the sequencing run, based on the 

information provided to it. As per equation (1), it is a phred-scaled probability estimate Q defined 

as a property which is logarithmically related to the base-calling error probability P (Ewing and 

Green 1998). 

 

𝑄 = −10 log)*(𝑃)                                       equation (1) 

 

Scores are seen as positive integers typically in the range of 0 - 40 where higher values reflect greater 

confidence in the base call. Common values are assigned to single ASCII characters to aid in 

compression and computational interoperability, whereby they can then be interpreted during 

downstream processes such as sequence alignment and variant calling. It is important to note that 

the score pertains only to errors which occur during sequencing and are not necessarily reflective 

of real errors in the sequence itself. In other words, a nucleotide with a high phred-score is 

indicative only that the base caller had no other conflicting signal by which to interpret it. Errors 

for example which occur prior to sequencing however would not be captured, and thus cannot be 

conveyed by this measure. 
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1.3.2 The case for a high-quality genome assembly 
When presented with a large number of short sequences from high-throughput sequencing, the 

next task is to determine how they correspond to their genomic point of origin. If there is no 

existing reference genome available to facilitate this, then it is often necessary to first assemble 

sequences back together in an order which is representative of the original unfragmented DNA. 

Only by establishing the correct original sequence can we make accurate biological inferences in 

regard to genome arrangement and architecture, and thus genome assembly is a pivotal step upon 

which almost all downstream analysis is dependent. Low quality draft or incomplete assemblies 

have a tendency to contain errors, frequently due to limitations in sequencing technology or in 

assembly algorithms. Such errors typically manifest as base errors, collapsed or expanded repeat 

regions, or rearrangements and inversion (Phillippy, Schatz, and Pop 2008), which can then impact 

later analysis for example in terms of estimated gene content (Florea et al. 2011; Denton et al. 

2014), split genes and misorientations (Xiongfei Zhang, Goodsell, and Norgren 2012), and missing 

genome content resulting in overall reduced genome size (Alkan, Sajjadian, and Eichler 2011). The 

quality of the reference genome is thus directly correlated to the quality of its feature annotations 

and any subsequent downstream analysis, and thereby represents a natural first step in any study 

seeking to make inferences from such information (e.g. when studying DNA methylation). Low 

quality, draft or even absent reference genome sequences are all the more likely in non-model 

species. 

 

There are many different approaches to assembly (Wee et al. 2019; Li et al. 2011; Li and Harkess 

2018; Schatz, Witkowski, and McCombie 2012; Bradnam et al. 2013; Rhie et al. 2021), which differ 

in suitability depending for example on species, estimated genome size, and the NGS technology 

used to generate the read library. From beginning to end, the process is usually multi-faceted, 

typically involving not one single procedure but a workflow of iterative steps such as read 

correction, contig assembly, scaffolding, polishing, gap filling, and phasing. The necessity of each 

step is determined on a case-by-case basis according to project specification, resources, and also 

on the outcome of each previous step; ergo it is unusual for any genome assembly initiative to be 

comparatively optimal under different use cases. All approaches begin from the same principle, 

however, in that NGS reads beyond a certain level of sequencing coverage can be linked together 

based on shared, overlapping subsequences. 

 

 



1 Introduction 

 25 

1.3.2.1 De novo assembly approaches 

Genome assembly can be generalised as either i) reference-based, or ii) de novo. Reference-based 

approaches make use of existing genome sequences, either of the same or closely-related species, 

in order to help reconstruct the most likely order of sequences from NGS reads. This is typically 

more appropriate for pan-genome studies, where for example the aim is to investigate structural 

variants among different accessions of the same species and a high-quality reference genome is 

already available. This approach is often less prone to error than de novo methods, but errors that 

do occur can be compounded due to the dependence on the quality of what was assembled before. 

Conversely, de novo methods attempt to assemble the genome from scratch. 

 

Contig assembly. De novo approaches typically employ a variation of either overlap-layout-

consensus (OLC) or de Bruijn graphs (DBG) to assemble short sequences into longer “contigs” 

(Li et al. 2011). OLC methods begin first by generating all possible pairwise alignments of reads, 

to form an “overlap graph”, i.e. a directed multigraph whereby each read represents a node and 

each resulting overlap represents an edge, weighted according to length. The overlap graph 

represents the layout, and the sequence is determined by finding the Hamiltonian path through the 

graph which minimises the overall weight. This last step is computed iteratively to form a number 

of plausible sequences, and a consensus achieved for example using multiple sequence alignment. 

In contrast, DBG methods work instead on the principle of using k-mers, whereby each sequencing 

read is first reduced to its overlapping component subsequences of length k. Every k-mer in the 

read is then further subdivided into two component subsequences of length k-1, and every 

unique k-1-mer in the dataset is then represented by a single node in the graph. Each k-mer from 

each read represents an edge in the graph, linking its two-component k-1-mer nodes. The overall 

sequence is found by traversing through the graph following the Eulerian path, i.e. wherein each 

edge is visited exactly once. Both OLC and DBG methods struggle to a varying extent when 

attempting to resolve repetitive sequences, particularly when such regions are longer than the 

corresponding sequencing reads used to assemble them. The increased complexity of long-read 

sequencing is therefore one way to improve genome assembly, leading to fewer, longer, more 

reliable contig sequences and thus a greater “contiguity” of resulting assemblies. 

 

Scaffolding. After a series of contiguous sequences have been assembled, often there is still a 

degree of fragmentation between them which makes it difficult to make inferences regarding the 

overall genomic landscape. Whereas a “complete” genome assembly would contain a set of 

sequences equal to haploid chromosome number, frequently there are yet hundreds or even 
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thousands of independent sequences obtained from contig assembly. Several approaches exist so 

as to reorient and order these contigs into something resembling the overall genome, including for 

example i) optical and/or genetic linkage maps, ii) chromosome conformation capture (3C), and 

iii) synteny-based comparison to related species. All work on the basis of identifying genetic 

markers which convey some level of distance or spatial organisation between them, which can then 

be used to form a representative arrangement of contigs. For example, Hi-C sequencing is a form 

of chromosome conformation capture, whereby first “DNA cross-links” are formed by chemical 

treatment of formaldehyde in the lab, representing interacting genomic loci with proximity in 3D 

space. The DNA is then fragmented by enzymatic digestion, and subject to proximity-based 

ligation which thus favours cross-linked DNA. Ligated DNA cross-links are subsequently 

enriched, the cross-link itself removed, and the resulting DNA subject to paired-end sequencing. 

In this scenario, each mate pair is expected to originate from the opposing genomic loci on either 

side of the initial DNA cross-link interaction. Software tools such as SALSA (Ghurye et al. 

2017) make use of mate pairs alignments to assembled contigs in order to build up a genome-wide 

interaction map which reflects their spatial organisation, thus facilitating the arrangement of contigs 

into scaffolds. 

 

Polishing. Often when assembling contigs using long-read sequencing technology, a trade-off is 

made in terms of the individual base quality of constituent nucleotides. Current long-read 

sequencing technology (e.g. PacBio, ONT) is comparatively more error-prone than short-read 

sequencing with Illumina, for example. Hybrid approaches to genome assembly therefore seek to 

utilise different libraries together to leverage advantages from both, for example by aligning short-

read sequences to contigs assembled with long-read technology, and correcting nucleotides by 

consensus overlap. Software such as Pilon (Walker et al. 2014) have been developed to handle 

short-read libraries in this manner, whereas others such as Racon (Vaser et al. 2017) exist to 

facilitate polishing with long reads such as PacBio CCS for example. 

 

1.3.2.2 Feature annotation 

Once a suitable reference genome is assembled and available, the next task is to make sense of the 

complete sequence in context of the underlying biology. Genes, repeat sequences, transposable 

elements, RNA loci and pseudogenes are all examples of features which may need to be annotated 

in the reference genome in order to provide a frame of reference for further downstream analysis. 

There are many different software tools for genome annotation, which differ primarily by which 

feature they intend to annotate, and further still by whether their objective is to identify structure 
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or exact function. Most approaches operate on a basis of sequence homology, i.e. given a set of 

known sequences, what inferences can be made regarding similarity or relatedness to 

corresponding sequences in the genome? 

 

Gene prediction. The first priority for every genome assembly project is to identify gene 

structures in the resulting sequence. In eukaryotic genomes such as those of plants, genes are 

encoded in an intron/exon structure whereby each exon represents a protein-coding sequence 

enclosed by a start codon and a stop codon. Ab initio gene predictors can utilise this information 

in order to carry out a de novo annotation of “gene models”, in principle without the need of an 

existing set of sequences in order to make comparisons. In practice, however, gene model 

parameters differ by species and are difficult to estimate, necessitating in most cases the use of 

machine-learning algorithms and training datasets. One such example is GeneMark-ES (Lomsadze 

et al. 2005), which uses an unsupervised, iterative Viterbi training algorithm to estimate hidden 

Markov model (HMM) parameters directly from the genome sequence itself. This was among the 

first methods to apply an unsupervised approach to eukaryotic genomes, resulting in similar or 

even greater accuracy in comparison to supervised methods on model species such as Arabidopsis 

thaliana, Caenorhabditis elegans and Drosophila melanogaster. Given that an appropriate set of 

experimentally-validated gene sequences, expressed sequence tags (EST) of related species, and/or 

sequenced cDNA libraries are available, however, it is typically more robust to include them in the 

estimation of gene model parameters. Methods which rely only on sequence homology are 

nevertheless limited by the availability of existing data at an appropriate evolutionary distance. 

Modern ab initio predictors such as AUGUSTUS (Stanke and Waack 2003; Stanke et al. 

2006) instead combine an accurate, unsupervised approach, capable of resolving splice variants, 

with the option for increased specificity using e.g. ESTs or cDNA libraries either as “hints” or by 

directly training the algorithm. 

 

1.3.2.3 FASTA, BED and GTF/GFF formats 

The most common format to denote DNA sequences computationally is FASTA, whereby each 

sequence (e.g. gene, contigs, scaffolds, or chromosomes) is represented by 1) a single line pertaining 

to a sequence identifier, beginning with a “>” character, preceding 2) one or more lines which 

encompass the literal sequence itself (e.g. “ACTGTG…”). In contrast to the FASTQ format, these 

are the only lines necessary to define within the file. It may often be accompanied by a FASTA 

index file, representing a dictionary wherein each line refers to a sequence ID from the 

corresponding FASTA file and its associated length. 
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When referring to specific loci associated with a sequence in a FASTA file, often BED (browser 

extensible data) format is used. BED format refers to a tab-delimited text file wherein each locus 

is denoted by a single line, beginning with a column referring to a sequence ID from the FASTA, 

and then two columns referring to the numerical start and end position of the region, respectively. 

The coordinates are 0-based i.e. the first nucleotide in a sequence would carry a start position of 0 

and end position of 1. The first three columns are mandatory, but further columns (name, score, 

etc.) are yet defined for additional detail. 

 

Gene transfer format (GTF) and general feature format (GFF3) are commonly used to represent 

nested feature annotations such as genes. Similar to BED files, they are tab-delimited text files 

which make reference to specific loci in a corresponding FASTA file. Each line refers to a specific 

feature. The first column refers to the sequence ID, followed by one column denoting the “source” 

of the described feature and one denoting the “type”. The start and end coordinates are given in 

columns 4 and 5, and are 1-based i.e. the first nucleotide in a sequence would carry a start position 

of 1 and an end position of 1. The main difference between GTF and GFF is in the format variation 

of the 9th column, wherein each feature is associated with an ID which allows them to be nested 

with other features. For example, a feature line describing a coding sequence (CDS) may be 

associated with the parent ID of the gene it belongs to.  

 

1.3.3 Sequence alignment for NGS 
When a reference genome assembly is made available for a given study species, it can be used as a 

basis for estimating the point of origin for re-sequenced reads. There are many applications for re-

sequencing; from studying relatedness and cataloguing the variation between individuals, to 

understanding somatic or germline variants and their effect on disease or phenotype, quantifying 

mRNA transcripts in regard to gene expression, identifying microorganisms within clinical or 

environmental samples, and in understanding the molecular mechanisms for regulating genes and 

the proteins they encode. In all such cases, sequence alignment plays a significant role in the 

inference of biologically relevant information from sequenced DNA (Metzker 2010; Li and Homer 

2010). 

 

1.3.3.1 Pairwise sequence alignment 

The most basic task in sequence alignment is the comparison of two sequences to one another 

such that their differences are reduced to the fewest and therefore most likely divergent events. It 
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is often these differences which present the most relevance in understanding the underlying 

biology, such as those for example which arise through mutation, insertion or deletion, which are 

by nature rare events and thus drive the principle that the more closely-related two sequences are, 

the fewer isolated differences there should be. There are many approaches to finding the optimal 

alignment, but they generally conform to three basic types: global, semi-global and local (Figure 4). 

Global alignment refers to the approach first popularised by Needleman and Wunsch (Needleman 

and Wunsch 1970), which attempts to solve the problem for similarly-sized sequences by aligning 

each individual character. It achieves this by denoting each sequence as an axis on a “scoring 

matrix”, whereby matches, mismatches and indels correspond to difference scores, and each cell is 

evaluated recursively for the highest score based on the result of neighbouring cells. More 

specifically, each iteration in the matrix F is denoted by equation (2), wherein F (i,j) is the entry in 

the i-th row and j-th column. The matrix is first initialised with F (0,0) = 0 for the first cell, then F 

(i,0) = F (i-1,0) - d and F (0,j) = F (0,j-1) - d where d refers to the gap penalty. The top row 

represents a deletion, the middle row an insertion, and the final row a match/mismatch, wherein s 

(xi,yj) refers to the score for aligning the bases x and y. 

 

𝐹(𝑖, 𝑗) = max 5
𝐹(𝑖 − 1, 𝑗) − 𝑑
𝐹(𝑖, 𝑗 − 1) − 𝑑

𝐹(𝑖 − 1, 𝑗 − 1) + 𝑠9𝑥;, 𝑦=>
                        equation (2) 

 

Figure 4. Examples of “Global”, “Semi-Global”, and “Local” pairwise alignment strategies on the same 
sequences, derived in each case from a backtracing procedure on an iteratively-generated scoring matrix. 
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The recursion is terminated when the whole matrix is filled, upon reaching the final cell in the 

bottom-right corner. The optimal alignment can then be derived through a process of 

“backtracing” from the lattermost cell in the bottom-right corner of the grid, by traversing in 

direction of the next adjacent cell with the highest score. Until a complete alignment is formed, 

diagonal traversal indicates a match or mismatch, whereas vertical and horizontal traversal is 

indicative of an indel. This method is still used even today when the priority is to identify the best 

possible alignment between two exact sequences. 

 

By contrast, semi-global alignment may be more appropriate for partially overlapping sequences, 

or when one sequence is much shorter than another. In such a case, the Needleman-Wunsch 

algorithm is modified to remove penalties from the scoring matrix at either end of the sequences, 

sometimes referred to as end-gap free alignment. In this case the matrix is instead initialised with 

F(i,0) = 0 and F(0,j) = 0 and terminated upon reaching either the bottom row or the right-hand 

column, but each iteration is otherwise exactly the same as in equation (2). 

 

Local alignment differs still further, in that the two sequences are expected to be largely dissimilar 

in overall context, perhaps differing partially in size and having only localised regions or sequence 

motifs which are somehow comparable between them. In such a case it may be inappropriate to 

obtain an optimal alignment along the entire length of either sequence against one another. An 

extension to the Needleman-Wunsch algorithm was therefore put forward, which allows for 

arbitrary length insertions and deletions and to find new alignments whenever a negative score is 

achieved, such as to identify the optimal pair of subsequences with the greatest homology from 

two larger sequences (Smith and Waterman 1981). In this case, each iteration over the matrix F is 

instead represented by equation (3), which is initialised in the same manner as for semi-global 

alignment. 

 

𝐹(𝑖, 𝑗) = max

⎩
⎨

⎧
0

𝐹(𝑖 − 1, 𝑗) − 𝑑
𝐹(𝑖, 𝑗 − 1) − 𝑑

𝐹(𝑖 − 1, 𝑗 − 1) + 𝑠9𝑥;, 𝑦=>

                        equation (3) 

 

In this method an additional case is included to the scoring matrix, where zero is a possible score 

to denote no similarity between two components. The backtracing also begins instead at the cell 



1 Introduction 

 31 

with the maximal score, allowing for optimal alignments which occur anywhere along the length 

of either sequence. Modern applications of local alignment vary from identifying regions that may 

indicate functional, structural and/or evolutionary relationships between two biological sequences, 

to the fast lookup of databases using heuristic approaches such as BLAST (Altschul et al. 1990). 

 

1.3.3.2 Short-read sequence alignment 

With the advent of NGS technologies, the task of obtaining the optimal alignment applies to a 

given sequencing read against an appropriate reference genome. This is then further complicated 

by the high throughput of sequencing and the sheer volume of reads, in which it is no longer 

feasible to utilise aforementioned alignment techniques on such a scale. Most software instead 

make use of heuristics in order to facilitate a more rapid approximation of the most likely points 

of origin for each read against the genome, in a process often referred to as “read mapping”. More 

conventional alignment techniques can then be applied on a more targeted scale, in what amounts 

to a trade-off which typically comes at the expense of overall precision and sensitivity. There are 

many short-read mapping software which have been developed for various different applications 

of NGS. As of 2012, an extensive survey identified 60 different tools (Fonseca et al. 2012) and 

today it is thought to be more than 90. In almost all cases the mapping task is achieved through 

the use of index structures, such as hash tables, Burrows-Wheeler transform, and suffix 

arrays/enhanced suffix arrays, in order to facilitate rapid traversal to genomic loci. These data 

structures are often referenced using a matching “seed”, i.e. a short but representative k-mer 

sequence which is thus used to reduce the overall search space to a manageable number of 

candidate loci. When a candidate is found, the algorithm attempts to extend the alignment, which 

can be either successful or unsuccessful based on various scoring thresholds and an estimation of 

alignment “quality”. Sensitivity is typically therefore co-dependent on the exactness of these seed 

sequence matches, which can themselves be subject to natural mutations or errors arising from 

sequencing, for example, and the criteria by which each software is programmed to circumvent 

this. In addition, short-read aligners have to contend not only with the ambiguities arising from 

various sources of error but also with the nature of short sequences which originate from repetitive 

regions. Though each read must have originated from only one point of origin, it is possible for 

two or more equally good alignments to different loci to exist. In terms of the “optimal” (i.e. best-

scoring) alignments, the tool may therefore i) report only “unique” alignments, thus discarding 

multi-mapping reads, ii) choose one or more “random” best alignment(s) in cases with multiple 

best-scoring alignments, or iii) report “all” best-scoring alignments. The tool may also choose to 

report “sub-optimal” alignments which can refer either to those with equal best scores that were 
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not randomly selected, or “all-first-N” alignments whereby N-1 of the next best-scoring alignments 

in descending order are also given. Reporting is also dependent on the search space, where typically 

the aligner may either opt to either search “all” candidate alignments, or abandon the search after 

a number of consecutive attempts to extend a candidate seed which fail to result in an equal or 

better alignment. 

 

1.3.3.3 Sequence Alignment/Map (SAM) format 

An important consideration for all short-read sequence aligners is in the representation and 

interpretation of alignments for downstream analysis. For this reason, the SAM file format was 

devised by (Li et al. 2009) and has since been widely adopted as a universal standard for this type 

of data. It encompasses first a header, containing for example file-level metadata, a reference 

sequence dictionary to represent scaffold/contig lengths, read group data to differentiate 

sequencing reads, and program-level metadata for the appropriate sequence aligner. Following the 

header are a series of tab-delimited lines, each representing a distinct, individual alignment, with 

mandatory fields to describe the exact position, sequence, characteristics and the composition of 

the alignment itself. Of key importance is the understanding of the bitwise flag, which contains 

information pertaining to the read mate status and strand orientation of the alignment, alongside 

various quality control considerations. A series of unordered “tags” (column 12+) can also denote 

characteristic information regarding the alignment, for example the NM tag which informs of the 

“edit distance” with respect to an identical alignment, or the NH tag which informs about the total 

number of reported hits associated with the corresponding read. The sequence itself is always given 

in a left-to-right orientation in respect of the alignment to the provided reference genome, which 

is assumed to be the “forward” strand, as opposed to the 5’-to-3’ orientation of the read expected 

from the respective FASTQ file. The corresponding base quality string denoting the likelihood of 

individual base calls is given in the same orientation as the sequence. Finally, the MAPQ field 

denotes the overall quality score of the alignment itself, which is estimated according to the 

specification of the software used to align the read, and typically represents the phred-scaled 

likelihood that the given alignment is correct based on the available information. 

 

1.3.4 Variant calling approaches 
One of the most common applications of re-sequencing with NGS data is to understand the 

biological significance of small differences between the sample and the corresponding reference 

genome. Such differences can present for example as single nucleotide polymorphisms (SNPs) or 

short insertions/deletions (indels), which often arise naturally as point mutations in the germline 
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before later becoming segregated in a population. SNPs represent the most common form of 

genetic variant throughout the genome; estimated to occur approximately every 1 in 300 bp in the 

human genome (1000 Genomes Project Consortium et al. 2015) and every 1 in 10 bp in Arabidopsis 

thaliana (1001 Genomes Consortium et al. 2016). Within a given population, a SNP will often have 

two or more common alleles which occur at different frequencies, typically denoted in context of 

the “minor allele frequency” (MAF), i.e. the frequency of the less common allele. Variants with a 

very low MAF (e.g. <1%) can be considered rare mutations, which may not yet have segregated 

through the population, and are thus not considered as true SNPs but often referred to instead 

more generally as single nucleotide variants (SNVs). 

 

Though for simplicity SNPs are often considered to be born of “random mutations”, it is now 

more generally accepted that they occur somewhat stochastically under influence of nucleotide 

composition, epigenomic features and genomic biases in DNA repair (Monroe et al. 

2022). Emerging variants can have varying consequences on fitness depending on the context of 

the genomic position in which they occur; as for example with “non-synonymous” variants which 

can cause change or loss of function in protein-coding genes, or by introducing premature stop 

codons (stop-gain), or by disrupting open-reading frames or splice-sites (Xu et al. 2019). Such 

mutations can also instead be “synonymous”, wherein the coded protein remains the same due to 

codon degeneracy. Variants occurring in non-coding or intergenic regions may be less likely to 

cause deleterious effects, but can still influence nearby gene expression through interaction with 

transcription factors and other genomic machinery. Typically, mutations in coding regions have a 

greater likelihood to be deleterious than not, and the resulting strength of the effect on fitness is 

correlated with natural selection. Strongly deleterious mutations will be quickly purged from a 

population by purifying selection, whereas weakly deleterious mutations may yet persist given the 

standing load capacity of the species. Conversely, advantageous mutations which are adaptive will 

be more likely to accumulate under selection. 

 

In the context of ecological plant epigenetics, SNPs are useful DNA markers both in terms of i) 

molecular biology, whereby they aid in understanding the function of genes and proteins potentially 

under influence of epigenetic effects, and ii) population ecology and evolution, whereby they serve 

as a measure of relatedness between individuals which may or may not be correlated with patterns 

of epigenetic diversity. It is therefore a desirable bioinformatic task to detect sequence variants 

from re-sequenced NGS reads in order to build a more comprehensive picture of the genetic 

background. There are many software which have been developed to perform this analysis 
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beginning from short-read sequence alignments, including notable examples such as bcftools (Li 

2011), GATK (McKenna et al. 2010), FreeBayes (Garrison and Marth 2012), Platypus (Rimmer et 

al. 2014), and VarScan (Koboldt et al. 2009). The basic principle is to compare each overlapping 

read, for each position of the genome, where there is enough sequencing coverage to make a 

confident estimate of the different alleles which may be present and their respective frequencies. 

This in turn allows for an estimate of the “genotype” for each tested individual of the population, 

in respect to the number of chromosome copies (i.e. ploidy) of the species. 

 

1.3.4.1 Bayesian approaches 

A very typical approach to variant calling makes use of Bayes’ probability theorem. Under a simple 

Bayesian framework for example, the conditional probability of observing the true genotype 

G given the variants observed in the sequencing data D can be represented as per equation (4), 

which formulates the problem as the derivation of a prior estimate of the genotype P(G) and the 

likelihood of observing the data P(D|G). 

 

𝑃(𝐺|𝐷) = E(F)E9𝐷G𝐺>
∑ E(FI)E9𝐷G𝐺;>I

                                equation (4) 

 

Any assumptions made in the estimation of priors, or further extensions of the equation to 

incorporate various different factors or coefficients, often underlie the main differences between 

different Bayesian approaches. For example, given that NGS data is seldom error-free, even the 

simplest model will typically incorporate base quality (BQ) information directly into the Bayesian 

inference of genotypes as a fundamental scaling factor for the data likelihood estimation. The 

standard BQ score itself is a phred-based quality value which denotes on each position the 

estimated probability that the base caller identified the correct nucleotide during sequencing. Read 

alignments with low BQ scores thus typically carry less weight in such a model when the overall 

call of the genotype is estimated. 

 

Alignment-based approaches. The simplest case is represented by naive approaches such as 

bcftools and GATK UnifiedGenotyper, in the sense that each locus is considered independently. 

Over each position, the corresponding alignments are “piled-up” and the likelihood estimation 

calculated based only on the directly aligned nucleotides and their characteristics. The 

aforementioned tools were among the first developed for high-throughput variant calling, and 
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differ only marginally for example in handling of low MAPQ reads during pre-processing and in 

the assumption of independence for NGS errors. 

 

Haplotype-based approaches. The assumption of independence in the estimation of genotype 

likelihood for each locus often does not hold, for example due to linkage disequilibrium (LD), i.e. 

the nonrandom association of alleles which are inherited together. More proximal variants are more 

likely to be associated for example due to genetic linkage and/or recombination. Haplotype-aware 

variant callers, such as FreeBayes, extend the alignment-based approach to perform genotype 

likelihood estimation instead based on observed haplotypes, i.e. the literal sequence of each read 

alignment is considered as opposed to each component nucleotide individually. As NGS reads are 

each sequenced from a single DNA fragment, all base nucleotides are expected to arise from the 

same haplotype and thus the local “phasing” of co-occurring alleles can be leveraged. This is more 

robust particularly in terms of short indels, which can be more reliably resolved in this way by 

reducing the influence of ambiguous alignments. The Bayesian model is otherwise comparable to 

alignment-based approaches in terms of prior estimates and taking into consideration errors in the 

form of e.g. MAPQ and BQ scores. Notably, it is applicable to both multiallelic loci and non-

uniform copy number and thus able to model genotype likelihoods from non-diploid 

species (Garrison and Marth 2012).  

 

Local assembly-based approaches. Modern variant callers such as GATK HaplotypeCaller have 

extended further upon the principle of haplotype-based variant calling, by introducing local re-

assembly and re-alignment steps to better resolve longer haplotypes and improve the signal-to-

noise ratio. It operates in four steps: 1) first identifying a subset of loci based on evidence of 

sequence variation; 2) reassembly of each identified “ActiveRegion” from the aligned reads into 

plausible haplotypes, followed by alignment of each haplotype to the reference genome to identify 

potential variant sites; 3) the re-alignment of each read to each haplotype, in order to establish first 

which haplotypes are supported by which reads, followed then by the per-read likelihoods of alleles 

on potential variant sites; 4) Bayesian inference of genotype likelihoods per sample, given the 

observed likelihoods of alleles from the read data (Poplin et al. 2018). 

 

1.3.4.2 Variant Call Format (VCF) 

Just as SAM format represents a standardised approach for representing NGS sequence alignments 

in the same way from different software, VCF has been developed in order to provide a standard 

file format for variant calls. Like SAM format, it begins with a header containing file-level metadata, 
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a reference sequence dictionary to represent scaffold/contig lengths, and definitions for various 

attributes that are displayed for example in the “INFO” and “FORMAT” columns in the main file. 

There are typically at least ten columns in the main file for variants obtained from a single sample, 

with one more column for each additional sample that may have been included in the analysis. The 

non-specific columns pertain to information relevant to a given SNP in the context of the given 

population, including for example genomic coordinates, reference allele and possible alternative 

alleles. The sample columns contain more information regarding the observations specific to each 

sample, for example the counts of reference and each alternative allele, genotype likelihoods and 

the called genotype itself. 
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2 Building a Suitable Reference Genome 

2.1 Introduction 
Within the EpiDiverse initiative, three non-model species were chosen to help broaden our 

understanding of ecological plant epigenetics beyond the context of model species such as 

Arabidopsis thaliana. These include the deciduous broadleaf tree species black poplar (Populus 

nigra cv. ‘Italica’), and two flowering herbaceous plants: the perennial wild strawberry (Fragaria 

vesca), and the annual field pennycress (Thlaspi arvense). Each species represents a variation in life 

cycle, mode of reproduction, and zygosity, and are widely distributed in the wild throughout 

Europe. As with many non-model species, however, the availability of high-quality genomic 

resources is variable. Indeed, when the species were selected at the beginning of the project only 

F. vesca was reported to have a chromosome-level genome assembly available (Edger et al. 2018). 

For P. nigra only the genome of a related species had been published (Tuskan et al. 2006). In the 

case of T. arvense, a low quality draft genome had been published which comprised 31,889 contigs 

arranged into 6,768 scaffolds, representing only ~64% of the estimated genome size (Dorn et al. 

2015). Such a fragmented genome makes it difficult to infer meaningful relationships in terms of 

genome-wide association and genetic linkage, which need to be resolved before any independent 

observations of epigenetic variation can be verified. Improving the quality and contiguity of the T. 

arvense genome was therefore the first priority in lieu of further planned downstream analyses. 

 

Field pennycress is a member of the Brassicaceae family, and is closely related to the oilseed crop 

species Brassica rapa, Brassica napus, Camelina sativa, as well as the wild plant A. thaliana (Beilstein et 

al. 2010; Warwick, Francis, and Susko 2002). It is a homozygous diploid species (2n = 2x = 14) 

(Mulligan 1957) and is predominantly self-pollinating (Mulligan and Kevan 1973), suggesting a 

possible amenability for transgenerational epigenetic inheritance, for example in terms of stress 

response. Indeed, recent studies have now shown the effect of salinity stress on epigenetic diversity 

in populations of T. arvense, which were partially transferred to at least two generations of offspring 

(Geng et al. 2020). Within EpiDiverse the main objectives are to study the influence of DNA 

methylation in terms of genetic and environmental drivers of large-scale epigenetic variation, stress 

memory and the extent (if any) of transgenerational inheritance, and to describe populations of 
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small RNA-interacting loci and transposable elements (TEs) which may contribute to epigenetic 

variation. 

 

Aside from its relevance as a study species in EpiDiverse, the pennycress seed is also notable for 

an oil content (~30-35%) and fatty acid profile conducive to producing biofuels (Fan et al. 2013; 

Moser 2012; Moser et al. 2009) with yet further potential to be converted into an edible oil and 

protein source (Chopra et al. 2020; Claver et al. 2017; McGinn et al. 2019). As such, it has garnered 

interest as an emerging oil feedstock species with the potential to improve sustainability of cold 

climate cropping systems through use as a cash cover crop (Boateng, Mullen, and Goldberg 2010; 

Chopra et al. 2018; Sedbrook, Phippen, and Marks 2014). Pennycress is extremely winter hardy 

(Warwick, Francis, and Susko 2002) and can be planted in fallow periods following traditional 

summer annuals such as wheat, maize or soybean (Cubins et al. 2019; Johnson et al. 2015; Ott et 

al. 2019; Phippen and Phippen 2012). By providing a protective living cover from the harvest of 

the previous summer annual crop through early spring, pennycress prevents soil erosion and 

nutrient loss, which in turn protects surface and below-ground water sources, suppresses early-

season weed growth, and provides a food source for pollinators (Eberle et al. 2015; Johnson et al. 

2015; Weyers et al. 2021; Weyers et al. 2019). The short life cycle allows for harvest even in late 

spring in temperate regions, with reported seed yields ranging from 750 to 2400 kg ha-1 (Cubins 

et al. 2019; Moore et al. 2020). Following harvest, an additional crop of summer annuals can be 

grown in a double crop system that provides increased total seed yields and beneficial ecosystem 

services (Johnson et al. 2015; Phippen and Phippen 2012; Thomas et al. 2017).  

 

The diploid and self-pollinating nature of field pennycress suggest that breeding efforts could 

proceed with relative ease and speed. It is amenable to genetic transformation via the floral dip 

method (McGinn et al. 2019), and with many one-to-one gene correspondences with A. 

thaliana (Chopra et al. 2018) it could provide an avenue for gene discovery followed by field-based 

phenotypic validation. Indeed, several agronomic and biochemical traits have already been 

identified using this translational approach, including traits crucial for de novo domestication such 

as transparent testa phenotypes (Chopra et al. 2018), early flowering (Chopra et al. 2020), reduced 

shatter (Chopra et al. 2020), and seed oil composition traits (Chopra et al. 2020; Esfahanian et al. 

