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���,QWURGXFWLRQ 

�����3URVWDWH�&DQFHU��3&� 

�������(SLGHPLRORJ\ 

Prostate cancer (PC��LV�RQH�RI�WKH�PDMRU�WKUHDWV�WR�PHQ¶V�KHDOWK�ZRUOGZLGH��6LHJHO�HW�
al., 2016; Brawley, 2012; Jahn et al., 2015; Center et al., 2012). In the United States 
PC was estimated to make up roughly 20% of the new cancer cases in men in 2016. 
Deaths from PC are expected to account for 8% of cancer associated deaths (Siegel 
et al., 2016). Epidemiological data from China are still rare and incomplete but were 
recently supplemented by high-quality data provided by the National Central Cancer 
Registry of China (NCCR) (Chen et al., 2016).  

The incidence rate of prostate cancer in China increased�from 1998 to 2008 by a factor 
of 3, from 35.2/100,000 to 110.0/100,000 and the average annual growth rate was as 
high as 12.07% reaching 60,300 cases in 2015 (Zhu et al., 2015; Coffey, 2001; Baade 
et al., 2013; Chen et al., 2016). While incidence rates in rural areas remained stable 
between 2006 and 2009, there was an increase in urban areas, especially documented 
in Hong Kong and Shanghai. The rapid rise of the incidence rate may be in part related 
to the aging of the population but there seems to be a strong link to Western-style diet 
(Lin et al., 2015).  

A comparison of the incidences of prostate cancer in 2015 showed that although the 
total number of patients in the United States has reached 3.66 times that of China, the 
estimated death tolls in the two countries are almost similar (Table 1) (Siegel et al., 
2016; Ervik et al., 2016; Chen et al., 2016).  

Table 1.  

Estimated new cases and deaths from prostate cancer  

in the United States and China. 

Country / Region New cases Deaths Ratio 
US 220800 27540 0.12 
EU* 400364 92328 0.23 

China 60300 26600 0.44 

Note that while the number of patients in the US was almost 4 times that in China, the death tolls are 

almost equal, indicating a much higher mortality from PC in China, reflected in the new cases / deaths 

ratio. * WHO ± region. 

 

Interestingly, the numbers in the European Union (EU, WHO region) are in between 
which might reflect more regional variations in living conditions and diet. However, 
further investigations are required to come to valid conclusions. Effectivity of PC 
treatment and cancer recurrence heavily depend on early detection and proper risk 
stratification (Moller et al., 2015; Schroder et al., 2012; Klotz et al., 2015; Moyer, 2012). 
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In the US, the proportion of localized prostate cancer accounts for more than 80% of 
all cases, which is also one of the major reasons the mortality/morbidity rate in the US 
is much lower than that in Asian countries, and continues to decrease (Moller et al., 
2015; Jemal et al., 2015; DeSantis et al., 2014). Therefore, early detection and 
diagnosis is the most effective way by which to improve the survival rate, and 
development of new biomarkers and/or reasonable combination of current diagnostic 
methods is a hot spot in the field of prostate cancer research (Felgueiras et al., 2014). 

$PRQJ�FRXQWULHV� WKDW�KDYH� LPSOHPHQWHG�SURVWDWH�FDQFHU�VFUHHQLQJ�VWUDWHJLHV�� ILYH�
\HDU�VXUYLYDO�UDWHV�KDYH�LPSURYHG�UDSLGO\�LQ�-DSDQ��ZLWK�DQ�DYHUDJH�DQQXDO�LQFUHDVH�
RI�DERXW�������DQG�D���\HDU�VXUYLYDO�UDWH�RI������ZKLOH�LQ�&KLQD��WKH�DQQXDO�LQFUHDVH�
ZDV�RQO\������DQG�WKH���\HDU�VXUYLYDO�UDWH�ZDV������;<DR�et al., 2021). 

,Q� ������ WKHUH� ZHUH� ���� PLOOLRQ� QHZ� FDVHV� RI� SURVWDWH� FDQFHU� ZRUOGZLGH�� DQG� LWV�
PRUELGLW\�DQG�PRUWDOLW\�UDQNHG�VHFRQG�DQG�ILIWK�DPRQJ�PDOH�PDOLJQDQFLHV��UHVSHFWLYHO\� 

However, to date no serum or urine biomarker or biomarker panel meets the 
requirements for highly sensitive and specific detection of PC and differentiation 
between indolent and significant PC. We here explore the prospects of metabolomics 
to improve prostate cancer detection, patient stratification and treatment monitoring.  

 

�������3&�FODVVLILFDWLRQ�DQG�JUDGLQJ 
The prostate gland is a walnut-sized gland located between the bladder neck and the 
external urethral sphincter. There are four main zones in the prostate gland: the 
peripheral zone (posteriorly), the fibromuscular zone (anteriorly), the central zone 
(centrally) and the transitional zone (surrounding the urethra). The anatomy of the 
prostate gland is shown in Fig. 1 (Adapted from: Bhavsar et al., 2014). 

Fig. 1. Zonal anatomy of the prostate gland. ED: ejaculatory ducts; SV: seminal vesicles; AFS: 

anterior fibromuscular stroma.  
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Prostate cancer does not occur uniformly throughout the prostate. Although cancers
of the prostate often are multifocal, from 80% to 85% arise from the peripheral zone,
10% to 15% arise from the transition zone, and 5% to 10% arise from the central zone
(Buyyounouski et al., 2017).

The biopsy Gleason grading system is the most important prognostic marker for
prostate cancer. The higher the Gleason score, the higher the malignant degree of
prostate cancer. The TNM staging system proposed by AJCC is a widely used
independent index that can reflect the progression and prognosis of prostate cancer.
Table 2 shows the definitions for clinical and pathological T, N, and M classifications
(Buyyounouski et al., 2017).

Table 2. Definitions of the American Joint Committee on Cancer TNM Criteria

CATEGORY                                 CRITERIA
Clinical (cT)
T category
TX Primary tumor cannot be assessed
T0 No evidence of primary tumor
T1 Clinically inapparent tumor that is not palpable
T1a Tumor incidental histologic finding in 5% or less of tissue resected
T1b Tumor incidental histologic finding in more than 5% of tissue

resected
T1c Tumor identified by needle biopsy found in one or both sides, but not

palpable
T2 Tumor is palpable and confined within prostate
T2a Tumor involves one-half of one side or less
T2b Tumor involves more than one-half of one side but not both sides
T2c Tumor involves both sides
T3 Extraprostatic tumor that is not fixed or does not invade adjacent

structures
T3a Extraprostatic extension (unilateral or bilateral)
T3b Tumor invades seminal vesicle(s)

T4 Tumor is fixed or invades adjacent structures other than seminal
vesicles, such as external sphincter, rectum, bladder, levator
muscles, and/or pelvic wall

Pathologic (pT)
T category
T2 Organ confined
T3 Extraprostatic extension
T3a Extraprostatic extension (unilateral or bilateral) or microscopic

invasion of bladder neck
T3b Tumor invades seminal vesicle(s)
T4 Tumor is fixed or invades adjacent structures other than seminal

vesicles, such as external sphincter, rectum, bladder, levator
muscles, and/or pelvic wall

N category
NX Regional lymph nodes were not assessed
N0 No positive regional lymph nodes
N1 Metastases in regional lymph node(s)
M category M criteria
M0 No distant metastasis
M1 Distant metastasis
M1a Nonregional lymph node(s)
M1b Bone(s)
M1c Other site(s) with or without bone disease
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5DGLFDO�SURVWDWHFWRP\��53��KDV�EHFRPH�WKH�PRVW�HIIHFWLYH�PHWKRG�IRU�WKH�WUHDWPHQW�
RI�ORFDOL]HG�SURVWDWH�FDQFHU�DQG�VRPH�KLJK�ULVN�SURVWDWH�FDQFHU��53�LV�XVHG�ZKHQ�WKH�
FDQFHU� LV� EHOLHYHG� WR� EH� FRQILQHG� WR� WKH� SURVWDWH� JODQG��'XULQJ� WKH� SURFHGXUH�� WKH�
SURVWDWH�JODQG�DQG�VRPH�WLVVXH�DURXQG�WKH�JODQG��LQFOXGLQJ�WKH�VHPLQDO�YHVLFOHV��DUH�
UHPRYHG� 7UDQVXUHWKUDO� UHVHFWLRQ� RI� WKH� SURVWDWH�� RU� 7853�� ZKLFK� DOVR� LQYROYHV�
UHPRYDO�RI�SDUW�RI�WKH�SURVWDWH�JODQG��LV�DQ�DSSURDFK�SHUIRUPHG�WKURXJK�WKH�SHQLV�ZLWK�
DQ�HQGRVFRSH��VPDOO��IOH[LEOH�WXEH�ZLWK�D�OLJKW�DQG�D�OHQV�RQ�WKH�HQG���7KLV�SURFHGXUH�
GRHVQ
W�FXUH�SURVWDWH�FDQFHU�EXW�FDQ�UHPRYH�WKH�REVWUXFWLRQ�ZKLOH�WKH�GRFWRUV�SODQ�IRU�
GHILQLWLYH� WUHDWPHQW�� /DSDURVFRSLF� VXUJHU\�� GRQH� PDQXDOO\� RU� E\� URERW�� LV� DQRWKHU�
PHWKRG�RI�UHPRYDO�RI�WKH�SURVWDWH�JODQG� 

Shortcomings in comprehensive medical check-ups in low- and middle-income 
countries lead to delayed detection of PC and are causative of high numbers of 
advanced PC cases at first diagnosis. The performance of available biomarkers is still 
insufficient and limited applicability, including logistical and financial burdens, impedes 
comprehensive implementation into health care systems. There is broad agreement 
on the need of new biomarkers to improve (i) early detection of PC, (ii) risk stratification, 
(iii) prognosis, and (iv) treatment monitoring. 

1.2. PC Biomarkers 

Serum prostate specific antigen (PSA) level and digital rectal examination (DRE) 
constitute the major screening tests for prostate cancer (PC) diagnosis, while the 
transrectal ultrasound-guided prostate biopsy provides the final confirmation of cancer 
presence (Velonas et al., 2013). PSA level has been extensively used as a biomarker 
to detect PC. Nevertheless, due to prostate physiology, PSA testing results in a large 
frequency of false positives leading to numerous men each year undergoing 
unnecessary prostate biopsy procedures� �Vickers et al., 2008; Link et al., 2004; 
McDunn et al., 2013; Roberts et al., 2011; Djavan et al., 2000). Hence, a non-invasive, 
cost-effective, efficient, and reasonably accurate test for early identification of PC is 
urgently needed. Compared with serum, urine is easier to obtain and handle, needs 
less sample preparation, and has higher amounts of metabolites and lower protein 
content (Rigau et al., 2013; Wilkosz et al., 2011; Zhang et al., 2013). Therefore, in 
attempt to solve this diagnostic dilemma, many previous studies have focused on 
urinary metabolomic profile, to identify the predictive biomarkers for PC �Chistiakov et 
al., 2018). Yang and colleagues conducted a study searching for urine metabolite 
biomarkers for the detection of PC. They found twenty differentially expressed urine 
metabolites in a cohort of 50 prostate cancer patients compared to non-cancerous 
individuals (Yang et al., 2021; Gordetsky et al., 2016; Nam et al., 2018; Di Meo et al., 
2017). The combination of solely three metabolites, representing alterations in Glycine, 
Serine, and Threonine metabolism (KEGG database pathway), was able to identify PC 
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patients with 77% accuracy at 80% sensitivity and 64% specificity. Furthermore, those 
metabolites could separate significant PC �*OHDVRQ�VFRUH�� 7) from indolent PC (GS 
6), which confirms urine metabolomics as a promising diagnostic tool in PC. However, 
to date, no single urine biomarker/biomarker panel meets the requirements for highly 
sensitive, and specific detection of PC. Therefore, the search for PC-specific 
biomarkers still is an active area of research. 

 

1.3. PC prevalence is not equal in different populations 

There is a racial difference in incidence rate and interpatient heterogeneity of prostate 
cancer. By contrast, Asian men have lower disease prevalence compared with Asian-
American or American PC cohorts. Despite lower PC incidence, the Asian populations 
have a higher prevalence of advanced disease, probably due to the lack of availability 
of more sensitive diagnostic tools �$WHHT�HW� DO��� �������7KHUHIRUH�� LW¶V� QHFHVVDU\� WR�
define the urine metabolome in an Asian population. 

 

1.4. Aims of the study 

� Exploration of novel biomarkers for the detection of PC in an Asian cohort.  
� Are urinary metabolomics suitable to develop new PC biomarkers? 
� What are the advantages of urine biomarkers?  
� How to identify novel biomarkers in the urine and to investigate the possible 

functions and roles of potential biomarkers in PC? 