2021; Jarvis et al. 2021; McGinn et al. 2019). Such an amenability for translational research 

constitutes a clear advantage, which is both similar to the existing model species A. thaliana and at 

close enough evolutionary distance wherein it remains somewhat feasible to leverage model 

resources for comparative genomics. Field pennycress could thus serve as both i) a de 
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novo domesticated oilseed crop for the cooler climates of the world, and ii) a new dicotyledonous 

model for functional genetics studies and epigenetic research. 

 

To establish T. arvense as both a research model and a new crop species, it is important to develop 

genomic resources that will help explore the spectrum of genetic diversity, the extent and patterns 

of gene expression, genetic structure, and untapped genetic potential for crop improvement. This 

chapter describes a set of new resources developed for both research and breeding communities, 

including a high quality, chromosome-level genome assembly of T. arvense var. MN106-Ref, 

representing ~97.5% of the estimated genome size of 539 Mbp, an NG50 of 64.9 Mbp and an 

LG75 which reflects the haploid chromosome number of seven. Comparative genomics with 

closely-related Brassicaceae demonstrates a high level of synteny based on a set of ancestral 

chromosomal blocks (ABKs) defined by (Murat et al. 2015), revealing the extent of genomic 

rearrangement in coding regions. Further annotations to the genome will be described in chapter 

3. 

 

2.2 Materials and methods 

2.2.1 Seeds for the reference genome development 
Seeds from a small natural population of T. arvense accession MN106 were collected near Coates, 

Minnesota by Dr. Donald L. Wyse. A single plant was propagated for ten generations from this 

population and is herein referred to as MN106-Ref. 

 

2.2.2 Sample collection, library preparation, and DNA sequencing 

2.2.2.1 PacBio CLR library 

MN106-Ref plants were cultivated, sampled and prepared at the Max Planck Institute for 

Developmental Biology (Tübingen, Germany). Plant seeds were stratified in the dark at 4oC for 4-

6 d prior to planting on soil. Samples of young rosette leaves were collected from seedlings, 

cultivated for two weeks under growth chamber conditions of 16-23oC, 65% relative humidity, and 

a light-dark photoperiod of 16h:8h under 110-140 µmol m-2 s-1 light. High molecular weight 

(HMW) DNA was obtained following nuclei isolation and DNA extraction with the Circulomics 

Nanobind Plant Nuclei Big DNA kit according to the protocol described in Workman et al. 

(Workman et al. 2019; 2018). A total of 11 extractions from 1.5-2 g frozen leaves each were 

processed in that way, yielding a pooled sample with a total of 12 µg of DNA by Qubit® 2.0 

fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) estimation, and high DNA purity with 
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a mean absorbance ratio of 1.81 at 260/280 nm absorbance and 2.00 at 260/230 nm absorbance, 

as measured by Nanodrop 2000/2000c spectrophotometer (Thermo Fisher Scientific, Waltham, 

MA, USA). HMW DNA was sheared by one pass through a 26G needle using a 1 mL syringe, 

resulting in an 85 kb peak size sample as estimated by FEMTO Pulse Analyzer (Agilent 

Technologies, Santa Clara, CA, USA). A large insert gDNA library for PacBio Sequel II CLR 

sequencing was prepared using the SMRTbell® Express Template Preparation Kit 2.0. The library 

was size-selected for >30 kb using BluePippin with a 0.75% agarose cassette (Sage Science) and 

loaded into one Sequel II SMRT cell at a 32 pM concentration. This yielded a genome-wide 

sequencing depth of approximately 476X over ~6.9 million polymerase reads with a subread N50 

of ~38 kbp. 

 

2.2.2.2 PacBio CCS library 

MN106-Ref plants were grown in growth chambers at the University of Minnesota. Individual 

plants were grown to form large rosettes for isolating DNA. Approximately 25 g of tissue was 

harvested and submitted to Intact Genomics (Saint Louis, MO, USA) for High Molecular Weight 

DNA extraction. This yielded a pooled sample with a total of 269 ng of DNA by Qubit® (Thermo 

Fisher Scientific, Waltham, MA, USA) estimation, and high DNA purity with a mean absorbance 

ratio of 1.87 at 260/280 nm and 2.37 at 260/230 nm, as measured by Nanodrop spectrophotometer 

(Thermo Fisher Scientific, Waltham, MA, USA). A Salt:Chloroform Wash protocol recommended 

by PacBio was used to further clean up the high molecular weight DNA. This yielded a total of 

12.1 ng/µl of high quality DNA for library preparation. A large insert gDNA library was prepared, 

and 15 kb High Pass Size Selection on Pippin HT was performed at the University of Minnesota 

Genomics Centre (Minneapolis, MN, USA). The resulting libraries were then loaded onto four 

SMRT cells for sequencing with PacBio Sequel II (Pacific Biosciences, Menlo Park, USA). 

 

2.2.2.3 Hi-C library 

The same MN106-Ref plant tissue used for PacBio CCS was submitted to Phase Genomics (San 

Diego, CA, USA). The Hi-C library was prepared following the proximo Hi-C plant protocol 

(Phase Genomics, San Diego, CA, USA) and the libraries were sequenced to 116X depth on an 

Illumina platform in paired-end mode with read length of 150 bp. 

 

2.2.2.4 Bionano library 

HMW DNA was isolated from young leaves and nicking endonuclease - BspQI was chosen to 

label high-quality HMW DNA molecules. The nicked DNA molecules were then stained as 
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previously described (Lam et al. 2012). The stained and labelled DNA samples were loaded onto 

the NanoChannel array (Bionano Genomics, San Diego, CA, USA) and automatically imaged by 

the Irys system (Bionano Genomics, San Diego, CA, USA). 

 

2.2.2.5 Illumina PCR-free library 

Libraries for PCR-free short-read sequencing were prepared from MN106-Ref genomic DNA 

using the TruSeq DNA PCR-Free Low Throughput Library Prep Kit (Illumina, San Diego, CA, 

USA) in combination with TruSeq DNA Single Indexes Set A (Illumina, San Diego, CA, USA) 

according to the manufacturer’s protocol. Two libraries were prepared, with average insert sizes of 

350 bp and 550 bp, respectively. Samples were sequenced to ~125X depth (~66 Gb) on an Illumina 

HiSeq2500 (Illumina, San Diego, CA, USA) instrument with 125 bp paired-end reads. 

 

2.2.3 Contig assembly and initial scaffolding 
2.2.3.1 Genome size estimation using flow cytometry and k-mer based approach 

The nuclei of field pennycress line MN106-Ref, A. thaliana, Maize, and Tomato were stained, with 

propidium iodide and fluorescent signals were captured using a Becton-Dickinson FACSCanto 

flow cytometer (https://www.bdbiosciences.com/). DNA content for all four species that 

corresponded to G0/1 nuclei are listed in Suppl. Table A.1. The genome size of Arabidopsis is 135 

Mb and therefore, the genome size of pennycress was calculated to be 501± 33 Mb. Using the 

Illumina HiSeq2500 platform, ~100X PCR-free reads were obtained which were used for 

subsequent k-mer analysis using Jellyfish (Marçais and Kingsford 2011). The 101-mer frequency 

distribution curve exhibited a peak at 22-kmer and analysis showed that the total number of k-mers 

was 11,403,836,319. Using the formula of genome size = total k-mer number/peak depth, the 

genome size of this sequencing sample was estimated to be 518,356,196 bp. Similarly, the single 

copy content of the genome was estimated to reach 79%. Using both methods of genome size 

estimation, the pennycress genome was considered to range from approximately 459 to 539 Mb. 

 

 

2.2.3.2 Contig assembly and deduplication 

The final procedure for contig assembly and scaffolding was achieved using an iterative workflow 

which was curated over time by both trial and error and the incorporation of new sources of data. 

This resulted in an initial assembly from PacBio CLR reads, performed using Canu v1.9 (Koren et 

al. 2017) with mostly default options aside from cluster runtime configuration and the settings 

corOutCoverage=50, minReadLength=5000, minOverlapLength=4000, 
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correctedErrorRate=0.04 and genomeSize=539m, which were selected based on the 

observed characteristics of the library. Canu performs consensus-based read correction and 

trimming, resulting in a curated set of reads which were taken forward for assembly (Suppl. Figure 

A.1). The resulting assembly overestimated the genome size by approximately 53% (Suppl. Table 

A.2), which we surmised was likely due to uncorrected sequencing errors in the remaining fraction 

of reads which Canu was able to assemble into independent, duplicated contigs. Analysis of single-

copy orthologs from the Eudicotyledons odb10 database with BUSCO v3.0.2 (Simão et al. 

2015) revealed a high completeness of 98.4% and a duplication level of 23.6% (Suppl. Table A.3). 

Subsequent alignment of the reads to the assembly using minimap2 v2.17 (Li 2018) and 

purge_dups v1.0.1 (Guan et al. 2020) presented bimodal peaks in the read depth distribution, 

indicative of a large duplicated fraction within the assembly (Suppl. Figure A.2). As efforts to 

collapse this duplicated fraction using assembly parameters were unsuccessful, and purge_dups is 

intended to correct duplication arising from heterozygosity (which does not apply in T. arvense), the 

fraction was reduced by manual curation instead. Contigs starting from the left-hand side of the 

read depth distribution were consecutively removed until reaching an approximation of the 

estimated genome size, with any contigs containing non-duplicated predicted BUSCO genes kept 

preferentially in favour of discarding the next contig with lower read depth in the series. 

 

2.2.3.3 Scaffolding 

The deduplicated assembly from Canu was polished with the PacBio Sequel II HiFi CCS reads 

using two iterations of Racon v1.4.3 (Vaser et al. 2017). Hybrid scaffolds were generated using the 

de novo Bionano maps and the polished assembly (https://bionanogenomics.com/support-

page/data-analysis-documentation/). To further resolve repetitive regions and improve assembly 

contiguity, the bionano-scaffolded assembly was integrated into the HERA pipeline (Du and Liang 

2019). The Hi-C sequencing data was aligned with bwa mem v0.7.17 (Li and Durbin 2009), PCR 

duplicates marked with picard tools v1.83 (http://broadinstitute.github.io/picard) and the quality 

assessed with the hic_qc.py tool of Phase Genomics 

(https://github.com/phasegenomics/hic_qc). The assembly was then further scaffolded with the 

Hi-C alignments using SALSA v2.2 (Ghurye et al. 2017), and subsequently polished with the PCR-

free Illumina data using two iterations of Pilon v1.23 (Walker et al. 2014). The final assembly at 

this point was the result of a meta-assembly with quickmerge v0.3 (Chakraborty et al. 2016), which 

combined this version with an earlier draft version assembled directly from the PacBio CCS reads 

using Canu 1.8 (Koren et al. 2017), polished only with the Illumina PCR-free short-reads, but 

otherwise following an almost identical workflow. This was done in order to help mitigate the 
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possibility of misassembly arising from technical sources and thus improve overall contiguity. This 

resulting assembly was evaluated with BUSCO (Simão et al. 2015) and QUAST v5.0.2 (Gurevich 

et al. 2013). Intermediate assembly statistics are given in comparison to i) immediately after Canu, 

and ii) the final version after re-scaffolding, in Suppl. Table A.2. 

 

2.2.4 Re-scaffolding 
Initial inspection of both gene and TE distributions and methylation patterns (methods described 

in Chapter 3) pointed to potential misassemblies in the assembled genome. Further investigation 

by way of synteny comparison to a closely-related species, Eutrema salsugineum (Yang et al. 2013), 

revealed that several of these likely occurred during scaffolding as orientation errors. Some of these 

errors could also be supported by comparison to the recently assembled Chinese accession 

(YUN_Tarv1.0) of T. arvense (Geng et al. 2021). 

 

2.2.4.1 Development of genetic maps 

Two genetic linkage maps were obtained using F2 populations in order to help correct 

misassemblies and help improve overall contiguity. The first linkage map was derived from a cross 

between MN106-Ref and a genetically distant Armenian accession Ames32867. The resulting F1 

plants were allowed to self-fertilise, and seeds from a single plant were collected and propagated to 

the F2 generation. Approximately 500 mg fresh tissue was collected from 94 individuals in the F2 

population. The tissue was desiccated using silica beads and pulverised using a tissue lyser. DNA 

was isolated with the Biosprint DNA plant kit (Qiagen, Valencia, CA, USA). The F2 population 

along with the two parental genotypes was genotyped via genotyping-by-sequencing at the 

University of Minnesota Genomics Centre (Minneapolis, MN, USA). Each sample was digested 

with the BtgI_BgLII restriction enzyme combination, barcoded, and sequenced on the Illumina 

NovaSeq S1 (Single-end 101 bp) yielding a mean of 1,237,890 reads per sample. The raw reads 

were de-multiplexed based on the barcode information and aligned to the most recent iteration of 

the pennycress genome using bwa. Sequence aligned files were processed with samtools v1.9 (Li et 

al. 2009) and picard tools to sort files and remove group identifiers. Variants were called using 

GATK HaplotypeCaller v3.3.0 (McKenna et al. 2010; Poplin et al. 2018). SNPs identified among 

these 94 lines were used for the development of genetic maps. The second linkage map was derived 

from a cross between MN106-Ref and a mutant line 2019-M2-111. To identify the variant alleles 

in 2019-M2-111, whole genome re-sequencing using paired-end reads was performed on the 

Illumina platform. SNPs were identified using a similar approach as described above. Sixty-seven 

SNP markers were designed using the biallelic information from re-sequence data. DNA was 
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extracted from 48 samples from the mutant F2 population using the Sigma–Aldrich ready extract 

method, allele-specific and flanking primers synthesised from IDT (Iowa, USA) for each of the 

alleles were mixed, and genotyping was performed using the methods described in (Chopra, 

Folstad, and Marks 2020). 

 

A total of 35,436 SNPs were identified among the population used for the first linkage map. SNP 

sites were selected for no-missing data, QD>1000 and the segregation of the markers was 1:2:1, 

resulting in 743 high-quality SNPs retained for further analysis. A genetic map for the population 

was constructed using JoinMap 5 (Stam 1993). Only biallelic SNPs were used in the analysis and 

genetic maps were constructed with regression mapping based on default parameters of 

recombination frequency of <0.4 with only the first two steps. The Kosambi mapping function 

was chosen for map distance estimation, and the Ripple function was deployed to confirm marker 

order within each of the seven linkage groups. A total of 319 markers were mapped to seven linkage 

groups. Similarly, 67 markers were genotyped on 48 individuals from the second population of 

linkage and 52 markers were mapped to six linkage groups. Both of these linkage maps were used 

in reordering and correcting the existing scaffolds as described below. 

 

2.2.4.2 Re-scaffolding 

In order to address misassemblies in the genome, several breakpoints were introduced manually at 

selected loci in the assembled genome where supported by at least two sources of data from: newly-

derived genetic linkage maps (wild and EMS mutation based), Hi-C contact maps from the original 

library, whole genome alignments to accession YUN_Tarv1.0, and synteny maps to E. 

salsugineum (derived from reciprocal-best blast). These were cross-examined with minimap2 

alignments of original PacBio CLR reads to the genome, an overview of corresponding gene and 

TE distributions produced by Liftoff v1.5.2 (Shumate and Salzberg 2020), and further comparative 

genomics with E. salsugineum. The resulting contigs were then re-scaffolded with ALLMAPS v1.1.5 

(Tang et al. 2015), to produce the final, completed assembly by integrating both the synteny map 

and genetic map data and manually discounting contigs that were supported only by single markers. 

The final assembly statistics in comparison to previous intermediary stages are given in Suppl. 

Table A.2. 
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2.2.5 Comparative genomics 
2.2.5.1 Genome sequences 

Arabidopsis thaliana (Araport 11), Schrenkiella parvula (v2.2) and Arabidopsis lyrata (v2.1) genome 

sequences and gene annotation were downloaded from Phytozome (Goodstein et al. 2012). The 

E. salsugineum gene annotation was obtained from Phytozome and lifted over to the assembly 

obtained from NCBI (GCA_000325905.2). 

 

2.2.5.2 Genome alignments and synteny analysis 

Genome alignments between the initial and corrected versions of the T. arvense assembly to E. 

salsugineum were carried out using MUMmer v4.0.0 (Marçais et al. 2018), with a minimal length of 

200 nt, followed by filtering for 1:1 matches and removing alignments smaller than 1000 bp. 

MCScan, a tool in the JCVI utility library (https://github.com/tanghaibao/jcvi) (Tang et al. 

2008), was used to identify the interspecies gene orthologs and syntenic relationships between T. 

arvense and comparison species. The ortholog relationships were obtained using the proteinic 

translation of the CDS and using the parameter --cscore=0.99. To define the syntenic blocks 

and the corresponding genomic coordinates, the parameters --minspan=15 and --

minsize=5 were also used. The genomic coordinates from the syntenic blocks were parsed to 

draw the syntenic relationships using Circos v0.69-8 (Krzywinski et al. 2009). 

 

A set of ancestral chromosomal blocks (ABKs) defined by (Murat et al. 2015) provides a reference 

point by which to understand genomic rearrangement in the context of Brassicaceae evolution. To 

facilitate this comparison in pennycress, the ortholog relationships between each gene in T. 

arvense and A. thaliana obtained in the synteny analysis were cross-referenced with a published gene 

list where each ortholog gene of A. thaliana had an assigned ABK block (Murat et al. 2015). 

 

2.3 Results 

2.3.1 An improved reference genome sequence 
The genome of T. arvense line MN106-Ref was assembled de novo from 476X (256 Gb) depth PacBio 

Sequel II CLR reads (~38 kb subread N50). The initial assembly attempts exceeded the genome 

size by ~53% with respect to the range of 459-539 Mbp total size estimated from flow cytometry 

and k-mer analysis (Suppl. Table A.1). Reducing the duplicated fraction, polishing, and 

scaffolding/re-scaffolding using a culmination of various approaches resulted in a final assembly 
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of ~526 Mbp, corresponding to ~97.5% of the upper limit of the flow cytometry-based estimate 

and representing an improvement of ~20% relative to the original assembly size. Scaffolding/re- 

scaffolding of the genome assembly was achieved in the end using a combination of Bionano 

optical, Hi-C contact, genetic linkage and comparative synteny maps. The final genome contains 

964 scaffolds, with ~83.6% of the total estimated size represented by seven large scaffolds, in 

agreement with the haploid chromosome number, demonstrating a vast improvement in overall 

contiguity in comparison to the previously-published draft assembly and bringing it to 

chromosome-level. The coding space is 98.7% complete on the basis of conserved core eukaryotic 

single-copy genes (BUSCO), with 92.1% being single-copy and 6.6% duplicated. Full descriptive 

statistics of the final version in comparison to T_arvense_v1 are given in Table 1; intermediary 

versions are summarised in Suppl. Table A.2. 

 

In addition to aforementioned duplicate contigs arising from initial assembly (see methods), 

alignments of the raw CLR reads to the new genome revealed the presence of what appeared to be 

a small number of collapsed repeats in scaffolds 1, 3, 5, and 7. These are typically larger than 25 

Table 1. Full descriptive statistics comparing the previously published T_arvense_v1 assembly to the 
present version T_arvense_v2. 

Assembly category T_arvense_v1 T_arvense_v2 

# contigs 44,109 4,714 

Largest contig - 41.6 Mbp 

contig N50 0.02 Mbp 13.3 Mbp 

# scaffolds 6,768 964 

# scaffolds (³50,000 bp) 1,807 607 

Largest scaffold 2.4 Mbp 70.0 Mbp 

Total length 343 Mbp 526 Mbp 

Total length (³50,000 bp) 276 Mbp 514 Mbp 

GC (%) 37.99 38.39 

N50 0.14 Mbp 64.9 Mbp 

NG50 0.05 Mbp 64.9 Mbp 

N75 0.06 Mbp 61.0 Mbp 

NG75 - 55.2 Mbp 

L50 561 4 

LG50 1,678 4 

L75 1,469 6 

LG75 - 7 

# N’s per 100 Kbp 5,165.00 0.51 
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Kbp and indicative of lingering misassemblies that remain unresolved in these loci (Figure 5). 

Further investigation revealed an overlap with tandem repeat clusters of 18S and 28S rRNA 

annotations at those loci on scaffolds 3 and 5, and a large supersatellite of 5S rRNA on scaffold 1. 

In addition, there were corresponding genes associated with organellar DNA at those loci on 

scaffolds 3 and 7, indicating either erroneous incorporation of plastome sequence during assembly 

or genuine nuclear integrations of plastid DNA (NUPTs) (Michalovova, Vyskot, and Kejnovsky 

2013). 

 

2.3.2 Comparative genomics 
Exploiting information from the genome of Eutrema salsugineum (Yang et al. 2013), a closely related 

species (Franzke et al. 2011) with a much smaller genome (241 Mbp) but the same karyotype (n=7), 

aided during re-scaffolding (see methods; Suppl. Figure A.3) and confirmed the synteny of the 

seven largest scaffolds between the two species (Suppl. Figure A.4). There is a high level synteny 

between the two genomes, with the exception of some regions on scaffolds 2, 3, 6 and 7. This 

could be due to the low gene density observed in the T. arvense genome towards the centre of each 

chromosome (see Chapter 3) and/or the high presence of dispersed repeats in those regions. 

 

Chromosome evolution in the Brassicaceae has been studied through chromosome painting 

techniques, and 24 chromosome blocks (A-X) have been defined from an ancestral karyotype of 

n=8 (Murat et al. 2015; Schranz, Lysak, and Mitchell-Olds 2006). These 24 blocks were identified 

in T. arvense based on gene homology and resulting synteny analysis between T. arvense and A. 

thaliana (Figure 6). While in general the distribution of the chromosomal blocks resembles that in 

Figure 5. Integrative Genome Viewer (IGV) snapshot of PacBio read coverage (top track) over the largest 
seven scaffolds of the genome, including distributions of genes (middle track) and transposable elements 
(bottom track). Spikes in coverage in scaffolds 1, 3, 5, and 7 and indicative of collapsed repeats which are 
typically larger than the average read length. 
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the close relatives E. salsugineum and S. parvula, some blocks are rearranged in a small section at the 

end of the scaffold representing chromosome 1, and at the beginning of chromosome 6. The first 

case involves the transposition of a small part of block C in between A and B, while chromosome 

6 has a possible inversion between the blocks O and W when compared to E. salsugineum and S. 

parvula. Overall, despite having an increase in genome size compared to E. salsugineum and S. parvula, 

T. arvense conserves all the ancestral Brassicaceae karyotype blocks. The synteny analysis also 

revealed intra-chromosomal rearrangements, but no obvious inter-chromosomal rearrangements. 

 

2.4 Discussion 
To facilitate robust biological inferences from genomic resources, it is important to have a reliable, 

high-quality genome assembly before further consideration can be given to downstream analyses. 

Over the last few years, significant efforts have been made towards the discovery of crucial traits 

and translational research in field pennycress, centering on MN106-Ref and the gene space 

information generated by (Dorn et al. 2013; 2015). Here, the reference genome has been re-

assembled de novo, using a combination of PacBio CLR and CCS technology, alongside PCR-free 

Illumina, Bionano optical maps, Hi-C sequencing, and genetic maps. By leveraging the advantages 

of each technology, this hybrid approach resulted in a markedly improved level of quality and 

contiguity, as demonstrated in comparative genomics and in the estimation of k-mer complexity 

Figure 6. Distribution of ancestral genomic blocks (top panel) along the seven largest scaffolds of T. arvense 
MN106-Ref (T_arvense_v2), and a comparison of these genomic blocks with Eutrema salsugineum, Schrenkiella 
parvula, Arabidopsis thaliana and Arabidopsis lyrata. 
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and completeness. Alongside high-quality annotations, this improved resource helps make T. 

arvense line MN106-Ref more accessible both as a field-based model species for genetics and 

epigenetics studies, and to provide tools for its domestication as a new and extremely hardy winter 

annual cash cover crop. 

 

Improved genomic resources help facilitate the general understanding of plant and evolutionary 

biology while also aiding plant breeding and crop improvement (Scheben, Yuan, and Edwards 

2016). For example, pennycress and Arabidopsis share many of the key features that made 

Arabidopsis the most widely studied model plant system (Meinke et al. 1998). The use of 

Arabidopsis for translational research and for identifying potential gene targets in T. arvense is 

possible and has been extensively validated (Chopra et al. 2018, 2020; Chopra, Folstad, and Marks 

2020; Jarvis et al. 2021; McGinn et al. 2019). Previous studies have suggested that over a thousand 

unique genes in T. arvense are represented by multiple genes in Arabidopsis and vice versa. 

Comparative genomics by way of synteny with E. salsugineum (Yang et al. 2013) revealed a high 

level of agreement, particularly between the protein-coding fraction of the genome, represented as 

conserved blocks in the largest seven scaffolds relative to the ancestral karyotype in Brassicaceae 

(Murat et al. 2015) (Figure 6). The detailed description of gene synteny between T. arvense and other 

Brassicaceae provides insights into its evolutionary relevance within lineage II. In addition, the 

difference in genome size between T. arvense and other species, despite the reduced level of gene 

duplication and the 1:1 gene relationship, can be explained by the large repetitive fraction present 

throughout both the centromeric and pericentromeric regions (see Chapter 3). In the absence of 

whole genome duplication events, this repetitive fraction indicates that the increased genome size 

may be a consequence of active TE expansion. This is therefore suggestive of a mechanism by 

which deleterious retrotransposon insertions must be mitigated in T. arvense. This could be 

explained by the high proportion of Gyspy retrotransposons in this species, usually located in 

heterochromatic regions, or by integration site selection (Sultana et al. 2017), or otherwise via 

silencing by small RNA activity and/or DNA methylation (Bucher, Reinders, and Mirouze 2012; 

Sigman and Slotkin 2016). Given the relatively high error rate of PacBio CLR reads (~10-15% 

before correction) with respect to circular consensus sequencing (CCS), the repetitive fraction 

would also help to explain the initial overestimation of the assembly size as a result of duplicated 

contigs. Several loci with highly overrepresented read coverage were also detected, indicative of 

repeat collapsing during the assembly process, often observed to be intersecting with 5S, 18S, and 

28S rRNA annotations. Such regions are difficult even for current long read technologies due to 

the large size of the tandem repeat units. 
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To fully explore the extent of genomic variability among the population, the assembly of additional 

accessions can also help to further enrich the resources available for the study of pennycress. In 

parallel to this study, a Chinese accession of T. arvense (YUN_Tarv_1.0) was assembled using 

Oxford Nanopore, Illumina HiSeq and Hi-C sequencing (Geng et al. 2021). This timely availability 

of an additional frame of reference also opens the door to a pan-genomic approach in evolutionary 

research, allowing for the better characterisation of structural variants, for example. Furthermore, 

the use of different sequencing technologies and assembly software provides an additional avenue 

to correct misassemblies and base calling errors in either case. The overall longer contigs assembled 

with PacBio CLR, for example, and the consideration of various genetic map data in addition to 

Hi-C, provides a greater resolution of scaffolds particularly throughout the centromere and 

pericentromeric regions (Suppl. Figure A.5). The reduced error-rate of PacBio CCS (used for 

polishing) is also reflected in the overall k-mer content, which is measured with a two-order 

magnitude higher consensus quality over scaffolds representing chromosomes and ~99% overall 

completeness for T_arvense_v2 (Suppl. Tables A.4-6), indicative of high-quality, error-free 

sequences more appropriate for variant calling, for instance. Nevertheless, combination of these 

resources with those of (Geng et al. 2021) and other, similar initiatives will allow for the 

investigation of such differences that might exist between accessions originating from different 

geographic locations around the world, helping to provide further insight into both structural 

variations and evolutionary dynamics. 
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3 Feature Annotation for Epigenomics 

3.1 Introduction 
While a high-quality reference genome is often necessary to make an accurate assessment in regards 

to genetic and epigenetic variability, it would not be complete without a complementary annotation 

by which to understand the relative biological consequences. Within the context of epigenomics, 

these consequences can be reflected in terms of gene expression (Jaenisch and Bird 2003; Xiaoyu 

Zhang et al. 2006; Lang et al. 2017), the activation and silencing of transposable elements (Mirouze 

et al. 2009; Tsukahara et al. 2009), and in the activity of small RNA (Aufsatz et al. 2002; Cao et al. 

2003; Matzke and Mosher 2014; Lei et al. 2015). A robust annotation which includes genes, TEs 

and the genomic loci associated with populations of small RNA are therefore of key interest during 

downstream analysis. Characterisation of tissue-specificity in terms of both a gene expression atlas 

and the DNA methylome also provides a frame of reference which is useful for both epigenetic 

research and to provide targets for genetic (or epigenetic) manipulation of field pennycress, in its 

placement as a newly-domesticated crop species. Herein, robust annotations are described for both 

protein-coding and non-coding genes, including putative transfer RNA (tRNA), ribosomal RNA 

(rRNA) and small nucleolar RNA (snoRNA) predictions, alongside small RNA (sRNA) producing 

loci, transposable element (TE) families, and predicted pseudogenes. The gene expression atlas is 

built from transcriptome data based on a panel of eleven different tissues and life stages, which in 

combination with whole-genome DNA methylation profiles of both roots and shoots provides a 

basis for exploring gene regulatory and/or epigenetic mechanisms within pennycress. The genome 

and resequencing information presented in this study will increase the value of pennycress as both 

a model and a tool for translational research, and accelerate pennycress breeding through the 

discovery of genes affecting important agronomic traits. 

 

3.2 Materials and methods 

3.2.1 Tissue preparation for RNA sequencing 
MN106-Ref seeds were surface-sterilised with chlorine gas for 1 h and stratified for 3 d at 4°C. For 

seedling-stage RNA extractions, seeds were plated on ½ MS medium supplement with 1% plant 
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Agar and stratified for 3 d at 4°C. For all other tissue collections, plants were sown on soil and 

grown in a climate-controlled growth chamber in long-day conditions (16/8 h light/dark at 

21°/16°C, light intensity 140 µE / m2*s, with 60% relative humidity; plants were watered twice 

per week. Two weeks after germination, plants growing on soil were vernalised at 4°C in the dark 

for 4 weeks, then moved back to the growth chamber. Samples were collected from 11 different 

tissues, each with three biological replicates (two in case of mature seeds); for each replicate, tissue 

was pooled from two individuals. Tissues included: one-week old shoots (from plate culture), one-

week old roots (from plate culture), rosette leaves, cauline leaves, inflorescences, open flowers, 

young green siliques (~0.5x0.5 cm), older green siliques (~1x1 cm), seed pods, green seeds, and 

mature seeds. 

 

3.2.2 RNA extraction and sequencing 
Total mRNA was extracted using the RNeasy Plant Kit (Qiagen, Valencia, CA, USA) and treated 

with DNase I using the DNA-free kit DNase Treatment and Removal Reagents (Ambion by life 

technologies, Carlsbad, CA, USA), following recommended manufacturer protocols. cDNA 

libraries were constructed using the NEBNext Ultra II Directional RNA Library Prep kit (New 

England BioLabs, Ipswich, MA, USA inc.) for Illumina following the manufacturer's protocol. 

Libraries were sequenced on a HiSeq 2500 instrument (Illumina, San Diego, CA, USA) as 125 bp 

paired-end reads. 

 

3.2.3 Transcriptome assembly 
Following quality control and adapter clipping with cutadapt v2.6 (M. Martin 2011), biological 

replicates for each of eleven tissue types from Illumina mRNA-seq libraries were aligned 

independently using STAR v2.5.3a (Dobin et al. 2013), then merged according to tissue type, prior 

to assembly via a reference-based approach. Each assembly was performed using Ryuto v1.3m 

(Gatter and Stadler 2019), and consensus reconstruction was then performed using TACO v0.7.3 

(Niknafs et al. 2017) to merge tissue-specific transcriptome assemblies. PacBio Iso-seq libraries 

from MN106-Ref were refined, clustered and polished following the Iso-seq3 pipeline 

(https://github.com/PacificBiosciences/IsoSeq), prior to alignment with STARlong and isoform 

collapsing using the cDNA_Cupcake (https://github.com/Magdoll/cDNA_Cupcake) suite. The 

Iso-seq data was later leveraged together with the Illumina mRNA-seq data to prioritise convergent 

isoforms using custom in-house scripting. 
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3.2.4 Genome annotation 
The newly-assembled genome for MN106-Ref was annotated using the MAKER-P v2.31.10 

(Campbell, Holt, et al. 2014; Campbell, Law, et al. 2014) pipeline on the servers provided by the 

EpiDiverse project, at ecSeq Bioinformatics GmbH (Leipzig, Germany). Plant proteins were 

obtained from the Viridiplantae fraction of UniProtKB/Swiss-Prot and combined with RefSeq 

sequences derived from selected Brassicaceae: Arabidopsis thaliana, Brassica napus, Brassica rapa, 

Camelina sativa and Raphanus sativus. TEs were obtained from RepetDB (Amselem et al. 2019) for 

selected plant species: Arabidopsis lyrata, Arabidopsis thaliana, Arabis alpina, Brassica rapa, Capsella 

rubella, and Schrenkiella parvula (Eutrema parvulum). Repeat library construction was carried out using 

RepeatModeler v1.0.11 (Smit and Hubley 2008) following basic recommendations from MAKER-

P (Campbell, Holt, et al. 2014). Putative gene fragments were filtered out following BLAST search 

to the combined Swiss-Prot + RefSeq protein plant database after exclusion of hits from RepetDB. 