 

1.5. Material and Methods 

1.5.1. Patients and sampling 

8ULQH�VDPSOHV�ZHUH�FROOHFWHG�IURP�3&�SDWLHQWV�IURP�-DQXDU\������WR�'HFHPEHU������
IURP�6LU�5XQ�5XQ�6KDZ�+RVSLWDO��+DQJ=KRX�DQG�=KRXSX�+RVSLWDO��6KDQJKDL��&KLQD��
&OLQLFDO�GLDJQRVLV�RI�LQGLYLGXDOV�ZDV�SHUIRUPHG�DFFRUGLQJ�WR�VHUXP�36$��'5(��ELRSV\�
UHVXOWV�SDWKRORJLFDO�UHVXOWV�DIWHU�RSHUDWLRQ�DQG�*OHDVRQ�VFRUH��$�WRWDO�RI����SDWLHQWV�
ZLWK�SURVWDWH�FDQFHU�ZHUH� LQFOXGHG� LQ� WKLV�VWXG\��7KH�FRQWURO�JURXS�FRQVLVWHG�RI����
QRQ�FDQFHURXV�PHQ��ZKR�ZHUH�ZLWKRXW�HYLGHQFH�RI�3&��EDVHG�RQ�36$�OHYHOV��QHJDWLYH�
ILQGLQJV� LQ� LPDJRORJLFDO� H[DPLQDWLRQ� DQG� '5(�� &OLQLFDO� DQG� GHPRJUDSKLFV�
FKDUDFWHULVWLFV�RI�WKH�LQGLYLGXDOV�DUH�VKRZQ�LQ�7DEOH��� 
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7DEOH����&KDUDFWHULVWLFV�RI�WKH�LQGLYLGXDOV 

 &RQWURO�JURXS��Q ��� 3&�JURXS��Q ���  
 

&KDUDFWHULVWLFV PHDQ��6'� *URXS�
VL]H� PHDQ��6'� *URXS�

VL]H�� 
 

3�YDOXH 
$JH��\HDUV� ������������ �� ������������ �� �������� 

3URVWDWH�YROXPH�
�P/� ������������ ��  ������������ �� ������ 

36$��ō�
��QJ�P/� 

����
漏����漐 �� ����������� �� 

 

36$���������
��QJ�P/� 1$ � ������������ ��  

36$��!
��QJ�P/� 1$ �  ������������� ��  

*6��SUH��� 1$ 1$ 1$ ��  
*6��SUH��Ŏ�� 1$ 1$ 1$ ��  

*6��SRVW���� 1$ 1$ 1$ �  
*6��SRVW��Ŏ��� 1$ 1$ 1$ ��  

      7UHDWPHQW�    ��  
5DGLFDO�
RSHUDWLRQ    ��  

6HHG�
LPSODQWDWLRQ    �  

(QGRFULQH    �  

&KHPRWKHUDS\    �  

7853    �  

*6� �*OHDVRQ�6FRUH��*6��SUH�� �*6�RI�ELRSV\�����SDWLHQWV�KDYH�DFFHSWHG�UDGLFDO�RSHUDWLRQ�DQG�JRW�WKH�

SRVW�RSHUDWLRQ�*6��*6��SRVW����6'� �VWDQGDUG�GHYLDWLRQ��SURVWDWH�YROXPH�ZDV�FDOFXODWHG�DV�YROXPH��9PO�

 � �OHQJWKîZLGWKîKHLJKW�� î� ʌ���� 7853�  � 7UDQVXUHWKUDO� UHVHFWLRQ� RI� WKH� SURVWDWH��� 1$ QRW� DSSOLFDEOH��

3& SURVWDWH�FDQFHU 

 

3DWLHQW�UHFUXLWPHQW�DQG�VDPSOLQJ�SURFHGXUHV�ZHUH�SHUIRUPHG�LQ�DFFRUGDQFH�ZLWK�WKH�
'HFODUDWLRQ� RI� +HOVLQNL� DQG� DSSOLFDEOH� ORFDO� UHJXODWRU\� UHTXLUHPHQWV� DQG� ODZV��$OO�
SDWLHQWV�SURYLGHG�ZULWWHQ�LQIRUPHG�FRQVHQW��(WKLFDO�DSSURYDOV�ZHUH�REWDLQHG�IURP�WKH�
ORFDO� HWKLFV� FRPPLWWHHV� RI� WKH� 6LU� 5XQ� 5XQ� 6KDZ� +RVSLWDO� DIILOLDWHG� WR� =KHMLDQJ�
8QLYHUVLW\��(WKLFDO�UHYLHZ�DSSURYDO�QXPEHU����������������DQG�6KDQJKDL�8QLYHUVLW\�
RI�0HGLFLQH�	�+HDOWK�6FLHQFHV��(WKLFDO�UHYLHZ�DSSURYDO�QXPEHU��+00(3����������� 

1.5.2. Urine analysis using NMR technology 

Nuclear magnetic resonance (NMR) spectroscopy, liquid chromatography-mass 
spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) are the 
most common techniques used in the study of cancer metabolomics and biomarker 
development. NMR technology stands out for the rapid detection and excellent 
reproducibility at high resolution, acceptable sensitivity (mMol range) and quantitative 
accuracy. NMR spectroscopy is a well-established non-destructive analytical method 
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based on quantum physical effects of atomic nuclei. It makes use of atomic nuclear 
spins being aligned when placed into a strong magnetic field and moving out of 
alignment by absorbance of isotope specific radiofrequencies. The tiny differences in 
realignment of the atomic spins with the magnetic field is then detected. Due to 
interference with nearby nuclei and electrons, information on the molecular makeup 
and structure of a probe can be deduced. While many nuclei can be detected, most 
used isotopes are 1H and 13C. High field NMR instruments (� 600 MHz) are needed to 
provide sufficient sensitivity and spectral resolution. Since sensitivity for 1H (protium) 
is highest, one-dimensional 1H analyses are preferred in most studies. NMR 
spectroscopy allows the direct identification, quantification and structural analysis of 
small organic molecules, nucleic acids, proteins and carbohydrates. Since most 
measured signals may come from aqueous solvents deuterium (2H) is often substituted. 
With a spin of 1 it does not show up in proton (1H, spin 1/2) NMR. NMR signals are 
calibrated to known peaks, e.g. tetramethylsilane (TMS) for 1H-NMR. The analysis 
includes identification of molecules by their specific chemical shift fingerprints and 
quantification may be done by comparison to peaks of pure standards in validation 
experiments. The application of NMR spectroscopy to biomarker detection involves 
extended multivariate statistical analyses, e.g. principle component analysis (PCA) or 
partial least square-discriminant analysis (PLS-DA).  

In addition, the simplicity of sample preparation, low volume requirement (typically a 
few hundred µl), non-destructive measurement and finally cost efficiency led to rapid 
acceptance of NMR in noninvasive diagnostics (Motta et al., 2012; Soininen et al., 
2015; Ibrahim et al., 2013; Nagana Gowda and Raftery, 2015). The most outstanding 
point is that hundreds of metabolites can be analyzed in just one NMR measurement 
(Duarte et al., 2014). One characteristic of cancer cells is the switch from aerobic 
oxygen-consuming energy production to glycolytic metabolism, known as the Warburg 
effect (Warburg, 1956). Changes in glycolytic metabolites and related amino acids are 
amongst the most promising for cancer detection: high lactate levels indicating 
enhanced anaerobic energy metabolism; enhanced serine and glycine levels as result 
of de novo synthesis of serine via a side branch of glycolysis in highly proliferative 
cancer cells (Yang and Vousden, 2016). Serine is crucial for the growth and survival 
of many cancer cells and is closely related to the folate cycle as a donor of one-carbon 
units. Therefore, the enzymes involved in serine de novo synthesis, i.e. 
phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 
(PSAT1) and phosphoserine phosphatase (PSPH), may be good targets for 
therapeutic intervention (Yang and Vousden, 2016).  

To significantly outperform current PC biomarkers and to overcome the shortcomings 
of PSA screening, NMR-metabolomics must overcome several challenges. While 
liquid biopsy, especially urine, is well accepted by patients, standardization is a major 
issue for quality management concerning sample preparation, measurement, data 
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processing and statistical analysis. NMR data are highly comparable between different 
institutions which is a great advantage and a prerequisite for comprehensive worldwide 
application (Ward et al., 2010).  

New tools are under development for multivariate statistics of huge data volumes 
acquired by NMR and automatic classification of discriminatory from non-
discriminatory metabolites (Motegi et al., 2015; Zou et al., 2016).  

The workflow for implementation of urine NMR-metabolomics into routine PC 
diagnostics and treatment monitoring is shown in Fig. 2.  
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Fig. 2. NMR-based metabolomics workflow. Left hand: developmental steps; right hand: challenges. 

Patient compliance will be best when using urine as a noninvasive source. Standardization is the major 

challenge: development of a standard platform for comparability across laboratories and time. The major 

decision in assay development is between the holistic approach (as often preferred in MS/MS analyses 

or next generation sequencing (NGS)) and targeted metabolite quantification. Clinical trials in different 

countries with different socio-economic and genetic backgrounds are required for final adjustment of the 

assay. PCA: principal component analysis; PLS-DA: partial least square-discriminant analysis; OPLS-DA: 

orthogonal projection to latent structure discriminant analysis 

NMR-analytics have been used for biomarker detection in humans in several tumor 
entities others than prostate cancer, for example: non-small-cell lung cancer (Doskocz 
et al., 2015), oral squamous cell carcinoma (Gupta et al., 2015), gastric cancer (Jung 
et al., 2014), myeloma (Lodi et al., 2013), pancreatic ductal adeno carcinoma (Davis 
et al., 2013), lung cancer (Carrola et al., 2011) and bladder cancer (Bansal et al., 2013). 
For additional information see Table 2 in Yang et al. 2007). 

Squamous cell carcinoma is a good example of the high performance of 1H-NMR in 
conjunction with PCA and OPLS-DA analyses. Serum metabolomics successfully 
separated patients with oral leukoplakia (OLK, n=100) and oral squamous cell 
carcinoma (OSCC, n=100), from healthy controls (HC) by the 1H-NMR technique 
(Gupta et al., 2015).  OSCC and HC were accurately separated with high area under 
the curve (AUC = 0.97) of the receiver operating characteristics (ROC) according to 
the expression differences of four biomarkers, namely glutamine, propionic acid ester, 
acetone, and choline, while the comparative analysis of glutamine, acetone, ethyl 
acetate and choline can accurately distinguish OLK and OSCC (AUC = 0.96). The two 
groups were separated with almost ideal sensitivity and specificity (sensitivity 92.7%, 
specificity 93.8%; Gupta et al., 2015).  

These considerations resulted in a multicenter study demonstrating the feasibility of 
1H-NMR urine metabolomics for the detection of novel biomarkers in an Asian cohort 
(Yang et al. 2021). Figure 3 summarizes the approach. 
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Abstract:    Prostate cancer (PCa) is the second most common male cancer worldwide and the fifth leading cause of 
death from cancer in men. Early detection and risk stratification is the most effective way to improve the survival of PCa 
patients. Current PCa biomarkers lack sufficient sensitivity and specificity to cancer. Metabolite biomarkers are 
evolving as a new diagnostic tool. This review is aimed to evaluate the potential of metabolite biomarkers for early 
detection, risk assessment, and monitoring of PCa. Of the 154 identified publications, 27 and 38 were original papers 
on urine and serum metabolomics, respectively. Nuclear magnetic resonance (NMR) is a promising method for 
measuring concentrations of metabolites in complex samples with good reproducibility, high sensitivity, and simple 
sample processing. Especially urine-based NMR metabolomics has the potential to be a cost-efficient method for the 
early detection of PCa, risk stratification, and monitoring treatment efficacy. 
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1  Introduction 
 

Prostate cancer (PCa) is one of the major threats 

to men’s health worldwide (Brawley, 2012; Center  
et al., 2012; Jahn et al., 2015; Siegel et al., 2016). In 

the United States, PCa was estimated to make up 

roughly 20% of the new cancer cases in men in 2016. 

Deaths from PCa are expected to account for 8% of 

cancer-associated deaths (Siegel et al., 2016). Epi-

demiological data from China are still rare and in-

complete but were recently supplemented by high- 

quality data provided by the National Central Cancer 

Registry of China (NCCR) (Chen et al., 2016). 

The incidence rate of PCa in China from 1998 to 

2008 increased by a factor of 3, from 35.2/100 000 to 

110.0/100 000, and the average annual growth rate 

was as high as 12.6% reaching 60 300 cases in 2015 

(Coffey, 2001; Baade et al., 2013; Zhu et al., 2015; 

Chen et al., 2016). While incidence rates in rural areas 

remained stable between 2006 and 2009, there was an 
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increase in urban areas, especially documented in 

Hong Kong and Shanghai. The rapid rise of the in-

cidence rate may be in part related to the aging of the 

population but there seems to be a strong link to 

Western-style diet (Lin et al., 2015). 

A comparison of the incidences of PCa in 2015 

showed that although the total number of patients in 

the United States has reached 3.66 times that of China, 

the estimated death tolls in the two countries are al-

most similar (Table 1) (Chen et al., 2016; Ervik et al., 
2016; Siegel et al., 2016). Interestingly, the numbers 

in the European Union (EU, World Health Organiza-

tion (WHO) region) are in between, which might 

reflect more regional variations in living conditions 

and diet. However, further investigations are required 

to come to valid conclusions. 

 

 

 

 

 

 

 

 

 

 

Effectivity of PCa treatment and cancer recur-

rence heavily depend on early detection and proper 

risk stratification (Moyer, 2012; Schroder et al., 2012; 

Klotz et al., 2015; Moller et al., 2015). In the United 

States, the proportion of localized PCa accounts for 

more than 80% of all cases, which is also one of the 

major reasons why the mortality/morbidity rate in the 

United States is much lower than that in Asian coun-

tries, and continues to decrease (DeSantis et al., 2014; 

Jemal et al., 2015; Moller et al., 2015). Therefore, 

early detection and diagnosis is the most effective 

way to improve the survival rate, and development of 

new biomarkers and/or reasonable combination of 

current diagnostic methods are hot spots in the field of 

PCa research (Felgueiras et al., 2014). 

However, to date no serum or urine biomarker or 

biomarker panel meets the requirements for highly 

sensitive and specific detection of PCa and differen-

tiation between indolent and significant PCa. We here 

explore the prospects of metabolomics to improve 

PCa detection, patient stratification, and treatment 

monitoring. 

2  Metabolomics—a window into tumor  
pathology 

2.1  Metabolomics in cancer diagnostics 

Metabolites, typically less than 1000 Da, repre-

sent the end products of complex metabolic pathways. 

The metabolome closely reflects any changes in those 

pathways and therefore provides a reasonable basis 

for clinical diagnosis. Specific changes in the metab-

olome are thought to reflect pathological states of 

patients (Dunn et al., 2013). 

Depending on the grade of degeneration, tumor 

cells show alterations of basic biochemical processes. 

Therefore, defining the metabolic signature of ma-

lignancies and precursor cells is the current hot spot in 

cancer metabolic research. 

Several cancer entities have been analyzed, 

aiming to better understand the pathological altera-

tions in metabolic pathways and to uncover new di-

agnostic biomarkers. 

2.1.1  Colon cancer 

Chen et al. (2014) found altered glycolytic en-

zyme activity in the transcriptome of stem cell-like 

CD133
+
 colon cancer initiating cells (CCICs) com-

pared to CD133
í
 colon cancer cells. Those alterations 

in metabolic enzyme expression correlated with me-

tabolite production through the tricarboxylic acid 

(TCA) cycle and cysteine/methionine metabolism 

pathways. This suggests that the metabolic signature 

can be used as a starting point to determine the po-

tential biological markers and the colorectal cancer 

therapeutic target. 

2.1.2  Thyroid cancer 

Clinical studies showed that there was a signif-

icant difference in the endogenous metabolism be-

tween patients with papillary thyroid cancer, benign 

thyroid tumors and healthy people. Compared to 

healthy people, in the serum samples of papillary 

thyroid cancer patients the valine, leucine, isoleucine, 

lactate, alanine, glutamine, and glycine levels were 

increased, while lipids, choline, and tyrosine levels 

were reduced. Interestingly, glycine levels were not 

different between benign thyroid lesions and healthy 

controls. Therefore, glycine could be a useful bi-

omarker for early tumor detection (Zhao et al., 
2015). 