The de novo library was combined with a manually curated library of plant sequences derived from 

repbase (Bao, Kojima, and Kohany 2015). Genome masking is performed with RepeatMasker 

v4.0.9 (Smit 2004) as part of the MAKER-P pipeline. Protein-coding genes, non-coding RNAs and 

pseudogenes were annotated with the MAKER-P pipeline following two iterative rounds under 

default settings, using (i) transcript isoforms from Illumina mRNA-seq and PacBio Iso-seq data, 

(ii) protein homology evidence from the custom Swiss-Prot + RefSeq plant protein database, and 

(iii) the repeat library and TE sequences for masking. The initial results were used to train gene 

models for ab initio predictors SNAP v2006-07-28 (Korf 2004) and Augustus v3.3.3 (Stanke et al. 

2006), which were fed back into the pipeline for the subsequent rounds. The final set of annotations 

were filtered based on Annotation Edit Distance (AED) < 1 except in cases with corresponding 

PFAM domains, as derived from InterProScan v5.45-80.0 (Jones et al. 2014). The tRNA 

annotation was performed with tRNAscan-SE v1.3.1 (Lowe and Eddy 1997) and the rRNA 

annotation with RNAmmer v1.2 (Lagesen et al. 2007), respectively. The snoRNA homologs were 

derived using Infernal v1.1.4 (Nawrocki and Eddy 2013) from plant snoRNA families described in 

(Patra Bhattacharya et al. 2016). A small phylogeny based on gene orthologs and duplication events 

in comparison to selected Brassicaceae (A. lyrata, A. thaliana, B. rapa, S. parvula, and E. salsugineum) 

was performed with OrthoFinder v2.5.2, and the resulting species tree is rooted using STRIDE 

(David M. Emms and Kelly 2017) and inferred from all genes using STAG (David M. Emms and 

Kelly 2018). 
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3.2.5 Transposable element annotations 
Two de novo annotation tools, EDTA v1.7.0 (Ou et al. 2019) and RepeatModeler v2.0 (Flynn et al. 

2020), were used to annotate TEs independently. For EDTA the following parameters were used 

in addition to defaults: --species others, --step all, --sensitive 1, --anno 1, and              

--evaluate 1. For RepeatModeler2 the additional parameters were -engine ncbi and                       

-LTRStruct. The outputs of both tools were evaluated by manual curation. First, tblastn was 

used to align each TE consensus with the transposase database obtained from repbase, and the 

retrotransposon domains (GAG, Pol, Env, etc.) were viewed in turn using dotter (Sonnhammer 

and Durbin 1995). Sequences with multiple paralogs were mapped back to the genome and 

manually extended to determine the full length boundary of each TE. A total of 107 full length, 

representative Copia and Gypsy families were successfully evaluated. The TE consensus from 

RepeatModeler2 was selected as the most accurate model, based on full length paralogs. 

RepeatMasker was then used to construct the GFF3-like file from the FASTA file from 

RepeatModeler2, with the optional settings:       -e ncbi -q -no_is -norna -nolow -

div 40 -cutoff 225. The perl script rmOutToGFF3.pl was used to generate the final GFF3 

file. 

 

3.2.6 Small RNA annotations 
3.2.6.1 sRNA plant material. 

Seeds were sterilised by overnight incubation at −80°C, followed by 4 hours of bleach treatment 

at room temperature (seeds in open 2 mL tube in a desiccator containing a beaker with 40 mL 

chlorine-based bleach (<5%; DanKlorix, Colgate-Palmolive, New York, NY, USA) and 1 mL HCl 

(32%; Carl Roth, Karlsruhe, Germany)). For rosette, inflorescence and pollen samples, seeds were 

stratified in the dark at 4°C for six days prior to planting on soil, then cultivated under growth 

chamber conditions of 16-23oC, 65% relative humidity, and a light-dark photoperiod of 16h:8h 

under 110-140 µmol m-2 s-1 light. Rosette leaves were harvested after two weeks of growth. For 

inflorescence and pollen, six week old plants were vernalised for four weeks at 4°C in a light-dark 

photoperiod of 12h:12h under 110-140 µmol m-2 s-1 light.  Two weeks after bolting, inflorescence 

and pollen was collected. Pollen grains were collected by vortexing open flowers in 18% sucrose 

for 5 min followed by centrifugation at 3,000g for 3 min in a swinging bucket rotor. For root 

samples, seeds were stratified for six days at 4°C in the dark on ½ MS media. Plants were grown 

in 3-4 mL ½ MS medium plates in long-day (16 hours) at 16°C. Root samples were collected 12-

14 days after stratification.   
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3.2.6.2 sRNA extraction and library preparation 

Total RNA was extracted by freezing collected samples with liquid nitrogen and grinding with a 

mortar and pestle with Trizol reagent (Life Technologies, Carlsbad, CA, USA). Then, total RNA 

(1 µg) was treated with DNase I (Thermo Fisher Scientific, Waltham, MA, USA) and used for 

library preparation. Small RNA libraries were prepared as indicated by the TruSeq small RNA 

library prep kit (Illumina, San Diego, CA, USA), using 1 µg of total RNA as input, as described by 

the TruSeq RNA sample prep V2 guide (Illumina, San Diego, CA, USA). Size selection was 

performed using the BluePippin System (SAGE Science, Massachusetts, USA). Single-end 

sequencing was performed on a HiSeq3000 instrument (Illumina, San Diego, CA, USA). 

 

3.2.6.3 sRNA loci annotation 

Raw FASTQ files were processed to remove the 3′-adapter and quality controlled with trim_galore 

v0.6.6 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) using  trim_galore -q 

30 --small_rna. Read quality was checked with FastQC v0.11.9 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The reference annotation of 

sRNA loci was created following the steps indicated by (Lunardon et al. 2020).  In short, each 

library was aligned to the reference genome independently using ShortStack v3.8.5 (Axtell 2013b), 

with default parameters, to identify clusters of sRNAs de novo with a minimum expression threshold 

of 2 reads per million (RPM). sRNA clusters from all libraries of the same tissue were intersected 

using BEDTools v2.26.0 multiIntersectBed (Quinlan and Hall 2010) with default parameters, and 

only those loci present in at least three libraries were retained. For each tissue, sRNA clusters 25 

nt apart were padded together with the bedtools merge -d option. sRNA loci with an expression 

of <0.5 RPM in all libraries of each tissue were also removed. Finally, sRNA loci for all different 

tissues were merged in a single file retaining tissue of origin information with bedtools merge -o 

distinct options. miRNAs predicted by the ShortStack tool were manually curated following the 

criteria of Axtell (2013a): Maximum  hairpin length of 300 nt;  ≥ 75% of reads mapping to the 

hairpin must belong to the miRNA/miRNA* duplex;  For the miRNA/miRNA* duplex: No 

internal loops  allowed, two-nucleotide 3′ overhangs, maximum five mismatched bases, only three 

of which are nucleotides in asymmetric bulges; Mature miRNA sequence should be between 20 nt 

and 24 nt. 
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3.2.7 Expression atlas 
Gene expression was measured from the same tissue-specific STAR alignments taken prior to 

merging biological replicates for transcript assembly, excluding coverage outliers “mature seed” 

and “green old silique”. A total of 27 samples from 9 tissues were therefore considered for gene 

expression analysis. Raw counts were generated using subread featureCounts v2.0.1 (Liao, Smyth, 

and Shi 2014) and subsequently normalised using the trimmed mean of M-values (TMM) 

(Robinson and Oshlack 2010) derived from edgeR v3.34 (Robinson, McCarthy, and Smyth 2010). 

Averaged expression counts by group were taken for tissue specificity evaluation using the Tau (τ) 

algorithm (Yanai et al. 2005), as implemented in the R package tispec v0.99.0 

(https://rdrr.io/github/roonysgalbi/tispec/), which provides a measure of τ in the range of 0-1 

where 0 is non/low specificity and 1 indicates high/absolute specificity. 

 

3.2.8 DNA methylation 
Genomic DNA was extracted from roots and shoots of 2-week-old seedlings grown on ½ MS 

medium with 0.8% Agar and 0.1% DMSO. Seedlings were grown vertically in 16h/8h light/dark; 

at the time of sampling, roots were separated from shoot tissue with a razor blade and the plant 

tissue was flash-frozen in liquid nitrogen. Genomic DNA was extracted from ground tissue using 

the DNeasy Plant Mini kit (QIAGEN, Hilden, Germany). Libraries for WGBS were prepared using 

the NEBNext UltraII DNA Library Prep kit (New England Biolabs). Adapter-ligated DNA was 

treated with sodium bisulfite using the EpiTect Plus Bisulfite kit (QIAGEN, Hilden, Germany) 

and amplified using the Kapa HiFi Uracil + ReadyMix (Roche, Basel, Switzerland) in 10 PCR 

cycles. WGBS libraries were sequenced on an Illumina HiSeq2500 instrument with 125 bp paired-

end reads. 

 

The WGBS libraries were processed using the nf-core/methylseq v1.5 pipeline 

(10.5281/zenodo.2555454), combining bwa-meth v0.2.2 (Pedersen et al. 2014) as an aligner and 

MethylDackel v0.5.0 (https://github.com/dpryan79/MethylDackel) for the methylation calling. 

The default parameters were used for the entire workflow, with the exception of the methylation 

calling where the following arguments were used: -D 1000 --maxVariantFrac 0.4                   

--minOppositeDepth 5 --CHG --CHH --nOT 3,3,3,3 --nOB 3,3,3,3 -d 3. Only 

cytosines with a minimum coverage of 3X were kept for the subsequent analysis. Further 

comparisons between the methylated cytosines and the genome annotation were performed using 

BEDTools v2.27.1 (Quinlan and Hall 2010). 
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3.3 Results 

3.3.1 Transcriptome assembly 
Total cDNA was sequenced using strand-specific RNA-seq from eleven tissues, including rosette 

leaves, cauline leaves, inflorescences, open flowers, young green siliques, old green siliques, green 

seeds, mature seeds, seed pods, roots of 1-week-old seedlings, and shoots of 1-week-old seedlings 

(Suppl. Table B.1). Reads from each tissue sample were aligned to the newly-assembled MN106-

Ref genome resulting in unique mapping rates in the range of ~76-91%, with the exception of old 

green silique (19%), green seed (59%), and mature seed (12%). The majority of unmapped reads in 

each case were due to insufficient high-quality read lengths. Independent, tissue-specific 

transcriptome assemblies were constructed and combined into a multi-sample de novo assembly, 

yielding 30,650 consensus transcripts. These were further refined by prioritising isoforms 

supported by Iso-seq data, resulting in 22,124 high-quality consensus transcripts taken forward to 

inform gene models. 

 

3.3.2 Protein-coding genes 
In addition to the expression data, the gene models were informed by protein homology using a 

combined database of Viridiplantae from UniProtKB/Swiss-Prot (Boutet et al. 2007) and selected 

Brassicaceae from RefSeq (Pruitt et al. 2012). Following initial training and annotation by ab 

initio gene predictors, protein-coding loci were further annotated with InterPro to provide PFAM 

domains, which were combined with a BLAST search to the UniProtKB/Swiss-Prot Viridiplantae 

database to infer gene ontology (GO) terms. In accordance with MAKER-P recommendations 

(Campbell, Holt, et al. 2014), the final set of 27,128 protein-coding loci were obtained by filtering 

out those with an annotation edit distance (AED) score of 1 unless they also contained a PFAM 

domain. Approximately 95% of loci had an AED score < 0.5 (Suppl. Figure B.1), demonstrating a 

high level of support with the available evidence, and 21,171 (~78%) were also annotated with a 

PFAM domain. Analysis of gene orthologs and paralogs among related Brassicaceae confirmed the 

close relationship with E. salsugineum, with the protein-coding fraction occupying a genome space 

comparable to related species (Figure 7a). A total of 4,433 gene duplication events were recorded 

with OrthoFinder, comparable to E. salsugineum (5,108), but fewer than in B. rapa (11,513), for 

example. 

 

Full descriptive statistics of the new annotation are given in Table 2, in comparison to the original 

T_arvense_v1 annotation (Dorn et al. 2015) lifted over to the new genome with Liftoff v1.5.2 
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(Shumate and Salzberg 2020), where applicable. Gene feature distributions are comparable between 

T_arvense_v1 and the present assembly of MN106-Ref (hereafter referred to as T_arvense_v2) 

(Suppl. Figure B.2). Unique genes that were successfully lifted over from the previous version were 

included as a separate fraction in the final annotation (source: T_arvense_v1), resulting in 32,010 

annotated genes in total. Up to ~95.2% completeness can be obtained by combining the full set of 

both the current and previous annotations according to a BUSCO evaluation of 2121 conserved, 

single-copy orthologs. The improved contiguity of the genome space allowed for the resolution of 

genes such as the tandem duplicated MYB29 and MYB76, which were concatenated in the previous 

version (Figure 7b). 

Figure 7. Feature annotations within T. arvense var. MN106-Ref. a) Rooted species tree inferred from all 
genes, denoting node support and branch length in sibstitutions per site, and horizontal stacked bar chart 
comparing the genetic fraction in pennycress with other Brassicaceae sp. (ns = non-specific orthologs, ss = 
species-specific orthologs, un = unclassified genes, nc = non-coding/intergenic fraction). b) Comparison of 
gene macrosynteny between v1 and v2 of the genome, and a microsynteny example of genes MYB29 and 
MYB76, which are resolved in the v2 annotation. c) Small RNA biogenesis loci length and expression values 
in each of four tissues. d) Overall repetitive content in the genome as discovered by RepeatMasker2, and 
relative abundance of TEs within the fraction of repetitive elements. 
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3.3.3 Non-coding loci 
In addition to protein-coding genes, the annotation includes non-coding RNA (ncRNA) genes, 

pseudogenes, and TEs. Descriptive annotation statistics have been summarised in Table 2. While 

many of these annotation features in T. arvense were similar to those found in other plant species, 

several unique patterns were observed, which are described in detail below. ncRNA annotations 

were inferred from either sequence motifs (tRNA, rRNA, snoRNA) or from sequencing data 

(siRNA, miRNA), where appropriate. Clusters of both 5S rRNA and tandem repeat units of 18S 

and 28S rRNA were predicted with RNAmmer (Lagesen et al. 2007), which were often observed 

in relative proximity to loci identified with Tandem Repeats Finder v4.09.1 (Benson 1999) and 

putatively associated with centromeric repeat motifs (not shown). Of the largest seven scaffolds, 

only scaffolds 4 and 7 carried no such annotations. Notably, several large clusters of 5S rRNA 

genes were interspersed throughout the pericentromeric region of scaffold 1, whereas the 

remaining four scaffolds contained 18S and 28S rRNA gene annotations. Finally, 243 homologs 

were identified from 114 snoRNA families. 

Table 2. Summary of feature annotations in comparison to the original assembly version 
T_arvense_v1. 

Type T_arvense_v1 T_arvense_v2 diff. 

(A) Protein-coding genes    

   Total number of loci 27,390 27,128 -262 

   Total number of unique loci 4,780 5,034 +254 

   Total number of transcript isoforms - 30,650 +30,650 

   Number of matching loci with changes in CDS - - +14,102 

   Number of matching loci with changes in 
UTR(s) - - +22,559 

   Loci containing one of more PFAM domain - 21,171 +21,171 

   Loci annotated with one or more GO term - 13,074 +13,074 

(B) Non-coding genes    

   tRNA - 1,148 +1,148 

   rRNA clusters (<25 Kbp) - 63 +63 

   snoRNA - 243 +243 

   Small interfering RNA (siRNA) - 19,373 +19,373 

   Micro RNA (miRNA) - 71 +72 

(C) Other gene types    

   Pseudogenes (set II Ys) - 44,490 +44,490 

   Transposable element genes - 423,251 +423,251 
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3.3.4 Transposable elements 
In total, 423,251 TEs were identified, belonging to 10 superfamilies and covering ~61% of the 

genome (Figure 7d). Retrotransposons (75% of all TEs are Gypsy elements; 10% Copia; 4% LINE) 

by far outnumbered DNA transposons (3% Helitrons; 1% hAT; 2% CACTA; 1% Pif-Harbinger; 

2% MuLE). A detailed breakdown of repeats can be found in Table 3. As the most abundant 

retrotransposon superfamily, Gypsy elements accounted for 46% of the total genome space, which 

is consistent with a high abundance observed in the pericentromeric heterochromatin of E. 

salsugineum, where centromere expansion is thought to have been caused by Gypsy 

proliferation (Zhang et al. 2020). In addition, we identified 359 protein-coding genes located fully 

within TE-bodies that could represent Pack-TYPE elements and contribute to gene shuffling 

(Catoni et al. 2019). Among these elements 153 were intersecting with mutator-like elements 

suggesting they correspond to Pack-MULE loci. TEs were located primarily in low gene density 

regions, while the fraction of TE-contained genes were randomly distributed. 

 

3.3.5 Small RNA 
In total, 19,386 siRNA loci were identified. More than 98% of these loci corresponded to 

heterochromatic 23-24 nt siRNA loci, with only 196 producing 20-22 nt siRNAs. The sRNA loci 

were expressed unevenly across tissues, as inferred from prediction with data from different tissues. 

Only 2,938 loci were shared across all four tissues studied (rosette leaves, roots, inflorescences, and 

pollen). Inflorescences were the major contributor with 6,728 private loci. Despite these 

Table 3. Detailed per-class statistics of the transposable element fraction of the T. arvense genome. 

Family Key Name Count bp masked % masked 

hAT DTA 7,449 3,312,483 0.63 

CACTA DTC 12,085 6,997,150 1.33 

Harbinger DTH 6,187 1,832,186 0.35 

MuLE DTM 18,022 8,017,253 1.53 

Mariner DTT 706 101,162 0.02 

Helitron DHH 24,151 11,129,635 2.12 

LINE RIC,RII,RIL,RIX 26,284 11,390,482 2.18 

Copia RLC 37,544 31,386,966 5.97 

Gypsy RLG 282,353 241,563,874 45.96 

LTR RLA 9,506 5,085,962 0.97 



3 Feature Annotation for Epigenomics 

 61 

differences between tissues, we observed similar overall patterns in terms of locus length, 

expression (Figure 7c), and complexity (Suppl. Figure B.3). 

 

Altogether, sRNA loci accounted for ~8 Mbp or ~1.5% of the assembled MN106-Ref genome. 

Of the seven largest scaffolds, where the majority of genes are located, the total coverage of siRNA 

loci ranged between 1.5 - 2% and the loci appeared to be preferentially concentrated at the 

boundary between TEs and the protein-coding gene fraction of the genome. In further exploration, 

the seven largest scaffolds were partitioned into gene-enriched and gene-depleted regions, based 

on a median of 14 genes per Mbp and a mean of 54.2 genes per Mbp. Gene-enriched loci were 

defined to be those above the mean, and gene-depleted loci as those below. At the 

(pseudo)chromosomal level, sRNA loci correlated with gene-enriched regions and were scarce in 

regions with high TE content. This trend is in contrast to that observed in A. thaliana (Hardcastle, 

Müller, and Baulcombe 2018) but resembles what has been observed, for example, in maize (He et 

al. 2013) and tomato (Tomato Genome Consortium 2012). 

 

Phased secondary siRNAs (phasiRNAs) are a class of secondary sRNAs that, due to the way they 

are processed, produce a distinct periodical pattern of accumulation (Axtell 2013a).  In the T. 

arvense genome, we observed 139 loci with such phased patterns. In contrast to the general notion 

that phasiRNAs are typically 21 nt long (Lunardon et al. 2020), we found 24 nt siRNAs to be 

dominant in 133 of these loci. 

 

3.3.5.1 Micro RNAs 

MicroRNA (miRNA)-encoding genes were predicted using a combination of ShortStack and 

manual curation (see Methods section 3.2.6). A total of 72 miRNA-producing loci were identified, 

including 53 that were already known from other species, and 19 which appeared to be species-

specific. Most of the identified families were produced from only one or two loci; miR156 and 

miR166 were produced by the most loci, with eight and five family members, respectively. A total 

of 21 out of 25 families in T. arvense are found in other Rosids, and three (miR161, miR157, and 

miR165) only in other Brassicaceae. One family, miR817, is also present in rice. There is a strong 

preference for 5’-U at the start of both unique and conserved miRNAs (Suppl. Figure B.4), in line 

with previous reports (Voinnet 2009). The expression level of both conserved and novel miRNA 

families was compared between tissues, showing that the ten most highly-expressed across all 

tissues are conserved families whereas novel miRNA demonstrates a marginal tendency to be more 

lowly-expressed or with potential for differential expression (Suppl. Figure B.5). 
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3.3.5.2 sRNA genomic origin loci 

When overlaying sRNA loci with the complete annotation of genes and TEs, most sRNAs localised 

to the intergenic space. A substantial fraction, especially 20-22 nt sRNAs, were however produced 

from intronic sequences (Suppl. Figure B.6a). Helitrons make up only 1.5% of the genome space, 

yet more than 5% of sRNA biogenesis loci overlap with this type of TE. Most sRNA loci (93.0%) 

fell within 1.5 kbp of annotated genes or TEs (Suppl. Figure B.6b,c). As expected, 23-24 nt sRNAs 

were more frequently associated with TEs, whereas 20-22 nt sRNAs more often produced by 

coding genes (Axtell 2013a). 

 

3.3.6 Pseudogenes 
In accordance with the MAKER-P protocol, pseudogenes (Ψ) were predicted in intergenic DNA 

with the ShiuLab pseudogene pipeline (Zou et al. 2009). A total of 44,490 set II pseudogenes were 

annotated, exceeding those in A. thaliana (~3,700) or rice (~7,900) by one order of magnitude. A 

total of 35,818 pseudogenes were observed overlapping with TEs, whereas 8,672 pseudogenes 

were either concentrated in intergenic space or more towards the protein-coding gene complement 

of the genome, and thus perhaps less likely to have arisen from retrotransposition. Approximately 

59.2% of these contained neither a nonsense nor a frameshift mutation, indicating either (i) that 

the regulatory sequences of the pseudogenes were silenced first, (ii) a pseudo-exon which may be 

linked to another non-functional exon, or (iii) a possible undiscovered gene. 

 

3.3.7 Gene expression atlas 
Tissue-specific expression patterns could be elucidated from cDNA sequences arising from 11 

different tissues or developmental stages. The complete expression atlas is provided in Nunn et al. 

(2022). The relative extent of tissue-specific gene expression was evaluated using the Tau (τ) 

algorithm (Yanai et al. 2005), from the normalised trimmed mean of M-value (TMM) counts in all 

tissues (Robinson and Oshlack 2010). To preclude potential biases caused by substantial 

differences in library size, low-coverage samples from mature seeds and old green siliques were 

excluded. In total, 4,045 genes had high or even complete tissue specificity (τ = 0.8 - 1.0), whereas 

5,938 genes had intermediate (0.2 - 0.8), and 6,107 had no or low specificity (0 - 0.2); the remaining 

genes were ignored due to missing data. The relative breakdown of each specificity fraction by 

tissue type is shown in Figure 8a, with “roots”, “green seeds”, and “inflorescences” representing 

the tissues with the greatest proportion of high or complete specificity genes. The relative 
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log2(TMM) expression values of the top 30 most highly expressed genes in each tissue, given a high 

or complete specificity score, are plotted in Figure 8b with respect to the overall mean expression 

per gene across all included tissues. These include, for example, genes with homology to 

EXTENSIN 2 (EXT2; A. thaliana) in “roots”, CRUCIFERIN (BnC1; B. napus) in “green seeds”, 

and PECTINESTERASE INHIBITOR 1 (PMEI1; A. thaliana) in “inflorescences”, and “open 

flowers”. 

 

 

 

Figure 8. Regulatory dynamics in pennycress. a) Relative fraction of genes in each tissue for low (0 – 0.2), 
intermediate (0.2 – 0.8) and high/absolute specificity (0.8 – 1.0) subsets. b) Log2(TMM) expression values 
of the top 30 most highly expressed genes in each tissue, relative to the mean across all tissues, from the 
subset of genes with a high/absolute tau specificity score. c) Distribution of average DNA methylation for 
different genomic features, by cytosine sequence context. d) DNA methylation along genes (top) and TEs 
(bottom), including a 2 kb flanking sequence upstream and downstream. DNA methylation was averaged in 
non-overlapping 25 bp windows. 
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3.3.8 DNA Methylation 
Understanding the distribution of cytosine methylation in the MN106-Ref line can provide a basis 

for comparison in other studies which seek to use the reference genome as a resource, and can also 

help characterise its role in the genomic landscape. Previous studies in model species have shown 

it to be associated with heterochromatin and transcriptional inactivation of TEs and promoters, 

but also with higher and more stable expression when present in gene bodies (Zhang, Lang, and 

Zhu 2018). In plants, DNA methylation occurs in three cytosine contexts, CG, CHG, and CHH 

(where H is any base but G), with the combined presence of CG, CHG and CHH methylation 

usually indicative of heterochromatin formation and TE silencing, while gene body methylation 

consists only of CG methylation (Bewick and Schmitz 2017). 

 

In light of the high TE density in T. arvense, genome-wide DNA methylation by whole-genome 

bisulfite sequencing (WGBS) was subsequently analysed in shoots and roots of 2-week-old 

seedlings. Genome wide, 70% of cytosines were methylated in the CG context, 47% in the CHG 

context, and 33% in the CHH context. In line with findings in other Brassicaceae, methylation at 

CG sites was consistently higher than at CHG and CHH (Figure 9a; Suppl. Figure B.7). When 

cross-referencing the WGBS data against the newly-assembled MN106-Ref genome annotation, 

high levels of DNA methylation (mostly mCG) co-localised with regions of dispersed repeats and 

TEs towards the centre of each chromosome. Conversely, methylation was depleted in gene-rich 

regions (Figure 9a,b). In line with this, DNA methylation was consistently high along TEs, 

particularly in the CG context (Figure 8c). In contrast to closely-related species E. 

salsugineum (Bewick et al. 2016; Niederhuth et al. 2016), DNA methylation dropped only slightly in 

regions flanking TEs, which might be related to the overall dense TE content in T. arvense. 

 

In contrast to TE and promoter methylation, gene body methylation (gbM) is generally associated 

with medium-to-high gene expression levels (Xiaoyu Zhang et al. 2006; Zilberman et al. 2007). In 

A. thaliana, gbM occurs in ~30% of protein-coding genes in A. thaliana, with DNA methylation 

increasing towards the 3’-end of the gene (Xiaoyu Zhang et al. 2006), whereas the close relative to 

field pennycress, E. salsugineum, lacks gbM (Bewick et al. 2016; Niederhuth et al. 2016). gbM was 

also largely absent in T. arvense (Figure 8d), suggesting that it was lost at the base of this clade. 
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3.4 Discussion 
Previous annotations obtained from the original assembly of T. arvense were herein further enriched 

with additional gene models for protein-coding loci in the newly-assembled genome, and now 

include non-coding genes for tRNAs, rRNAs, siRNAs, miRNAs, and snoRNAs, alongside 

predicted pseudogenes and TEs (Table 2). Identification of such features, alongside tissue-specific 

cytosine methylation and gene expression, aid in disentangling the coalescent and multifaceted 

nature of the epigenetic landscape and in understanding its role for example in regulating gene 

expression. 

 

The improved genome assembly for line MN106-Ref, containing seven chromosome-level 

scaffolds, revealed two main features in its genomic landscape: a large repetitive fraction populated 

with TEs and pseudogenic loci in pericentromeric regions, and a gene complement densely 

concentrated towards the telomeres (Figure 9). Whilst the protein-coding gene fraction of the 

genome is similar in size to other closely-related Brassicaceae (Wang et al. 2011), the large repetitive 

fraction suggests an increased genome size driven by TE expansion (Beric et al. 2021). In addition, 

the spatial distribution of sRNA loci followed the gene density but was concentrated predominantly 

at the boundary between genes and TEs. Overall levels of methylation are high throughout the 

genome, likely owing to the large repetitive fraction where TEs are typically silenced in order to 

preserve genome stability, whereas gbM is low throughout the gene complement. This low gbM is 

not unsurprising relative to other Brassicaceae such as E. salsugineum, but differs from the model 

plant A. thaliana and the distribution typically expected in other plant species. Further exploration 

of mechanisms involved in the regulation of gbM may yield further insight to the evolution of 

epigenetic phenomena in T. arvense among other Brassicaceae. For example, the active demethylase 

REPRESSOR OF SILENCING 1 (ROS1) functions as genomic “methylstat” in A. thaliana (Lei 

et al. 2015; Zhang, Lang, and Zhu 2018). A helitron TE in the ROS1 gene promoter negatively 

controls ROS1 expression, whereas an RdDM target sequence in closer proximity to the 5’ UTR 

upregulates transcription when methylated, thus leading to increased demethylase activity and 

concomitantly reducing genome-wide levels of methylation (including its own promoter). An 

exploration of the closest gene homolog in T. arvense reveals instead a copia TE occupying the 

region upstream in its promoter, indicating a possible functional difference which may have 

evolved independently of A. thaliana. A combined resource with different co-dependant feature 

annotations facilitates a layer of detail which is not appreciable e.g. with gene annotations alone. 
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In addition, the newly improved assembly features will allow for efficient combining of traits and 

help accelerate future breeding practices in T. arvense, as it would provide knowledge about the gene 

localisation and the linkage of genes of interest. For example, the improved genome assembly has 

revealed that multiple domestication syndrome genes (ALKENYL HYDROXALKYL 

PRODUCING 2 - like, TRANSPARENT TESTA 8, EARLY FLOWERING 6) (Suppl. Figure 

B.8) are located on a single chromosome. With the availability of improved genomic resources, 

increasing interest has also turned towards understanding tissue-specific gene regulation to reduce 

Figure 9. Overview of the seven largest scaffolds representing chromosomes in T. arvense var. MN106-Ref 
(T_arvense_v2). The tracks denote a) DNA methylation level in shoot tissue (CG: grey; CHG: black; CHH: 
pink; 200 Kbp window size), and density distributions (1 Mbp window size) of b) protein-coding loci, c) 
sRNA loci, d) Gypsy retrotransposons, e) Copia retrotransposons, f) LTR retrotransposons, and g) 
pseudogenes. 
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pleiotropic effects upon direct targeting of genes during crop improvement. The datasets generated 

herewith help elucidate the extent of tissue specificity and provide useful information for gene 

modification targets. For example, fatty-acid desaturase 2 gene (FAD2; Ta12495 - T_arvense_v1) is 

involved in the oil biosynthesis pathway and is expressed in many different tissues analysed in this 

study. FAD2 gene knockout should result in higher levels of oleic acid in the seed oil and provide 

an opportunity for pennycress oil to be used in food applications. It has been observed, however, 

that knockout mutants in pennycress display delayed growth and reduced seed yields in spring-

types (Jarvis et al. 2021), and reduced winter survival in the winter-types (Chopra et al. 2019), as a 

purported consequence of its broad expression profile. Similarly, genes such as AOP2-LIKE 

(Tarvense_05380 - T_arvense_v2) have been targeted to reduce glucosinolates in pennycress seed 

meal for food and animal feed applications (Chopra et al. 2020). However, AOP2-LIKE, too, is 

expressed in many tissues during development, which might explain why knockout plants with 

reduced glucosinolate content are reportedly more susceptible to insect herbivores such as flea 

beetles feeding on rosette leaves and root tissues (Jez et al. 2021). The tissue-specific expression 

data suggest that, to overcome this challenge, one could alternatively target genes such as 

Glucosinolate Transporter 1 (GTR1; Tarvense_14683), which is expressed specifically in 

reproductive tissues. This might achieve the desired reductions of seed glucosinolates while 

avoiding developmental defects. Such approaches have been effectively used in Arabidopsis and 

many Brassica species (Andersen and Halkier 2014; Nour-Eldin et al. 2012). 

 

In conclusion, the newly-assembled genome of T. arvense line MN106-Ref offers new insights into 

the genome structure of this species in particular, and of lineage II of the Brassicaceae more 

generally, and it provides new information and resources relevant for comparative genomic studies. 