Table 1  Comparison of the estimated new cases and 
deaths from prostate cancer in the United States, the 
EU (WHO region), and China, 2015 
Country/ 

region 

Estimated  

new cases 

Estimated 

deaths 
Ratio

US 220 800 27 540 0.12

EU 400 364 92 328 0.23
China 60 300 26 600 0.44

Data are from the studies of Chen et al. (2016), Ervik et al. (2016), 

and Siegel et al. (2016) 
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2.1.3  Ovarian cancer 

Jiang et al. (2015) found that the clinical staging 

of ovarian cancer patients was significantly correlated 

with the urine metabolites analyzed by ultra-high 

performance liquid chromatography-quadrupole time- 

of-flight mass spectrometry (UPLC-Q-TOF-MS). 

2.1.4  Renal cancer 

In their research on the potential risk of the de-

velopment of chronic liver disease to hepatocellular 

carcinoma, Trovato et al. (2015) proposed that in the 

future the periodic monitoring of specific metabolic 

markers for the urine of patients with chronic liver 

disease will make it possible to achieve clinical ap-

plication as an effective method for cancer prevention 

or early diagnosis. 

2.1.5  Bladder cancer 

Various studies using mass spectrometric (MS) 

methods reported promising results for bladder cancer 

(BCa) detection and separation of invasive BCa from 

non-invasive BCa (Issaq et al., 2008; Huang et al., 
2011; Pasikanti et al., 2013; Chan et al., 2015; Zhou 
et al., 2016). However, cohort sizes were small in 

most studies and the effects of renal cancer and 

bladder inflammation were the major problem in BCa 

detection (Van et al., 2011). In conclusion, MS-based 

metabolomics can improve BCa detection and risk 

stratification but the financial burden may hinder 

comprehensive routine implementation. 

2.1.6  Prostate cancer 

To date only a few studies have used nuclear 

magnetic resonance (NMR) to define metabolomic 

signatures of PCa for diagnosis and risk assessment 

(Kumar et al., 2016a), while most studies used liquid 

chromatography-mass spectrometry (LC-MS) or 

capillary electrophoresis-mass spectrometry (CE-MS) 

(Roberts et al., 2011; McDunn et al., 2013; Thapar 

and Titus, 2014; Struck-Lewicka et al., 2015). 

2.2  Nuclear magnetic resonance spectroscopy in 
the study of cancer and biomarker development 

NMR, LC-MS, and gas chromatography-mass 

spectrometry (GC-MS) are the most common tech-

niques used in metabolomics. NMR technology 

stands out for the rapid detection and excellent re-

producibility at high resolution, acceptable sensitivity 

(mmol), and quantitative accuracy. 

NMR spectroscopy is a well-established non- 

destructive analytical method based on quantum 

physical effects of atomic nuclei. It makes use of 

atomic nuclear spins being aligned when placed into a 

strong magnetic field and moving out of alignment by 

absorbance of isotope specific radio-frequencies. The 

tiny difference in realignment of the atomic spins with 

the magnetic field is then detected. Due to interfer-

ence with nearby nuclei and electrons, information on 

the molecular makeup and structure of a probe can be 

deduced. While many nuclei can be detected, most 

commonly used isotopes are 
1
H and 

13
C. High-field 

NMR instruments (�600 MHz) are needed to provide 

sufficient sensitivity and spectral resolution. Since 

sensitivity for 
1
H is highest, one-dimensional 

1
H 

analyses are preferred in most studies. NMR spec-

troscopy allows the direct identification, quantifica-

tion, and structural analysis of small organic mole-

cules, nucleic acids, proteins, and carbohydrates. 

Since most measured signals may come from aqueous 

solvents, deuterium (
2
H) is often substituted. With a 

spin of 1, it does not show up in proton (
1
H, spin 1/2) 

NMR. NMR signals are calibrated to known peaks, 

e.g. tetramethylsilane (TMS) for 
1
H-NMR. The 

analysis includes identification of molecules by their 

specific chemical shift fingerprints and quantification 

may be done by comparison to peaks of pure stand-

ards in validation experiments. The application of 

NMR spectroscopy to biomarker detection involves 

extended multivariate statistical analyses, e.g. principal 

component analysis (PCA) or partial least square- 

discriminant analysis (PLS-DA). 

In addition, the simplicity of sample preparation, 

low volume requirement (typically a few hundred 

microliters), non-destructive measurement, and last 

but not least cost efficiency led to rapid acceptance of 

NMR in noninvasive diagnostics (Motta et al., 2012; 

Ibrahim et al., 2013; Nagana Gowda and Raftery, 

2015; Soininen et al., 2015). The most outstanding 

point is that hundreds of metabolites can be analyzed 

in just one NMR measurement (Duarte et al., 2014). 

One characteristic of cancer cells is the switch from 

aerobic oxygen-consuming energy production to gly-

colytic metabolism, known as the Warburg effect 

(Warburg, 1956). Changes in glycolytic metabolites 

and related amino acids are amongst the most prom-

ising for cancer detection: high lactate levels indicating 

enhanced anaerobic energy metabolism; enhanced 
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serine and glycine levels as result of de novo synthe-

sis of serine via a side branch of glycolysis in highly 

proliferative cancer cells (Yang and Vousden, 2016). 

Serine is crucial for the growth and survival of many 

cancer cells and is closely related to the folate cycle as 

a donor of one-carbon units. Therefore, the enzymes 

involved in serine de novo synthesis, i.e. phospho-

glycerate dehydrogenase (PHGDH), phosphoserine 

aminotransferase 1 (PSAT1), and phosphoserine 

phosphatase (PSPH), may be good targets for thera-

peutic intervention (Yang and Vousden, 2016). 

To significantly outperform current PCa bi-

omarkers and to overcome the shortcomings of prostate 

specific antigen (PSA) screening, NMR-metabolomics 

must overcome several challenges. While liquid bi-

opsy, especially urine, is well accepted by patients, 

standardization is a major issue for quality manage-

ment concerning sample preparation, measurement, 

data processing, and statistical analysis. NMR data 

are highly comparable between different institutions, 

which is a great advantage and a prerequisite for 

comprehensive worldwide application (Ward et al., 
2010). New tools are under development for multi-

variate statistics of huge data volumes acquired by 

NMR and automatic classification of discriminatory 

from non-discriminatory metabolites (Motegi et al., 
2015; Zou et al., 2016). 

The workflow for implementation of urine NMR 

metabolomics into routine PCa diagnostics and 

treatment monitoring is shown in Fig. 1. 

NMR analytics have been used for biomarker 

detection in humans in several tumor entities other 

than PCa (Table 2): non-small-cell lung cancer 

(Doskocz et al., 2015), oral squamous cell carcinoma 

(OSCC) (Gupta et al., 2015), gastric cancer (Jung et al., 
2014), myeloma (Lodi et al., 2013), pancreatic ductal 

adenocarcinoma (Davis et al., 2013), lung cancer 

(Carrola et al., 2011), and BCa (Bansal et al., 2013). 

2.2.1  Squamous cell carcinoma 

Serum metabolomics successfully separated pa-

tients with oral leukoplakia (OLK; n=100) and OSCC 

(n=100) from healthy controls by the 
1
H-NMR tech-

nique (Gupta et al., 2015). OSCC and healthy control 

were accurately separated with high area under the 

curve (AUC; receiver operating characteristic (ROC): 

0.97) according to the expression differences of four 

biomarkers, namely glutamine, propionic acid ester, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

acetone, and choline, while the comparative analyses 

of glutamine, acetone, ethyl acetate, and choline can 

accurately distinguish OLK and OSCC (ROC: 0.96). 

The two groups were separated with almost ideal 

sensitivity and specificity (Gupta et al., 2015). 

2.2.2  Gastric cancer 

In a study on gastric cancer, Chan et al. (2016) 

analyzed 77 metabolites by 
1
H-NMR in urine sam-

ples and found a clear gastric cancer specific me-

tabolite profile. LASSO regularized logistic regres-

sion (LASSO-LR) identified three discriminatory 

metabolites: 2-hydroxyisobutyrate, 3-indoxylsulfate, 

and alanine, which clearly separated gastric cancer 

from healthy controls (AUC: 0.95). However, benign 

gastric disease showed large overlap with gastric 

Fig. 1  NMR-based metabolomics workflow 
Left hand: developmental steps; right hand: challenges. Pa-
tient compliance will be best when using urine as a non-

invasive source. Standardization is the major challenge:
development of a standard platform for comparability across

laboratories and time. The major decision in assay devel-
opment is between the holistic approach (as often preferred

in MS/MS analyses or next generation sequencing (NGS))
and targeted metabolite quantification. Clinical trials in

different countries with different socio-economic and ge-
netic backgrounds are required for final adjustment of the

assay. PCA: principal component analysis; PLS-DA: partial
least square-discriminant analysis; OPLS-DA: orthogonal

projection to latent structure discriminant analysis 
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cancer, illustrating the major problem of current 

metabolomic biomarker studies, patient pre-selection 

(Chan et al., 2016). 

2.2.3  Lung cancer 

Carrola et al. (2011) reported on urine analysis 

for lung cancer patients using 
1
H-NMR combined  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with PCA, PLS-DA, and orthogonal partial minimum 

variance discriminant analysis. The results showed 

that the development process of lung cancer was 

closely related to potential biological markers, including 

hippurate, gourd trigonelline, ȕ-hydroxyisovaleric 

acid, Į-hydroxyisobutyric acid, N-aceglutamide, and 

creatine anhydride. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2  Urine NMR metabolomics in biomarker research 

Publication 

year 
Cancer entity Topic Method Findings Reference

2015 Non-small-cell 
lung cancer 

Assessment of 
toxic kidney’s 

injury 

J-RES NMR; focused 
on amino acids and 

organic acids (lactid 
acid and pyruvic 
acid) profiles 

Increase of alanine, leucine, isoleu-
cine, and valine concentrations 

after the application of cisplatin 

Doskocz  
et al., 
2015 

2015 Oral squamous 
cell carcinoma 

Early stage  
detection of 

oral cancer 
(OC) and oral  

leukoplakia 
(OLK) 

1H-NMR; PCA; 
OPLS-DA 

Accurate separation of OC by  
glutamine, propionate, acetone, 

and choline (AUC 0.97; sensitivity 
92.7%, specificity 93.8%) 

Gupta et al., 
2015 

2014 Gastric cancer Development of 
non-invasive 

screening 
method 

1H-NMR; pre- and 
post-surgery urine; 

PCA; OPLS-DA 

GC predicted with high accuracy 
(AUC 0.9731); 86% of sensitivity 

and 92% of specificity; 17  
urinary metabolites identified as 

potential biomarkers 

Jung et al., 
2014 

2013 Myeloma Prediction of risk 

of disease 
state 

1H-NMR; paired 

blood and urine 
samples; PCA; 

PSL-DA 

Carnitine and acetylcarnitine  

potential biomarkers; diagnosis 
and relapse; pathways may be 

involved in pathology 

Lodi et al., 
2013 

2013 Gastric 

adenocarcinoma;
mouse model 

Tumor  

biomarkers; 
monitoring of 

treatment effect 
(adriamycin) 

1H-NMR; PCA; 

PSL-DA 

Significantly altered metabolites in 

tumor model: trimethylamine 
oxide, hippurate, taurine, 

3-indoxylsulfate, trigonelline 
citrate, trimethylamine, and 

2-oxoglutarate 

Kim et al., 
2013 

2013 Pancreatic ductal 

adenocarcinoma

Tumor 

biomarkers; 
screening 

1H-NMR; targeted 

profiling; PCA; 
OPLS-DA 

Sixty-six metabolites quantified; 

AUROC (0.988); 21 “key”  
metabolites 

Davis et al., 
2013 

2012 Bladder cancer; 
canine model 

Tumor detection 
and grading 

Spontaneous canine 
transitional cell 

carcinoma; 
1H-NMR 

Statistical model (PLS-DA) based 
on 6 metabolites: urea, choline, 

methylguanidine, citrate, acetone, 
ȕ-hydroxybutyrate; TCC detection: 

AUC (0.85), sensitivity (86%), 
specificity (78%) 

Zhang  
et al., 
2012 

2011 Lung cancer Tumor detection 1H-NMR; PLS-DA; 
OPLS-DA; Monte 
Carlo Cross 

Validation 

AUC (0.935); sensitivity (93%); 
specificity (94%) 

Carrola  
et al., 
2011 

2010 Bladder cancer Tumor detection 

and grading 

400 MHz 1H-NMR; 

OPLS-DA 

Citrate lowered, hippurate elevated 

in BCa; taurine exclusively  
detected in BCa; no discrimination 

of tumor grades 

Srivastava 
et al., 
2010 

2010 Gastric cancer; 

mouse model 

Toxico- 

metabolomics 

1H-NMR; PLS-DA; 

OPLS-DA 

Altered in gastric cancer:  

trimethylamine oxide (TMAO), 
3-indoxylsulfate, hippurate, citrate 

levels, and 3-indoxylsulfate 

Kim et al., 
2010 

To be continued 
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Table 2 

Publication 

year 
Cancer entity Topic Method Findings Reference 

2015 None New multivariate 
statistical  

approach to NMR 
data analysis 

1H-NMR spectral 
dataset analysis 

of known stand-
ard mixtures 

Cluster-aided MCR-ALS Motegi  
et al., 
2015 

2015 None; hyper-
tensive  

disorders of 
pregnancy 

Screening for  
prediction of 

preeclampsia 

Prospective study; 
1H-NMR analysis 

of urine and  
serum 

Prediction of preeclampsia from 
urine metabolomic profiles 

(51.3% sensitivity); hippurate 
most important metabolite 

Austdal  
et al., 
2015 

2015 None Monitoring changes 
of metabolites in 

urine during  
diurnal rhythm 

1H-NMR Thirty-two metabolites identified; 
diurnal rhythm (wake-sleep) has 

significant influence on urine 
metabolites 

Giskeodegard 
et al., 2015

2014 None Technological 
optimization 

1H-NMR Optimized workflow Dona et al., 
2014 

2014 None; acute 
pancreatitis 

Phenotyping 1H-NMR Pancreatitis: high levels of urinary 
ketone bodies, glucose, plasma 
choline, and lipid, and relatively 

low levels of urinary hippurate, 
creatine, and plasma-branched 

chain amino acids; able to  
distinguish between cholelithiasis 

and colonic inflammation 

Villaseñor  
et al., 
2014 

2012 None Metabolic pheno-

typing; effects  
of cadmium  

exposure 

1H-NMR; 

PLS-DA; 
OPLS-DA 

Six metabolites associated with 

cadmium exposure: citrate, 
3-hydroxyisovalerate, 4-deoxy- 

erythronic acid, dimethylglycine, 
creatinine, and creatine 

Ellis et al., 
2012 

2011 None Diet effects (cru-
ciferous vegeta-

bles) on urine 
metabolomics; 

cancerogens 

1H-NMR; J-RES 
NMR; PLS-DA; 