The tools presented here provide a solid foundation for future studies both in an alternative model 

species to investigate epigenetics in plant ecology, and as an emerging crop. 
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4 Bisulfite Sequencing Methods 

4.1 Introduction 
Though it is by no means the only epigenetic mark prevalent throughout the genome, DNA 

methylation is involved in a wide range of molecular processes and is among the most-studied base 

modifications in this context. Chapter 1 of this thesis addresses the mechanisms of maintenance, 

distribution and potential ecological consequences of different patterns in DNA methylation 

variation- but how exactly do we detect these differences in the first place? One technique that has 

emerged at the forefront of epigenetic research is bisulfite sequencing: a distinct adaptation of 

short-read NGS technology which enables the characterisation of genome-wide methylation 

profiles at a nucleotide-level resolution. 

 

The technique, devised by (Frommer et al. 1992) and refined for modern sequencing techniques 

by (Lister et al. 2008) and (Cokus et al. 2008), involves the treatment of extracted DNA from test 

samples with sodium bisulfite, a deaminating agent which mediates the conversion of unmethylated 

cytosine nucleotides into uracil. Cytosine bases that carry methyl groups (e.g. 5-methylcytosine, 5-

hydroxymethylcytosine) are left unaffected by the treatment and remain in their original 

unconverted state. As the resulting single-stranded (ss)DNA then undergoes PCR amplification, 

uracil pairs with adenosine rather than the original guanosine during replication, which in turn pairs 

with thymine in the final, amplified product in place of the original cytosine. Bisulfite-treated 

samples can thus be subjected to standard sequencing protocols and used to generate sequencing 

reads, which carry epigenetic information. Once treated, the interpretation of sequenced reads 

effectively reframes the research question from a biological to a computational, algorithmic 

concern. 

 

In line with typical NGS applications, the following step is usually read alignment of the sequencing 

reads to a reference genome assembly (as described in Chapter 1). Sequence alignment of short 

reads typically employs a “seed-and-extend” heuristic to shortlist possible locations on the 

reference genome which can be extended into a full alignment using a scoring approach. Such 

alignment presents some issues when handling bisulfite data, however, as thymine residues can no 

longer be considered as entirely independent entities to cytosine due to the base conversion during 
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treatment. Read alignment algorithms usually operate based on scoring matrices, from which an 

overall likelihood can be inferred for the alignment of two sequences based on the number and 

position of matches, mismatches, insertions, and deletions between nucleotides. With bisulfite-

treated reads, the problem arises in that reference cytosines can conceptually now match with 

thymines, but not vice versa. Existing algorithms are often not built to handle this asymmetry 

between bases, so the solution is either to i) adapt these tools in some way further, or ii) to operate 

specifically with new algorithms designed for bisulfite data. Several tools now exist in 

representation of either category, including notably Bismark (Krueger and Andrews 2011) and 

BWA-meth (Pedersen et al. 2014), which adapt the popular standard aligners bowtie2 (Langmead 

and Salzberg 2012) and BWA (H. Li and Durbin 2009), and software such as segemehl (Otto, 

Stadler, and Hoffmann 2012, 2014) or ERNE-BS5 (Prezza et al. 2012) which are capable of 

interpreting bisulfite reads in their own right. 

 

The principles of bisulfite sequencing notwithstanding, another important consideration when 

designing such an experiment involves the chosen strategy for library preparation. As with 

conventional NGS libraries, sequencing depth and coverage are also very important for bisulfite 

sequencing, in as much as the priority is to maximise the available information with which to 

address the study questions whilst balancing practical limitations, such as cost and time. For 

example, some studies may require investigation of genome-wide methylation patterns to assess 

overall variation or discover candidate markers, whereas others may prefer to focus on a reduced 

subset of the DNA in high resolution. Such approaches typically include Whole-Genome Bisulfite 

Sequencing (WGBS), Reduced-Representation Bisulfite Sequencing (RRBS), and further variations 

on these methods. 

 

This chapter covers various technical concerns of bisulfite sequencing, from DNA extraction and 

library preparation to sequencing itself and the downstream extraction of cytosine methylation 

levels. The bioinformatic principles determine the data validity for answering the questions posed 

by the study, and an a priori consideration, therefore, is fundamental to the successful outcome of 

any such experiment. Finally, the specific limitations of bisulfite sequencing are discussed, and brief 

suggestions are given for alternative methods that might be used to address these issues. 
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4.2 Principles of Bisulfite Sequencing 
When considering the epigenome, researchers may refer to changes in chromatin structure due to 

post-translational modification of histone proteins (Margueron and Reinberg 2010), populations 

of non-coding small RNA (ncRNA; sRNA) (Aufsatz et al. 2002; Cao et al. 2003; Matzke and 

Mosher 2014), chemical modifications to DNA sequences, or a combined effect of these factors. 

Most often, however, they are referring specifically to the methylome. That is to say: the distinct 

arrangement of methylcytosines present in the genome and the variation between different 

organisms, or tissues and cell types within species. This generalisation reflects both its epigenetic 

significance in a number of processes, and an overrepresentation of our current understanding of 

this DNA modification relative to other epigenetic mechanisms. It is just one 

phenomenon however within a multitude of epigenetic factors which often interact. 

 

In plants, DNA methylation can affect both cytosine (Zhang, Lang, and Zhu 2018) and adenine 

(Ratel et al. 2006) nucleotides and has been associated with changes in gene expression (Jaenisch 

and Bird 2003; Xiaoyu Zhang et al. 2006; Lang et al. 2017), chromosome interactions (Grob, 

Schmid, and Grossniklaus 2014; S. Feng et al. 2014), and genome stability through the repression 

of transposable elements (Mirouze et al. 2009; Tsukahara et al. 2009; La et al. 2011). The 

modification can be further characterised as either 5-methylcytosine (5mC) or 5-

hydroxymethylcytosine (5hmC) within the context of cytosine methylation. These subgroups may 

well have contrasting epigenetic functions, though in A. thaliana at least, no appreciable level of 

5hmC has been observed in genomic DNA (Erdmann et al. 2014). The fraction of 5hmC present 

in RNA may be much higher (Huber et al. 2015), and indeed cytosine methylation is not a base 

modification that is limited to genomic DNA. The extent and prevalence of 5hmC in plants 

however is still debated among researchers (Mahmood and Dunwell 2019). 

 

The underlying basis for the perceived emphasis on DNA cytosine methylation is due to the 

development of bisulfite sequencing as a means for studying epigenetics. Since its conception and 

initial application by (Frommer et al. 1992), the method has received much attention for its capacity 

to resolve DNA methylation patterns at the nucleotide level. This allows researchers to study the 

effect of differential methylation between organisms, tissues, or cell types on specific genomic 

elements such as gene bodies, promoter regions, or other regulatory motifs. This, in turn, provides 
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a roadmap for linking epigenetics to gene expression, heritability, or the activation of particular 

genes or transposons. 

 

The basis for the method is the usage of sodium bisulfite. This chemical compound catalyses the 

hydrolytic deamination of cytosine to uracil via an intermediary sulfonation step from cytosine to 

unstable cytosinesulfonate (Hayatsu et al. 1970; Shapiro, Servis, and Welcher 1970). The loss of the 

amine group from cytosinesulfonate yields uracilsulfonate, which in turn is desulfonated under 

basic pH conditions to form uracil (Figure 10). Though in principle methylated cytosines can also 

react with sodium bisulfite, the presence of a methyl group on position five of the aromatic ring 

inhibits the process by an order of two magnitudes (Hayatsu and Shiragami 1979). This inhibition 

is sufficient to confer selectivity for the conversion of unmethylated cytosines. Unfortunately, this 

selectivity does not extend to a measurable differentiation between 5mC and 5hmC, which are 

therefore indistinguishable during the regular application of this method. During the sequencing 

Figure 10. The reaction steps behind the conversion of unmethylated cytosine to uracil by sodium bisulfite. 



4 Bisulfite Sequencing Methods 

 72 

processes or preceding PCR reactions, uracil positions convert on the newly synthesised DNA 

fragment to thymine so that the sequencing reads contain the four DNA bases. 

 

Once a given DNA sequence has undergone treatment with sodium bisulfite, any remaining 

cytosines present in the sequence can be inferred as methylated positions. The problem then 

progresses to the question of mapping these sequences back to their original location on the 

genome. As is often the case with NGS, it is very difficult to achieve a singular, continuous strand 

of DNA representing an entire chromosome. DNA stability is such that the molecules are easily 

fragmented during library preparation, and the sequencing approach itself is often restrictive in 

terms of the length of DNA that can be sequenced in a single iteration. The fragmentation is further 

confounded by the harsh bisulfite treatment, which undermines long-read sequencing technologies 

such as PacBio (Eid et al. 2009; Uemura et al. 2010) or Nanopore (Cherf et al. 2012; Mikheyev and 

Tin 2014) and reduces the cost-benefit ratio for using them. 

 

The dominating circumstance is one where the sequencing data consists of many, short bisulfite-

converted DNA sequences (typically Illumina) that subsequently need to be aligned to a reference 

genome to determine the relationship of methylated positions with nearby genomic elements. In 

this regard, it is imperative that a high-quality reference genome is available for the species of 

interest. Any improvements made to the existing genome assembly contribute towards mapping 

precision and reducing any false correlations between methylation patterns and nearby loci. 

 

It is not a simple task to map bisulfite-treated reads to the reference genome as it would be 

performed with conventional NGS data. The challenge arises from the many unmethylated 

cytosines, which have since been converted to thymines. The fraction of methylated cytosines 

varies much between different plant species (Feng et al. 2010; Zemach et al. 2010; Niederhuth et 

al. 2016), but for example with 5.26% of genomic cytosines reportedly methylated in A. 

thaliana (Lister et al. 2008), given a bisulfite conversion rate of 99.14% and a GC content of ~36%, 

then theoretically ~17% of the total genome space on each strand would be artificially replaced 

with thymines, where before they were cytosines. In a standard read alignment procedure, this 

would result in many differences in the alignment of reads to the reference sequence due to the 

high fraction of C>T mismatches occurring in place of matches. Specifying that all cytosines and 

thymines should match symmetrically might provide a solution but would result in many spurious 

alignments arising from reduced base complexity. Asymmetrical base-matching would result in 

greater precision, as after bisulfite treatment only thymines present in the sequencing reads can 
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potentially match cytosines in the reference genome. It does not follow conceptually that thymines 

in the reference genome might be able to match cytosines in the reads, as the reference genome is 

not treated. 

 

Standard alignment tools are often not designed with this base-matching asymmetry in mind, 

however, so the necessary solution is to make further adaptations to these tools or operate 

specifically with new algorithms designed to handle bisulfite data. As mentioned previously, several 

specific alignment programs for bisulfite data exist. Prominent among them are Bismark (Krueger 

and Andrews 2011) and BWA-meth (Pedersen et al. 2014), relying on popular alignment algorithms 

for conventional data, or Segemehl (Otto, Stadler, and Hoffmann 2012, 2014) and ERNE-BS5 

(Prezza et al. 2012), with more specific algorithms. Given the number of tools available, it is 

important to understand how they perform under different experimental conditions and 

circumstances. For this purpose, a number of benchmark studies have been undertaken which 

focus for example on algorithmic differences (Tran et al. 2014), combinations of pre- and post-

processing techniques (Tsuji and Weng 2016) or just a small range of tools on model data (e.g. 

human) (Chatterjee et al. 2012; Kunde-Ramamoorthy et al. 2014). As of yet however there is no 

comparable analysis of alignment performance in emerging applications such as with non-model 

plant data, which often presents its own challenges based on the underlying quality and complexity 

of non-model reference sequences. This gap is further addressed by a new benchmark analysis 

presented  in Chapter 5 of this thesis. 

 

Another problem that arises during bisulfite sequencing is the loss of variant information following 

the sodium bisulfite treatment. Under a standard NGS experiment, single nucleotide 

polymorphisms (SNPs) are identified where a number of reads overlapping a single nucleotide 

position on the reference genome might indicate a deviation from the reference base in that 

position. A model of genotyping of SNPs is necessary for example in identification of which 

samples belong to different variants or strains. This may be necessary also during epigenetic studies, 

as it is often of crucial importance that genetic variation is kept to a minimum to reduce 

confounding genetic effects. Any true SNPs in CT context are however obscured by the artificially-

converted bases arising due to bisulfite treatment. It is possible to retrieve this variant information 

by comparing the converted bases to their complementary bases on the opposite strand, as only 

true SNPs should have the correct sequence complement. This paradigm is utilised by a number 

of bisulfite-aware variant callers, such as BISCUIT (https://github.com/huishenlab/biscuit), Bis-

SNP (Yaping Liu et al. 2012), BS-SNPer (Gao et al. 2015), gemBS (Merkel et al. 2019), and 
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MethylExtract (Barturen et al. 2013), however the tools available for this purpose are both sparse, 

and fraught with a number of technical shortcomings, and consequently this task is yet to be 

implemented efficiently in comparison to tools developed for conventional sequencing data. This 

gap is further addressed by a new method presented in Chapter 6 of this thesis. 

 

Finally, following a successful read alignment, the task of obtaining methylation levels over each 

cytosine is typically performed in a similar manner to variant calling, but without a complex model 

for genotyping. Instead, each cytosine position is extracted from the alignment as before and the 

methylation level determined by majority voting. The ratio of reads with either cytosine or thymine 

in that position is used to calculate an overall methylation percentage or rate. The total collection 

of positions can be further subset into different genomic sequence contexts such as CG, CHG, or 

CHH, where H can be either A, T, or G (see Chapter 1 section 1.2.2). This subsetting later allows 

for downstream analyses of methylation patterns. 

 

4.3 Experimental Design 
As with many ecological studies involving next-generation sequencing, the experimental design is 

often based heavily around one fundamental trade-off, which is paramount to achieving a level of 

statistical power appropriate for the aim of the study. The trade-off refers to the balance of 

maximum sequencing coverage relative to the practical limitations of the study, such as cost and 

time. Next-generation sequencing is expensive, with costs driven by the quantity of material to be 

sequenced. This can be delineated to the total genome size, number of replicates, level of sequence 

coverage, and sequencing technology itself. Therefore, an ideal study seeks to define and optimise 

these factors a priori to carrying out the experiment and the subsequent downstream analyses. 

 

Next-generation sequencing is a fast-developing field, with several commercial technologies 

currently being available to address various experimental needs and applications. These can broadly 

be categorised into short-read technologies (~50-900 bp), which tend to be cheaper with higher 

per-base accuracy and throughput than the counterpart, long-read technologies (~1-500 kbp) 

(Goodwin, McPherson, and McCombie 2016; Li and Harkess 2018). The general advantage of 

obtaining long reads is that they are less prone to assembly and mapping-related errors, making 

them suitable for resolving true genome arrangements even in repetitive regions and regions of 

low complexity, e.g. found in heterochromatin regions. Due to the issues mentioned above with 

generating long fragments from sodium bisulfite-treated DNA samples, however, these advantages 
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are frequently lost. Short-read sequencing technologies, therefore, have been predominantly 

selected for methylation analyses. 

 

Among these short-read sequencing technologies, Ion Torrent (Rothberg et al. 2011), Illumina 

(Bentley et al. 2008), and SOLiD (Shendure et al. 2005; McKernan et al. 2009) have all been used 

successfully for bisulfite sequencing (Cokus et al. 2008; Lister et al. 2008; Lang et al. 2017; Mirouze 

et al. 2009; Bormann Chung et al. 2010; Pabinger et al. 2016; Venney, Johansson, and Heath 2016). 

Each may be appropriate depending on the desired read size and number of reads per run, which 

is influenced by the size of the genome and the nature of the study in question (i.e., sample size). 

The most extensively used of these is Illumina, wherein the HiSeq 2500, 3000, 4000, or HiSeqX 

and NovoSeq (for larger projects) are all appropriate for high-throughput applications. A 

reasonable comparison between these and some alternative systems is given by (Grehl et al. 2018). 

 

A problem arises for bisulfite sequencing from the requirement of many sequencing machines that 

nucleotides should be present in the DNA fragments in roughly even proportions to perform 

efficient base calling. Following the bisulfite treatment, cytosines are underrepresented. To still 

enable high-throughput sequencing, additional DNA with balanced base proportions and known 

sequence (e.g. PhiX) is added or "spiked-in" during library preparation. This DNA standard is 

sequenced together with the target DNA and later filtered out. The disadvantage is that it reduces 

the potential sequencing coverage considerably because the machines may require 20-40% spiked-

in standard DNA. The HiSeq 2500 is notable here as it benefits specifically from an optimisation 

of the cluster calling algorithm, which allows for the handling of bisulfite-treated libraries without 

the need for additional base proportion balancing (Grehl et al. 2018). Thus, the HiSeq 2500 is a 

good baseline to act as a starting point for designing bisulfite sequencing experiments. 

 

As methylation calling is calculated from the number of overlapping reads aligning to each position, 

it is clear that the statistical power increases with greater sequencing depth. In an ideal scenario, 

the sequencing depth would be uniform and consistent across all positions of interest to the study, 

but this is rarely the case. Sequence-related biases in the random DNA fragmentation (Poptsova et 

al. 2014) and PCR amplification (Kozarewa et al. 2009; Aird et al. 2011) stages of library 

preparation impede uniformity and lead to coverage underrepresentation in regions of extreme 

GC-content (Benjamini and Speed 2012). A straightforward approach in mitigating these issues is 

to select a level of coverage that ensures a minimum lower bound in the majority of regions where 

the distributed coverage is lower than the mean. Nevertheless, the bisulfite treatment itself can yet 
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induce new biases, or exacerbate existing ones, for example in terms of cytosine depletion, PCR 

amplification, cytosine modification, and conversion artefacts; each of which have varying 

consequences for downstream methylation analysis (Olova et al. 2018).  

 

To give a point of reference, (Ziller et al. 2014) found that coverage between 5-15x was optimal in 

terms of statistical power for detecting differentially methylated regions between a range of human 

tissue and cell types in the CG context. Beyond that, resources would be better allocated towards 

expanding the number of biological replicates, starting at a minimum of two to capture within-

group variance. In plants, it would be wise to consider this point of reference as a bare minimum 

for a homozygous diploid. Both the heterozygosity and the ploidy level undoubtedly influence the 

minimum level of coverage due to the increased variation on single positions, which may lead to 

greater within-group heterogeneity necessitating a larger number of replicates. The highly-repetitive 

regions, as well as low-complexity regions often found in plant genomes, are also notoriously 

difficult to map to, leading to many multi-mapped reads and alignment ambiguities (Treangen and 

Salzberg 2011). In the absence of long-read data, this problem can be mitigated by increasing the 

coverage and using paired-end (PE) sequencing. Furthermore, the magnitude of methylation 

differences are usually less pronounced in the CHG and CHH contexts, in comparison to the more 

“binary” CG context (Cokus et al. 2008; Lister et al. 2008), thus requiring more power for detection. 

If the study seeks to capture differences in these contexts then an increase in both sequencing 

depth and the number of replicates should be considered relative to CG alone. 

 

Once the optimal level of coverage and number of replicates have been decided, it may be the case 

that the total genome size for the species of interest pushes the cost outside the range of 

affordability. In these instances, it is sometimes possible during library preparation to subset the 

material and exclude regions of minor or no relevance to the scope of the study. Whether this is 

appropriate or not depends on whether the scope of the research question requires whole genome 

data. An overview of both whole genome and reduced representation methods are given in the 

following section. 

 

4.4 Library Preparation 

4.4.1 Whole Genome Bisulfite Sequencing (WGBS) 

WGBS is the practice of applying bisulfite sequencing on a genome-wide scale, capturing all 

regions, and attempting to define global methylation patterns in each sample. This method is 
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appropriate when the study question is broad in scope or if prior information on the genomic 

regions of interest is limited. It can be considered the "go-to" approach when other methods for 

concentrating the sequencing on reduced subsets of the genome are either unavailable or 

inappropriate for the study in question. 

 

There are two main variations of WGBS library preparation, known as BS-Seq (Cokus et al. 

2008) and MethylC-Seq (Lister et al. 2008, 2009) (Figure 11). In terms of the protocol, they differ 

primarily in the number of PCR steps and when the ligation of sequencing adapters occurs relative 

to the treatment with sodium bisulfite. Many sequencing technologies require specific sequencing 

adapters to facilitate base calling on selected DNA fragments. In the case of Illumina, these 

adapters are bound to complementary sequences on the flow cell, forming clusters to be 

sequenced-by-synthesis. If the adapter is not present, the DNA molecule is simply washed off the 

cell, and no information is retrieved. The issue here is that the bisulfite treatment alters the 

sequence of these adapters wherever there are unmethylated cytosines present, rendering them 

incompatible with the complementary sequences on the flow cell. MethylC-Seq addresses this by 

using custom, fully methylated adapters that remain unaffected by sodium bisulfite. In contrast, 

Figure 11. An overview of BS-Seq (Cokus et al. 2008) and MethylC-Seq (Lister et al. 2008) library 
preparation protocols for bisulfite sequencing. Adapted from Chen et al. (2010) “BS Seeker: precise 
mapping for bisulfite sequencing”. 
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BS-Seq circumvents the issue by ligating the adapters only after the bisulfite treatment has taken 

place. 

 

In principle, the approach of BS-Seq seems more straightforward. However, ligating the 

sequencing adapters after the bisulfite treatment presents another problem: the two strands of 

DNA are no longer complementary to each other and hence remain in a single-stranded state. 

Typical sequencing adapter ligation requires duplex DNA, therefore an additional round of PCR 

is necessary before adapter ligation can occur. This PCR step begins with both the bisulfite-treated 

Watson (+FW) and Crick (-FW) strands of the original DNA (Figure 12), and generates reverse 

complementary strands (+RC and -RC, respectively). The result is a set of four distinct sequences 

which are indistinguishable from each other by the sequencer. Strand-specificity is therefore lost, 

and additional bioinformatic processing is required to resolve which reads belong to which strand. 

In MethylC-Seq, only the +FW and -FW sequences are present, and strand-specificity is thus 

cleanly preserved during sequencing. It becomes more complex with paired-end data however, as 

the +RC and -RC strands are present as well following sequencing of mate 2. 

 

A more recent variation of these approaches has also been developed, known as post-bisulfite 

adapter tagging (PBAT) (Miura et al. 2012). In this case, the bisulfite conversion process itself is 

first used to fragment the genomic DNA. Adapter ligation is then facilitated by two rounds of 

random priming extension in place of PCR, thereby maintaining strand-specificity while avoiding 

any denaturation of adapter-ligated DNA. The real advantage of this method, however, is its 

sensitivity in handling sub-microgram quantities of DNA without the need for additional 

amplification, contrary to MethylC-Seq where the bisulfite treatment often fragments adapter-

ligated DNA templates which then cannot be used during sequencing. In such a case, the remaining 

DNA may need to be amplified to achieve a reasonable DNA mass for sequencing, but this 

Figure 12. Strand-specific point mutations in the newly-synthesised strand resulting from bisulfite 
conversion of unmethylated cytosines. 
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amplification risks inducing PCR artefacts. The approach of PBAT can circumvent the need for 

PCR amplification on sub microgram quantities of DNA. Still, it should be noted that random 

primer extension is subject to its own biases. Sequence-specific site preferences can give rise to 

"pile-ups" of reads, and differential priming between methylated and unmethylated alleles has been 

hypothesised. Therefore, it may be preferable to run MethylC-Seq with a very low number of PCR 

amplification cycles (e.g., ~4) in cases where sample availability is not strictly limited. Yet more 

recent approaches such as TET-assisted pyridine borane sequencing (Yibin Liu et al. 2019) even 

attempt to circumvent bisulfite treatment altogether, reportedly allowing for higher mapping 

quality and non-fragmented duplex DNA after the conversion of methylated cytosines into 

thymines by alternative chemical means. Such methods may avoid some fragmentation issues of 

harsh bisulfite treatment, but commercial kits for library preparation have only been introduced 

recently by comparison to previous methods, and the application thus far in the literature is scarce. 

 

Regardless of the type of bisulfite library selected, at least two cycles of post-bisulfite PCR are 

necessary to facilitate the conversion of uracil to thymine before sequencing can occur. For these 

PCRs, the presence of uracil in the sequence precludes the use of many standard, high-fidelity 

polymerase enzymes with proofreading mechanisms such as Phusion (Thermo Scientific) or KAPA 

HiFi (Roche). On encountering uracil, these enzymes stall as they await base excision repair 

(Lindahl and Wood 1999; Greagg et al. 1999). Fortunately, there are alternatives available, such as 

PfuTurbo Cx (Agilent) or KAPA HiFi uracil+ (Roche), which are more specifically suited for 

bisulfite sequencing. 

 

Several commercial kits are readily available for carrying out bisulfite conversion itself. Depending 

on the sample DNA quantity and library preparation methodology, the aim is to achieve maximum 

conversion efficiency relative to optimal DNA recovery. High temperature, high bisulfite molarity, 

and long incubation times are more likely to yield complete bisulfite conversion but degrade much 

of the DNA in the process. Incomplete conversion, however, leads to an overestimation of 

methylation levels on unconverted cytosines. With this trade-off in mind, a good evaluation of 

modern kits was provided by Kint et al. (2018), where EpiTect Bisulfite (Qiagen), EZ DNA 

Methylation-Gold (Zymo Research), and EZ DNA Methylation-Lightning (Zymo Research) kits 

were each cited for high performance with regards to several study-dependent factors. Conversion 

efficiency within bisulfite-treated samples is then typically estimated through the use of control 

sequences, consisting of a known quantity of unmethylated DNA within the sample. Historically, 

the conversion rate has also been estimated from non-CG cytosines in mammals (Hodges et al. 
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2009), which is inappropriate for plants where DNA methylation occurs also in CHG and CHH 

contexts. Alternatively, the mitochondria or chloroplast genomes have been used, as both 

organelles have been widely observed to escape DNA methylation (Marano and Carrillo 1991; 

Vanyushin and Kirnos 1988). This may not be entirely reliable either, however, as there is some 

conflicting evidence of DNA methylation which has been reported in both (Šimková 1998; 

Fojtová, Kovarík, and Matyásek 2001). Furthermore, the situation is often exacerbated by 

incomplete plastid genome assemblies (particularly in non-model species), or by the presence of 

nuclear-inserted plastid DNA (Michalovova, Vyskot, and Kejnovsky 2013). The most reliable 

method in plants is therefore to use a "spike-in" of DNA from another source. The enterobacteria 

phage Lambda (~0.1% w/w) is often used, which is shown to be virtually devoid of 5mC when 

propagated on mutant bacteria strains lacking DNA methylase activity (Hattman, Schlagman, and 

Cousens 1973). Reads aligning to the Lambda genome can then indicate the level of bisulfite 

conversion, as in theory, all cytosines should have been replaced with thymines. 

 

In addition to Lambda, the bacteriophage PhiX is commonly used as a "spike-in" to balance base 

proportions (Raine, Liljedahl, and Nordlund 2018). During the initial cycles of Illumina sequencing, 

the phasing/pre-phasing, colour matrix corrections, and pass filter calculations are influenced by 

the flow cell imaging. In bisulfite-treated DNA, there is a notable deficiency in cytosine bases and 

the fluorescent colour associated with it, which can skew the base-calling algorithm during this 

normalisation process. Adding PhiX (Sanger et al. 1977) or any other well-balanced DNA to the 

sequencing library allows the Illumina sequencing to proceed unaffected. Another possibility is to 

multiplex both a bisulfite-treated library and a conventional, untreated library. This way, spiking 

can be omitted, and cytosine methylation and single nucleotide polymorphisms (SNPs) can be 

obtained from a single sequencing run. 

 

Once preparation is complete, it is standard practice to perform library quantification and 

normalisation, using, for example, Qubit / PicoGreen assay or qPCR measurement. It should be 

noted during this step that methods that estimate only the total quantity of DNA may fail to give 

an accurate representation of the adapter-ligated DNA, particularly in MethylC-Seq libraries due 

to the aforementioned fragmentation caused by the bisulfite treatment. For this reason, it is 

typically recommended to use a BioAnalyzer for sizing only and qPCR to quantify the final library 

for bisulfite sequencing. 
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4.4.2 Reduced Representation Bisulfite Sequencing (RRBS) 
RRBS is similar to WGBS in many ways, but differs primarily by adding an initial selection 

procedure at the beginning of the library preparation. It was developed by (Meissner et al. 2005) to 

generate large-scale sequencing data, with a lower resolution than WGBS, which evenly represents 

the genome, though with the option to focus either on eu- or heterochromatin. This reduces the 

sequencing cost compared to WGBS but results in the loss of much sequence content that could 

otherwise be relevant to the biological interpretation. Depending on the restriction enzyme used, 

the enriched fraction is typically expected to be less than ~1% of the whole genome size (Meissner 

et al. 2005). 

 

Sample DNA is first subjected to a restriction endonuclease that targets a specific sequence context 

depending on the local cytosine methylation status. The sequence flanking the recognition site is 

then sequenced, providing information on the methylation status of many cytosines adjacent to the 

recognition site, which can principally be in all three sequence contexts. A typical enzyme used is 

MspI, which targets CG sites in the specific sequence 5’-CCGG-3'. MspI cannot cleave when this 

specific recognition sequence is symmetrically methylated, and thus focuses on weakly methylated 

euchromatin rather than the heavily methylated heterochromatin in the chromosomes. Different 

sequence contexts require different enzymes, although this application has not been broadly 

applied in non-CG contexts. The enzymatic digestion produces fragments that can be size selected, 

usually following some additional end-repair and A-tailing depending on which enzyme was used. 

The rest of the library preparation follows closely with that which was outlined previously for 

WGBS and unfortunately suffers from the same loss of strand-specificity as BS-Seq. 

 

4.4.3 Target capture bisulfite sequencing 
RRBS is a beneficial technique when the aim is to sequence many biological samples, for example, 

to study population genetics or when the studied organism has a very large genome, as in many 

coniferous trees, for example (De La Torre et al. 2014). The technique further allows to roughly 

direct the analysis either to heterochromatin or euchromatin or, depending on the genome in 

question, enrich promotor or gene-body sites by choosing the appropriate cleavage enzyme. 

However, besides this possibility of setting a rough focus of the study, the idea is to provide a valid 

representation of the genome through a sample of random sequence reads scattered across the 

genome. Though, it may be desirable in a project to set the target more specifically to a particular 

region in the genome. This can be achieved conversely through “target capture”, which can be 

applied before or after bisulfite conversion (Wreczycka et al. 2017). Different techniques usually 
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involving the hybridisation of genomic DNA with the complementary of a known piece of the 

target sequence, combined with bisulfite conversion and followed by the above-described 

processing of converted DNA, enable the inference of the methylation status of a specific target 

location in the genome of interest. Such techniques may be helpful when, for example, describing 

the methylation status of a known promoter region is the aim of the investigation, and genome-

wide data is thus superfluous. 

 

4.5 Bioinformatic analysis of bisulfite data 
Once sequencing has taken place, the question of identifying DNA methylation is effectively 

reframed to a computational concern. As with standard NGS, the basic workflow tends to involve 

initial quality control (QC) of the generated raw reads, followed by mapping these reads to a 

reference genome, to produce alignment files that are the basis of downstream analyses. Methylated 

positions can then be extracted from these files in a much similar manner to variant calling. Bisulfite 

sequencing, however, presents its own challenges, particularly during the read alignment step. This 

section explores common issues and significant divergences from standard practices in 

bioinformatics. 

 

4.5.1 Quality Control 
Like all reads generated via sequencing by synthesis, bisulfite reads are subject to a drop in quality 

towards the 3’-end due to the propensity of base-calling errors to accumulate following failures in 

the synthesis process. During a single cycle of Illumina sequencing, the next base in the read is 

incorporated into the template strand together with a reversible terminator molecule containing a 

fluorescent tag (see Chapter 1 section 1.3.1). The terminator prevents the next base in the sequence 

from being incorporated, so the sequencer can appropriately read the colour of the fluorescent tag 

and identify the current base. The molecule is then cleaved to facilitate the next cycle, thus repeating 

the process for the next base in the sequence. During a single cycle, the terminator molecule can 

be either not cleaved or cleaved too early, resulting in the incorporation instead of two bases. If 

such an error occurs, the strand becomes “out of phase” compared to the other strands of the 

cluster, for all remaining cycles, which makes it more difficult for the imaging system to assess the 

correct base colour within the sequence cluster. The consequence is a quality drop for the complete 

cluster. This phenomenon is known as phase-shifting and is usually corrected by trimming some 

bases that fall below a quality threshold (e.g. phred score < 20) from the 3’-end of a read, limiting 

the negative effect on the previous correctly sequenced bases. 
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Another commonly-encountered issue is the tendency to sequence into the adapter sequence on 

DNA fragments smaller than the total number of Illumina cycles. These sequence subsets are not 

part of the original DNA, making it much more difficult to map such reads to their true location 

on the reference genome. Fortunately, the adapters are synthetically designed, distinct sequences 

which are therefore known and can thus be readily identified. By considering the overlap of the 

known adapter sequence at the 3’-end on each read, the reads can again be trimmed to remove the 

DNA that is not part of the original sequence. 