OPLS-DA 

Four single peaks identified as 
S-methyl-L-cysteine sulfoxide 

(SMCSO) and 3 other peaks  
related to SMCSO can serve as 

biomarkers for putatively  
cancerogenic cruciferous  

vegetable diet 

Edmands  
et al., 
2011 

2010 None; autism Phenotyping;  

autistic subjects; 
their siblings, 

unrelated healthy 
subjects 

1H-NMR; J-RES 

NMR; PLS-DA; 
OPLS-DA 

Creatine, creatinine, glycine,  

hippurate, NMNA, NMND, PAG, 
4-cresol sulfate, succinate, and 

taurine; indication of differences 
in microbiota 

Yap et al., 
2010a 

2010 None; heart 
disease; 

stroke 

Population meta-
bolic phenotyping: 

northern vs. 
southern Chinese 

population 

1H-NMR; J-RES 
NMR; PLS-DA; 

OPLS-DA; 24 h 
urine samples 

Higher in the north: dimethylglycine, 
alanine, lactate, branched-chain 

amino acids (isoleucine, leucine, 
valine), N-acetyls of glycoprotein 

fragments (including uromodulin), 
N-acetyl neuraminic acid,  

pentanoic/heptanoic acid, and 
methylguanidine; higher in the 

south: hippurate, 4-cresyl sulfate, 
phenylacetylglutamine, 
2-hydroxyisobutyrate, succinate, 

creatine, scyllo-inositol,  
proline betaine, and trans-aconitate 

Yap et al., 
2010b 

PubMed search (access: Aug. 26, 2016) revealed 154 publications of which 29 review articles were identified. Twenty-seven and 38 were 

original research papers filtered by the additional keywords “urine” and “serum”, respectively. Those 65 papers were evaluated and relevant 

papers were summarized. J-RES: J-resolved; NMR: nuclear magnetic resonance; PCA: principal component analysis; OPLS-DA: orthogonal 

projection to latent structure discriminant analysis; PSL-DA: partial least-square discriminant analysis; AUC: area under the curve; AUROC: 

area under receiver operating characteristic curve; TCC: transitional cell carcinoma; MCR-ALS: multivariate curve resolution-alternating 

least squares; NMNA: N-methylnicotinic acid; NMND: N-methylnicotinamide; PAG: phenylacetylglycine 
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2.2.4  Bladder cancer 

Only two NMR studies are reported in the liter-

ature. One study on serum 
1
H-NMR revealed good 

separation of low- and high-grade BCa from healthy 

controls (AUC 0.95, sensitivity 96% and specificity 

94%) (Bansal et al., 2013). A panel of six metabolites 

(dimethylamine (DMA), malonate, lactate, glutamine, 

histidine, and valine) was derived from the orthogonal 

projection to latent structure discriminant analysis 

(OPLS-DA) model. Low- and high-grade BCa could 

be best separated (AUC 0.97) by using a panel  

of three metabolites (DMA, malonate, and lactate) 

(Bansal et al., 2013). Another 
1
H-NMR study showed 

altered levels of citrate, DMA, taurine, phenylalanine, 

and hippurate in BCa compared to healthy controls in 

urine (Srivastava et al., 2010). However, the authors 

were not able to differentiate between carcinoma  

in situ (CIS) and stage Ta or T1 tumors. 

2.2.5  Prostate cancer 

Kline et al. (2006) reported that citrate measured 

by high-field 
1
H-NMR in seminal fluid outperformed 

PSA in detection of PCa in PCa patients when com-

pared to healthy controls. Recently, Kumar et al. 
(2016b) showed that panels of metabolites from se-

rum can separate benign prostatic hyperplasia (BPH)+ 

PCa from healthy controls and PCa from BPH. In-

terestingly, [
68

Ga] citrate was recently successfully 

used as a radiotracer in positron emission tomography 

for imaging of PCa in a small study group of 

castration-resistant prostate cancer (CRPC) (n=8), 

demonstrating the diagnostic potential of newly de-

tected metabolites (Behr et al., 2016). 

Giskeødegård et al. (2015a; 2015b) analyzed 

blood plasma and serum samples from 29 PCa pa-

tients and 21 controls with BPH by a combination of 

magnetic resonance spectroscopy, MS, and GC. They 

could separate PCa from BPH patients with good 

sensitivity (81.5%) and specificity (75.2%), demon-

strating that fatty acids (acyl carnitines), choline 

(glycerophospholipids), and amino acids (arginine) 

can be used as metabolic markers for the diagnostic 

differentiation between PCa and BPH. 

Clinical studies have demonstrated that using the 

NMR metabolic proteomics method to describe the 

metabolic signature of potential cancer patients and 

identifying cancer-associated characteristics of early 

biological markers can help early diagnosis of PCa, 

while also providing a reference indicator for prog-

nosis and therapeutic effect evaluation (Bertini et al., 
2012; Smolinska et al., 2012; Beger, 2013; Emwas  
et al., 2013; James and Parkinson, 2015). 

2.3  What is the best sample for NMR cancer 
metabolomics? 

2.3.1  Serum 

Serum is the most versatile body fluid and can be 

used for quantitative NMR metabolic analysis of 

many different malignancies (Bertini et al., 2012; 

Zhang et al., 2013; Wang et al., 2013; Armitage and 

Barbas, 2014; Kumar et al., 2015; Jobard et al., 2015). 

However, the technical challenges are higher in serum 

than in urine, since serum has the prospect of possible 

interference of high abundance metabolites with low 

abundance target metabolites requiring special frac-

tionation procedures (Ferreiro-Vera et al., 2012). 

2.3.2  Seminal fluid 

In the case of PCa, seminal fluid has been ap-

preciated as a direct reflection of prostate consistence 

by the use of ejaculate or expressed prostatic secre-

tions in PCa biomarker research mostly based on 

proteomics (Drake et al., 2010; Kim et al., 2012; 

Neuhaus et al., 2013; Principe et al., 2013; Trock, 

2014). 

However, it is difficult to establish the ejaculate 

analysis as a routine clinical test due to critical ac-

ceptance by the patients. Thus, in consideration of 

patient compliance, clinical work flow, and technical 

feasibility, urine is the most promising body fluid for 

NMR metabolic studies. 

2.3.3  Urine 

Urine is outstanding in reflecting the health of a 

patient, since being composed of renal draining urine 

contains a wealth of biomarkers derived from all 

organs. Therefore, urine analyses can detect diseases 

as different as inflammatory bowel disease (Stephens 
et al., 2013) and Alzheimer’s disease (Fukuhara et al., 
2013). PCA3 (prostate cancer gene 3) in urine is the 

only Food and Drug Administration (FDA)-approved 

urinary biomarker of clinical PCa, while the fusion 

gene TMPRSS2 ERG, Į-formyl coenzyme A racemic 

enzyme (AMACR), single nucleotide polymorphism 

(SNP), and others have also been reported and con-

firmed to have correlations with PCa. Therefore, they 
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could be rated as potential PCa biomarkers in urine 

and may find their way into clinical diagnosis and 

assessment of therapeutic efficacy (Prensner et al., 
2012; Salagierski and Schalken, 2012; Salami et al., 
2013; Shipitsin et al., 2014; Wei et al., 2014; Bansal 
et al., 2015; Frantzi et al., 2015). Recently, prostate 

born exosomes in urine—called prostasomes—have 

been used as a promising source of biomarkers 

(Ronquist and Brody, 1985; Duijvesz et al., 2011; 

Zijlstra and Stoorvogel, 2016). Surprisingly, only one 

original study on urine metabolomics in the PCa 

context is available (Öman et al., 2014). As the ulti-

mate product, the metabolite is more stable than DNA 

and proteins (Patel and Ahmed, 2015). Further stand-

ardization of sampling, analysis, and statistical meth-

ods will improve the reliability and outcome of NMR- 

based urine metabolomics (Emwas et al., 2016). 

In summary, individual metabolic signatures are 

likely to develop into valuable tools for the non- 

invasive detection of diseases, which are character-

ized by massively altered local or systemic metabo-

lism. NMR technology has evolved into a precise, 

generally applicable and, at least in high throughput, 

cost-efficient method (Sokolenko et al., 2013; Mathé 
et al., 2014). The idea of using a complex mixture of 

small urine compounds to assay for PCa is the basis of 

metabolomics in its holistic approach. Interestingly, 

even organic compounds evaporated from urine can 

be used for PCa discrimination from BPH by using 

unspecific multisensor ion mobility spectrometry, 

supporting the notion of disease-specific urine me-

tabolite composition (Roine et al., 2014). We per-

formed a PubMed search focusing on urine NMR 

metabolomics and summarized the most relevant 

papers in Table 2. 

 

 

3  Concluding remarks 
 

Metabolomics, recognized as a new diagnostic 

technology, has made rapid progress following ge-

nomics, proteomics, and transcriptome studies. In a 

short time span of 20 years, it has achieved broad 

development and application prospects in the fields of 

disease diagnosis, research, and development of new 

drugs, drug mechanisms of action research, and food 

science. To date NMR-based metabolomics of PCa 

has focused on serum in a small number of studies. 

However, the results are encouraging and especially 

urine metabolomics has the potential to create a new 

path for the clinical diagnosis and risk stratification of 

PCa. 

In its holistic approach, unlabeled NMR will be 

able to detect small changes in urine metabolite 

composition, reflecting disease-specific alterations in 

cancer-bearing organs or body metabolism. While 

even at this early stage NMR technology will be able 

to be used in clinical laboratories, the definition of 

disease-specific biomarker panels will increase the 

acceptance and might open new horizons for the  

development of novel and easy to use detection 

equipment. There is good support for the notion that 

NMR technology will be a cost-efficient tool to be 

also used in PCa risk assessment, prognosis and 

monitoring of PCa progression and treatment efficacy. 

Because of its feasibility in large patient cohorts, 

NMR-based urine analysis bears the promise of un-

covering population-specific metabolic peculiarities 

in Western and Asian populations, thereby helping to 

understand the differences in PCa prevalence in those 

countries. 

Given the special Chinese situation with grow-

ing PCa detection rates and increasing morbidity of 

the detected PCa, early non-invasive NMR urine 

diagnostics could completely change the situation of 

PCa in China, saving tens of thousands of lives each 

year, resulting in fundamental changes of the diag-

nosis and treatment of PCa. In contrast, risk assess-

ment, monitoring, and treatment control will be the 

most promising avenues in Western countries. 
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Abstract: Prostate cancer (PCa) is the second most common cancer in men worldwide with an
incidence of 14.8% and a mortality of 6.6%. Shortcomings in comprehensive medical check-ups
in low- and middle-income countries lead to delayed detection of PCa and are causative of high
numbers of advanced PCa cases at first diagnosis. The performance of available biomarkers is
still insufficient and limited applicability, including logistical and financial burdens, impedes
comprehensive implementation into health care systems. There is broad agreement on the need of
new biomarkers to improve (i) early detection of PCa, (ii) risk stratification, (iii) prognosis, and (iv)
treatment monitoring. This review focuses on liquid biopsy tests distinguishing high-grade significant
(Gleason score (GS) � 7) from low-grade indolent PCa. Available biomarkers still lack performance
in risk stratification of biopsy naïve patients. However, biomarkers with highly negative predictive
values may help to reduce unnecessary biopsies. Risk calculators using integrative scoring systems
clearly improve decision-making for invasive prostate biopsy. Emerging biomarkers have the potential
to substitute PSA and improve the overall performance of risk calculators. Until then, PSA should be
used and may be replaced whenever enough evidence has accumulated for better performance of a
new biomarker.

Keywords: prostate cancer (PCa); biomarkers; liquid biopsy; diagnosis high-grade PCa;
risk stratification; risk calculators

1. Introduction

Prostate cancer (PCa) is the second most common cancer in men worldwide, with an incidence of
14.8% (estimated at 1.1 million in 2012) and a mortality of still 6.6% (an estimated 307,000 deaths in
2012), which is at 5th rank among cancers. The five-year prevalence of 148.6/100,000 is the highest
seen in all cancers in adult men [1].

There is a significant variation of incidence, with the highest rates seen in Western and Northern
Europe, Australia/New Zealand, and Northern America and the lowest rates in Asian countries,
which may be partly due to the comprehensive use of prostate-specific antigen (PSA) testing and close
monitoring of the male population in more developed regions. As recently reported in China, the poor
coverage of PSA monitoring seems to be the major cause of advanced PCa at first diagnosis, translating
into a high mortality of 44% in China compared to 23% in the EU and 14% in the USA [2–4].

In this review we will evaluate the performance of available and emerging biomarkers in risk
stratification, focusing on liquid biopsies and distinguishing high-risk Gleason score (GS) � 7 tumours
from indolent, low-risk tumours, especially in biopsy-naïve patients.
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2. Current PCa Diagnostics

At present, the recommendations of the American Urological Association (AUA) and the European
Association of Urology (EAU) guidelines for the clinical examination methods of prostate cancer include
digital rectal examination (DRE), rectal ultrasound (TRUS) examination, and prostate biopsy [5–7].

Biopsy is still the only standard in preoperative diagnosis. This invasive operation causes obvious
physical pain to patients and the detection rate was closely related to the number of puncture points
and prostate volume, and is likely to cause haematuria, urinary retention or infection, sepsis, and other
serious complications leading to distress. At the same time, DRE and TRUS have disadvantages such
as poor accuracy and are affected by the skill and experience of the operator and other subjective
factors. For instance, 24% of 126 patients with suspected DRE had no PCa on biopsies in a prospective
study by Leyten and co-workers [8].

In addition, all three, DRE, TRUS and biopsy, are inevitably faced with an important issue, namely
low sensitivity to early cancer, after which the patient has missed the most ideal treatment time [9–11].

As proposed by Dr TA Stamey in the early 1980s, PSA diagnostics rapidly developed into
comprehensive screening programs in the USA and worldwide [12]. PSA population screening in 6260
Americans showed a significant decrease of high- and intermediate-risk patients from 68.9% to 52.3%
and an increase of low-risk disease from 31.2% to 47.7% between 1989 and 2002 [13]. PSA screening
caused prostate cancer mortality to fall by 21%, demonstrated in the 13-year follow-up of the European
Randomised Study of Screening for Prostate Cancer (ERSPC), indicating that early diagnosis and
treatment of prostate cancer were indeed significantly improved by the popularity of serum PSA
screening [14–16].

However, in the past decade more and more evidence accumulated challenging the benefit
of extensive PCa screening programs. Comprehensive PSA screening, in particular, may lead to
significant overdiagnosis and overtreatment [17–19]. Overdiagnosis and unnecessary prostate biopsies
were calculated to occur in 23–42% in PSA screening programs [20]. Thus, there are considerable
concerns about the predictive value of PSA levels, PSA density, and even first biopsy in the group of
patients eligible for active surveillance following the recommendations of the EAU [21].