 

These common problems can be identified with a standard QC tool such as FastQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and frequently occur in standard 

sequencing and bisulfite sequencing data. As such tools are usually not designed for bisulfite 

sequencing, they may also flag errors such as unbalanced base proportions with as high as ~50% 

thymine content in read one (or adenine content in read two). If dealing with RRBS data, which 

has been digested for example with MspI, there is also the possibility that non-random sequence 

content is flagged at the 5’-ends of reads, as digested fragments always start with a C base. So long 

as there is confidence that the standard precautions were taken during library preparation, these 

warnings can be safely ignored at this stage. 

 

Conversely, the other facet of using standard QC tools that are not designed for bisulfite 

sequencing is the tendency to miss bisulfite-related sequencing problems. One such problem can 

occur during the initial DNA fragmentation step of the library preparation procedure, which often 

leaves protruding 5' and 3’-ends that must be restored to double-stranded DNA by a process 

known as overhang end-repair (Poptsova et al. 2014). The incorporation of unmethylated cytosines 

during this step can introduce artificially low methylation rates at each end of the DNA fragment, 

which cannot be detected in standard QC (Lin et al. 2013). Another such issue is thought to occur 

due to the re-annealing of single-strand sequences adjacent to the methylated sequencing adaptors 

during MethylC-Seq, which partially restores double-strandedness thereby affording a measure of 

protection from the bisulfite treatment (Lin et al. 2013). Therefore, there is a tendency for bisulfite 

conversion failure to be enriched towards the 5’-end of reads, leading to artificially high methylation 

rates. BS-Seq and PBAT libraries should theoretically avoid this bias due to the adapter-ligation 

occurring after the bisulfite treatment. 
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As neither of these issues causes changes to the DNA sequence, they can only be detected once 

methylation calling has occurred (after read alignment). The standard procedure is to look at the 

total distribution of methylation levels across the average length of the reads in an approach known 

as M-bias analysis (Hansen, Langmead, and Irizarry 2012; Lin et al. 2013). A uniform distribution 

is expected across the read length, but spikes in methylation level can be observed at each end of 

the distribution. As the sequence information at each end remains unaffected, they should be used 

for the alignment and not be clipped similarly to quality trimming for repeated read alignment. 

Instead, the start and end positions of reads are "masked" from a follow-up repeat of the 

methylation calling procedure, depending on the deviation of their methylation status from the 

uniform distribution. It should be noted that a significant variation of read lengths reduces the 

accuracy of this step. 

 

4.5.2 Read Alignment 
When all quality concerns are resolved, the next step in the basic workflow is to align these reads 

to an appropriate high-quality reference genome. If a reference genome is not available, de 

novo assembly is first required before any methylation information can be retrieved. The availability 

of a good reference genome is fundamental to DNA methylation analysis, when the project aims 

to relate methylated positions to nearby annotations such as gene bodies, promoter regions, or 

transposable elements. The higher the genome quality and relatedness of the genome to the test 

sample, the more confidence in the findings of the study (Mardis et al. 2002). Unfortunately, this 

degree of confidence is not something that can be quantified easily and directly. Therefore every 

effort should be made to ensure the qualitative validity of the reference genome prior to analysis.   

 

With standard NGS data, mapping typically involves the use of dynamic programming to determine 

the best alignment for a given read according to a scoring matrix (see Chapter 1 section 1.3.3). 

Positive scores are given for base matches, or certain types of mismatches, whereas penalties are 

given for other mismatches and positions where insertions or deletions (indels) are present. The 

cumulative score is then compared to other potential alignments above a set threshold, and in most 

cases, only the best one is selected as the most likely point of origin for the read. Mapping bisulfite-

treated DNA however presents a challenge. The majority of cytosine positions on the reference 

genome are likely unmethylated in the test sample (Wagner and Capesius 1981; Leutwiler, Hough-

Evans, and Meyerowitz 1984) and therefore represented as thymines in the reads following bisulfite 

conversion. Aligning these reads results in many CT mismatches, which negatively influence the 

scoring matrix and significantly inhibit successful read mapping (Figure 13). It is not enough to 



4 Bisulfite Sequencing Methods 

 85 

simply allow for a higher number of errors, as this would only obscure the correct alignments 

through an increased number of false positives. To further complicate the issue, bisulfite 

conversion of DNA fragments results in two strands that are no longer complementary to each 

other. In single-end BS-seq or paired-end MethylC-seq, this means that four distinct sequences are 

now present, each one varying to some degree from the original DNA (Figure 12). From the 

original, untreated Watson (+) strand, the first mate pair is the direct bisulfite-converted variant 

(+FW), and the second is the reverse complement of this (+RC). From the original, untreated 

Crick (-) strand, the first mate pair is the direct bisulfite-converted variant (-FW), and the second 

is the reverse complement of this (-RC). In standard NGS, it is simply the case that the second 

mate-pair obtained from one strand aligns to the other strand, but in bisulfite sequencing, this no 

longer holds. In BS-Seq libraries, this is compounded further because the method already 

encompasses all four-strand variants, even in single-end sequencing. In this case, the directionality 

relative to the strand (indicated by the box arrows in Figure 12) is thus lost, which is why it is 

sometimes referred to as an unstranded bisulfite sequencing protocol. 

 

One potential solution for this alignment problem is to adjust the scoring matrix so that a mismatch 

of thymine to cytosine is instead treated as a match. This can be implemented in standard sequence 

aligners by "collapsing" the genetic alphabet in both the read and the reference genome so that all 

cytosines are rewritten as thymines (Figure 14A). Mapping is then performed normally, and the 

methylated positions are retrieved through post-processing based on the composition of the pre-

Figure 13. Alignment mismatches with the reference genome, as a result of bisulfite conversion of 
unmethylated cytosines. 
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collapsed sequences. This procedure results in two undesirable scenarios that do not fit 

conceptually: 1) true thymines in the read match with cytosines in the reference genome, and 2) 

cytosines from the read (indicating methylated positions) match thymines in the reference genome. 

Such a solution undoubtedly produces many false positives and obscures the correct read 

alignments. Bisulfite read aligners such as Bismark (Krueger and Andrews 2011), BSmooth 

(Hansen, Langmead, and Irizarry 2012) (in bowtie2 mode), BS-Seeker (Chen, Cokus, and Pellegrini 

2010; Guo et al. 2013), and BWA-meth (Pedersen et al. 2014) follow this strategy. 

 

A better strategy would be to allow matches between thymines and cytosines, but only between 

read-based thymines and reference-based cytosines (not vice versa). In this case, it is still possible 

(and unavoidable) for true read-based thymines to match incorrectly with reference-based 

cytosines, but methylated cytosines are correctly considered mismatched with thymines in the 

reference genome thus reducing false positives (Figure 14B). This asymmetric base scoring is not 

easy to implement in most index structures (e.g. Burrows-Wheeler transform, suffix arrays) used 

in standard sequence aligners. Therefore, specialised read alignment software is required that is 

explicitly designed for bisulfite sequencing. Such tools include BSMAP (Xi and Li 2009), BSmooth 

Figure 14. Consequences of collapsed alphabet versus asymmetric approaches during the seed-and-extend 
alignment procedure for bisulfite sequencing data. 
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(Hansen, Langmead, and Irizarry 2012) (in merman mode), and ERNE-BS5 (Prezza et al. 2012). 

The specialised read aligner segemehl (Otto, Stadler, and Hoffmann 2012, 2014) uses collapsing 

(Figure 14A) during a starting step before switching to asymmetric matching (Figure 14B) in the 

following step. A common drawback of these methods is the increased memory consumption and 

processing time relative to tools that rely on a collapsed alphabet. 

 

Whichever approach is followed, the entire process likely has to be repeated to account for both 

CT and GA conversions due to the aforementioned loss of complementarity between a given 

sequence complement and the opposite strand (Figure 12). The possibility of four distinct 

sequences in bisulfite sequencing, as opposed to two in standard NGS, dictates that two distinct 

variants of the reference genome are required to resolve the best alignments. These two alignment 

procedures may either be run in parallel, as is the case in Bismark (Krueger and Andrews 2011), or 

consecutively as is the case in segemehl (Otto, Stadler, and Hoffmann 2012, 2014). Either way, a 

process of post-filtering and comparison must be made to unify the resulting alignments. 

 

One problem that might arise during sequencing is the potential for genomic rearrangement 

(Saxena, Edwards, and Varshney 2014) that may have occurred in the test sample relative to the 

reference genome. Particularly with reads that originate from a locus that has translocated to the 

opposite strand. In this case, the strand-specificity is inverted, and the aligner may attempt to map 

the read to the wrong strand. These false-stranded reads can be detected by the high proportion of 

GA mismatches on the Watson (+) strand or CT mismatches on the Crick (-) strand. From 

experience, a threshold of 3-5% regarding the length of the read is usually enough to identify false-

stranded reads. As there is a high probability that these reads originate elsewhere in the genome, 

they are usually excluded from the alignment because it is not a trivial task to infer where the locus 

may have translocated to (Onishi-Seebacher and Korbel 2011). 

 

Finally, filtering based on multi-mapped reads or PCR duplicates may also be considered, as in 

standard NGS experiments. Any given sequencing read originates from a fragment derived from a 

specific position on the genome. During alignment, however, equally-scoring alignments may be 

possible, particularly in highly repetitive regions or regions of low complexity (Treangen and 

Salzberg 2011). If each of these alignments is considered separately during quantification of 

methylation levels, then the chance of error is increased as one of these regions may carry a 

different methylation state relative to the read. The options are to exclude these alignments entirely, 

as is performed intrinsically by some sequence aligners (Krueger and Andrews 2011; Guo et al. 
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2013), or to accept the increased chance of error by selecting one such alignment at random, or 

including all multiple hits from that read. Regarding PCR duplicates, several tools exist to identify 

such reads that arise from a single DNA fragment, such as Picard MarkDuplicates 

(http://broadinstitute.github.io/picard)  and samtools rmdup (Li et al. 2009). These tools identify 

PCR duplicates based on the proportionally higher likelihood that identical reads arise from PCR, 

then that they are separate fragments. In this case, such reads are counted only once during 

quantification of methylation levels. This deduplication is appropriate only in WGBS sequencing 

protocols, whereas a high proportion of identical reads are expected in RRBS and target capture. 

If PCR is absent (or negligible) during library preparation this step should be avoided altogether. 

 

4.5.3 Methylation Calling 
To infer the level of DNA methylation at any given cytosine position within the test sample, the 

methylated bases (cytosine) in the reads overlapping that position are evaluated to give the 

proportion relative to the total coverage. Non-CT nucleotides are typically ignored, and in practice 

there is only one major divergence in the implementation of this method by different software: 

what to do with CT polymorphisms that arise before bisulfite treatment has taken place. Most tools 

simply ignore evidence of SNPs, counting only reads with either C or T. While it may be 

appropriate not to count such bases towards the level of cytosine methylation, there may still be 

methylation present on such nucleotides particularly in the case of adenine (Ratel et al. 2006). 

 

A more robust analysis will recognise that not all read-based thymines overlapping reference-based 

cytosine positions are representative of the bisulfite treatment (Yaping Liu et al. 2012). A mutation 

in this context is deceiving, as we might interpret it as demethylation resulting from an epigenetic 

mechanism rather than a genetic one. The only way to identify such a mutation from the bisulfite 

sequencing data itself, rather than from independent genotyping of the test sample following 

conventional sequencing, is to compare the overlapping reads in that position to those on the 

opposite strand. The DNA strands after treatment with sodium bisulfite are no longer 

complementary to each other since the methylation information is strand-specific. Artificially 

converted bases should therefore always lack a complementary base on the opposite strand, 

whereas a CT mutation will have support on the opposing strand. This difference can be used to 

exclude such base positions from the analysis; the independent testing of both strands in this 

manner however would suggest that twice the coverage be required to achieve a similar degree of 

confidence to standard genotyping. Software such as MethylDackel 

(https://github.com/dpryan79/MethylDackel), for example, attempt to infer the likelihood of a 
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SNP during methylation calling, by setting a filtering threshold on opposite-strand alignments and 

skipping the position entirely if there is a user-determined level of support for a SNP. 

 

Further consideration during methylation calling should also be made when using paired 

end sequencing, to regions that overlap between read pairs. In Illumina sequencing, each read pair 

will start from opposing ends of a single DNA fragment, and it is possible in cases where the 

fragment size is less than double the number of sequencing cycles that a part of the fragment will 

be sequenced twice for the same read pair (Magoč and Salzberg 2011). In this case, methylation 

information in this overlap region is redundant and does not constitute an independent observation 

of the methylation status as if they arose from separate DNA fragments. It is therefore wise to 

identify overlapping regions prior to methylation calling and mask those bases from either one of 

the two reads of a pair. 

 

4.6 Alternative Methods 
Although the use of bisulfite sequencing to analyse DNA methylation in CG, CHG, and CHH 

context is highly relevant to the study of epigenetics in plant ecology, it is not all-encompassing. 

There are indeed other techniques based on similar principles that can be used to capture 

methylation information, such as affinity-based methods: methylated DNA immunoprecipitation 

(MeDIP), which can be used in combination with high-resolution DNA microarrays or NGS, and 

methyl-CpG-binding domain (MBD) sequencing. 

 

More recently there has also been some investigation into treatments that can facilitate nucleotide-

level base conversion without the harsh side effects of sodium bisulfite (Yibin Liu et al. 2019). In 

addition, the advent of long-read sequencing technologies such as single molecule real-time analysis 

with PacBio and ONT has also provided an alternative to bisulfite sequencing. The base calling 

(described in Chapter 1 section 1.3.1) generates profiles for each nucleotide, which differ between 

bases with and without base modifications, and can thus be used to differentiate them (Flusberg et 

al. 2010; Xie et al. 2021). This then has the advantage of detecting DNA methylation without the 

need for harsh bisulfite treatment, while also allowing for detection of other forms of base 

modification, using longer reads. Unfortunately, the profiles can prove difficult to make accurate 

inferences from, but development of machine learning techniques may be a promising avenue of 

advancement in this regard in the near-future.  
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5 From Read Alignment to DNA 

Methylation Analysis 

5.1 Introduction 
Over the three decades following the conception of bisulfite sequencing by (Frommer et al. 1992) it 

has become the foundation of many investigations linking cytosine methylation with epigenetics at 

nucleotide-level resolution. Cytosine methylation is among the most abundant base modification 

in eukaryotes, involving the addition of a methyl group (CH3) to the 5th carbon position of the 

cytosine ring to form 5-methylcytosine (5mC). In model plants and crops, 5mC has been associated 

with changes in gene expression (Jaenisch and Bird 2003; Xiaoyu Zhang et al. 2006; Lang et al. 

2017), chromosome interactions (S. Feng et al. 2014; Grob, Schmid, and Grossniklaus 2014) and 

genome stability through the repression of transposable elements (Mirouze et al. 2009; Tsukahara 

et al. 2009). The role of 5mC in epigenetics is well studied in model organisms (see Chapter 1), but 

with falling sequencing costs and advances in modern sequencing technology there is incentive 

now to extend this research to non-model species. 

 

As described in previous chapters, the alignment of bisulfite-treated reads to a reference genome 

is evidently an important step during downstream processing. Standard read mapping tools are not 

suitable for this type of data however due to the high number of converted bases which would 

result in alignment errors (see Chapter 4 section 4.5.2). Reduction of reporting error thresholds 

lead to a high proportion of false positive alignments, so specific tools have instead been developed 

to explicitly enable read mapping of bisulfite data. Though such tools number at considerably less 

than the 60 conventional short-read alignment programs identified by (Fonseca et al. 2012) (see 

Chapter 1 section 1.3.3), a similar assessment by (Tran et al. 2014) identified at least 16 distinct 

approaches for bisulfite data. Given the wide variety of approaches that therefore exist for mapping 

bisulfite data, choosing the right tool can be daunting for scientists without formal training in 

bioinformatics, and is influenced considerably by the context and scope of each study. Previous 

independent comparisons among such tools have focused on algorithmic differences (Tran et al. 

2014), combinations of pre- and post-processing techniques (Tsuji and Weng 2016) or a small 
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range of tools on model data (e.g. human) (Chatterjee et al. 2012; Kunde-Ramamoorthy et al. 

2014). Such reviews help to refine existing computational approaches and aid in new software 

development, but it is important also to consider the biological implications of emerging 

applications, such as non-model plant data, in order to establish best-practices for analysis. 

 

Plant genomes are notoriously difficult to work with due to large (De La Torre et al. 2014) and 

repetitive genome sequences (Mehrotra and Goyal 2014), regions of low complexity, and a variably 

high degree of zygosity and polyploidy (Wendel 2015). These factors can confound both genome 

assembly and alignment, often resulting in low-quality genomes with poor contiguity and a large 

number of misassemblies. With non-model species there is a greater likelihood that the genome 

will exist in a draft state, thus compounding these problems further in regard to the level of 

information that can be reliably inferred in downstream analyses. These issues are usually mitigated 

for example with long-read sequencing technologies, such as PacBio or ONT, which are rarely 

leveraged to full effect in draft assemblies. In terms of bisulfite sequencing, fragmentation caused 

by the harsh chemical treatment and issues in resolving accurate base calls on methylated cytosines 

reduces the viability of long read technology in the present application. Illumina short reads remain 

the most widely-adopted form of NGS in the study of DNA methylation. 

 

This chapter addresses the use case of non-model plant data for bisulfite read alignment. To this 

end, a selection of nine bisulfite short-read alignment tools are compared using a combination of 

real and simulated sequencing data, for three non-model plant species which vary in terms of 

genome composition and assembly quality (Table 4). These species are represented in the broader 

initiative of the EpiDiverse consortium (https://epidiverse.eu/), and include a high-quality (almost 

chromosome-level) assembly of the perennial Rosaceae Fragaria vesca (Edger et al. 2018) and two 

fragmented scaffold-level assemblies; one with higher repeat content in the case of the annual 

Brassicaceae Thlaspi arvense (Dorn et al. 2015), and one with lower, in the case of the unpublished, 

de novo assembly of the deciduous tree species Populus nigra (currently in development under the 

EpiDiverse initiative). Each species serves as a representative use case for other non-model 

organisms. A shortlist of representative software were chosen in-part based on availability through 

Bioconda (Grüning et al. 2018) (for reproducibility), and according to the extent of software 

maintenance and adoption under current practices. These include Bismark (Krueger and Andrews  

2011), BS-Seeker2 (Guo et al. 2013), BSMAP (Xi and Li 2009), bwa-meth (Pedersen et al. 2014), 

ERNE-BS5 (Prezza et al. 2012), GEM3 (Marco-Sola et al. 2012), GSNAP (Wu and Nacu 2010), 

Last (Frith, Mori, and Asai 2012) and segemehl (Otto, Stadler, and Hoffmann 2012, 2014). 
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Read mapping for each tool is evaluated in terms of precision-recall of the simulated bisulfite-

treated reads when compared to unique alignments of a corresponding, unconverted data set in 

each case mapped using the fully sensitive aligner RazerS 3 (Weese, Holtgrewe, and Reinert 2012). 

Furthermore, methylation profiles are derived from real data and the tools evaluated based on the 

mean absolute deviation of methylation values, using a subset of difficult-to-map regions where a 

log2(x)>1 absolute deviation in sequencing depth is observed overlapping a repeat annotation in at 

least one tool. Processing time and peak memory consumption are also measured over 

incremental levels of sequencing depth to assess the comparative performance of each tool on a 

standard, representative computing architecture. 

 

5.2 Materials and methods 

5.2.1 Reference species 
All species are non-model plant organisms selected under the broader initiative of the EpiDiverse 

consortium. Each reference varies in its overall assembly contiguity and underlying feature 

complexity (Table 4), representing different stages of assembly completeness. Complex repeat and 

TE annotations were derived using EDTA (Ou et al. 2019). 

 

5.2.2 Natural accessions 
To contrast features common to artificial reads and to infer the effect of read mapping on 

methylation quantification, one natural accession per species (150 bp long paired-end reads, 

randomly down-sampled to 20x) was mapped in addition to the simulated data. Methylation 

profiles were derived for each species by aggregating the methylation calls obtained following read 

alignment with each tested software. These profiles represent the underlying truth sets for then 

Table 4. Basic assembly statistics for non-model plant species referenced in this study 

Species Genome 
size (Mb) Scaffolds Scaffold 

N50 (Mb) 

Repeat 
content 

(%) 
Accession Source 

F. vesca 220 29 33.9 33 Fragaria_vesca_v4.0.a1 rosaceae.org 

T. arvense 343 6,768 0.14 55 GCA_000956625.1 NCBI 

P. nigra 417 9,533 9.49 32 unpublished unpublished 

Note: Repeat content is given as a percentage of the total genome space 
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simulating artificial reads based on naturally occurring methylation patterns. Figure 15 describes 

the overview of interaction between the different datasets. 

 

5.2.3 Read simulation 
Five independent sets of 125 bp paired-end reads were generated artificially from each reference 

genome using the read simulator Sherman v1.7 

(https://www.bioinformatics.babraham.ac.uk/projects/sherman/). The datasets range 

incrementally from 1 to 20x sequencing coverage and were generated initially with a variable insert 

size ranging from 0 to 500, a random nucleotide error rate of 0.5% and a bisulfite conversion rate 

of 0. A variable length adaptor sequence was also generated, which was subsequently trimmed 

using cutadapt v2.5 (Martin 2011). The unconverted reads were then processed by an in-house 

script which applied a random 99% bisulfite conversion rate, yielding in the end two corresponding 

sets of simulated reads in FASTQ format, with and without bisulfite conversion. An additional set 

of artificial reads were converted from the 20x dataset in each species, using position-weighted  

Figure 15. Schematic overview of the experimental design used in this study. Grey boxes illustrate 
procedures, whereas yellow boxes correspond to benchmarking measures. Processing of simulated and real 
data is indicated by black and green arrows, respectively. Naturally-occurring 5mC patterns derived from 
natural accessions are used to inform bisulfite treatment of simulated reads in silico. The simulated WGBS 
data is mapped with each tested aligner and compared to RazerS 3 alignments of untreated reads, in order 
to evaluate precision-recall. These alignments are also compared to alignments from natural accessions by 
calculating mapping rates. Methylation profiles from simulated data are compared to the naturally-occurring 
5mC patterns they are derived from, in order to evaluate the influence of each software on downstream 
DNA methylation analysis. 
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conversion probabilities derived from the aggregate methylome obtained from the natural 

accessions. 

 

 

5.2.4 Read alignment 
A total of nine current short-read mapping tools were selected to give a representation of 

current tools with different alignment strategies (refer to Tran et al. (2014) for further detail), with 

consideration given only to those with availability through Bioconda (Grüning et al. 2018), in the 

interest of reproducibility (Table 5). Each software was installed on a server architecture housing 

64 cpus with a total of 256 Gb memory (Suppl. Table C.1). For testing purposes, the tools were 

run with default parameters, which can be interpreted as the best approximation of a “general use 

case”. Relative processing time (real) and peak memory allocation (resident set size) are reported 

for each tool, utilising a maximum of eight parallel threads so that results can be relevant to those 

working e.g. on a laptop or similar. Paired-end data from natural accessions were mapped both in 

paired-end and single-end mode, after obtaining the reverse complement of mate 2 in silico, for 

comparison of mapping rates. 

 

Table 5. Short-read alignment software tested in this study for mapping bisulfite sequencing reads. 
Primary alignments are randomly selected from equal-scoring alignments of multi-mapping reads where 
indicated, and otherwise not reported at all under default parameters. 

Software Version Default Reporting Alignment Strategy Index Structure 

Bismark 0.22.3 unique best 3 letter BWT (bowtie2) 

BS-Seeker2 2.1.7 unique best 3 letter BWT (bowtie2) 

Last 1021 unique best wild card Spaced suffix array 

BSMAP 2.90 unique best / 
random wild card Hash table (SOAP) 

BWA-meth 0.2.2 unique best / 
random 3 letter BWT (BWA) 

ERNE-BS5 2.1.1 unique best / 
random wild card Hash table 

GEM3 3.6.1 All-first-N / random 3 letter Custom FM-index 

GSNAP 2019-09-12 All-first-N / random wild card Hash table 

segemehl 0.3.4 All / random wild card Enhanced suffix 
array 

Note: BS-Seeker3 is available but was unable to run successfully on the provided computing 
infrastructure, and has no recipe in Bioconda at the time of publication. 



5 From Read Alignment to DNA Methylation Analysis 

 95 

5.2.5 Mapping rates 
Read alignments from each tool were compared in both simulated data and natural accessions (real) 

data for each species in terms of the overall mapping rate for primary alignments with a minimum 

mapping quality (MAPQ) threshold of 1. On real sequencing data from natural accessions, mapping  

rates were calculated additionally for alignments of paired-end data in single-end mode, and also 

stratified by alignment edit distance (i.e. number of non-bisulfite mismatches) for paired-end 

alignments. Custom in-house scripting was used to obtain the appropriate edit distance where it 

was not reported by default by the alignment software. 

 

5.2.6 Precision-recall 
Read alignments from each tool were compared i) to the point of origin of the read according to 

the metadata obtained from the read simulation tool, and ii) to an additional truth set generated by 

aligning the unconverted reads to the reference with the fully sensitive aligner RazerS 3 (Weese, 

Holtgrewe, and Reinert 2012), discarding reads that aligned to multiple loci. The higher base 

complexity in unconverted reads gives an advantage to aligners compared with bisulfite-converted 

reads. The comparison between the truth set and the bisulfite read alignments allow for the 

identification of true positives, which demonstrate indirectly the false positives and false negatives 

(Table 6) derived by each method through the calculation of recall, described in equation (5), and 

precision, described in equation (6). True positive alignments must occur in the same orientation 

and with the start coordinate within 5 bp of the corresponding alignment in the truth set. To limit 

the effect of sampling, the arithmetic means of precision and recall were calculated over all 

independent simulated datasets (1-20x) for each tool. Tools were then assigned an F1 score, 

described in equation (7), which reflects the balance of precision and recall through calculation of 

the harmonic mean of both measures. 

Table 6. The confusion matrix indicates the relationship between true positives and false positives. 
Precision is calculated by taking the true positives as a proportion of the predicted condition positives, 
and recall is calculated by taking the true positives as a proportion of the true condition positives. The F1 
score denotes the harmonic mean of precision and recall. 

  True Condition 

  Positives Negatives 

Predicted Condition 
Positives True Positives 

False Positives 
(Type II error) 

Negatives 
False Negatives 
(Type I error) 

True Negatives 
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𝑟𝑒𝑐𝑎𝑙𝑙 = PQRS	UVW;X;YSW
PQRS	UVW;X;YSWZ[\]WS	^S_\X;YSW

                  equation (5) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 PQRS	UVW;X;YSW
PQRS	UVW;X;YSWZ[\]WS	UVW;X;YSW

          equation (6) 

 

𝐹1	𝑠𝑐𝑜𝑟𝑒 = 2 ∙ e QSf\]]∙UQSf;W;V^
QSf\]]ZUQSf;W;V^

g                  equation (7) 

 

5.2.7 Coverage deviation 
Regions of log2-fold differential sequencing depth were calculated for each tool in comparison to 

unique RazerS 3 alignments using deepTools v3.4.3 bamCompare (Ramírez et al. 2016), after 

filtering bisulfite alignments based on a minimum MAPQ threshold of 1. The representation of 

such regions in the genome space of repeat annotations is analysed with a Fisher test implemented 

by bedtools v2.27.1 fisher (Quinlan and Hall 2010). Regions with a minimum absolute deviation in 

sequencing depth of log2(x)>1 in at least one tool are intersected with repeat annotations using 

bedtools v2.27.1 intersect (Quinlan and Hall 2010), to identify a “difficult-to-map” subset of the 

genome space for comparative DNA methylation analysis. 

 

5.2.8 DNA methylation analysis 
Methylation profiles for both natural accession data and artificial data were derived in all 

methylation contexts (i.e. CG, CHG, CHH) using MethylDackel v0.5.0 

(https://github.com/dpryan79/MethylDackel). The tool adjusts for overlapping paired-end reads, 

and can account for methylation bias at the 5-end arising during library preparation due to 

unconverted nucleotides incorporated by end-repair. All alignments were filtered based on a 

minimum MAPQ score of 1, and positions with a minimum base quality of 1. The methylation 

calls from natural accession data, produced following alignment with each of the tested software, 

were combined into an aggregate methylome for use during read simulation of artificial data to 

confer position-weighted conversion probabilities from naturally occurring 5mC patterns. 

Resulting methylation calls from the simulated data, produced after aligning with each of the tested 

software, were then compared back to the aggregate methylation profile over the difficult-to-map 

regions to evaluate the methylation differences in terms of mean absolute deviation. 
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5.3 Results 
Precision-recall profiles derived from simulated read alignments demonstrate higher F1 scores 

when comparing to equivalent, unconverted alignments obtained from RazerS 3 (Figure 16), but 

follow a similar behaviour in terms of dataset difficulty when comparing to the biological point of 

origin (Figure 17), suggesting that the underlying feature complexity of each genome tested does 

not deter mapping beyond what can be expected from standard Illumina paired-end sequencing 

data. When filtering alignments by a minimum MAPQ threshold of 1, the aligners BSMAP and 

BWA-meth consistently exhibit the highest F1 scores across all datasets, followed closely by 

Bismark, GEM3 and Last. 

 

Despite a relatively high repeat content relative to the genome space and a highly fragmented 

assembly, T. arvense perhaps represents the most straightforward simulated dataset in this 

benchmark, since artificial reads originate only from within scaffolds so they have fewer potential 

loci to map back to. Conversely, F. vesca appears to be the most difficult despite its completeness 

and relative size. Comparisons with real data demonstrate lower mapping rates overall (Figure 18), 

particularly in less contiguous and less polished assemblies, possibly due in-part to the presence of 

discordant reads overlapping break points between scaffolds. Bismark and BS-Seeker2 appear to 

be particularly susceptible to this, which can be unveiled by aligning the data in single-end mode 

(Figure 19). The remaining gap can be largely explained by the fact that neither tool seems to output 

read alignments with more than four to five errors relative to other tools (Figure 20). Taken 

together it results in fewer methylation calls for both of them (Figure 21), which could potentially 

confound downstream methylation analysis. 

 

As the difficulty of each dataset increases each tool tends to maintain a level of precision at the 

expense of recall, whereas GSNAP seems to traverse along the vector of y = x, and segemehl 

appears to struggle initially with the T. arvense dataset perhaps in-part due to the highly fragmented 

nature of the reference. The aligners GEM3 and BSMAP tended to be among the most sensitive, 

except for the F. vesca dataset where GSNAP also recovered a greater proportion of positive 

alignments. The lowest recall was observed consistently for ERNE-BS5, which appears to apply a 

non-standard usage of MAPQ by “binning” alignments either at MAPQ=0 or MAPQ=60. This is 

reflected by a comparatively high precision relative to the other tools, similar to Bismark and bwa-

meth. Further refinement of alignments in other tools by filtering MAPQ thresholds would likely 

result in improved levels of precision at the cost of recall, with the exception of BSMAP which  
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Figure 16. F1 scores and precision-recall for simulated reads mapped by each aligner, as determined by the 
alignment of equivalent, unconverted reads by RazerS 3, demonstrating the response trade-off at close to 
maximum recall with a minimum mapping quality (MAPQ) threshold of 1. BS-Seeker2 and BSMAP do not 
make use of MAPQ scores, and ERNE-BS5 partitions alignments either at MAPQ = 0 or MAPQ = 60. The 
F1 score is the harmonic mean of precision and recall, which reflects the ranking of each tool relative to the 
overall balance of both measures. In the right-hand panels, ERNE-BS5 in each case falls out-of-bounds and 
is annotated with the appropriate coordinate (recall, precision). 
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Figure 17. F1 scores and precision-recall for simulated reads mapped by each aligner, as determined by the 
known biological point-of-origin of reads according to the read simulator, demonstrating the response tradeoff 
at close to maximum recall with a minimum mapping quality (MAPQ) threshold of 1. BS-Seeker2 and BSMAP 
do not make use of MAPQ scores, and ERNE-BS5 partitions alignments either at MAPQ = 0 or MAPQ = 
60. The F1 score is the harmonic mean of precision and recall, which reflects the ranking of each tool relative 
to the overall balance of both measures. In the right-hand panel for F. vesca, ERNE-BS5 falls out-of-bounds 
and is annotated with the appropriate coordinate (recall, precision). 
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does not make use of MAPQ.  Given a minimum MAPQ threshold of 1, the aligners segemehl and 

GSNAP scored lowest in terms of overall precision. 

 

Regions with an absolute deviation of sequencing depth of log2(x)>1 in at least one tool represent 

a total of approximately 9.7 Mbp, 1.2 Mbp and 16.4 Mbp of the total genome space (4.39%, 0.34% 

and 3.92%), respectively, in F. vesca, T. arvense and P. nigra, whereas complex repeat annotations 

(computed with EDTA) comprise approximately 73.4 Mbp, 190.1 Mbp and 135.2 Mbp. 

Independent F-tests of the resulting intersection overlaps, in each species, indicate they are 

overrepresented in the genome space (P<1.0x10−6) at approximately 8.3 Mbp, 1.0 Mbp and 16.4 

Mbp (3.75%, 0.30% and 2.11%). These regions are considered “difficult-to-map”, and the 

difference between the alignment tools relative to RazerS 3 is reflective of how multi-mapping 

reads are handled in relation to MAPQ (Figure 22). 

 

In all cases, it is expected that mean absolute deviation is inversely correlated with sequencing 

depth, as a greater number of overlapping reads should reduce the impact of spurious alignments. 

Figure 18. Mapping rates of short-read aligners. Comparisons between simulated and natural accession (real) 
data for each test species and each tool, given a minimum mapping quality (MAPQ) of 1. Reads from 
simulated data are generated from each corresponding reference genome and thus expected to behave 
concordantly, with little sequence variation and minimal influence of base quality, whereas real data may be 
subject to discordant alignments arising for example from poor reference contiguity and/or genomic 
rearrangement. 
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For some tools however the absolute deviation increases again for higher values of minimum 

sequencing depth in difficult-to-map regions, particularly in the range of >10x where the per-strand 

depth is greater than the expected mean (Figure 22). This indicates a tendency to map reads which 

likely differ in their point of origin, thus apparent to some extent in all software with ‘All’ or ‘All-

First-N’ reporting strategies for multi-mapping reads, and additionally ERNE-BS5 (random best) 

and Last (unique only). The influence of such alignments from these tools may be curtailed by 

setting upper limits for sequencing depth or by more stringent filtering on MAPQ. 

Figure 19. Comparison of mapping rates with each software after aligning the same paired-end WGBS reads 
from natural accession (real) data in each species, in both paired-end mode and single-end mode. Most tools 
achieve marginally higher mapping rates in paired-end mode, with the exception of Bismark, BS-Seeker2, 
ERNE-BS5 and GSNAP. In particular, both Bismark and BS-Seeker2 appear to lose sensitivity in paired-
end mode in correlation with an increasing level of fragmentation in the corresponding genome assemblies. 
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Comparisons of the mean deviation in methylation rate over all positions, as a function of a 

threshold on the minimum sequencing depth within difficult-to-map regions, indicate that all 

software (with the exception of ERNE-BS5) differ only marginally from the expected methylation 

rate in natural accessions (Figure 23), at lower depth thresholds, regardless of the recovered fraction 

of independent sites that are called (Figure 22). A higher rate indicates a potential preference 

towards aligning methylated reads, which could have implications for downstream methylation 

Figure 20. Comparison of mapping rates with each software for paired-end alignments from natural 
accession (real) data in each species, stratified by the number of alignment errors (NM) which cannot be 
attributed to the treatment with bisulfite. Most of the aligners allow for up to ten or more errors in the read 
alignments below a certain number of errors. The exceptions are Bismark and BS-Seeker2 which appear to 
have a soft-/hard-threshold at 4-5 errors per read. 
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analysis in such regions.  The tendency is not apparent when considering the global methylation 

profile across the whole genome. 
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Figure 21. Global methylation site dropout. Total proportion of genomic cytosines in all methylation 
contexts (i.e. CG, CHG, CHH) derived from each aligner in response to varying the minimum sequencing 
depth threshold. The expected mean strand-specific sequencing depth is 10x. The left-hand panels represent 
simulated data, whereas the right-hand panels represent natural accession (real) data. 
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Figure 22. Fraction of total cytosines and mean absolute deviation of methylation calls. Comparisons 
between tested software in terms of the methylation profiles derived from simulated data, in all methylation 
contexts, over difficult-to-map regions encompassing ~3.75% of the genome space in F. vesca, ~0.3% in T. 
arvense and ~2.11% in P. nigra. All plots refer to profiles derived from artificial data simulated based on 
naturally-occurring 5mC patterns from the corresponding natural accession data. The left-hand panels show 
the fraction of total cytosines in difficult-to-map regions that are covered by each tool. The right-hand panels 
show the mean absolute deviation, demonstrating how well the methylation patterns were preserved 
following alignment, in comparison to the original methylation profiles from natural accession data. 
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Figure 23. Mean deviation of cytosine methylation (all contexts) in simulated data, relative to the naturally-
occurring 5mC patterns derived from natural accessions, as a function of a threshold on the minimum 
sequencing depth after aligning to each species with each tool. The left-hand panels show the deviation on 
a genome-wide (global) scale whereas the right-hand panels show only the subset of difficult-to-map regions. 
Most software perform similarly, but few tend to underestimate the methylation level in difficult-to-map 
regions at higher-than-expected levels of strand-specific sequencing depth (e.g. > 10x). In contrast, ERNE-
BS5 appears to overestimate the methylation level in difficult-to-map regions but otherwise does not differ 
noticeably from the global methylation level. 
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Finally, when comparing the computation performance, the aligners BSMAP, BWA-meth, ERNE-

BS5 and GEM3 exhibited the fastest running times, while BWA-meth and ERNE-BS5 also ran 

with the lowest demand on peak memory alongside Bismark (Figure 24). For production 

environments with a focus on high throughput, aligners such as BWA-meth and ERNE-BS5 might 

be preferred. If computational resources are not a factor, then on-balance BWA-meth and BSMAP 

are able to make the most of the data available, depending on whether further refinement by 

MAPQ is required. For non-model data specifically, further consideration might also be given to 

how discordant alignments are handled by each tool. 

 

5.4 Discussion 

Previous studies have shown the imperative to consider methodological differences in the context 

of downstream methylation analysis, for example when detecting bias in WGBS library preparation 

strategies (Olova et al. 2018). When mapping bisulfite-converted short reads, prioritising one of 

either recall or precision might be appropriate when assessing individual alignments, but can lead 
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Figure 24. Peak memory and running time on alignments of simulated reads at varying levels of sequencing 
coverage (1-20x). Peak memory usage is given in terms of resident set size (Gb) and running time in terms 
of seconds per Mbp for comparison. Memory is dependent on the size of the genome relative to the effect 
on the index data structure, whereas time is dependent on the total quantity of reads to align. Larger error 
bars indicate memory usage differences that arise due to differences in sequencing depth, or non-linear 
increases in process running time. 
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to bias in methylation rates. Deriving the correct result over a given position is dependent on 

maintaining the correct ratio of methylated and unmethylated cytosines from the pool of reads 

obtained from a given biological sample. This ratio is disturbed not only by inaccurate mapping, as 

can be more prevalent in software with lower precision, but also by over-filtering alignments based 

on measures such as MAPQ, as may be prevalent in software with lower recall. The trade-off is 

more apparent when considering the stringency for handling multi-mapping reads in each tool with 

respect to MAPQ, particularly over difficult-to-map regions with local minima or maxima in overall 

sequencing depth. 

 

Adjusting methylation rates or providing confidence intervals based on the evaluated mappability 

of reference regions might be beneficial for downstream analysis; however, existing tools based on 

self-alignments of k-mers (Karimzadeh et al. 2018) may overestimate the mappability of 

heterozygous loci and/or scaffold boundaries in highly fragmented genomes. Furthermore, 

differences in mean methylation patterns between different software indicate preferences in some 

instances for mapping methylated loci which are not explained by sequencing depth bias arising 

through library preparation. More densely methylated reads benefit from increased sequence 

complexity, which may confer an advantage during read alignment which has a downstream impact 

on methylation rate. The performance of bisulfite read alignment software is responsive to 

achieving an optimal balance of precision-recall with respect to both methylation status and the 

mappability of genomic regions. 

 

It is important to consider that the metrics typically used in benchmarking approaches (e.g. 

precision, recall, F1 score) tend to reflect only the descriptive statistics of individual cases; they do 

not account for the full breadth of potential variation between different species, for example. 

Though model species are often used to make predictions, a more robust statistical approach would 

strictly be necessary in order to develop a high-confidence model that carries over to other, non-

model organisms. In the present context, the benchmarking of software using their default 

parameters appears most fair as an approximation of a “general use case” and also trivial for any 

educated user to carry over to other scenarios. Parameter optimisation is dependent on consistent 

implementation and reproducible behaviour between use cases, and it is a lot to expect from an 

educated user to select optimal settings for each tool without assistance from an expert. In 

summary, this study expands upon existing work in assessing current bisulfite alignment software 

by incorporating a range of emerging applications and shifting focus towards downstream 
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methylation analysis; however, further refinement is encouraged on a case-by-case basis both in 

terms of software selection and the optimisation of parameter settings to further improve results. 

 

5.5 A pipeline for WGBS analysis 
Based partially on the results of this benchmarking analysis, a computational pipeline for 

performing alignment of whole genome bisulfite sequencing data was developed for use by the 

EpiDiverse consortium in the study of epigenetics in plant ecology. It comprises one aspect of the 

“EpiDiverse Toolkit”, and makes use of common file formats and standards to facilitate 

interoperability both with other pipelines in the toolkit and external software. The pipeline is 

implemented with Nextflow under the DSL v2 framework, and facilitates processing of 

population-scale data in a highly-parallel manner. The system is portable and able to be easily-

configured for different computational architectures, with very little bioinformatic expertise 

required on behalf of the end-user. The software is available at 

https://github.com/EpiDiverse/WGBS 

 

The workflow processes raw data from FASTQ inputs (FastQC, cutadapt), aligns the trimmed 

reads (ERNE-BS5 or segemehl), and performs extensive quality control and post-processing on 

the results using custom scripts. The pipeline is able to process sample data based on read groups, 

and performs estimation of sample-specific non-conversion rates based on either lambda phage 

“spike-in” or using a given scaffold (e.g. chloroplast). Picard MarkDuplicates is used to remove 

PCR duplicates computationally, and finally methylation calling and M-bias correction is performed 

with MethylDackel. 
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6 There and Back Again: Inferring 

Genomic Information 

6.1 Introduction 
Previous chapters have addressed DNA methylation (Chapter 1 section 1.2.2) and its relevance as 

an epigenetic mark in plant ecology, in addition to the NGS technologies and approaches used to 

study it (Chapters 1, 4). One important consideration which is often overlooked during the analysis 

of bisulfite sequencing data, however, is that researchers often need to frame the results of their 

investigations into epigenetic mechanisms and processes in the context of the genetic background. 

Common approaches involve for example the use of clones, in order to control for genetic 

variability and ensure that experimental results correlate only with the tested epigenetic factors. As 

the scope and scale of such experiments extends to non-model plant species, however, those with 

different modes of reproduction have to be accounted for and it’s not always possible to limit 

genetic effects experimentally. It is increasingly the case that genetic markers such as SNPs have to 

be evaluated in parallel, under the same experimental conditions in which studies in epigenetics are 

performed, necessitating for example the use of conventional sequencing libraries alongside 

bisulfite sequencing data. This can be prohibitive both in terms of cost and the resulting trade-off 

in e.g. sequencing depth / number of samples in order to meet statistical power requirements and 

generate reliable results, especially in consideration of population-level experiments. 

 

Alternatively, though it is not yet feasible with conventional tools, it is nevertheless possible to 

obtain genetic variants directly from the bisulfite sequencing data itself, owing to the non-

complementary nature of opposite-strand alignments in the case of artificial mutations caused by 

the bisulfite treatment. Conventional tools for variant calling currently have no way to distinguish 

thymine mismatches arising as a result of natural mutation, which are obscured by the bisulfite 

conversion and risk being mistaken simply as unmethylated cytosines. More specifically, the variant 

caller will interpret every artificial mutation throughout the genome as potential evidence of a SNP, 

skewing the balance of alleles required for accurate genotyping and resulting in many false positives. 

In order to differentiate true positives from false positives, then, it is necessary to derive allele 

counts on a per-strand basis prior to variant calling. A natural mutation in a bisulfite context (i.e. 
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C>T) will retain its true complementarity on the opposite strand, whereas an artificial mutation 

will be reflected by the complementary base of the original cytosine nucleotide. Such a method can 

potentially make it feasible to sequence only bisulfite libraries, and yet derive both epigenetic data 

as well as the genetic variants relevant to a more comprehensive analysis. 

 

Previous attempts to resolve such confounding positions in the genome, to determine both the 

correct methylation level and reveal underlying SNPs, have resulted in the development of 

specialised software such as BISCUIT (https://github.com/huishenlab/biscuit), Bis-SNP (Yaping 

Liu et al. 2012), BS-SNPer (Gao et al. 2015), gemBS (Merkel et al. 2019) and MethylExtract 

(Barturen et al. 2013). Each case combines methylation calling and variant calling into a single, 

concurrent analysis to produce output in a custom variant call format (VCF). No single approach 

however considers the variant calling itself as a primary, independent outcome. Users looking 

additionally to leverage SNP data for e.g. genotyping or purposes unrelated to DNA methylation 

are therefore limited by the scope and rationale behind the development of existing tools where 

the priority is to establish methylation. Instead, the present application aims to abstract variant 

calling as a standalone objective, in order to facilitate analysis with conventional software, such as 

GATK (McKenna et al. 2010), Freebayes (Garrison and Marth 2012), or Platypus (Rimmer et al. 

2014), thereby optimising precision-sensitivity during SNP discovery and allowing users to make 

the most out of their bisulfite sequencing data for a broader range of purposes. 

 

Under a simple Bayesian framework to variant calling, the conditional probability of observing the 

true genotype G given the variants observed in the sequencing data D can be represented for 

example by equation (4) (Chapter 1 section 1.3.4), which formulates the problem as the derivation 

of a prior estimate of the genotype P (G) and the likelihood of observing the data P (D|G). 

 

Given that NGS data is seldom error-free, even the simplest model will typically incorporate base 

quality (BQ) information directly into the Bayesian inference of genotypes as a fundamental scaling 

factor for the data likelihood estimation. The BQ score itself is a phred-based quality value which 

denotes on each position the estimated probability that the base caller identified the correct 

nucleotide during sequencing. In the context of variant calling from bisulfite-treated NGS data, 

any potential nucleotide conversions present in the resulting sequencing reads can, in principle, be 

considered analogous to zero-quality base calls. Leveraging this mechanism imposes an indirect 

strand-specificity on potential variants which cannot otherwise be dissociated from the effect of 



6 There and Back Again: Inferring Genomic Information 

 111 

bisulfite conversion, dictating that they be informed only by opposite- strand alignments where the 

original, complementary nucleotide is hence unaffected by the treatment. 

 

6.1.1 Implementing a new approach 

The method presented herein involves a simple “double-masking" procedure which manipulates 

specific nucleotides and BQ scores on alignments from bisulfite sequencing libraries (Figure 25), 

with the formal procedure on individual alignments described in Algorithm (1). It involves two 

steps which are performed in silico. First, specific nucleotides in bisulfite contexts are converted to 

the corresponding reference base, in order to prevent any preselection of sites which are informed 

exclusively by the artificial bisulfite treatment. This circumvents what can potentially be millions 

of positions from even being considered by the variant caller as candidate variants for analysis, thus 

reducing valuable analysis time and conserving computational resources. Second, any given 

nucleotide which may potentially have arisen due to bisulfite conversion is assigned a base quality 

(BQ) score of 0. This drives the variant caller to make the correct decision in regards to genotype 

on positions where there is real evidence of a SNP. As the procedure is informed by decisions 

made during alignment, it behaves in exactly the same manner and is applicable to both directional 

and non-directional sequencing libraries. In paired-end sequencing, the procedure applies in a C>T 

context on mate 1 alignments to the Watson strand (FW+) and mate 2 alignments to the Crick 

strand (RC-), whereas mate 1 alignments to the Crick strand (FW-) and mate 2 alignments to the 

Figure 25. Overview of the double-masking procedure. The central sequence represents the reference 
genome, with example alignments (+FW and -FW) adjacent to each originating strand. Black, emboldened 
nucleotides potentially arise form bisulfite treatment. Blue colouring indicates 5mC. Red colouring represents 
in silico nucleotide manipulation, and corresponding base quality manipulations are indicated with an 
exclamation mark. In example (1) the variant caller is informed only by the -FW alignment, and in (2) only 
by the +FW alignment. As there is no equivalent Watson (+) alignment in (3) it is impossible to determine 
whether the apparent G>A polymorphism arises from bisulfite or by natural mutation. 
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Watson strand (RC+) follow G>A context. Reads obtained from single-end sequencing behave in 

an equivalent manner to mate 1 in paired-end sequencing. 

 

In contrast to previous approaches with bisulfite data, the method is applied as a pre-processing 

step prior to variant calling, thereby facilitating interoperability with conventional, state-of-the-art 

variant calling software. For validation, SNPs derived from published, experimental whole genome 

bisulfite sequencing (WGBS) data in human (NA12878) and Arabidopsis thaliana (Cvi-0) accessions 

are compared to high-quality variant standards and high-confidence regions obtained from the 

NIST Genome in a Bottle initiative (Zook et al. 2014) and the 1001 genomes project (1001 

Genomes Consortium et al. 2016), respectively. The method presented herein has been 

implemented as a standalone python script available at 

https://github.com/bio15anu/revelio, which is intended to be adapted and “plugged-in" to any 

variant pipeline working with bisulfite data so that the user can choose whichever alignment and 

variant calling software best suits their purposes. An open-source example of a working pipeline 

for whole genome data is available at https://github.com/EpiDiverse/SNP which is itself a branch 
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of the EpiDiverse Toolkit (Nunn et al. 2021). The software is also implemented by epiGBS2 in the 

analysis of reduced-representation bisulfite data (Gawehns et al. 2022). 

 

6.2 Materials and methods 

6.2.1 Validation datasets 
All datasets analysed in this study are derived from published, public domain resources. High-

quality reference variant datasets for A. thaliana (Cvi-0) and human (NA12878) accessions were 

obtained from the 1001 genomes project (https://1001genomes.org/data/GMI-

MPI/releases/v3.1/) and Genome in a Bottle (GIAB) (https://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv4.2.1/), respectively. The 

corresponding reference genomes TAIR10 (GCF_000001735.3) and GRCh38 

(GCF_000001405.26) were obtained from NCBI. Equivalent WGBS data were obtained from the 

NCBI Sequence Read Archive under accessions SRX248646 (single-end, ~34X) and SRX3161707 

(paired-end, ~46X). Please refer to (1001 Genomes Consortium et al. 2016) and (Suzuki et al. 

2018) for further technical specifications regarding these datasets. The original whole genome 

sequencing (WGS) data for A. thaliana Cvi-0 was also obtained, under accession SRX972441 

(paired-end, ~62X). Both trimmed reads and alignments from this accession were subject 

individually to in silico bisulfite treatment (~99% conversion rate), using custom in-house python 

scripts, to generate corresponding, simulated WGBS datasets. 

 

6.2.2 Read processing and alignment 
Reads were assessed with FastQC v0.11.8 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc) and, where appropriate, trimming 

performed with cutadapt v2.5 (Martin 2011). WGS alignments were carried out with BWA v0.7.17-

r1188 (Li and Durbin 2009), and WGBS alignments with bwa-meth v0.2.2 (Pedersen et al. 2014). 

Read groups were merged with SAMtools v1.9 (Li et al. 2009), where appropriate, and PCR 

duplicates subsequently marked with Picard MarkDuplicates v2.21.1 

(http://broadinstitute.github.io/picard). 

 

6.2.3 Variant calling 
Following the double-masking procedure, variants were called using GATK v3.8 

UnifiedGenotyper (McKenna et al. 2010), Freebayes v1.3.1-dirty (Garrison and Marth 2012), and 
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Platypus v0.8.1.2 (Rimmer et al. 2014), in all cases with a hard filter of 1 on both minimum mapping 

quality (MAPQ) and BQ. Variants were called in addition using Platypus on assembly-mode with 

BQ≥0. For comparison, variants from the original bisulfite alignments were called also with 

BISCUIT v0.3.16.20200420 (https://github.com/huishenlab/biscuit), Bis-SNP v1.0.1 (Yaping Liu 

et al. 2012), BS-SNPer v1.1 (Gao et al. 2015) and MethylExtract v1.9.1 (Barturen et al. 2013). 

Default parameter settings were used, with the exception of minimum MAPQ and BQ thresholds 

which in all cases were set both to 1. Please refer to Suppl. Table D.1 for the complete command 

line in each case. The resulting variant calls were normalised, decomposed and otherwise processed 

for comparison to the high-quality reference data using BCFtools v1.9 (H. Li et al. 2009; Danecek 

et al. 2021). 

 

6.2.4 Benchmarking 
Benchmarking itself was performed with vcfeval of RTG Tools v3.11 (Cleary et al. 2015), which 

compares both the substitution context and estimated genotype of baseline variants from the truth 

set to each set of calls from bisulfite data in order to evaluate true positives, false positives and 

false negatives, in response to varying common filtering thresholds such as sequencing depth (DP), 

quality (QUAL) and genotype quality (GQ). Variants must occur with both the same substitution 

context and genotype in order to be evaluated as a true positive. As described in Chapter 5, 

sensitivity (recall) refers to the true positives as a fraction of the truth set positives, described in 

equation (5), whereas precision, described in equation (6), refers to the true positives as a fraction 

of the discovered variants (Table 6). The F1 score, described in equation (7), reflects the balance 

of precision and sensitivity via the harmonic mean of both measures, and can be optimised relative 

to each filter by taking the maximum value in response to varying the relevant threshold. 

 

6.3 Results 
In benchmark data sets for both test species, precision-sensitivity of the SNPs derived from WGBS 

data is demonstrably improved following double-masking in comparison to existing methods 

(Figure 26). Notably, common filtering metrics such as variant quality (QUAL) and genotype 

quality (GQ) behave as could be expected in conventional sequencing data (Figure 26; Figure 27), 

facilitating in many cases the use of established best-practice criteria for selecting high-confidence 

calls. Additional comparison of SNPs derived from real WGS data (A. thaliana; accession Cvi-0) 

and equivalent WGBS data, following in silico bisulfite conversion (~99%) of sequencing reads, 

removes the variation caused by differences during sequencing, but not alignment. The resulting 
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ROC-like curves demonstrate a comparable level of sensitivity (i.e. true positives) in both WGS 

and WGBS data following variant calling with Platypus, Freebayes and GATK3.8 

UnifiedGenotyper (Figure 28), however there is a drop in precision driven in each case by an influx 

of false positives. When in silico bisulfite conversion is instead applied directly to the WGS 

alignments, thus eliminating variation due to the alignment of bisulfite-treated reads, the 

differences in false positives are reduced for each tool. All software demonstrate an appreciable 

performance, with GATK3.8 achieving the highest raw number of both true and false positives, 

followed by Freebayes and then Platypus, for both WGS and WGBS data. The total number of 

false positives derived from in silico WGBS alignments however represent only 1.0%, 3.8% and 

4.3% of the total, unfiltered calls for those same tools respectively, when discounting the fraction 

shared in the equivalent WGS data. 

 

The overall balance between precision and sensitivity can be evaluated using the harmonic mean, 

to denote the F1 score, which can be compared between different software and data types (Table 

7). With in silico WGBS reads, the optimal F1 scores for GATK3.8, Freebayes and Platypus were 

identified at 0.8508, 0.8039 and 0.7709, respectively, with a corresponding QUAL threshold of 80, 

41 and 27. The overall best-performing tool was therefore GATK3.8, achieving 0.8685 sensitivity 

and 0.8338 precision at the optimal level, followed by Freebayes with 0.7335 sensitivity but a higher 

precision of 0.8894. Freebayes performed more similarly between the in silico WGBS reads and  
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Figure 26. Precision-sensitivity plots demonstrating the response to an increasing variant quality (QUAL) 
threshold, comparing SNPs derived from published WGBS data to those derived from established 
benchmark datasets for (A) A. thaliana and (B) human. Software with the epi- prefix are intended for 
conventional sequencing libraries but in this case run after pre-processing with the double-masking 
procedure. True and false positives are evaluated based on both the substitution context and the estimated 
genotype. 
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the real WGBS dataset, however, suggesting it may account better for differences in library 

composition and layout. Platypus performs better overall in default mode, despite an optimal 

precision level of 0.9436 for WGS and 0.8991 for WGBS data with assembly-mode enabled (not 

shown). The reduced overall performance due to lower sensitivity may in-part arise due to the need 

to set a pre-emptive threshold for Platypus at BQ ≥ 0 (--minBaseQual=0), following the 

double-masking procedure, to avoid over-filtering regions during local assembly. 

 

Table 7. Optimised F1 scores for A. thaliana (Cvi-0) in comparison to the reference SNPs 
obtained from 1001 genomes, when using real WGS and WGBS data, alongside in silico WGBS 
data derived from the WGS reads and alignments, respectively. 

 Real data in silico 

 WGS WGBS reads alignments 

GATK3.8 0.9189 0.8177 0.8508 0.9069 

Freebayes 0.8247 0.7670 0.8039 0.8247 

Platypus (default) 0.7423 0.7026 0.7709 0.7935 

Platypus (assembly) 0.6378 0.5980 0.6449 0.6509 

     

Figure 27. Precision-sensitivity plots demonstrating the response to an increasing genotype quality (GQ) 
threshold, comparing SNPs derived from published WGBS data to those derived from established 
benchmark datasets for (A) A. thaliana and (B) human. Software with the epi- prefix are intended for 
conventional sequencing libraries but in this case run after pre-processing with the double-masking 
procedure. True and false positives are evaluated based on both the substitution context and the estimated 
genotype. With GQ as qualifier, epi-freebayes performs consistently high in terms of the optimal balance of 
ture and false positives, with an F1 score of 0.7715 and 0.6984 in each dataset, respectively. BS-SNPer and 
MethylExtract do not give values for genotype likelihood or genotype quality in the output VCF files. 
Additionally, the reported GQ values in biscuit are identical to the QUAL values in single-sample mode. 
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When considering only those variants called by GATK3.8 UnifiedGenotyper, the relative fraction 

of true and false positive variants shared between each dataset, before and after filtering according 

to GATK best-practices (described in Supplementary Table D.2), helps to further decompose the 

factors mainly responsible for the differences observed with WGS and WGBS data (Figure 29). 

For example, among the unfiltered true positives the majority of variants are similar and shared 

between all datasets, with a smaller, secondary, sub-fraction shared only among the real WGS data 

and both simulated WGBS datasets (paired-end, ~62X). After filtering, the number of true positive 

variants are reduced mainly in the real WGBS dataset (single-end, ~34X), suggesting that variable 

sequencing library composition is driving these differences. Upon further inspection, the filter on 

StrandOddsRatio (SOR) appeared to be excluding the majority of true positive variants filtered out 

in the real WGBS data, likely as a result of an indirect strand-specificity imposed on potential 

variant calls by the double-masking procedure. When filtering the true positives in the same manner 

from the real WGBS dataset in the NA12878 human line (Figure 26B; paired-end, ~46X), however, 

these variants were only reduced by ~13%. With some low-coverage libraries it might therefore be 

prudent to relax the SOR filter when seeking to obtain confident calls from WGBS data. The false 

positives, on the other hand, are reflected primarily in the real WGBS dataset and the artificial 

dataset simulated from real WGS reads (subsequently aligned as a WGBS library). Here, it is the 

variant confidence metrics (i.e. QUAL and QualByDepth) which are driving the differences after 
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Figure 28. ROC-like plots demonstrating the response to an increasing variant quality (QUAL) threshold, 
comparing SNPs derived from real data (WGS) to those derived from equivalent data (WGBS) after in silico 
bisulfite conversion of either reads or alignments, followed by pre-processing with the double-masking 
procedure, in A. thaliana (Cvi-0). The real WGBS dataset from Figure 26A is also displayed alongside in each 
panel for comparison. Panels show results from conventional software (A) Freebayes, (B) GATK3.8 and 
(C) Platypus (default mode). True and false positives are evaluated based on both the substitution context 
and the estimated genotype. 
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filtering. Taken together this further suggests that the influx of false positives relative to real WGS 

data are driven primarily by differences in both alignment and library composition, both of which 

have a direct influence on variant calling. 

 

This indirect strand-specificity imposed on potential variant calls by the double-masking procedure 

can be expected to reduce the available sequencing depth required to make confident calls for 

potential polymorphisms involving thymine, in comparison to WGS data. In the equivalent, in 

silico WGBS library derived from WGS reads, this would seem to manifest predominantly as a 

relative decrease in variant confidence metrics on true positive SNPs (Figure 30). The number of 

true positive variants that would fail the recommended hard-filtering thresholds (QUAL<30 or 
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Figure 29. The shared fraction of true and false positive variants in real and simulated data for A. thaliana 
(Cvi-0), following analysis with GATK UnifiedGenotyper. Distinct WGBS datasets were simulated from 
both the real WGS alignments and the real WGS reads, separately. The panels denote (A) true positives, 
before and (B) after filtering, according to recommended hard-filter thresholds in GATK best-practices, 
and (C) false positives, also before and (D) after filtering. The thresholds chosen for filtering are further 
described in Supplementary Table D.2. 
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QD<2.0), however, increased only from 1,730 (<0.27%) in WGS data to 9,762 (<1.55%) in the in 

silico WGBS data. In this simulated, paired-end library there is only a minor increase in overall 

strand bias, as measured with the SOR metric in GATK3.8 UnifiedGenotyper, where true positive 

variants that would fail the recommended hard-filtering threshold (SOR>3) increased from 18,045 

(2.79%) in WGS data to 31,487 (5.0%) with simulated WGBS data. All together the number of true 

positive variants lost after hard-filtering increased from 30,858 (4.77%) to 56,695 (9.0%) due to the 

in silico bisulfite conversion, while the total false positive variants increased from 80,528 (6.81%) to 

143,745 (10.24%). 

 

Between all selected variant callers, the proportional deviation of false positives from in silico WGBS 

reads, relative to WGS data, show similar profiles when partitioned by substitution context (Figure 

31). A total of 92.3%, 77.3% and 72.8% of the total false positives here occur in positions which 

are homozygous-reference in the truth set for each of GATK3.8, Freebayes, and Platypus, 

respectively, after filtering those shared in the equivalent WGS data. These positions represent 

12.0%, 5.6% and 5.6% of the total, unfiltered calls made by each tool. The remaining false positives 

typically comprise true variants which have been assigned an incorrect genotype (e.g. homozygous-

alternative called as heterozygous), representing 2.9%, 4.2% and 4.6% of the total, unfiltered calls. 
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Figure 30. Quality control metric comparisons between SNPs derived from real data (WGS) and those 
derived from equivalent data (WGBS) after in silico bisulfite conversion of WGS reads, in A. thaliana 
(Cvi-0). Distributions are derived from the intersection of true positive calls made in each case by 
GATK3.8 UnifiedGenotyper, and each metric is considered specifically for hard-filtering in GATK best-
practices. Definitions for each metric according to GATK are given in Suppl. Table D.2. MQRankSum 
and ReadPosRankSum are only evaluated for a subset of calls, and in both datasets the vast majority of 
calls achieve a FisherStrand score of 0 (not shown). 
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Figure 31. Proportional deviation of raw, unfiltered variant calls from data subject to in silico bisulfite 
treatment (WGBS) relative to the original untreated WGS data, in A. thaliana (Cvi-0). The left-hand 
panels indicate the fraction of true positive sin each dataset, whereas the right-hand panels refer to the 
fraction of false positives. The profiles partitioned across each substitution context are similar between 
each tool, although there are fewer false positives in Platypus (default mode) and Freebayes relatives to 
GATK3.8, and in contrast to the other tools the true positives called by Platypus seem to increase overall 
in the artificial WGBS data relative to WGS. 
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Many of these cases suffer a low GQ likely as a consequence of reduced sequencing depth by 

limiting calls in bisulfite contexts to opposite-strand alignments. Such positions are also considered 

among the false negatives, alongside the fraction of true SNPs which are not called at all from 

bisulfite data. When considering the sequencing depth distribution of false negatives from in 

silico WGBS alignments, discounting those shared in the WGS data, there is a peak at ~4-5x in 

addition to a larger peak which correlates with the distribution for the true positives at ~18-20x 

(not shown). Accounting for a minimum per-position sequencing depth of ~7-10x should generally 

therefore be enough to make a successful call, disregarding differences due to WGBS alignment or 

significant deviations from typical sequencing biases (e.g. strand bias). More generally, aiming for 

a genome-wide coverage of at least ~40X, using a paired-end, directional library, would appear to 

be the optimal recommendation for analysis based on the complete results of this study. 