One major problem of PSA screening is the different cutoff values used. The threshold of 4.0
ng/mL (commonly used with the Tandem-R, Hybritech test) has to be revised based on the findings of
15.2% PCa in men with PSA  4 ng/mL in a cohort of 2950 men (aged 62–91 years) by Thompson and
co-workers [22]. A considerable 14.9% of those were diagnosed with high-grade (GS � 7) tumours.
Even at very low PSA levels of 0.5 ng/mL, they found 6.6% PCa, of which 12.5% were high-grade
tumours [22]. These findings clearly illustrate the diagnostic shortcomings of PSA.

Age-adjusted PSA cutoffs were tested to improve performance. While age-adjusted PSA cutoffs
for total serum PSA (tPSA) and complexed serum PSA (cPSA) were superior to a fixed cutoff in a
cohort of 3597 men who underwent routine biopsy, they could not improve the PCa detection rate of
approximately 39% within the range of 2.0 ng/mL–20.0 ng/mL [23].

In light of those diagnostic restrictions, there is still an ongoing dispute on PSA testing worldwide.
In the USA, PSA screening was evaluated by the U.S. Preventive Services Task Force (USPSTF), leading
to amendment of the recommendations on PSA screening in 2008 [24]. The American Urological
Association (AUA) stated that PSA screening should apply only to men aged 55 to 69 years and
suggested that routine examination be performed once every two years or longer [7,18,25].

However, this diagnostic practice may significantly increase the risk of missing PCa in men <55
years [26] and might increase mortality, which has to be analysed after longer follow-up [27,28].
Nevertheless, recent data analysis shows a continuous increase in the morbidity of biopsies in
conjunction with reduction of total biopsies since the 2008 USPSTF recommendations [29]. Amongst
the many attempts to solve this diagnostic dilemma, only a few biomarkers are established in
clinical practice.

In summary, to date no single serum or urine biomarker or biomarker panel meets the
requirements for highly sensitive and specific detection of PCa and differentiation between indolent
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and significant PCa. Imaging technologies have been greatly improved but still are not sufficiently
validated or standardized. Some of the diagnostic tools are already established, such as PSA and
its derivatives; others are under critical evaluation and some are exploring the potency of the latest
high-end analytics to improve (i) early detection of PCa, (ii) risk stratification, (iii) disease prognosis,
and (iv) treatment monitoring.

3. Current PCa Biomarker Tests for Discrimination-Significant and Indolent PCa

The need for better PCa diagnostics has led to a huge number of new strategies for meaningful
combinations of established and innovative approaches to open up new biomarker resources. Table 1
gives an overview of commercially available biomarker tests, using liquid biopsy for the detection
of high-grade (�GS 7) PCa and assisting the physician with identifying patients for prostate biopsy
and those eligible for active surveillance (for detailed information and more specialized tests, see [30]).
Table 1 also demonstrates that PSA cutoff values vary between studies. Age-adjusted use of PSA cutoff
values could significantly improve the sensitivity of PSA testing [23].

3.1. Prostate-Specific Antigen (PSA)

PSA, alone or in combination with free/total PSA (f/t PSA) ratio, formerly thought to be of value
for distinguishing PCa from BPH, shows only limited sensitivity and insufficient specificity (Table 1;
recent meta-analysis by Huang et al. [31]).

Longitudinal PSA screening to determine PSA velocity has been initially described to distinguish
PCa from BPH in men aged >60 years at an average rate of change (ng/mL per year) of �0.75 with
90% specificity compared to 60% single PSA value �4 ng/mL [32]. However, in the following studies
these promising results could not be confirmed [31].
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3.2. Prostate Health Index and Derivates

The Prostate Health Index (PHI Beckman Coulter, Atlanta, GA, USA) was FDA-approved in 2012.
The PHI score combines total, free, and [–2] proPSA in one test and a score is calculated indicating the
probability of PCa positive biopsy (phi-score = [�2] proPSA/fPSA) ⇥

p
tPSA) [46].

In an early meta-analysis, AUCs of %[–2] proPSA and PHI were comparable in patients with PSA
values of 2–10 ng/mL, reaching between 0.76 and 0.78 for prediction of PCa-positive biopsies [47].
As recently analysed by White and co-workers, PHI alone impacts the decision-making of physicians
and resulted in a significant reduction in biopsies of 40% [48]. However, the PHI score was not very
good at predicting high-grade PCa and as such did not help with clinical decision-making in a large
study using pT3 stage and/or GS � 7 as outcome measures [49] (see also Table 1 [35]).

3.3. 4KScore® Test

Promising data have also been reported for the 4KScore® Test (OPKO Lab, Nashville, TN, USA)
using 4-Kallikrein markers in blood serum after DRE. In a recent study including 496 participants with
PSA � 3.0 ng/mL, the accuracy of predicting PCa GS � 7 was AUC 0.738 in the standard model (PSA
+ age) and AUC 0.820 in the advanced model integrating 4KScore® Test (p < 0.001). In a model with 6%
cutoff, the risk calculated by age and 4KScore® would avoid 43% of biopsies, detect 119 of 133 (89.5%)
GS � 7 high-risk tumours, and delay diagnosis of 14 (10.5%) of the significant tumours [36].

3.4. Progensa™ (Gen-Probe Inc., San Diego, CA, USA)

The prostate cancer gene 3 (PCA3) test detects long non-coding RNA (lncRNA), which has been
shown to be associated with PCa. The Progensa™ PCA3-score calculates the ratio of PCA3 and PSA
mRNA of exosomes isolated from post-DRE urine and has been proposed for the identification of
patients eligible for active surveillance [50]. It was FDA-approved in 2012 and several studies reported
variable performance (sensitivity: 58–78%; specificity: 57–72%) for detection of PCa (Table 1) [39–41].
The NPV was reported to be 88% and 90%, respectively, which was regarded as helpful for biopsy
decision-making [40,41]. However, as pointed out by Vickers and co-workers, PCA3 was approved
by the FDA only to add the decision of repeat biopsy. In biopsy-naïve patients, there is a high risk of
missing high-grade PCa with low levels of PCA3 [51].

3.5. Further Non-Commercial and Integrative Tests

Several other tests are already available for risk evaluation in patients with elevated PSA, usually
at a threshold of �4 ng/mL (Table 1). While their positive predictive value is low (28–36%), those
tests showed highly negative predictive values (88–98%), which make them valuable for clinical
decision-making on invasive biopsy diagnostics. Tomlins et al. reported avoidance of 35–47% of
biopsies using the MiPS test (University of Michigan, MLabs) [43]. Van Neste calculated that 42% of
total biopsies and 53% of unnecessary biopsies can be avoided by combining the SelectMDx (MDx
Health, Irvine, CA, USA) measuring HOXC6 mRNA and DLX1 mRNA in post-DRE urine with serum
PSA, PSA density, DRE status, age, and family history [44].

As summarized in Table 1, more or less critical restrictions regarding the target patients apply
to most biomarker test available. Only a few are useful in a broad clinical setting, as required for
screening or routine check-up examinations, i.e., for application in biopsy-naïve patients. Especially for
the detection of critical high-risk patients (“risk of Gleason score � 7”) who need to undergo prostate
biopsy, the specificity of the available tests is poor. For detailed information, the reader is referred to
the literature given in Table 1.

4. Do We Need More Biomarkers, or Do We Need a New, Consistent Concept?

In view of the huge number of different biomarkers available and new approaches, one has to ask
whether there is a realistic chance that these advanced methods will finally provide a set of biomarkers
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able to meet all requirements in PCa detection, stratification, and monitoring. Most probably, we will
need a combination of specialized biomarkers with good performance within their restricted fields.
The primary goal should be to reduce the need for invasive prostate biopsies to improve the
benefit-harm balance.

An ideal biomarker concept should support low-invasive, organ-saving treatments if possible;
radical surgery if necessary at the earliest time point to avoid PCa progression to metastatic and
androgen-insensitive disease [52].

5. Emerging Biomarkers for Detection of Significant PCa

5.1. Polypeptides

Seminal plasma is a body fluid directly related to the prostate. Therefore, PCa specific analytes
are expected to be available at higher concentrations and better accessible than in urine or blood.
An in-depth proteome analysis of expressed prostatic secretions (EPS) was conducted in 2010 by Drake
and co-workers to provide a resource for the development of biomarkers [53]. In a small cohort of
patients with advanced (n = 8) or organ-confined (n = 8) prostate cancer, a total of 624 unique proteins
were identified in EPS by mass spectrometry [54]. Fourteen candidates with 133 differently expressed
proteins were further analysed for suitability as biomarkers, including PSA and PAP, which were
significantly elevated in organ-confined PCa. The authors concluded that EPS-urines are a promising
source for new PCa biomarkers [54].

In a multicentre, open-label case/control study our group analysed 125 patients for PCa-specific
polypeptides in seminal plasma from fresh ejaculate donation after physiological liquefaction. The idea
was to create stable conditions reflecting the enzymatic activity of pathological protease network in PCa,
and to analyse the resulting protein fragments, 20 kDa polypeptides by capillary-electrophoresis mass
spectroscopy (CE-MS). We were able to define a panel of 11 polypeptides from seminal plasma-based
CE-MS analysis with 80% sensitivity at 82% specificity in discriminating patients with GS 7 and
organ-confined (<pT3a) or advanced disease (�pT3a) [55].

Proteomic signatures of polypeptides have also been used to detect PCa in the urine of
biopsy-naïve patients without known PCa or suspect DRE [56]. The biomarker panel of 12 polypeptides
detected PCa with 89% sensitivity and 51% specificity (AUC 0.70). By inclusion of age and fPSA, the
performance was augmented to 91% sensitivity and 69% specificity [56]. Unfortunately, the data were
not analysed for prediction in high-risk patients.

5.2. Metabolites

Metabolites were shown to closely reflect aggressiveness of PCa [57]. A prospective study
including 1122 cases tested the performance of sarcosine to predict the risk of prostate cancer.
This study revealed an association of serum sarcosine levels normalized to alanine with low-grade
(non-aggressive) PCa but no association with aggressive PCa [58], and a recent study showed that
sarcosine is not indicative of PCa in urine [59].

Post-DRE urine pellet is used as a source for metabolites to predict high-grade PCa (GS � 7) in the
Polarix® test (Metabolon Inc., Morrisville, NC, USA). In a retrospective study, McDunn and co-workers
identified metabolites associated with the aggressiveness of a tumour and constructed a panel of
four metabolites (5,6-dihydrouracil, choline phosphate, glycerol, and methylpalmitate) predicting the
probability of organ-confined PCa with an accuracy of AUC = 0.62. Using a panel of three metabolites
(7-a-hydroxy-3-oxo-4-cholestenoate, pregnen-diol disulfate, and mannosyl tryptophan), they were also
able to improve the prediction of progression-free survival to AUC = 0.64 [57]. While these results are
promising, the performance of urine metabolites is still not satisfying. However, the study provides
the basis for further development of metabolite biomarkers.

35



Diagnostics 2018, 8, 68 8 of 19

Most interestingly, PCa-specific metabolites have been found in urine exosomes, implying
potential use as a new biomarker source to address PCa pathogenesis and progression. Out of 248
metabolites identified, 76 were differentially expressed in PCa and BPH [60].

Metabolomics is a hot topic in current biomarker research. However, so far, even large studies did
not successfully identify meaningful metabolites [61].

5.3. MicroRNA (miRNA)

MiRNAs have been acknowledged to be important for gene regulation in normal and pathological
conditions. Based on tissue analyses, dozens of miRNAs have been shown to be dysregulated in PCa
(see [62,63]).

In a comprehensive screening study using radical prostatectomy samples of 34 patients, 34 miRNA
were significantly upregulated in the tumour epithelium compared to normal epithelium [64].
The authors also compared GS 6 PCa with high-grade GS � 8 PCa tissue. They found 18 differentially
expressed miRNAs (p < 0.005): 11 were up- and seven were downregulated (Table 2).

Schaefer et al. reported five upregulated and 10 downregulated miRNAs during miRNA
microarray analysis of 76 radical prostatectomy specimens comparing matched tumour and adjacent
normal tissues [65]. The expression of five miRNAs correlated with Gleason score, and upregulated
miR-96 predicted biochemical recurrence (Table 2).

Table 2. Micro RNAs in prostate cancer diagnosis.

Reference Song et al. 2018 [62] Schaefer et al. 2010 [65] Walter et al. 2013 [64]

Type Meta-Analysis of 104 Studies Original Article Original Article

Samples Tissue, Blood, Urine RPE Frozen Tissue (76 PCa, 79 PCa) FFPE RPE Tissue (37 PCa)

Method(s) Various miRNA Microarray; 470 miRNAs PCR Array Profiling

Measure Expression in PCa Expression in PCa Expr. in GS � 8 vs. GS 6

miR-1 # a miR-16 # miR-9 " i
miR-18a " a miR-31 # j miR-27 # i
miR-21 " c,l miR-96 " e,g,j miR-30c " h,l
miR-23b # a miR-125b # k miR-34 " i
miR-27b # a miR-145 # miR-92 # i
miR-30c # a,c miR-149 # e miR-96 # i
miR-31 " b miR-181b # miR-122 " h,i
miR-34a " a miR-182 " e miR-125a " h
miR-99b # a miR-182 * " miR-125 # i

miR-106b " a miR-183 " f miR-126 # i
miR-129 # c miR-184 # miR-138 " i

miR-139-5p # a miR-205 # e,f,j,k miR-144 " i
miR-141 " a,l miR-221 # miR-146b-5p " h
miR-145 # c miR-222 # k miR-148 # i,m
miR-152 # a miR-375 " e,l,m miR-181a " h
miR-182 " a miR-181c " h
miR-183 " a miR-184 " h,i
miR-187 # a miR-193 " i
miR-200a " a miR-193b " h
miR-200b " a miR-198 " i
miR-204 # a miR-214 " h
miR-205 # a miR-215 " i
miR-224 # a miR-222 # i
miR-301a " a miR-335 " h,i
miR-375 " a,d,l,m miR-373 " i
miR-452 # a
miR-505 # a

let-7c # a,b,c

FFPE = formalin-fixed paraffin-embedded; TURP = transurethral resection of the prostate; RPE = radical
prostatectomy; a = differentiate PCa from BPH/HC; b = differentiate advanced metastatic from local/primary PCa;
c = prediction of poor recurrence free survival; d = worse overall survival; e = AUC of 0.88 combining 5 miRNAs;
f = AUC of 0.88 combining two miRNAs; g = can predict biochemical recurrence; h = p < 0.005 in PCa vs. normal
epithelium; i = differentiate GS � 8 from GS 6; j = correlation with Gleason score; k = correlation with tumour
stage; l = of diagnostic value in serum; m = of diagnostic value in urine; * = indicates reverse miRNA sequence;
" = upregulated; # = downregulated.
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However, Stephan et al.’s study of miR-183 (upregulated) and miR-205 (downregulated) failed
to detect high-grade PCa in patients with and without PCa (38 each group) using urine sediment,
while PCA3 was able to separate those patient groups [66]. In a recent meta-analysis, Song et al.
identified from an extensive literature survey 10 upregulated and 14 downregulated miRNAs with
potential for separating PCa from BPH or normal controls (Table 2). Furthermore, high expression of
miR-32 and let-7c differentiated local from metastatic PCa. The authors also found that the expression
profiles of urine, blood serum, and tissue differed considerably [62].