 

6.4 Discussion 
Conventional germline variant callers can be broadly categorised as alignment-based, such as 

GATK3.8 UnifiedGenotyper, or haplotype-based, such as Freebayes and Platypus. Both strategies 

are concerned with correctly identifying variants at a given locus and inferring probabilistic 

genotype likelihoods based on allelic count differences, however they differ in their consideration 

of proximal variants to establish phase. Whilst UnifiedGenotyper considers precise alignment 

information in a position-specific, independent manner, Freebayes considers the literal sequence 

of each overlapping read to obtain the context of local phasing and derive longer haplotypes for 

genotyping. Some modern variant callers, including for example Platypus and GATK 

HaplotypeCaller, expand upon the haplotype-based approach by incorporating local assembly to 

aid in resolving potential indels. Bisulfite sequencing data can be made conceptually compatible 

with each of these described approaches, following pre-processing with the double-masking 

procedure, with the caveat that the chosen software for calling variants handles base quality 

specifically during the estimation of genotype likelihoods, ideally with an option for hard-filtering. 

Local assembly presents an added difficulty in that base quality is often considered additionally for 

read trimming during construction of De Bruijn graphs, e.g. in determination of “ActiveRegions" 

in GATK HaplotypeCaller, and is typically codependent on the same parameter used for setting 

its threshold during Bayesian inference. This can sometimes be circumvented, as demonstrated 

herein with Platypus, by allowing even a base quality of zero during local assembly before relying 

on the genotype likelihood model to weight such positions appropriately during variant calling, but 

such a case is not ideal. If masked nucleotides are allowed to be included in the model for deriving 
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genotype likelihoods then the allelic balance on each variant will skew towards any mutations 

arising from bisulfite conversion, leading to a greater incidence of false positives. 

 

To the best of my knowledge, the software chosen for comparison during this benchmark analysis 

represent almost the full extent of available, bisulfite-aware variant callers. In one instance a tool 

had to be omitted for both reasons of compatibility and because we were unable to run the variant 

calling aspect outside the context of a larger pipeline. gemBS (Merkel et al. 2019) is a pipeline suite 

which includes mapping, quality control, variant calling and extraction of methylation values. 

Attempts to run just the variant calling aspect (bs_call) using the standard alignment files generated 

in this study were unsuccessful, meaning we had to re-run the mapping too with gemBS, thus 

introducing a discrepancy in comparison to other tools. Furthermore, the variant output was 

returned in a custom, non-standard VCF format which made it very difficult to separate sequence 

variants from methylated sites in a manner which was also conducive to a fair, systematic 

comparison with the other variant calling software. These results were thus omitted so as not to 

disadvantage gemBS under an experimental design which may simply not be elaborate enough in 

this case for a fair and robust evaluation of its performance. 

 

It is important to consider that, unlike most other bisulfite-aware tools, variant calling with the 

presented approach is almost completely dissociated from the influence of cytosine methylation. 

The advantage of this is an improved sensitivity for high-confidence variants with fewer false 

positives, whilst preserving the underlying model of selected tools, but the methylation level itself 

must be evaluated independently. This is akin to several variant-independent approaches such as 

MethylDackel (https://github.com/dpryan79/MethylDackel) and GATK MethylationTypeCaller 

which are commonly used to estimate the methylation level without knowledge of the underlying 

SNPs. In combination with the presented approach it would be feasible to derive accurate variant-

adjusted methylation calls, or even allele-specific methylation without the need for a corresponding 

genotype dataset obtained by conventional DNA sequencing. 

 

In conclusion, the double-masking procedure facilitates sensitive and accurate variant calling 

directly from bisulfite sequencing data using software intended for conventional DNA sequencing 

libraries. The procedure can be readily adapted to existing software pipelines and does not 

necessitate any additional understanding of customised VCF files. Given sufficient sequencing 

depth, accurate alignment with minimal deviation from expected sequencing biases, and an 

appropriate level of filtering based on variant quality metrics, the SNPs derived from WGBS data 
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are comparable to those from WGS data. The method presents a viable, alternative strategy to 

those who would otherwise need to sequence corresponding libraries of each type in order to better 

understand the role of DNA methylation in the context of the genetic background. 

 

6.5 A pipeline for SNP variant analysis 
Based partially on the results of this benchmarking analysis, a computational pipeline for calling 

SNP variants from bisulfite sequencing data was developed for use by the EpiDiverse consortium 

in the study of epigenetics in plant ecology. It comprises one aspect of the “EpiDiverse Toolkit”, 

and makes use of common file formats and standards to facilitate interoperability both with other 

pipelines in the toolkit and external software. The pipeline is implemented with Nextflow under 

the DSL v2 framework, and facilitates processing of population-scale data in a highly-parallel 

manner. The system is portable and able to be easily-configured for different computational 

architectures, with very little bioinformatic expertise required on behalf of the end-user. The 

software is available at https://github.com/EpiDiverse/SNP  

 

The workflow first processes alignment data from SAM/BAM inputs, such as those provided as 

output from the EpiDiverse/WGBS pipeline, which can be provided either as a series of 

independent files for parallel, sample-specific variant calling, or as a single, combined file for joint 

variant calling, whereby each sample is represented by a read group identifier. The pipeline 

performs alignment sorting, indexing and recalculates proper MD tags in the input files using 

SAMtools (Li et al. 2009), then uses the double-masking approach to format bisulfite data 

appropriately for variant calling. Variant calling itself is performed using FreeBayes, and 

downstream post-processing and filtering performed using BCFtools (Li et al. 2009; Danecek et al. 

2021).  

  



7 Population-level Epigenomics 

 124 

 

7 Population-level Epigenomics 

7.1 Introduction 
The extent by which genetic diversity influences adaptation and selection, by processes of 

stochastic mutation, genetic drift and gene flow, is a fundamental concept underpinning modern 

evolutionary synthesis. Genetic diversity can be defined as any measure that quantifies the 

magnitude of genetic variability within a population. On the other hand, phenotypic plasticity is 

defined as the capacity of a set genotype to produce more than one phenotype when exposed to 

different environmental conditions (Kelly, Panhuis, and Stoehr 2012). Intraspecific trait 

variability is a direct result of phenotypic plasticity, contributing to increased functional diversity 

within plant communities, and is a key component of biodiversity with important implications for 

species coexistence and ecosystem functioning (Medrano, Herrera, and Bazaga 2014). Genetic 

diversity can therefore be considered the baseline for phenotypic diversity, upon which 

evolutionary processes like natural selection can act (Hughes et al. 2008).  

 

In recent years, however, it has become evident that epigenetic variation can also play a role in 

phenotypic plasticity (Bossdorf, Richards, and Pigliucci 2008; Heer et al. 2018), and several studies 

have furthermore suggested that it can contribute to functional diversity in populations (Latzel et 

al. 2013). For example, epigenetic mechanisms play a role in allelopathy, and epigenetic changes 

might be more determinant than genetic variability in the success of plant invasions (Pérez et al. 

2012; Hofmann 2015; Slotkin 2016). Epigenetic variation can also have a role in how plants 

respond to environmental stress conditions (Kinoshita and Seki 2014). Transgenerational 

inheritance has been demonstrated for example in A. thaliana through the use of “epigenetic 

Recombinant Inbred Lines” (epiRILs), unveiling DNA methylation as a possible source of 

heritable phenotypic variation whereby epialleles can influence complex traits in the absence of 

DNA sequence change (Johannes et al. 2009; Reinders et al. 2009). Moreover, mutation 

accumulation lines in A. thaliana have revealed that in addition to stable plant DNA methylation 

patterns which are able to persist over many generations, the rate of stochastic epimutation is both 

higher than can be explained by the (lower) rate of spontaneous genetic mutation, and far more 

susceptible to reverse epimutation (Becker et al. 2011). Understanding how epialleles become 

triggered and/or released under this apparent “transgenerational instability” will provide insight as 
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to whether such distinct mechanisms have broad evolutionary consequences beyond the purview 

of genetic variability. 

 

In the context of plant ecology, (Richards et al. 2017) describe how current efforts in epigenetic 

research are directed toward an understanding of i) natural patterns of epigenetic variation, ii) the 

origins and drivers of this variation, and iii) its ecological and evolutionary consequences. These 

questions centre chiefly around the study of “epigenomics” in natural populations, the interplay 

between genetic and epigenetic variation, and the influence (if any) of the surrounding 

environment. This chapter focuses on the bioinformatic basis on how to bring such findings to 

light, within the scope of non-model plant species, as an extension of work from previous chapters 

and existing work on model species. 

 

7.2 Challenges in Population-level Epigenomics 

Although epimutations may arise spontaneously, a significant fraction of all epigenetic variation 

found within a population has both a genetic and environmental basis (Kawakatsu et al. 2016). 

Significant effort must therefore be directed towards the decomposition of variance between each 

of these explanatory factors, which presents a challenge both in experimental design and in practical 

terms. NGS will form the basis of much new understanding into natural patterns of epigenetic 

variation in non-model species, but it is expensive to perform and even more so for population-

scale data. The sheer number of samples which must be analysed at sufficient sequencing depth, in 

order to generate enough statistical power in population experiments, can also be a major 

bottleneck with limited computational resources. Leveraging the workflow management system 

Nextflow allows for high parallelisation and optimal usage of resources, in a framework which is 

both portable and easily configurable for different computational architectures (see Chapter 5). 

 

Furthermore, while bisulfite sequencing can provide insight into the DNA methylome in order to 

build a picture of epigenetic variation, the chemical treatment also artificially obscures natural 

mutations in cytosine contexts, making it difficult to draw reliable inferences about the genetic 

background. To have to build corresponding sequencing libraries both for conventional and 

bisulfite data compounds the issue yet further when it comes to resource expenditure. The 

development of a new algorithm to facilitate variant calling from bisulfite sequencing data in order 

to reliably infer genotypes (see Chapter 6) can help considerably in bringing down sequencing costs 

and making population-level analyses more feasible. 
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In addition, downstream analyses of population-level data bring their own challenges. Much new 

understanding is driven by the application of methods which were devised previously for genetic 

data. Genome-wide association studies (GWAS) for example make use of linear models to identify 

SNPs within a large cohort which are associated with a quantitative trait (e.g. plant height, flowering 

time). Conceptually, it is valid to use epigenetic marks such as methylated cytosines in place of 

SNPs in such an analysis. Practically, however, it is rarely feasible to do so, due to i) the extent of 

background “noise” driven by highly dynamic, stochastic epimutations, ii) a tendency for epigenetic 

marks to convey only weak associations relative to SNPs as a result of their lower stability, and iii) 

the very high number of comparisons which are often necessitated in the statistical analysis of such 

datasets. 

 

Whilst SNPs can have strong effects on trait variability, this does not seem to be the case for DNA 

methylation variable positions (MVPs), which often affect transcription only after accumulating 

over a broader genomic region (Cubas, Vincent, and Coen 1999; Manning et al. 2006; Martin et al. 

2009). For this reason, the study of differentially methylated regions (DMRs) became very popular 

in high-resolution studies (Schmitz et al. 2013; Cortijo et al. 2014; Dubin et al. 2015; Kawakatsu et 

al. 2016). Indeed, given the complex dynamics of DNA methylation variability, it can be quantified 

at several different levels, from global (or genome-wide) methylation, to average methylation 

limited to sequence contexts or genomic features, to the methylation of specific genomic regions 

or individual positions (Schultz, Schmitz, and Ecker 2012). Each may be appropriate for 

population-scale data under different experimental circumstances. 

 

7.3 Differential Methylation 
DNA methylation is highly dynamic, and there is substantial variation at both the individual and 

population-level. Given a set of biological replicates, the challenge is to distinguish specific, relevant 

differences from stochastic epimutations among the background variation. On a genome-wide 

scale, this typically requires a priori knowledge of some level of sample stratification in terms of 

both sequence context and grouping, for example by phenotypic or environmental differences. 

Most experimental studies contrast DNA methylation levels from different samples to each other 

in this way, be it mutant background and wild type, treatment and control, or different natural 

accessions obtained across a broad geographical area. Statistical comparisons between samples aim 

to identify DNA methylation differences at either the single nucleotide level (differentially 
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methylated positions; DMPs) or the region level (differentially methylated regions; DMRs). While 

DMPs provide useful information on the rate at which epigenetic changes occur (Becker et al. 

2011; Schmitz et al. 2011; Van Der Graaf and Wardenaar 2015), DMRs are arguably more relevant 

in a functional biological context because they can affect contiguous stretches of DNA and hence 

potentially influence the accessibility of regulatory elements.  

 

Given the biological relevance of DMPs and DMRs, the task then in bioinformatics is how to 

define them. Classification at the single nucleotide level would appear simple enough. Given a set 

of samples belonging to group A and group B, a Mann-Whitney U test can for example be applied 

over each position where the methylation rate in each case is given as a proportion of reads which 

are methylated. In practical terms, repeating this for every position genome-wide creates a heavy 

multiple testing burden, however, necessitating a post-hoc correction procedure which often leaves 

few significant results despite seemingly clear differences. On a region-level, the definition of what 

constitutes a DMR is more ambiguous. Some strategies, such as DSS (Feng, Conneely, and Wu 

2014; Feng et al. 2014; Ziller et al. 2013; Schultz et al. 2016), define DMRs as clusters of spatially 

adjacent DMPs. These approaches are in turn subject to the same burden of multiple testing, and 

can struggle to return significant results. This issue is also prevalent in tools which attempt to gauge 

DMRs using a window- or sliding-window-based approach, as implemented, for example, in 

methylKit (Akalin et al. 2012). Other strategies attempt to mitigate the multiple testing problem by 

calling DMRs only in pre-defined regions, including e.g. gene promoters or other annotations, but 

these risk excluding other biologically relevant loci from the analysis. 

 

More recent tools for DMR calling have focused on the development of alternative methods for 

segmentation, i.e. the pre-selection of genomic regions which are biologically relevant. Among 

these are metilene (Jühling et al. 2016), dmrseq (Korthauer et al. 2018) and HOME (Srivastava et 

al. 2019), which implement multi-step strategies that first restrict the testable genome space to 

candidate regions with evidence of methylation, prior to assessing statistically significant 

differences. Though metilene and HOME are both applicable to non-CG methylation contexts, all 

three of these tools have been developed with mammalian (e.g. human) DNA methylation data in 

mind. By extension, they are frequently built on assumptions from such data, which might include 

for example most cytosines being methylated, strong local correlation between methylation states, 

predominant (or exclusive) CG methylation, and largely binary methylation states. These often do 

not reflect the distinct molecular mechanisms governing cytosine methylation in plants, particularly 

in non-CG contexts, and indiscriminate application of such assumptions to plant data might result 
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in many methylated cytosines and regions being falsely discarded. It is prudent to assess on a case-

by-case basis which tool is most suitable based on whether their assumptions hold regarding the 

specific research question to be addressed. In the absence of a universal, biological definition of a 

DMR, however, building on the findings of such tools represents the current best-practice.  

 

7.3.1 A pipeline for case/control DMRs  
Under the broader initiative of the EpiDiverse project (https://epidiverse.eu/), metilene was 

chosen to be adapted into a workflow management system, in order to extend its functionality in 

the context of plant ecology. The underlying model comprises a binary segmentation algorithm 

combined with a two-dimensional Kolmogorov–Smirnov test, which allows for the detection of 

DMRs based on both spatial and methylation differences simultaneously between two groups of 

samples. The non-parametric nature of the statistical test makes no assumptions about the 

underlying distribution of the data. The software analyses whichever 5mC sites are provided in the 

input files, itself unaware of methylation contexts, thus allowing the end-user to provide whichever 

context is most relevant to them. It was considered the best choice for case/control studies with 

non-model plant data out of available software (Kreutz et al. 2020). Within EpiDiverse, the tool is 

implemented in a Nextflow pipeline under the DSL v2 framework, and facilitates processing of 

population-scale data in a highly-parallel manner. It comprises one aspect of the “EpiDiverse 

Toolkit”, and makes use of common file formats and standards to facilitate interoperability both 

with other pipelines in the toolkit and external software. The system is portable and able to be 

easily-configured for different computational architectures, with very little bioinformatic expertise 

required on behalf of the end-user. The software is available at 

https://github.com/EpiDiverse/DMR  

 

The workflow first processes methylation data from BED inputs in any context, such as those 

provided as output from the EpiDiverse/WGBS pipeline, using BEDtools unionbedg (Quinlan 

and Hall 2010) to produce a combined matrix. The pipeline then performs annotation of DMRs 

with metilene, between any groups defined by the user in a provided sample sheet. Downstream 

visualisation of results is carried out using R packages ggplot2 (Wickham 2011) and gplots (Warnes 

et al. 2009). 
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7.3.2 A pipeline for population-level DMRs 
All current methods for annotating DMRs based on methylation data from a set of samples until 

now depend on a priori stratification of samples into distinct groups for comparison. While this 

“forward epigenetics” approach aids greatly in controlling variance in cases where clear-cut groups 

can be defined, often it is not so apparent, particularly in data obtained from natural populations. 

It can also be the case in such multi-dimensional data that groups differ from locus to locus 

throughout the genome, for example based on interacting environmental factors or complex 

phenotypes. In the context of plant ecology, an unsupervised approach to DMR calling would aid 

in identifying variable regions which are responsive under certain conditions, allowing researchers 

to further investigate which conditions and phenotypes are explained on a basis which could be 

considered more akin to “reverse epigenetics”. 

 

In collaboration with the EpiDiverse project (https://epidiverse.eu/) and Computomics GmbH 

(Tübingen, Germany), the software MethylScore was developed into a pipeline for the robust 

identification of DMRs from plant WGBS data, taking into account the complexity and variability 

of plant DNA methylation while using an informed, restricted set of candidate regions for statistical 

testing. MethylScore aims to avoid the necessity for pre-defining sample groups, required by 

existing tools, to increase its applicability to sample populations with inherent group structure and 

to prevent experimenter bias. The pipeline is implemented with Nextflow under the DSL v2 

framework, and facilitates processing of population-scale data in a highly-parallel manner. The 

system is portable and able to be easily-configured for different computational architectures, with 

very little bioinformatic expertise required on behalf of the end-user. The software is available at 

https://github.com/Computomics/MethylScore  

 

The differential methylation analysis module of MethylScore is built around a two-state Hidden 

Markov Model (HMM), as per the approach described by (Molaro et al. 2011). To identify and 

segment methylated regions in plant genomes, independent of prior information, the original 

implementation was extended beyond the CG sequence context, allowing the algorithm to train 

distinct parameter sets for each methylation context relevant to plant ecology. In each case, 

parameters are estimated for a beta-binomial distribution, accounting for both stochastic variance 

in the coverage distribution (assumed to be beta distributed) as well as between-sample biological 

variance (binomially distributed). MethylScore trains on the provided WGBS data itself, thereby 

forming data-specific assumptions regarding the underlying distribution of methylation patterns by 
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which to inform later statistical comparisons. Regions of interest are also inferred during this step, 

which helps to mitigate the multiple-testing burden by limiting the number of tests to such loci. 

 

Using publicly available datasets for A. thaliana (1001 Genomes Consortium et al. 2016; Kawakatsu 

et al. 2016; Tedeschi et al. 2019; Ning et al. 2020; Y. Zhang et al. 2021; Wibowo et al. 2018) and 

rice (Stroud et al. 2013), MethylScore was able to segment plant genomes with very different global 

DNA methylation profiles. In absence of sample information, MethylScore identified group-

specific DMRs and was able to detect population signals in datasets with hundreds of samples. In 

comparison to the DMRs identified in the A. thaliana 1001 Genomes and Epigenomes datasets 

(1001 Genomes Consortium et al. 2016; Kawakatsu et al. 2016), MethylScore was able to detect 

known and unknown genotype-epigenotype associations. 

 

7.4 Epigenome-wide Association Studies (EWAS) 
Interest in understanding the connection between genetic diversity and intraspecific trait variability 

led to the development of genome-wide association studies (GWAS), which make use of linear 

models in population-scale data to reveal significant genotype-phenotype associations. In recent 

years, it has become an important tool to detect variants involved for example in complex human 

diseases (Bush and Moore 2012), aiding greatly in the development of new treatments, ranging 

from type 2 diabetes to schizophrenia (Visscher et al. 2017). In plants, GWAS has been used to 

uncover the genetic basis of important traits in agriculture and to accelerate breeding programs 

(Tibbs Cortes, Zhang, and Yu 2021), having been applied successfully in cereals such as maize 

(Thornsberry et al. 2001; Buckler et al. 2009), wheat (Neumann et al. 2011; Schulthess et al. 2017), 

and rice (Huang et al. 2010; Li et al. 2017), and a number of other crop species including soybean 

(Hwang et al. 2014), tomato (Lin et al. 2014), and cotton (Du et al. 2018). It has also been used to 

study plant response to changing environments for example in the model plant species A. 

thaliana (Atwell et al. 2010). Moreover, GWAS has revealed genomic regions related to 

physiological, agronomic, and fitness traits such as plant height, stress tolerance, flowering time, 

kernel number, and grain yield, and identified genes connected with geographical deviation and 

local adaptation. 

 

Despite the advances made using GWAS, there remains a substantial proportion of unexplained 

causality which might be driven for example by epigenetic mechanisms, leading to the development 

of epigenome-wide association studies (EWAS) as a counterpart to the genetic approach (Rakyan 
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et al. 2011). Whilst conceivable that epigenetic markers can be analysed in such a manner, this 

approach yet brings its own array of challenges. First and foremost, DNA alleles do not typically 

vary across cells and with modern approaches can be genotyped with low error rates. By contrast, 

methylation states may be tissue-specific, and are often more akin to somatic variants at the single 

cell level. They can vary over alleles within a cell and, in rare cases, over DNA strands within an 

allele (hemi-methylation). The methylation state measured at a 5mC position is given as a 

proportion of total reads, reflecting the average over cells, alleles and strands, and is further 

obfuscated by measurement error. Genetic markers are both stable and not confounded by reverse 

causality, resulting in typically stronger associations than epigenetic equivalents, which can be 

inherited in the germline, environmentally induced, arise spontaneously, or as a consequence of 

disease, for example. Epigenetic changes are thus more dynamic, making it difficult to discern a 

significant relationship between phenotype and epigenetic mechanisms - a major challenge of 

EWAS (Paul and Beck 2014). Furthermore, GWAS is already statistically confounded by the extent 

of multiple comparisons (Pe’er et al. 2008). This issue is exacerbated yet further with epigenetic 

marks such as 5mC, as potential sites are typically far more prevalent genome-wide than SNPs. 

Data which is missing in some cohorts due to e.g. differences in sequencing depth poses yet 

another challenge for some EWAS methods (Pan et al. 2016). 

 

In plants, transgenerational epigenetic marks can be transmitted to descendants both through 

mitosis (in case of vegetative propagation) or meiosis (sexual reproduction) (Heard and 

Martienssen 2014). Natural variation may therefore give rise to “epialleles”, leading to phenotypic 

changes that are heritable, as shown for example in A. thaliana where certain stress-induced 

transgenerational reactions depend on DNA methylation (Boyko et al. 2010; Lang-Mladek et al. 

2010). In the pursuit of understanding how heritable epialleles influence plant evolution, 

phenotypic traits, and fitness, EWAS may be a powerful method to reveal epigenetic marks 

associated with biological traits (Rakyan et al. 2011; Lappalainen and Greally 2017). Thus far, 

however, there has been very scarce use of EWAS for plants (for example, a PubMed search for 

“ewas plant” returned seven hits as of 19 February 2021, while “ewas human” returned 131). 

Published examples include DNA methylation variation in Quercus lobata (valley oak) associated 

with climatic gradients (Gugger et al. 2016), and EWAS has been successfully applied to identify 

the epigenetic change that causes the metastable somaclonal variant in E. guineensis (oil palm) (Ong-

Abdullah et al. 2015). Another study with Pinus pinea (stone pine) showed that there was a 

remarkable level of phenotypic plasticity. Vegetatively propagated P. pinea trees showed a high 

degree of DNA methylation under different environmental conditions (Sáez-Laguna et al. 2014). 
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7.4.1 A pipeline for EWAS analysis 
Available methods to perform EWAS remain scarce, particularly in the context of plant ecology. 

Some software are specific for human studies such as GLINT (Rahmani et al. 2017), or unable to 

deal appropriately with missing data such as EWAS: epigenome-wide association study software 

v2.0 (Xu et al. 2018). The R package Gene, Environment and Methylation (GEM) (Pan et al. 2016), 

adapts an existing package for genetic data, MatrixEQTL (Shabalin 2012), in order to implement 

linear regression models focusing on genetic variants, epigenetic marks, and the interaction 

between them in a computationally efficient manner. The GEM package was herein further 

adapted to a workflow management system, under the broader initiative of the EpiDiverse project 

(https://epidiverse.eu/), in order to extend its functionality in the context of plant ecology. This 

pipeline comprises one aspect of the “EpiDiverse Toolkit”, and makes use of common file formats 

and standards to facilitate interoperability both with other pipelines in the toolkit and external 

software. The pipeline is implemented with Nextflow under the DSL v2 framework, and facilitates 

processing of population-scale data in a highly-parallel manner. The system is portable and able to 

be easily-configured for different computational architectures, with very little bioinformatic 

expertise required on behalf of the end-user. The software is available at 

https://github.com/EpiDiverse/EWAS  

 

7.3.1.1 Missing data estimation 

Aside from improved usability and computational advantages brought about by the workflow 

management system Nextflow, notable among the expanded features of the pipeline is the handling 

of missing data and subsequent imputation of methylation values. Often methylation values cannot 

be recovered in certain loci due to technical limitations, such as normal variation in sequencing 

depth. In such (non-random) cases, calculating the association from only the methylation values of 

the remaining samples can produce a bias that skews the interpretation of results. Typically the way 

to handle this in linear models is to avoid the test (i.e. of a given 5mC position) entirely, or to 

provide some kind of missing data imputation which preserves the underlying data structure of the 

remaining samples while minimising the effect on the model of samples with missing data. 

 

GEM replaces missing methylation values by calculating the global methylation of the sample, and 

does not discard any positions with a high amount of missing data. This is conceptually similar to 

imputation in genetic data, whereby proximal SNPs can be in linkage disequilibrium with each 

other and thus have a greater likelihood of co-occurrence. In methylation data, however, the 
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sample-specific global methylation profile can be vastly different to the methylation level of a given 

5mC position, which may contribute to a significant effect relative to the level of other samples in 

the cohort. The new pipeline instead adapts a similar method suggested by the software metilene 

(Jühling et al. 2016), a tool for calculating DMRs, which presents a similar situation in regards to 

missing data. Missing methylation values are thus imputed instead based on randomly sampling a 

beta-distribution, derived from the methylation values of the remaining samples at the same 5mC 

position (Raineri, Dabad, and Heath 2014). Estimated data should therefore have the minimum 

possible impact on the model, and any significant associations that arise should therefore be driven 

by the samples for which real data is available. 

 

7.3.1.2 Mitigating the effect of multiple comparisons 

Due to the high number of possible 5mC positions genome-wide, there can often be hundreds of 

thousands of independent tests during EWAS which need subsequent correcting for type II 

statistical error. Both Bonferroni and Benjamini-Hochberg correction procedures can be applicable 

under the given circumstances, but often make it infeasible to discern anything of biological 

significance under practical experimental conditions. Reducing the number of tests based on a 

priori information is otherwise the most direct way to boost statistical power, but can be difficult 

to reconcile when the purpose of EWAS is usually to identify new, candidate markers which are 

associated with a phenotypic trait. One approach would be to subset the data based on a set of 

known genes or genomic elements which are thought to be influenced somehow; another approach 

is to subset the number of tests based on the data itself. A typical procedure for example would be 

to remove positions which show zero deviation in methylation level across all samples. 

Alternatively, an option would be to subset the data based on a high-confidence set of MVPs, i.e. 

5mC sites which are known to be more variable than others on a population-level. 

 

As the biological consequences of methylation variation are frequently realised following the 

accumulation of MVPs on a region-level, DMRs are often characterised in high-resolution studies 

in order to provide candidates for further investigation of nearby genomic elements. Such regions 

may also prove useful in EWAS experiments, as they might be expected to convey stronger and 

more stable methylation patterns than individual MVPs. With this in mind, the feature to provide 

DMRs as markers in an EWAS experiment was implemented into the EpiDiverse pipeline. To 

exemplify this, a small analysis was performed based on methylated sites in CG context from a wild 

population of Populus nigra cv. ‘Italica’, which were subset according to significant DMRs 

discovered in the same context, as obtained from the EpiDiverse WGBS and DMR pipelines, 
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respectively. EWAS was performed using leaf flavonol content measured in the parent generation 

as a phenotypic trait. The resulting Manhattan plot in Figure 32A reveals initially no significant 

QTLs below the common significance threshold of p<1x10-8, or even below the suggestive 

significance threshold of p<1x10-6, based on a global analysis of all methylated sites. The same 

analysis when conducted at the region-level, however, revealed a total of 92 significant QTLs 

(q<0.25) which could be taken forward for further investigation (Figure 32B). A brief inspection 

of these regions intersected with functional annotations from the P. nigra genome returned some 

features potentially relevant to flavonol content, including genes with homology to ascorbate-

specific transmembrane electron transporter 1, caspase family protein and mechanosensitive ion 

channel protein 3 alongside also methyltransferases PMT2/PMT24. 

Figure 32. Manhattan plots demonstrating (A) the total number of tested positions during EWAS, from 
a cohort of P. nigra samples obtained from populations in Germany and Lithuania, and (B) the same 
analysis performed using significant DMRs instead. At the position-level, none were found to be 
significant (p<1x10-8) or even suggestive (p<1x10-6) based on common thresholds selected to account 
for the burden of multiple testing. At the region-level it becomes feasible to use Benjamini-Hochberg 
adjusted p-values (q), where 92 tests were found below a significance threshold of q<0.25 and one even 
at q<0.05. 
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7.5 Genotyping-by-Sequencing (epiGBS) 
Most bioinformatics tools and workflows discussed until now have centred on the best-case 

scenario in terms of the overall level of data availability to study DNA methylation, i.e. whole 

genome bisulfite sequencing, in a species which has an appropriate reference genome for 

applications such as short-read mapping and methylation calling. When studying DNA methylation 

in non-model plant species, however, often such a best-case scenario is not appropriate. Such 

experiments in plant ecology frequently have to deal with the absence of a reference genome 

assembly, and a high practical cost of sequencing at appropriate depth on a population-level, which 

is yet further compounded by the need to accommodate a simultaneous comparison of both 

genetic and epigenetic data, for instance to examine how much of the overall epigenetic variation 

between samples can be predicted from pairwise genetic relatedness (Richards et al. 2017). 

 

A less comprehensive but cheaper and versatile alternative to WGBS is to perform bisulfite 

sequencing in reduced representations of the genome, for example by using restriction enzyme 

fragmentation during the library preparation (e.g. RRBS (Meissner et al. 2005), epiGBS (van Gurp 

et al. 2016), BsRADseq (Trucchi et al. 2016), epiRADseq (Schield et al. 2016) and Creepi (Werner 

et al. 2020)). Notable among such techniques is epiGBS, a reduced representation DNA 

methylation analysis tool which combines both cytosine-specific quantitative DNA methylation 

levels and variant calling from the same bisulfite-converted samples, with the de novo reconstruction 

of consensus reference sequences of the targeted genomic loci. This means that the method can 

be applied also when no reference genome is available for the species under study (van Gurp et al. 

2016), albeit at a reduced level of accuracy. A similar approach was also described by (Werner et 

al. 2020), who provide a proof-of-concept via data obtained from almond and a PstI single enzyme 

digest.  

 

7.5.1 Extending the epiGBS pipeline 
In collaboration with the EpiDiverse project (https://epidiverse.eu), the epiGBS pipeline was 

improved and expanded to epiGBS2, which consists of both a detailed, updated laboratory 

protocol and a revised computational analysis pipeline that is accessible for all with basic knowledge 

in bioinformatics. The computational pipeline was implemented using the workflow management 

system Snakemake (Köster and Rahmann 2012), which facilitates processing of population-scale 

data in a highly-parallel manner. Executing epiGBS2 is cost- and time-efficient and is designed for 
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user-friendly, reproducible and flexible analysis, allowing for an effective determination of 

methylation and SNP variants in a broad range of species, including plants and vertebrates such as 

birds (Sepers et al. 2019). The software is available at https://github.com/nioo-knaw/epiGBS2  

 

One of the new features of the expanded epiGBS2 pipeline was the inclusion of the double-

masking procedure (see Chapter 6) to facilitate variant calling from bisulfite-sequencing data. As 

the method was developed principally for WGBS data, it was therefore important to benchmark 

its efficiency in its application to RRBS data. The benchmarking procedure was performed as per 

the methods described in Chapter 6, but for a few deviations. Primarily, the A. thaliana accessions 

Col-0, Gu-0, Ler-0, C24, Ei-2 and Cvi-0 were cultivated under the laboratory conditions described 

in (Gawehns et al. 2022), followed by DNA extraction and reduced representation bisulfite 

sequencing according to the epiGBS2 protocol. The SNPs derived from these datasets were 

compared with publicly available variants obtained from the (1001 Genomes Consortium et al. 