Circulating miRNAs were isolated from various body fluids, including blood plasma and serum
being protected against ribonuclease degradation by inclusion in lipid compartments, extracellular
vesicles of 40–5000 nm in diameter [67].

In serum, miR-141 levels can distinguish PCa from healthy controls with an AUC of 0.907 with 60%
sensitivity at 100% specificity in a cohort of 25 PCa and 25 age-matched healthy control individuals [68].
In a recent study Porzycki et al. found that the combination of miR-141, miR-21, and miR-375 could
distinguish PCa (mean PSA of 21.3 ng/mL) from healthy controls with an AUC of 0.864 and a sensitivity
of 93% at 63% specificity. However, the group sizes were quite small (20 PCa vs. eight healthy controls),
requiring further validation of the findings in larger cohorts [69].

Recently, Tinay et al. found a significant upregulation of miR-9-3p, miR-330-3p-3p, and miR-345-5p
in PCa patients (n = 25) compared to healthy controls (n = 20). MiR-345-5p was further analysed
due to its direct targeting of CDKN1A encoding the cyclin-dependent kinase inhibitor p21 [70].
Interestingly, the overlap between the miRNAs in serum with tissue miRNAs is limited to miR-21,
miR-141, and miR-375 (boldface and labelled “l” in Table 2).

In urine, PCa-specific miRNAs patterns can be detected in exosomes by next-generation
sequencing (NGS) and RT-qPCR. For example, miR-196a-5p and miR-501-3p levels were significantly
downregulated in a preliminary study of 28 PCa (GS � 7) vs. 19 healthy controls [71]. In a larger
study, including 215 PCa patients, 23 BPH patients, and 62 asymptomatic control individuals,
Stuopelyte et al. found 100 out of 754 miRNAs scanned deregulated in PCa. MiR-148a and miR-375
were the most abundant miRNAs in urine and showed high sensitivity and specificity (85.31% and
65.22%, respectively), with an AUC of 0.79 in differentiation between PCa (n = 72) and BPH (n = 23).
In combination with serum PSA, the AUC was 0.85, with 84.29% sensitivity at 76.19% specificity.
Within the grey zone PSA levels of 4–10 ng/mL AUC increased to 0.90 with 83.87% sensitivity at
81.82% sensitivity [72]. Overlapping miRNAs were in boldface and labelled “m” in Table 2.

None of the current miRNA approaches provide high PPV for the detection of high-grade PCa.
The largest NPV of 0.939 has been reported to predict the absence of high-grade PCa compared to
BPH for a 14-miRNA panel: miR-24, -26b, -30c, -93, -100, -103, -106a, -107, -130b, -223, -146a, -451, -874,
and let-7a [73].

The high number of miRNAs found to be dysregulated in PCa and the ability of subsets to
either detect PCa, differentiate high-grade from low-grade PCa, or predict recurrence-free/overall
survival encourages further attempts to define miRNA biomarker panels. Most interestingly, the
overlap between tissue and liquid biopsies is rather limited. This problem has to be investigated
more deeply.

5.4. Gene Expression of PCa-Related Genes in Exosomes

Exosomes can be used to measure gene expression of PCa-related genes (among others: SPDEF,
ERG and PCA3). Combined into a score (ExoDx Prostate IntelliScore urine exosome assay (Exosome
Diagnostics, Inc., Waltham, MA, USA)) with standard of care parameters: prostate-specific antigen
level, age, race, and family history [42], this score was able to predict high-risk PCa, defined as
GS � 7, with a sensitivity of 92%. However, specificity was low (34%) resulting in a positive predictive
value (PPV) of only 36%. In contrast, the negative predicted value (NPV) was high (91%), thereby
unnecessary biopsies could have been avoided in 27%, missing only 5% of patients with high-risk PCa
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(GS 4 + 3) [42], indicating a considerable clinical value of tests providing high NPV, even if the PPV is
low (Table 1).

5.5. Long Non-Coding RNA (lncRNA)

Non-coding RNA makes up the vast majority of our genetic information. Only <3% of the human
DNA comprises protein-coding gene sequences. LncRNAs are key regulators of the genome and their
involvement in several disease states, especially cancer has recently emerged [74–76]. Thus, lncRNAs
are regarded as promising biomarkers as well as therapeutic targets in urologic cancers [77,78]. Several
biomarker tests including lncRNA (PCA3) are already on the market (Table 1).

Recently investigated promising lncRNAs include: TINCR [79], FR0348383 [80], SChLAP1 [81],
and MALAT1 [82] (Table 3). LncRNA biomarker research is rapidly expanding and more lncRNA
biomarkers are likely to emerge in the near future [83,84].

Table 3. Long non-coding RNAs (lncRNA) potential biomarkers.

Name Function Diagnostic Value Reference

PCA3 " (prostate cancer
associated 3)

increase of cell proliferation, migration
and invasion; inhibition of apoptosis;

[85]
predict risk of GS > 7 [86]

TINCR # (Terminal
differentiation induced

non-coding RNA)

growth inhibition via TRIP13
suppression [79] not determined [79]

FR0348383 " unknown
predict PCa-positive biopsy; avoid
52% unnecessary biopsies without

missing high-grade PCa
[80]

SChLAP1 " (SWI/SNF complex
antagonist associated with

prostate cancer 1)

increase of cell proliferation, metastasis
via downregulation of miRNA-198 and

activation of MAPK1 pathway [87]

predict high-risk, lethal PCa;
biochemical recurrence after RPE [81]

MALAT1 "
(metastasis-associated lung

adenocarcinoma transcript 1)

interacts with EZH2, promoting
proliferation and invasion [88]

predict PCa-positive biopsy;
discriminate between PCa and

BPH, PCa and HC
[82]

RPE = radical prostatectomy; HC = healthy controls; " = upregulated; # = downregulated.

5.6. Circulating Tumour Cells (CTC)

At the moment circulating tumour cells (CTC) are not used for early detection of high-grade PCa
because they are rarely detected in localized PCa [89–92]. CTCs are being investigated for use as a
prognostic biomarker of mCRPC and to predict treatment efficacy [93–96]. However, the first long-term
follow-up studies have questioned the prognostic value of preoperative CTCs for the prediction of
early biochemical recurrence. Meyer et al. detected CTCs in only 11% (17/152) of patients before
radical prostatectomy. The CTC counts did not correlate with PSA levels, disease status, or biochemical
recurrence [97]. Recently, Murray et al. concluded that the biological characteristics of circulating
prostate cells (CPCs) may be more important than the number of circulating cells. They found that
patients with CD82-negative CPCs had a worse prognosis in a study of 285 men at a follow-up of
10 years. CD82 is a tumour suppressor and the expression on CPCs may indicate high metastatic
potential [98].

6. Integrative Scoring Systems/Risk Calculators

The overall goal of all biomarkers is the improvement of the prediction of the individual risk of the
patient. To this end, standard null hypothesis significance testing (NHST) methods are not conducive,
since they do not report quantitative percent individual risk evaluation. Bayesian data analysis can
overcome this weakness and provide direct access to meaningful risk evaluation. Risk calculators such
as the online Prostate Cancer Prevention Trial Risk Calculator (PCPTRC) developed in 2006 predicting
the likelihood of detecting no versus low-grade (GS < 7) versus high-grade (GS � 7) in a biopsy for
an individual patient can be continuously adjusted on the basis of newly available epidemiologic
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data [99–101]. New biomarkers replacing lower-performing ones may be included when available,
thus continuously improving the performance of those calculators. Several complex scoring models for
risk assessment of PCa GS � 7 have been developed, including population adaption: the Stockholm
model 3 (STHLM3) [45], the Rotterdam Prostate Cancer Risk Calculator (RPCRC) [102], the Indonesian
prostate cancer risk calculator (IPCRC) [103], a Chinese (Hong Kong) adaptation of the ERSPC risk
calculator [104], the Huashan risk calculator [105], and the Chinese Prostate Cancer Consortium Risk
Calculator (CPCC-RC) [106].

7. Conclusions

In this review we focused on the liquid biopsy biomarkers currently in use and emerging for
distinguishing patients with low, insignificant PCa from patients with high-risk PCa with a Gleason
score � 7. Biomarker development faces some common challenges that may limit the usability of
biomarkers in clinical routine. The accuracy of transrectal ultrasound (TRUS)-guided needle biopsy
is limited by a false negative rate of 23% [107]. Serial biopsies can improve the detection rate of
organ-confined PCa from 77% at first biopsy to 99% at fourth biopsy [107]. However, since this initial
study in 2002 the number of biopsy cores to be obtained increased from quadrant biopsy (four cores) to
sextant biopsies (six cores) and, recently, to a standard of 10–12 cores, as recommended by the guidelines
of the EAU. Nevertheless, detection rates are still in the range of 35% [36]. This results in significant
uncertainty when using systematic biopsy as a reference standard. In addition, there is a significant
upgrading of tumour grade of up to 56.7%, as demonstrated by studies comparing biopsy and final
Gleason score after radical prostatectomy [21,108,109]. This causes another serious problem in defining
the reference standard in biomarker studies, because whole-gland histopathological evaluation is only
available after tumour radical prostatectomy and in rare cases of prostate enucleation due to large
volume BPH. Furthermore, in healthy control groups neither biopsy material nor whole-gland tissue is
available, reducing the determination of “tumour-free” status to clinical observation and exclusion
of other biomarkers (in practice, mostly suspicious PSA levels). Another challenge is the population
bias, e.g., shown in metabolomic studies. Special care has to be taken in conception, sampling,
and sample processing to account for ethnic and lifestyle differences [110,111]. Population-based
adjustment of biomarker panels and cutoffs is required, e.g., for Asian and Western countries [112–115].
All biomarkers have to compete against PSA and most outperform PSA in certain patient groups.
While PSA assays are standardized, comparable, and easy to handle, with a low logistical burden, many
of the novel biomarkers make higher demands on clinical staff, organization, laboratory equipment,
and data analysis (Figure 1).

In addition, the superiority to PSA has to be validated in large prospective studies, which usually
takes at least five years. There are already good data for the biomarkers established in the market
(Table 1), but only a few of the novel biomarkers can provide clinical data. Furthermore, distinct
restrictions apply to the tests (“targeted patients” in Table 1), which need to be taken into account
when comparing the performance of different biomarkers. Currently, histopathological evaluation of
needle biopsies is the gold standard and the basis of treatment decisions. Biomarkers should be able
to predict the initial biopsy outcome in respect of high-grade disease, i.e., they should have a highly
positive predictive value. At present, none of the available biomarkers and tests alone can achieve
this goal.

Therefore, because of the low application threshold, PSA monitoring is indispensable at the
moment, and should be integrated into routine health examinations of men aged �45 years,
as recommended in the latest 2018 German S3-guidelines for Prostate Cancer [116]. In case of suspect
PSA findings, additional biomarkers should be used to further characterize disease state and safe
stratification of patients into treatment groups. Risk calculators should be used for transparent
decision-making and to improve the inclusion of the patient.
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Figure 1. Feasibility of liquid biomarker-based diagnostics. The financial burden is coded by colour 
(green = low, yellow = medium, red = high); at present, advanced analytical methods come with higher 
high technical requirements and the need for very high analytical expertise; generally, gene 
expression, genomics, proteomics, and metabolomics require specialized analysis laboratories. In 
most cases, e.g., for untargeted analyses, standards have not been defined yet; this accelerates the 
threshold for comprehensive establishment in the clinical routine. For instance, proteomic analyses 
are still expensive, require high analytical expertise, and are not comprehensively available. On the 
other hand, proteomic analyses are fairly good and standardized. Comparing metabolic analyses, 
they require higher expertise than the more standardized proteomics, but are less expensive. The 
logistical burden grows with the complexity of the clinical and analytical requirements; circle 
indicates currently well established methods of PCa diagnostics.  
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Llorente, A. Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing
analysis of urinary exosomes. Mol. Cancer 2017, 16, 156. [CrossRef] [PubMed]

72. Stuopelyte, K.; Daniunaite, K.; Bakavicius, A.; Lazutka, J.R.; Jankevicius, F.; Jarmalaite, S. The utility of
urine-circulating miRNAs for detection of prostate cancer. Br. J. Cancer 2016, 115, 707–715. [CrossRef]
[PubMed]

73. Mihelich, B.L.; Maranville, J.C.; Nolley, R.; Peehl, D.M.; Nonn, L. Elevated serum microRNA levels associate
with absence of high-grade prostate cancer in a retrospective cohort. PLoS ONE 2015, 10, e0124245. [CrossRef]
[PubMed]

74. Tang, Q.; Hann, S.S. HOTAIR: An Oncogenic Long Non-Coding RNA in Human Cancer. Cell. Physiol. Biochem.
2018, 47, 893–913. [CrossRef] [PubMed]

75. Huarte, M. The emerging role of lncRNAs in cancer. Nat. Med. 2015, 21, 1253–1261. [CrossRef] [PubMed]
76. Rinn, J.L.; Chang, H.Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 2012, 81, 145–166.

[CrossRef] [PubMed]

44

http://dx.doi.org/10.1093/carcin/bgt176
http://www.ncbi.nlm.nih.gov/pubmed/23698636
http://dx.doi.org/10.1097/CEJ.0000000000000248
http://www.ncbi.nlm.nih.gov/pubmed/27222937
http://dx.doi.org/10.1080/20013078.2018.1470442
http://www.ncbi.nlm.nih.gov/pubmed/29760869
http://dx.doi.org/10.1186/s12916-017-0885-6
http://www.ncbi.nlm.nih.gov/pubmed/28676103
http://dx.doi.org/10.1002/jcb.26445
http://www.ncbi.nlm.nih.gov/pubmed/29095529
http://dx.doi.org/10.3390/diagnostics8030060
http://www.ncbi.nlm.nih.gov/pubmed/30200254
http://dx.doi.org/10.7150/jca.6394
http://www.ncbi.nlm.nih.gov/pubmed/23781281
http://dx.doi.org/10.1002/ijc.24827
http://www.ncbi.nlm.nih.gov/pubmed/19676045
http://dx.doi.org/10.1515/cclm-2014-1000
http://www.ncbi.nlm.nih.gov/pubmed/25720086
http://dx.doi.org/10.1111/j.1349-7006.2010.01650.x
http://www.ncbi.nlm.nih.gov/pubmed/20624164
http://dx.doi.org/10.1073/pnas.0804549105
http://www.ncbi.nlm.nih.gov/pubmed/18663219
http://dx.doi.org/10.1007/s11255-018-1938-2
http://www.ncbi.nlm.nih.gov/pubmed/30014459
http://dx.doi.org/10.1002/pros.23650
http://www.ncbi.nlm.nih.gov/pubmed/29748958
http://dx.doi.org/10.1186/s12943-017-0726-4
http://www.ncbi.nlm.nih.gov/pubmed/28982366
http://dx.doi.org/10.1038/bjc.2016.233
http://www.ncbi.nlm.nih.gov/pubmed/27490805
http://dx.doi.org/10.1371/journal.pone.0124245
http://www.ncbi.nlm.nih.gov/pubmed/25874774
http://dx.doi.org/10.1159/000490131
http://www.ncbi.nlm.nih.gov/pubmed/29843138
http://dx.doi.org/10.1038/nm.3981
http://www.ncbi.nlm.nih.gov/pubmed/26540387
http://dx.doi.org/10.1146/annurev-biochem-051410-092902
http://www.ncbi.nlm.nih.gov/pubmed/22663078


Diagnostics 2018, 8, 68 17 of 19

77. Chen, J.; Miao, Z.; Xue, B.; Shan, Y.; Weng, G.; Shen, B. Long Non-coding RNAs in Urologic Malignancies:
Functional Roles and Clinical Translation. J. Cancer 2016, 7, 1842–1855. [CrossRef] [PubMed]

78. Martens-Uzunova, E.S.; Böttcher, R.; Croce, C.M.; Jenster, G.; Visakorpi, T.; Calin, G.A. Long noncoding RNA
in prostate, bladder, and kidney cancer. Eur. Urol. 2014, 65, 1140–1151. [CrossRef] [PubMed]

79. Dong, L.; Ding, H.; Li, Y.; Xue, D.; Liu, Y. LncRNA TINCR is associated with clinical progression and serves
as tumor suppressive role in prostate cancer. Cancer Manag. Res. 2018, 10, 2799–2807. [CrossRef] [PubMed]

80. Zhang, W.; Ren, S.C.; Shi, X.L.; Liu, Y.W.; Zhu, Y.S.; Jing, T.L.; Wang, F.B.; Chen, R.; Xu, C.L.; Wang, H.Q.;
et al. A novel urinary long non-coding RNA transcript improves diagnostic accuracy in patients undergoing
prostate biopsy. Prostate 2015, 75, 653–661. [CrossRef] [PubMed]

81. Mehra, R.; Udager, A.M.; Ahearn, T.U.; Cao, X.; Feng, F.Y.; Loda, M.; Petimar, J.S.; Kantoff, P.; Mucci, L.A.;
Chinnaiyan, A.M. Overexpression of the Long Non-coding RNA SChLAP1 Independently Predicts Lethal
Prostate Cancer. Eur. Urol. 2016, 70, 549–552. [CrossRef] [PubMed]

82. Wang, F.; Ren, S.; Chen, R.; Lu, J.; Shi, X.; Zhu, Y.; Zhang, W.; Jing, T.; Zhang, C.; Shen, J.; et al. Development
and prospective multicenter evaluation of the long noncoding RNA MALAT-1 as a diagnostic urinary
biomarker for prostate cancer. Oncotarget 2014, 5, 11091–11102. [CrossRef] [PubMed]

83. Pan, J.; Ding, M.; Xu, K.; Yang, C.; Mao, L.J. Exosomes in diagnosis and therapy of prostate cancer. Oncotarget
2017, 8, 97693–97700. [CrossRef] [PubMed]

84. Huang, X.; Yuan, T.; Liang, M.; Du, M.; Xia, S.; Dittmar, R.; Wang, D.; See, W.; Costello, B.A.; Quevedo, F.; et al.
Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur. Urol.
2015, 67, 33–41. [CrossRef] [PubMed]

85. Lin, C.; Wang, J.; Wang, Y.; Zhu, P.; Liu, X.; Li, N.; Liu, J.; Yu, L.; Wang, W. GRP78 Participates in
PCA3-regulated Prostate Cancer Progression. Anticancer Res. 2017, 37, 4303–4310. [CrossRef] [PubMed]

86. de Kok, J.B.; Verhaegh, G.W.; Roelofs, R.W.; Hessels, D.; Kiemeney, L.A.; Aalders, T.W.; Swinkels, D.W.;
Schalken, J.A. DD3(PCA3), a very sensitive and specific marker to detect prostate tumors. Cancer Res. 2002,
62, 2695–2698. [PubMed]

87. Li, Y.; Luo, H.; Xiao, N.; Duan, J.; Wang, Z.; Wang, S. Long Noncoding RNA SChLAP1 Accelerates the
Proliferation and Metastasis of Prostate Cancer via Targeting miR-198 and Promoting the MAPK1 Pathway.
Oncol. Res. 2018, 26, 131–143. [CrossRef] [PubMed]

88. Wang, D.; Ding, L.; Wang, L.; Zhao, Y.; Sun, Z.; Karnes, R.J.; Zhang, J.; Huang, H. LncRNA MALAT1
enhances oncogenic activities of EZH2 in castration-resistant prostate cancer. Oncotarget 2015, 6, 41045–41055.
[CrossRef] [PubMed]

89. Gorin, M.A.; Verdone, J.E.; van der Toom, E.; Bivalacqua, T.J.; Allaf, M.E.; Pienta, K.J. Circulating tumour
cells as biomarkers of prostate, bladder, and kidney cancer. Nat. Rev. Urol. 2016, 14, 90. [CrossRef] [PubMed]

90. Scher, H.I.; Lu, D.; Schreiber, N.A.; Louw, J.; Graf, R.P.; Vargas, H.A.; Johnson, A.; Jendrisak, A.; Bambury, R.;
Danila, D.; et al. Association of AR-V7 on Circulating Tumor Cells as a Treatment-Specific Biomarker With
Outcomes and Survival in Castration-Resistant Prostate Cancer. JAMA Oncol. 2016, 2, 1441–1449. [CrossRef]
[PubMed]

91. Li, J.; Gregory, S.G.; Garcia-Blanco, M.A.; Armstrong, A.J. Using circulating tumor cells to inform on prostate
cancer biology and clinical utility. Crit. Rev. Clin. Lab. Sci. 2015, 52, 191–210. [CrossRef] [PubMed]

92. Khurana, K.K.; Grane, R.; Borden, E.C.; Klein, E.A. Prevalence of circulating tumor cells in localized prostate
cancer. Curr. Urol. 2013, 7, 65–69. [CrossRef] [PubMed]

93. Tommasi, S.; Pilato, B.; Carella, C.; Lasorella, A.; Danza, K.; Vallini, I.; De Summa, S.; Naglieri, E.
Standardization of CTC AR-V7 PCR assay and evaluation of its role in castration resistant prostate cancer
progression. Prostate 2018. [CrossRef] [PubMed]

94. Wilbaux, M.; Tod, M.; De Bono, J.; Lorente, D.; Mateo, J.; Freyer, G.; You, B.; Hénin, E. A Joint Model for the
Kinetics of CTC Count and PSA Concentration during Treatment in Metastatic Castration-Resistant Prostate
Cancer. CPT Pharmacomet. Syst. Pharmacol. 2015, 4, 277–285. [CrossRef] [PubMed]

95. Miyamoto, D.T.; Sequist, L.V.; Lee, R.J. Circulating tumour cells-monitoring treatment response in prostate
cancer. Nat. Rev. Clin. Oncol. 2014, 11, 401–412. [CrossRef] [PubMed]

96. Albino, G.; Vendittelli, F.; Paolillo, C.; Zuppi, C.; Capoluongo, E. Potential usefulness of CTC detection in
follow up of prostate cancer patients. A preliminary report obtained by using Adnagene platform. Arch. Ital.
Urol. Androl. 2013, 85, 164–169. [CrossRef] [PubMed]

45

http://dx.doi.org/10.7150/jca.15876
http://www.ncbi.nlm.nih.gov/pubmed/27698924
http://dx.doi.org/10.1016/j.eururo.2013.12.003
http://www.ncbi.nlm.nih.gov/pubmed/24373479
http://dx.doi.org/10.2147/CMAR.S170526
http://www.ncbi.nlm.nih.gov/pubmed/30154672
http://dx.doi.org/10.1002/pros.22949
http://www.ncbi.nlm.nih.gov/pubmed/25597901
http://dx.doi.org/10.1016/j.eururo.2015.12.003
http://www.ncbi.nlm.nih.gov/pubmed/26724257
http://dx.doi.org/10.18632/oncotarget.2691
http://www.ncbi.nlm.nih.gov/pubmed/25526029
http://dx.doi.org/10.18632/oncotarget.18532
http://www.ncbi.nlm.nih.gov/pubmed/29228644
http://dx.doi.org/10.1016/j.eururo.2014.07.035
http://www.ncbi.nlm.nih.gov/pubmed/25129854
http://dx.doi.org/10.21873/anticanres.11823
http://www.ncbi.nlm.nih.gov/pubmed/28739722
http://www.ncbi.nlm.nih.gov/pubmed/11980670
http://dx.doi.org/10.3727/096504017X14944585873631
http://www.ncbi.nlm.nih.gov/pubmed/28492138
http://dx.doi.org/10.18632/oncotarget.5728
http://www.ncbi.nlm.nih.gov/pubmed/26516927
http://dx.doi.org/10.1038/nrurol.2016.224
http://www.ncbi.nlm.nih.gov/pubmed/27872478
http://dx.doi.org/10.1001/jamaoncol.2016.1828
http://www.ncbi.nlm.nih.gov/pubmed/27262168
http://dx.doi.org/10.3109/10408363.2015.1023430
http://www.ncbi.nlm.nih.gov/pubmed/26079252
http://dx.doi.org/10.1159/000356251
http://www.ncbi.nlm.nih.gov/pubmed/24917761
http://dx.doi.org/10.1002/pros.23710
http://www.ncbi.nlm.nih.gov/pubmed/30141201
http://dx.doi.org/10.1002/psp4.34
http://www.ncbi.nlm.nih.gov/pubmed/26225253
http://dx.doi.org/10.1038/nrclinonc.2014.82
http://www.ncbi.nlm.nih.gov/pubmed/24821215
http://dx.doi.org/10.4081/aiua.2013.4.164
http://www.ncbi.nlm.nih.gov/pubmed/24399115


Diagnostics 2018, 8, 68 18 of 19

97. Meyer, C.P.; Pantel, K.; Tennstedt, P.; Stroelin, P.; Schlomm, T.; Heinzer, H.; Riethdorf, S.; Steuber, T. Limited
prognostic value of preoperative circulating tumor cells for early biochemical recurrence in patients with
localized prostate cancer. Urol. Oncol. 2016, 34, 235.e11–235.e16. [CrossRef] [PubMed]

98. Murray, N.P.; Aedo, S.; Fuentealba, C.; Reyes, E. 10 Year Biochemical Failure Free Survival of Men with CD82
Positive Primary Circulating Prostate Cells Treated by Radical Prostatectomy. Asian Pac. J. Cancer Prev. 2018,
19, 1577–1583. [CrossRef] [PubMed]

99. Strobl, A.N.; Vickers, A.J.; Van Calster, B.; Steyerberg, E.; Leach, R.J.; Thompson, I.M.; Ankerst, D.P. Improving
patient prostate cancer risk assessment: Moving from static, globally-applied to dynamic, practice-specific
risk calculators. J. Biomed. Inform. 2015, 56, 87–93. [CrossRef] [PubMed]

100. Ankerst, D.P.; Hoefler, J.; Bock, S.; Goodman, P.J.; Vickers, A.; Hernandez, J.; Sokoll, L.J.; Sanda, M.G.;
Wei, J.T.; Leach, R.J.; et al. Prostate Cancer Prevention Trial risk calculator 2.0 for the prediction of low- vs.
high-grade prostate cancer. Urology 2014, 83, 1362–1367. [CrossRef] [PubMed]

101. Thompson, I.M.; Ankerst, D.P.; Chi, C.; Goodman, P.J.; Tangen, C.M.; Lucia, M.S.; Feng, Z.; Parnes, H.L.;
Coltman, C.A. Assessing prostate cancer risk: Results from the Prostate Cancer Prevention Trial. J. Natl.
Cancer Inst. 2006, 98, 529–534. [CrossRef] [PubMed]

102. Roobol, M.J.; Verbeek, J.F.M.; van der Kwast, T.; Kümmerlin, I.P.; Kweldam, C.F.; van Leenders, G.J.L.H.
Improving the Rotterdam European Randomized Study of Screening for Prostate Cancer Risk Calculator
for Initial Prostate Biopsy by Incorporating the 2014 International Society of Urological Pathology Gleason
Grading and Cribriform growth. Eur. Urol. 2017, 72, 45–51. [CrossRef] [PubMed]

103. Yuri, P.; Wangge, G.; Abshari, F.; Satjakoesoemah, A.I.; Perdana, N.R.; Wijaya, C.D.; Tansol, C.; Tigor, A.;
Safriadi, F.; Kadar, D.D.; et al. Indonesian prostate cancer risk calculator (IPCRC): An application for
predicting prostate cancer risk (a multicenter study). Acta Med. Indones. 2015, 47, 95–103. [PubMed]

104. Chiu, P.K.; Roobol, M.J.; Nieboer, D.; Teoh, J.Y.; Yuen, S.K.; Hou, S.M.; Yiu, M.K.; Ng, C.F. Adaptation and
external validation of the European randomised study of screening for prostate cancer risk calculator for the
Chinese population. Prostate Cancer Prostatic Dis. 2017, 20, 99–104. [CrossRef] [PubMed]

105. Wu, Y.S.; Zhang, N.; Liu, S.H.; Xu, J.F.; Tong, S.J.; Cai, Y.H.; Zhang, L.M.; Bai, P.D.; Hu, M.B.; Jiang, H.W.;
et al. The Huashan risk calculators performed better in prediction of prostate cancer in Chinese population:
A training study followed by a validation study. Asian J. Androl. 2016, 18, 925–929. [CrossRef] [PubMed]