2016). In order to account for the reduced fraction of variants covered after sequencing by 

epiGBS2, the reference datasets (obtained using WGBS) were first subset according to positions 

in the genome with greater than zero coverage under epiGBS2. Due to the prevalence of strand 

bias in RRBS methods during sequencing, and because potential SNPs in methylation contexts can 

only be evaluated with the double-masking procedure when reads are also available from the 

opposite strand, a subset of true SNPs are plausibly undetectable by the epiGBS2 pipeline. To gain 

insight into the magnitude of this problem, additional filtering of both the epiGBS2 and 1001 

genome data was performed to keep only those positions for which at least one read from each 

strand (top and bottom) were present in the epiGBS2 data. Owing to the homozygous diploid 

nature of wild A. thaliana accessions, heterozygous genotypes were not called in the baseline set 

(1001 Genomes Consortium et al. 2016). The --squash-ploidy option of RTG tools vcfeval 

was used to further assess variants by treating the genome as haploid, thus consolidating 

heterozygous and homozygous alternative calls during benchmarking. 

 

At high SNP quality thresholds, more than 90% of the SNPs identified in the epiGBS2 reference 

branch corresponded with the baseline data set (Figure 33). At lower quality values a larger total of 

true baseline SNPs were detected by epiGBS2, however this also resulted in an increased false 

positive rate (for instance, only half of the called SNPs are true positives at a quality value of 10). 

When excluding sites that were not covered at both strands from the epiGBS2-baseline comparison 

(the filtered data set), sensitivity increased; approximately 80% of the remaining SNPs in the 

baseline set were detected by epiGBS2 (Figure 33). When including the evaluation of exact 
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genotype during the benchmarking, in addition to the correct allele, the overall level of precision 

was reduced in both filtered and unfiltered subsets. Further investigation revealed this difference 

to be driven almost exclusively by a fraction of true homozygous SNPs in the baseline data which 

were misidentified as heterozygous under epiGBS2. In contrast to the variant data from 1001 

genomes, a similar excess of heterozygous SNP calls was observed in both the untreated WGS data 

and a corresponding set of simulated WGBS data, in A. thaliana Cvi-0, when using Freebayes to 

perform variant calling on the equivalent sequencing data. This suggests that the parameterisation 

of the Freebayes tool, utilised as variant caller in epiGBS2, is responsible for the small discrepancy 

with the benchmark data moreso than it being a direct artefact of the bisulfite sequencing. 

 

7.6 Population-level Haplotypes 
Further to the study of population-level data under the purview of plant evolution, for example in 

linking natural variation and intraspecific trait variability, such data can also be used to provide a 

statistical basis for inferring haplotypes. Often when considering sequencing data in the context of 

Figure 33. Precision-sensitivity of SNPs in A. thaliana (Cvi-0) derived using the double-masking 
procedure on a reduced representation bisulfite sequencing dataset, as implemented in epiGBS2. Due 
to the strand bias inherent to RRBS data, the evaluation was performed on both the unfiltered dataset 
and also a filtered subset which considered only positions from the dataset with a sequencing depth of 
at least 1 read on both strands. 
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genome assembly or later downstream analysis, little consideration is given to the variation of alleles 

that might be present even within a single individual. A diploid organism for example carries two 

copies of each chromosome, with the possibility of different sequences at the corresponding locus 

in each case. Yet, only one of these variants will be reflected in a typical genome assembly, which 

from one locus to another most likely represents an amalgamation of alleles depending on the 

consensus that was derived based on e.g. sequencing coverage. 

 

Only usually during variant calling does this level of allele-specificity start to come under 

consideration, for example in the estimation of genotypes wherein the likelihood of homo- or 

heterozygosity is inferred based on the balance of alleles represented in the corresponding 

sequencing data. Given two proximal, heterozygous variants, however, the idea that a specific allele 

from one corresponds with a specific allele of the other, as would be the case given a diploid set 

of chromosomes, can only be addressed on the basis of “phasing”. Establishing which variants are 

in phase thereby allows for the reconstruction of specific haplotypes. Such haplotypes can be used 

to infer levels of allele-specific methylation (ASM), which has been shown to be both a hallmark 

of imprinted genes and also prevalent throughout the larger non-imprinted fraction of the genome 

(Kerkel et al. 2008). In the context of plant ecology, ASM has been investigated for example in 

regards to gene imprinting in maize (Zhang et al. 2014) and in understanding the RdDM pathway 

in A. thaliana (Zhang et al. 2016). 

 

Methods for constructing haplotypes from genetic data are typically read-based, such as in 

WhatsHap (M. Martin et al. 2016), population-based, as in SHAPE-IT (Delaneau, Coulonges, and 

Zagury 2008), or a combination of both (Delaneau et al. 2013, 2019). Read-based approaches infer 

phase from the information provided by sequencing reads, wherein each read represents a DNA 

fragment which must have arisen from a single chromosomal point of origin. Variant alleles present 

on the same read must therefore be linked and provide evidence for local phasing. The downside 

of this method is that short-read sequencing approaches seldom contain two or more variants on 

the same read, and the technique is thus more appropriate for long-read sequencing approaches. 

Population-based approaches on the other hand make statistical inferences of haplotypes which 

capture the linkage disequilibrium (LD) from a large cohort of samples, whereby more distant 

variants can be resolved (Delaneau, Coulonges, and Zagury 2008; Browning and Browning 2011). 

The disadvantage of this approach is the large number of samples which are required in order to 

make inferences with enough statistical power, and it is more subject to error in comparison to the 

more clear-cut cases that can be observed on sequencing reads (Delaneau et al. 2013). 
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More recently, researchers have also begun to consider more stable epigenetic marks, such as 5mC 

in CG context, to provide additional context on a read-based approach (Zhou et al. 2020). Such 

positions are not as stable or reliable as SNPs, but occur much more frequently throughout the 

genome and can thus expand the number of informative reads by which to construct longer 

haplotypes. Though methylation level on a 5mC position is often given as a proportion of reads 

containing a methylated cytosine from the total number of reads, in the context of a single read the 

position is either methylated (cytosine) or not (thymine). The same principle regarding the 

chromosomal point of origin of each read, wherein each read is effectively a “mini haplotype” 

(Delaneau et al. 2013), must extend also to the methylation status. Each read therefore reflects the 

methylation status on a position-by-position basis from the same chromosome. 

 

7.6.1 Extending the EpiDiverse/SNP pipeline 
An advantage of the double-masking procedure implemented in the EpiDiverse/SNP pipeline is 

that methylation level can be estimated from the exact library of sequencing reads which are also 

used to derive SNP variants. Future work on the pipeline could involve leveraging this information 

in regard to both haplotype construction and deriving allele-specific methylation in turn from the 

same source of data. An example overview of such a pipeline is denoted in Figure 34, whereby 

Figure 34. An overview of a proof-of-concept approach for deriving allele-specific methylation from a 
bisulfite sequencing library based on variants linked by reads and by analysis of linkage disequilibrium in 
a population-level dataset. 
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double-masked alignment (BAM) files and unphased VCF files could be analysed with existing 

tools WhatsHap, Plink and SHAPEIT4 in either a standalone read-based approach or a combined 

approach in the case of population-level data. Phasing allows for the partitioning of sequencing 

reads from the original, unmasked alignments into haplotype subsets, which might then be 

evaluated separately for allele-specific methylation using a conventional approach such as 

MethylDackel (https://github.com/dpryan79/MethylDackel). 

 

Furthermore, the method might be integrated further with inferences from stable epigenetic marks 

such as 5mC in CG context. There is currently no available software which links read-based variants 

and 5mC positions with population-scale data, which might lead to a marked improvement in 

estimation of allele-specific methylation, particularly when all inferences are drawn in the first place 

from the same exact sequencing libraries. Evaluation of such a method might involve the use of 

model test species, such as A. thaliana, where high-quality haplotype references already exist for 

direct comparison.  
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8 Conclusion 
This thesis discusses current advances in the computational analysis of epigenetic marks from NGS 

data, in its application to plant ecology; notably including the relevance of a high-quality reference 

genome, as demonstrated with a hybrid assembly approach, and introducing several new pipelines 

for the downstream analysis of bisulfite sequencing data. Present understanding of the mechanisms 

and functional consequences of plant epigenetics is derived largely from model species such as 

Arabidopsis thaliana, which has proven historically to be an excellent model to study the genetic basis 

of plant evolution. The breadth of comparison between model and non-model organisms in 

regards to their epigenetic processes however remains to be seen, particularly in the context of 

evolutionary ecology. (Richards et al. 2017) write about the need to to better integrate the fields of 

molecular genetics and evolutionary ecology, by adding more ecological context and ecological 

questions to model species research (e.g. Latzel et al. 2013; Hagmann et al. 2015), and by adopting 

higher resolution tools in non-model species research (e.g. Platt et al. 2015; Xie et al. 2015; Gugger 

et al. 2016; van Gurp et al. 2016; Trucchi et al. 2016). Under the purview of the EpiDiverse project 

(https://epidiverse.eu) this thesis attempts to address the latter topic, first in a specific sense by 

providing new resources for the non-model plant species Thlaspi arvense, and second in a broader 

sense by developing new pipelines and analysis tools to facilitate high-resolution analysis in a wide 

range of non-model species, including T. arvense. 

 

The annual weed, field pennycress (T. arvense), is a Brassicacea closely-related to A. thaliana, but 

with a larger genome showing markedly different patterns in terms of extensive repeat content and 

its inherent level of DNA methylation. The genomic resources presented herein provide a basis 

for example in the analysis of natural populations, wherein more than 200 individuals have already 

been collected by EpiDiverse across Europe to investigate the extent and relevance of its epigenetic 

variation (Galanti et al. 2022). This large-scale analysis also makes use of the pipelines and 

computational tools provided herein. Furthermore, with the placement of pennycress as an 

emerging crop species, researchers can utilise these resources to aid efforts in crop breeding and 

domestication. 

 

With a high-quality reference genome in place, focus turned towards the application of bisulfite 

sequencing to study genome-wide patterns of DNA methylation and the main bioinformatic tasks 
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associated herewith. A comprehensive benchmark of nine, bisulfite-aware, short-read alignment 

tools revealed performance differences in precision-recall and downstream consequences 

pertaining to methylation level deviations in difficult-to-map regions. Performant tools were 

selected for inclusion in a new computational pipeline for quality control, alignment and 

methylation level quantification in a highly-parallel manner. Also benchmarked were a number of 

tools for variant calling in bisulfite sequencing data, including a new method developed and 

implemented as part of this thesis. This new “double-masking” procedure was shown to 

outperform all existing methods in terms of precision-recall, in the case of publicly available 

benchmark datasets for both human and a model plant species. In addition, the software deviates 

from existing tools in that it is instead a pre-processing procedure which makes it possible to 

leverage state-of-the-art variant calling tools developed for conventional sequencing data, thereby 

removing the dependency on specialised variant callers altogether. Researchers familiar with 

popular tools such as GATK and FreeBayes are able to continue using them now with bisulfite 

sequencing data. The capability to accurately discriminate between genetic and epigenetic variation 

using the same sequencing library is of great practical value to ecologists studying non-model 

species, particularly at a population-level, as the cost of sequencing both conventional and bisulfite 

libraries is often prohibitive. The method was also implemented as part of a collaboration to build 

an updated and revised epiGBS2 pipeline, a separate software for investigating methylation patterns 

in reduced representation bisulfite sequencing data, where consensus reference sequences are 

constructed de novo in cases where an appropriate reference genome is not available. The sensitivity 

in RRBS data is lower due to inherent strand bias present in such sequencing libraries, but the 

precision remains comparably high as in WGBS data. This approach represents another useful tool 

for plant ecologists studying epigenetics. 

 

Moreover, several other downstream analyses for bisulfite sequencing data were also considered in 

their application to non-model plant species on a population-scale. Current methods for differential 

methylation analysis were investigated and compared for suitability under different experimental 

conditions. Most prevalent throughout the field are those developed for case/control studies, for 

example when investigating the transgenerational effect of stress-response or exposure to various 

environmental conditions. Identification of differentially methylated regions remains a powerful 

tool when inferring transcriptional and regulatory consequences of DNA methylation patterns, but 

there is much variation in how they should be consistently defined under specific circumstances. 

Given that the priority is most often to generate candidate regions for further study, the sensitivity 

of metilene was considered to be advantageous when it comes to non-model plant data, particularly 
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in light of its robust segmentation approach and non-parametric statistical test; unlike some other 

methods it avoids drawing assumptions from methylation patterns in other species. Alternatively, 

a new method MethylScore uses an unsupervised, HMM approach to identify DMRs without prior 

knowledge of sample structure. This presents an opportunity for population-scale data, where 

interacting environmental conditions and/or complex phenotypes often obscure associated 

methylation patterns amongst the background variation, and opens the door for a “reverse 

epigenetics” approach to help resolve hidden relationships at a local level. Both metilene and 

MethylScore were implemented in easy-to-use pipelines for use by plant ecologists. 

 

In addition, a pipeline for performing epigenome-wide association studies with non-model plant 

data was implemented, making use of the existing R package Gene, Environment and Methylation 

(GEM) and expanding its features in regards to both improved missing data imputation and 

mitigation of the heavy multiple testing burden common in such analyses. Given a quantitative trait 

or environmental condition measured within the confines of the experimental design, EWAS can 

identify significant associations with epigenetic markers among population data thus allowing for 

the elucidation of specific molecular mechanisms. The pipeline is interoperable with the output of 

all other relevant pipelines developed during the course of this thesis, including i) sample-specific 

methylation calls which are the main basis of the analysis, ii) genetic variants which allow for testing 

the interaction between different kinds of associations, and iii) input of DMRs as markers which 

can provide a stronger signal for comparison and necessitate fewer multiple comparisons. The 

WGBS, DMR, SNP and EWAS pipelines together comprise the core of the “EpiDiverse Toolkit” 

(Figure 35), the main outcome of this thesis alongside the genome assembly for pennycress. 

 

Finally, further improvements in the implementation of the “double-masking” procedure for 

variant calling were explored, in the context of deriving haplotypes for allele-specific methylation 

(ASM). As a read-based approach both provides context for local phasing while simultaneously 

carrying methylation information for calculating ASM, an integrated method may provide greater 

precision than existing methods which rely on data from independent sequencing libraries. By 

incorporating linkage disequilibrium analysis derived from population-level data sets, and/or stable 

epigenetic marks, construction of even longer haplotypes may be possible. An integrated approach 

which includes all these aspects has not yet been attempted in the literature, and could offer a 

powerful alternative to existing methods which is appropriate for both model and non-model 

species. 
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Figure 35. An overview of the EpiDiverse Toolkit. The WGBS data forms the foundation of the 
analysis, and each downstream pipeline is built to work either in cooperation with one another or, 
optionally, with independently-generated input data. All pipelines output runtime metadata, tracing and 
further visualisation in addition to what is shown here. The full output is described for each pipeline in 
the documentation hosted on Github at https://github.com/EpiDiverse  
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Appendices 

A. Supplement: Building a Suitable Reference Genome 
 

 

 
 

Supplementary Figure A.1 Read length distribution of trimmed PacBio Sequel II CLR reads 

taken forward for assembly with Canu v1.9. 
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Supplementary Figure A.2 Distribution of PacBio Sequel II CLR read mapping depth frequency 

over assembled contigs, with bimodal peaks due to contig regions with lower depth than the 

average indicating that they are duplicated. 
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Supplementary Figure A.3 Sequence dot plots showing the largest seven scaffolds of the closely-

related species E. salsugineum and their equivalent in T. arvense var. MN106-Ref (T_arvense_v2), 

comparing the difference both a) before and b) after re-scaffolding. Horizontal dashed lines in 

(a) denote breakpoints which were manually introduced to the genome based on evaluation of 

genetic maps, synteny maps, Hi-C data, and comparison with YUN_Tarv1.0. 
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Supplementary Figure A.4 Synteny analysis between the largest seven scaffolds of T. arvense  var. 

MN106-Ref (Ta) and a) their equivalent in the closely-related species E. salsugineum (Es), and b) A. 

thaliana (At).  The Ribbons show the syntenic relationships between the two genomes. Dark 

ribbons indicate syntenic blocks in inverse orientation. 
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Supplementary Figure A.5 Synteny between T_arvense_v2 (x-axis) and YUN_Tarv_1.0 (y-axis). 

Significantly more un-scaffolded contigs from YUN_Tarv_1.0 map to T_arvense_v2 than vice 

versa, with a total of 44 query sequences from the Chinese accession retained after post-filtering 

for minimum alignment length 5,000 and aggregate alignment length of 500,000. Most un-

scaffolded contigs map to pericentromeric and centromeric regions, which are visible here in 

addition to the notable mis-scaffolding of centromeric repeats at the telomeric ends of the 

chromosome-representing scaffolds in YUN_Tarv_1.0. 
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Supplementary Table A.1 Estimation of the genome size of T. arvense using flow cytometry with 

Arabidopsis thaliana, tomato (Solanum lycopersicum), and maize (Zea mays) as references.  

Sample DNA Content (pg) 
Predicted Genome Size using the 

reference (Mbp) 

Field pennycress (MN106-Ref) 1.09 NA 

Arabidopsis thaliana 0.32 459 

Tomato 2.05 505 

Maize 5.45 540 
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Supplementary Table A.2 Full descriptive statistics for intermediate versions of the assembly 

starting with correction, trimming and initial assembly of PacBio reads (Canu), further polishing 

and scaffolding using optical maps and contact maps (Bionano + HiC), and the final version 

following manual curation and re-scaffolding with the help of genetic linkage and synteny maps 

(ALLMAPS). 

 Canu Bionano + HiC ALLMAPS 

# contigs / scaffolds 4,704 976 964 

≥ 1 Kbp 4,704 976 964 

≥ 5 Kbp 4,704 976 964 

≥ 10 Kbp 4,582 965 953 

≥ 25 Kbp 4,027 902 890 

≥ 50 Kbp 2,750 619 607 

Total length 797 Mbp 526 Mbp 526 Mbp 

≥ 1 Kbp 797 Mbp 526 Mbp 526 Mbp 

≥ 5 Kbp 797 Mbp 526 Mbp 526 Mbp 

≥ 10 Kbp 796 Mbp 525 Mbp 525 Mbp 

≥ 25 Kbp 786 Mbp 524 Mbp 524 Mbp 

≥ 50 Kbp 737 Mbp 514 Mbp 514 Mbp 

Largest scaffold 64.4 Mbp 64.4 Mbp 70.0 Mbp 

N50 15.0 Mbp 34.7 Mbp 64.9 Mbp 

NG50 34.7 Mbp 34.7 Mbp 64.9 Mbp 

N75 0.11 Mbp 15.0 Mbp 61.0 Mbp 

NG75 15.0 Mbp 15.0 Mbp 55.2 Mbp 

L50 13 7 4 

LG50 7 7 4 

L75 884 13 6 

LG75 13 13 7 

GC (%) 37.08 38.39 38.39 

# N's per 100 Kbp 0.25 0.29 0.51 
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Supplementary Table A.3 BUSCO statistics on a) initial assembly, immediately after CANU, and 

b) final assembly. Both are derived from orthologs to the Eudicotyledons odb10 database. 

a) C:98.4%[S:74.8%,D:23.6%],F:0.6%,M:1.0%,n2121 

2086 Complete BUSCOs (C) 

1586 Complete and single-copy BUSCOs (S) 

500 Complete and duplicated BUSCOs (D) 

12 Fragmented BUSCOs (F) 

23 Missing BUSCOs (M) 

2121 Total BUSCO groups searched 

 

b) C:98.7%[S:92.1%,D:6.6%],F:0.5%,M:0.8%,n:2121 

2094 Complete BUSCOs (C) 

1954 Complete and single-copy BUSCOs (S) 

140 Complete and duplicated BUSCOs (D) 

11 Fragmented BUSCOs (F) 

16 Missing BUSCOs (M) 

2121 Total BUSCO groups searched 
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Supplementary Table A.4 Merqury k-mer (k=21) analysis of Illumina HiSeq reads sequenced 

from the accession in YUN_Tarv_1.0, showing greater QV scores in T_arvense_v2 for the 

equivalent top 7 scaffolds based on k-mers found uniquely in each assembly and those shared with 

the read set. 

 T_arvense_v2 YUN_Tarv_1.0 

Scaffold length 
uniq. 
k-mer 

QV error length 
uniq. 
k-mer 

QV error 

1 65,519,694 1,288,483 30.24 0.0009 73,273,813 3,665,265 26.13 0.0024 

2 70,024,556 1,619,266 29.53 0.0011 72,401,710 2,823,932 27.23 0.0019 

3 63,812,002 969,655 31.37 0.0007 59,618,324 2,615,059 26.71 0.0021 

4 60,964,055 1,833,722 28.38 0.0015 70,763,934 2,808,229 27.15 0.0019 

5 55,234,666 1,400,039 29.13 0.0012 57,454,197 3,020,585 25.90 0.0026 

6 69,981,056 2,370,907 27.85 0.0016 75,772,189 4,364,339 25.50 0.0028 

7 64,850,309 1,826,069 28.67 0.0014 65,366,657 2,922,800 26.62 0.0022 
 

 

Supplementary Table A.5 Merqury k-mer (k=21) analysis of Illumina HiSeq reads (PCR-free) 

sequenced from the accession MN106-Ref, showing greater QV scores in T_arvense_v2 for the 

equivalent top 7 scaffolds based on k-mers found uniquely in each assembly and those shared with 

the read set. 

 T_arvense_v2 YUN_Tarv_1.0 

Scaffold length 
uniq. 
k-mer 

QV error length 
uniq. 
k-mer 

QV error 

1 65,519,694 98,643 41.44 7.2E-05 73,273,813 4,505,381 25.20 0.0030 

2 70,024,556 78,174 42.74 5.3E-05 72,401,710 4,121,308 25.55 0.0028 

3 63,812,002 109,566 40.87 8.2E-05 59,618,324 3,133,918 25.90 0.0026 

4 60,964,055 69,169 42.67 5.4E-05 70,763,934 4,393,318 25.16 0.0030 

5 55,234,666 41,707 44.44 3.6E-05 57,454,197 4,022,088 24.62 0.0035 

6 69,981,056 71,047 43.15 4.8E-05 75,772,189 5,931,889 24.12 0.0039 

7 64,850,309 74,777 42.60 5.5E-05 65,366,657 4,436,822 24.76 0.0033 
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Supplementary Table A.6 Merqury k-mer (k=21) analysis of each total assembly showing relative 

completeness of k-mers present in each read set from Illumina HiSeq. 

Assembly Read set k-mers (asm) k-mers (reads) % completeness 

YUN_Tarv_1.0 MN106-Ref 211,016,166 228,654,390 92.2861 

T_arvense_v2 MN106-Ref 227,350,203 228,654,390 99.4296 

both MN106-Ref 227,710,775 228,654,390 99.5873 

YUN_Tarv_1.0 SRR14757813 223,058,386 229,823,560 97.0564 

T_arvense_v2 SRR14757813 215,415,116 229,823,560 93.7306 

both SRR14757813 227,717,433 229,823,560 99.0836 
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B. Supplement: Feature Annotation for Epigenomics 
 

 

 
Supplementary Figure B.1 The cumulative distribution of annotation edit distance (AED) scores 

from the final set of protein-coding loci, denoting that ~95% of annotated genes are supported 

with a score ≤ 0.5 overall. 

  



Appendices 

 156 

 

 

 

 

 

 

 
 

Supplementary Figure B.2 An overview of annotated genomic feature distributions in 

comparison to T_arvense_v1 for a) gene lengths, b) CDS lengths, c) per gene exon number, and 

d) intron lengths. 
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Supplementary Figure B.3 Small RNA (sRNA) annotation in the T_arvense_v2 genome 

assembly. a) sRNA loci per tissue of origin (RPM = reads per million). b) sRNA complexity, 

measured as “number of distinct alignments / total number of alignments”. c) sRNA locus size 

distribution. d) Co-occurrence of sRNAs between tissues. Coloured horizontal bars show the total 

number of loci per tissue. 
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Supplementary Figure B.4 Predicted miRNAs in the T_arvense_v2 genome assembly. a) Size of 

mature miRNAs identified in this study, split into novel and conserved miRNA species. b-

d) Sequence conservation in miRNAs, measured in bits foreach position of the mature microRNA 

(Schneider and Stephens 1990). Sequences were aligned from the 5’-end. Different panels show 

sequence conservation of all miRNAs (b), only novel miRNAs (c) and only conserved miRNAs 

(d). 
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Supplementary Figure B.5 Relative expression level of novel and conserved miRNA families 

between tissue types.  Sample counts are reported as transformed count data on the log2 scale 

which has been normalised with respect to library size. 
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Supplementary Figure B.6 sRNA types and their association with different genomic features. 

a) Occupancy of all annotated siRNAs and miRNAs in either genes, TE superfamilies, or 

intergenic regions. b,c) Association of sRNA loci with either TEs or genes within 1.5 Kb distance, 

for all sRNAs (b) and for only phased loci (c).  
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Supplementary Figure B.7 Methylation rate frequency distribution by sequence context in shoot 

and root tissues. 
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Supplementary Figure B.8 Karyotype plot of the seven largest scaffolds representing 

chromosomes in T. arvense MN106-Ref (T_arvense_v2), alongside a concatenation of all minor 

scaffolds. Transposable element LTR annotations (red) are highlighted as an approximate 

localisation of each centromere, alongside loci containing putative telomeric repeat motifs (black 

labels) and genes of interest (blue labels) in the de novo domestication of pennycress. Scaling is given 

in Mbp. 
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Supplementary Table B.1 Alignment statistics of mRNA-seq reads prior to merging by tissue 

type. 

sample ID tissue replicate # reads # alignments % mapping rate 

92479 Cauline leaf 1 26,807,084 22,791,298 85.02 

92480 Cauline leaf 2 30,493,022 28,502,974 93.47 

92468 Cauline leaf 3 34,703,622 32,482,275 93.6 

92460 Green seed 1 34,409,210 30,592,247 88.91 

92451 Green seed 2 4,350,126 731,192 16.81 

92476 Green seed 3 15,881,224 10,421,117 65.62 

92454 Inflorescence 1 37,241,578 35,012,072 94.01 

92455 Inflorescence 2 44,709,756 42,480,499 95.01 

92456 Inflorescence 3 40,602,958 38,486,094 94.79 

92471 Mature seed 1 8,563,360 3,050,475 35.62 

92459 Mature seed 2 8,788,058 2,824,810 32.14 

92475 Old green silique 2 6,472,836 1,831,577 28.3 

92467 Old green silique 3 6,097,296 955,425 15.67 

92470 Old green silique 4 8,450,100 3,160,559 37.4 

92482 Open flowers 1 27,784,846 26,166,091 94.17 

92452 Open flowers 2 48,974,428 40,861,167 83.43 

92453 Open flowers 3 33,257,622 31,907,812 95.94 

92473 Root 1 week old 1 32,394,826 29,934,857 92.41 

92474 Root 1 week old 2 29,742,158 27,530,520 92.56 

92458 Root 1 week old 3 33,174,194 31,436,791 94.76 

92469 Rosette leaf 1 28,171,012 26,329,294 93.46 

92478 Rosette leaf 2 27,902,144 26,281,165 94.19 

92481 Rosette leaf 3 31,754,984 30,136,304 94.9 

92461 Seed pod 1 39,817,146 36,813,142 92.46 

92462 Seed pod 2 37,222,832 34,593,888 92.94 

92477 Seed pod 3 27,609,204 24,962,517 90.41 

92466 Shoot 1 week old 1 41,735,500 38,909,856 93.23 

92472 Shoot 1 week old 2 32,111,696 30,143,229 93.87 

92457 Shoot 1 week old 4 35,692,836 34,067,138 95.45 

92463 Young green silique 1 37,909,974 34,540,606 91.11 

92464 Young green silique 2 36,102,364 32,464,393 89.92 

92465 Young green silique 3 35,177,290 30,480,559 86.65 
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C. Supplement: From Read Alignment to DNA Methylation 

Analysis 
 

 

 

Supplementary Table C.1 Test system specifications. 

Operating System CentOS Linux 7 (Core) 

Architecture x86_64 

CPU Model Intel(R) Xeon(R) Gold 6130 

Clock Speed 2.10 GHz 

Available CPUs 64 

Available RAM 256 Gb 

File 
System(s) 

xfs 
ext4 
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D. Supplement: Inferring Genomic Information 
 

 

Supplementary Table D.1 The command line executed for each variant calling software. 
Commands were executed as jobs on a HPC cluster. Examples are given for Arabidopsis thaliana, 
and in all cases the variable $1 denotes the input alignment (*.bam) file. 

Software Command Line 

BISCUIT biscuit pileup -m 1 -b 1 -q 1 \ 
-o $(basename $1 .bam).vcf genome/arabidopsis.fa 
$1 
 

Bis-SNP java -Xmx10g -jar bin/BisSNP-1.0.1.jar \ 
-R genome/arabidopsis.fa \ 
-T BisulfiteGenotyper \ 
-I $1 \ 
-vfn1 $(basename $1 .bam).vcf \ 
-out_modes EMIT_VARIANTS_ONLY \ 
-mmq 1 -mbq 1 
 

BS-SNPer perl bin/BS-Snper/BS-Snper.pl \ 
--fa genome/arabidopsis.fa \ 
--input $1 \ 
--output $(basename $1 .bam).snps \ 
--methcg $(basename $1 .bam).methcg \ 
--methchg $(basename $1 .bam).methchg \ 
--methchh $(basename $1 .bam).methchh \ 
--minhetfreq 0.1 \ 
--minhomfreq 0.85 \ 
--minquali 1 \ 
--mincover 1 \ 
--maxcover 1000 \ 
--minread2 2 \ 
--errorate 0.02 \ 
--mapvalue 1 > $(basename $1 .bam).vcf 
 

MethylExtract perl bin/MethylExtract.pl \ 
seq=genome/arabidopsis.fa \ 
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inDir=$1 \ 
minQ=1 \ 
varFraction=0.05 \ 
maxPval=0.01 \ 
outDir=methylextract \ 
flagW=0 \ 
flagC=16 # or flagW=99,147 flagC=83,163 for PE 
 

FreeBayes freebayes -f genome/arabidopsis.fa $1 \ 
--no-partial-observations \ 
--report-genotype-likelihood-max \ 
--genotype-qualities \ 
--min-repeat-entropy 1 \ 
--min-coverage 1 \ 
--min-base-quality 1 > $(basename $1 .bam).vcf 
 

GATK3.8 
UnifiedGenotyper 

gatk3 -T UnifiedGenotyper \ 
-R genome/arabidopsis.fa \ 
-I $1 \ 
-o $(basename $1 .bam).vcf.gz \ 
--min_base_quality_score 1 
 

Platypus 
(standard mode) 

platypus callVariants \ 
--refFile=genome/arabidopsis.fa \ 
--bamFiles=$1 \ 
--output=$(basename $1 .bam).vcf \ 
--minMapQual=1 \ 
--minBaseQual=1 
 

Platypus 
(assembly mode) 

platypus callVariants \ 
--refFile=genome/arabidopsis.fa \ 
--bamFiles=$1 \ 
--output=$(basename $1 .bam).vcf \ 
--assemble=1 \ 
--assembleBadReads=1 \ 
--minMapQual=1 \ 
--minBaseQual=0 
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Supplementary Table D.2 Summary of QC metrics as described by GATK at the time of 

publication, from https://gatk.broadinstitute.org/hc/en-us/articles/360035890471 (accessed 

8th January 2020). Filtering thresholds are according to best-practices. 

Metric Threshold Summary 

Quality 
(QUAL) 

< 30 
Variant confidence. The Phred-scaled 
probability that there is some kind of 
nucleotide variation at a given site. 

QualByDepth 
(QD) 

< 2 

The variant confidence (from the QUAL 
field) divided by the unfiltered depth of non-
hom-ref samples. Intended to normalize the 
variant quality in order to avoid inflation 
caused when there is deep coverage. 

FisherStrand 
(FS) 

> 60 

The Phred-scaled probability that there is 
strand bias at the site, indicating whether the 
alternate allele was seen more or less often on 
the forward or reverse strand than the 
reference allele. 

StrandOddsRatio 
(SOR) 

> 3 

Another way to estimate strand bias using a 
test similar to the symmetric odds ratio test. 
Created because FS tends to penalise variants 
that occur at the ends of exons. 

RMSMappingQuality 
(MQ) 

< 40 
The root mean square mapping quality over 
all the reads at a given site. 

MappingQualityRankSumTest 
(MQRankSum) < -12.5 

The u-based z-approximation from the Rank 
Sum Test for mapping qualities. It compares 
the mapping qualities of the reads supporting 
the reference allele and the alternate allele. 

ReadPosRankSumTest 
(ReadPosRankSum) 

< -8 

The u-based z-approximation from the Rank 
Sum Test for site position within reads. It 
compares whether the positions of the 
reference and alternate alleles are different 
within the reads. 
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