106. Chen, R.; Xie, L.; Xue, W.; Ye, Z.; Ma, L.; Gao, X.; Ren, S.; Wang, F.; Zhao, L.; Xu, C.; et al. Development and
external multicenter validation of Chinese Prostate Cancer Consortium prostate cancer risk calculator for
initial prostate biopsy. Urol. Oncol. 2016, 34, 416.e1–416.e7. [CrossRef] [PubMed]

107. Roehl, K.A.; Antenor, J.A.; Catalona, W.J. Serial biopsy results in prostate cancer screening study. J. Urol.
2002, 167, 2435–2439. [CrossRef]

108. Seisen, T.; Roudot-Thoraval, F.; Bosset, P.O.; Beaugerie, A.; Allory, Y.; Vordos, D.; Abbou, C.C.; De La Taille, A.;
Salomon, L. Predicting the risk of harboring high-grade disease for patients diagnosed with prostate cancer
scored as Gleason </= 6 on biopsy cores. World J. Urol. 2015, 33, 787–792. [CrossRef] [PubMed]

109. Fu, Q.; Moul, J.W.; Banez, L.L.; Sun, L.; Mouraviev, V.; Xie, D.; Polascik, T.J. Association between percentage
of tumor involvement and Gleason score upgrading in low-risk prostate cancer. Med. Oncol. 2012, 29,
3339–3344. [CrossRef] [PubMed]

110. Emwas, A.-H.M.; Salek, R.M.; Griffin, J.L.; Merzaban, J. NMR-based metabolomics in human disease
diagnosis: Applications, limitations, and recommendations. Metabolomics 2013, 9, 1048–1072. [CrossRef]

111. Kimura, T. East meets west: Ethnic differences in prostate cancer epidemiology between East Asians and
Caucasians. Chin. J. Cancer 2012, 31, 421. [CrossRef] [PubMed]

112. Zhu, Y.; Wang, H.K.; Qu, Y.Y.; Ye, D.W. Prostate cancer in East Asia: Evolving trend over the last decade.
Asian J. Androl. 2015, 17, 48–57. [CrossRef] [PubMed]

113. Sterling, W.A.; Weiner, J.; Schreiber, D.; Mehta, K.; Weiss, J.P. The impact of African American race on prostate
cancer detection on repeat prostate biopsy in a veteran population. Int. Urol. Nephrol. 2016, 48, 2015–2021.
[CrossRef] [PubMed]

114. Kallingal, G.J.; Walker, M.R.; Musser, J.E.; Ward, D.E.; McMann, L.P. Impact of race in using PSA velocity to
predict for prostate cancer. Mil. Med. 2014, 179, 329–332. [CrossRef] [PubMed]

46

http://dx.doi.org/10.1016/j.urolonc.2015.12.003
http://www.ncbi.nlm.nih.gov/pubmed/26795608
http://dx.doi.org/10.22034/APJCP.2018.19.6.1577
http://www.ncbi.nlm.nih.gov/pubmed/29936782
http://dx.doi.org/10.1016/j.jbi.2015.05.001
http://www.ncbi.nlm.nih.gov/pubmed/25989018
http://dx.doi.org/10.1016/j.urology.2014.02.035
http://www.ncbi.nlm.nih.gov/pubmed/24862395
http://dx.doi.org/10.1093/jnci/djj131
http://www.ncbi.nlm.nih.gov/pubmed/16622122
http://dx.doi.org/10.1016/j.eururo.2017.01.033
http://www.ncbi.nlm.nih.gov/pubmed/28162815
http://www.ncbi.nlm.nih.gov/pubmed/26260551
http://dx.doi.org/10.1038/pcan.2016.57
http://www.ncbi.nlm.nih.gov/pubmed/27897172
http://dx.doi.org/10.4103/1008-682X.181192
http://www.ncbi.nlm.nih.gov/pubmed/27212127
http://dx.doi.org/10.1016/j.urolonc.2016.04.004
http://www.ncbi.nlm.nih.gov/pubmed/27185342
http://dx.doi.org/10.1016/S0022-5347(05)64999-3
http://dx.doi.org/10.1007/s00345-014-1348-8
http://www.ncbi.nlm.nih.gov/pubmed/24985552
http://dx.doi.org/10.1007/s12032-012-0270-4
http://www.ncbi.nlm.nih.gov/pubmed/22688447
http://dx.doi.org/10.1007/s11306-013-0524-y
http://dx.doi.org/10.5732/cjc.011.10324
http://www.ncbi.nlm.nih.gov/pubmed/22085526
http://dx.doi.org/10.4103/1008-682X.132780
http://www.ncbi.nlm.nih.gov/pubmed/25080928
http://dx.doi.org/10.1007/s11255-016-1407-8
http://www.ncbi.nlm.nih.gov/pubmed/27580731
http://dx.doi.org/10.7205/MILMED-D-13-00332
http://www.ncbi.nlm.nih.gov/pubmed/24594470


Diagnostics 2018, 8, 68 19 of 19

115. Su, L.J.; Arab, L.; Steck, S.E.; Fontham, E.T.; Schroeder, J.C.; Bensen, J.T.; Mohler, J.L. Obesity and
prostate cancer aggressiveness among African and Caucasian Americans in a population-based study.
Cancer Epidemiol. Biomark. Prev. 2011, 20, 844–853. [CrossRef] [PubMed]

116. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, D.K., AWMF). Interdisziplinäre Leitlinie der
Qualität S3 zur Früherkennung, Diagnose und Therapie der verschiedenen Stadien des Prostatakarzinoms,
Langversion 5.0, 2018, AWMF Registernummer: 043/022OL. 2018. Available online: http://www.
leitlinienprogramm-onkolo-gie.de/leitlinien/prostatakarzinom/ (accessed on 15 May 2018).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

47

http://dx.doi.org/10.1158/1055-9965.EPI-10-0684
http://www.ncbi.nlm.nih.gov/pubmed/21467239
http://www.leitlinienprogramm-onkolo-gie.de/leitlinien/prostatakarzinom/
http://www.leitlinienprogramm-onkolo-gie.de/leitlinien/prostatakarzinom/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.


 
 

���� Yang, B.; Zhang, C.; Cheng, S.; Li, G.; Griebel, J.; Neuhaus, J. Novel 
Metabolic Signatures of Prostate Cancer Revealed by �+�105 Metabolomics of 
Urine. Diagnostics 2021;11(2):149, doi:10.3390/diagnostics11020149. 

Impact Factor (2020): 3.706. 
 
This multicenter diagnostic (prospective) study urine samples of 50 PC patients and 
50 healthy controls were analyzed by �+�105 and a metabolite profile was created 
using 20 differentially expressed metabolites. Further analysis using PCA and OPLS-
DA showed an acceptable discrimination of PC patients from HC using the combination 
of guanidino-acetate, Phenylacetylglycine, and glycine (AUC = 0.77; sensitivity = 80%, 
specificity = 64%). In addition, we identified potentially involved pathways by 
ELRLQIRUPDWLFV� DQDO\VLV�� 7KH� .(**� ³*O\FLQH�� 6HULQH�� DQG� 7KUHRQLQH� PHWDEROLVP´�
pathway seemed to be associated with PC. To the best of our knowledge, WKLV�LV�WKH�
ILUVW� VWXG\� LGHQWLI\LQJ� JXDQLGLQRDFHWDWH�� DQG� SKHQ\ODFHW\OJO\FLQH� DV� SRWHQWLDO� QRYHO�
ELRPDUNHUV�LQ�3&� 

48



diagnostics

Article

Novel Metabolic Signatures of Prostate Cancer Revealed by
1
H-NMR Metabolomics of Urine

Bo Yang
1,2,†

, Chuan Zhang
1,†

, Sheng Cheng
3,

*, Gonghui Li
3
, Jan Griebel

4
and Jochen Neuhaus

1,2,3,
*

!"#!$%&'(!
!"#$%&'

Citation: Yang, B.; Zhang, C.; Cheng,

S.; Li, G.; Griebel, J.; Neuhaus, J.

Novel Metabolic Signatures of

Prostate Cancer Revealed by
1H-NMR Metabolomics of Urine.

Diagnostics 2021, 11, 149. https://

doi.org/10.3390/diagnostics11020149

Academic Editors: Mauro G.

Mastropasqua

Received: 3 December 2020

Accepted: 16 January 2021

Published: 20 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Urology, University of Leipzig, 04103 Leipzig, Germany; paulyang228@hotmail.com (B.Y.);
Chuan.Zhang@medizin.uni-leipzig.de (C.Z.)

2 Department of Urology, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences,
Shanghai 201318, China

3 Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine,
Hangzhou 310016, China; 3193119@zju.edu.cn

4 Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany;
jan.griebel@iom-leipzig.de

* Correspondence: chengsheng2005@zju.edu.cn (S.C.); jochen.neuhaus@medizin.uni-leipzig.de (J.N.);
Tel.: +86-571-86002157 (S.C.); +49-341-971-7688 (J.N.)

† These authors contributed equally to this work.

Abstract: Prostate cancer (PC) is one of the most common male cancers worldwide. Until now,
there is no consensus about using urinary metabolomic profiling as novel biomarkers to identify
PC. In this study, urine samples from 50 PC patients and 50 non-cancerous individuals (control
group) were collected. Based on 1H nuclear magnetic resonance (1H-NMR) analysis, 20 metabolites
were identified. Subsequently, principal component analysis (PCA), partial least squares-differential
analysis (PLS-DA) and ortho-PLS-DA (OPLS-DA) were applied to find metabolites to distinguish PC
from the control group. Furthermore, Wilcoxon test was used to find significant differences between
the two groups in metabolite urine levels. Guanidinoacetate, phenylacetylglycine, and glycine
were significantly increased in PC, while L-lactate and L-alanine were significantly decreased. The
receiver operating characteristics (ROC) analysis revealed that the combination of guanidinoacetate,
phenylacetylglycine, and glycine was able to accurately differentiate 77% of the PC patients with
sensitivity = 80% and a specificity = 64%. In addition, those three metabolites showed significant
differences in patients stratified for Gleason score 6 and Gleason score �7, indicating potential use to
detect significant prostate cancer. Pathway enrichment analysis using the KEGG (Kyoto Encyclopedia
of Genes and Genomes) and the SMPDB (The Small Molecule Pathway Database) revealed potential
involvement of KEGG “Glycine, Serine, and Threonine metabolism” in PC. The present study
highlights that guanidinoacetate, phenylacetylglycine, and glycine are potential candidate biomarkers
of PC. To the best knowledge of the authors, this is the first study identifying guanidinoacetate, and
phenylacetylglycine as potential novel biomarkers in PC.

Keywords: prostate cancer; urine metabolomics; 1H-Nuclear Magnetic Resonance; metabolite biomarkers

1. Introduction

Prostate cancer is one of the most commonly cancers and the leading cause of cancer-
related deaths in men worldwide [1]. Serum prostate specific antigen (PSA) level and
digital rectal examination (DRE) constitute the major screening tests for prostate cancer
(PC) diagnosis, while the transrectal ultrasound-guided prostate biopsy provides the final
confirmation of cancer presence [2]. PSA level has been extensively used as a biomarker to
detect PC. Nevertheless, due to prostate physiology, PSA testing results in a large frequency
of false positives leading to numerous men each year undergoing unnecessary prostate
biopsy procedures [3–7]. Hence, a non-invasive, cost-effective, efficient, and reasonably
accurate test for early identification of PC is urgently needed.
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Compared with serum, urine is easier to obtain and handle, needs less sample prepara-
tion, and has higher amounts of metabolites and lower protein content [8–10]. Therefore, in
attempt to solve this diagnostic dilemma, many previous studies have focused on urinary
metabolomic profile, to identify the predictive biomarkers for PC [11–14]. However, to date,
no single urine biomarker/biomarker panel meets the requirements for highly sensitive,
and specific detection of PC. Therefore, biomarker discovery in relation to PC continues to
be an active area of research.

Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical approach
for both identification and quantification of analytes with superior advantages, such
as good reproducibility and simple sample processing. In the last decade, NMR has
been applied toward identifying metabolic alterations in PC that may provide clinically
useful biomarkers [15–19]. 1H-NMR spectroscopy followed by multivariate analysis is a
systems biological approach that has been used to identify essential changes in metabolism.
Therefore, metabolomics profiling offers a robust methodology for understanding the
biochemical process of diseases.

Our current study aimed to identify novel biomarkers in the urine and to investigate
the possible function and role of potential biomarkers in PC. Based on 1H-NMR, we
identified 20 metabolites from urine samples. All spectra were analyzed by multivariate
statistical analysis to extract the vital variables. Moreover, to evaluate the discrimination
ability of the variables for diagnosis of PC. Additionally, metabolomics analysis cannot
provide direct information about the active pathways related to the diseases. Furthermore,
the regulation of the reactions and metabolic programs still need to be addressed [20].
Figure 1 summarizes the study design and workflow.
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2. Materials and Methods

2.1. Clinical Samples Selection and Ethics Statement
Urine samples were collected from PC patients from January 2017 to December 2018

from Sir Run Run Shaw Hospital, HangZhou and Zhoupu Hospital, Shanghai, China.
Clinical diagnosis of individuals was performed according to serum PSA, DRE, biopsy
results/pathological results after operation and Gleason score. A total of 50 patients
with prostate cancer were included in this study. The control group consisted of 50 non-
cancerous men, who were without evidence of PC, based on PSA levels, negative findings
in imagological examination and DRE. Clinical and demographics characteristics of the
individuals are shown in Table 1.

50
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Table 1. Characteristics of the individuals.

Characteristics
Control Group (n = 50) PC Group (n = 50) Significance

Mean (SD) Group Size Mean (SD) Group Size p-Value

Age (years) 63.30 (9.61) 50 70.00 (8.98) 50 <0.0001
Prostate volume (mL) 26.24 (8.77) 24 39.77(19.00) 50 0.0169

PSA ( 10 ng/mL) 1.56 (0.89) 50 6.69 (1.96) 14
PSA (10.1–20 ng/mL) NA 0 14.01 (2.08) 14

PSA (> 20 ng/mL) NA 0 89.82 (86.28) 22
GS (pre) 6 NA NA NA 13

GS (pre) �7 NA NA NA 34
GS (post) 6 NA NA NA 6

GS (post) �7 NA NA NA 35
Treatment: 50

Radical operation 41
Seed implantation 5

Endocrine 2
Chemotherapy 1

TURP 1
GS = Gleason Score; GS (pre) = GS of biopsy; 41 patients have accepted radical operation and got the post-operation
GS (GS (post)); SD = standard deviation; prostate volume was calculated as volume: volume (mL) = (length ⇥ width
⇥ height) ⇥ ⇡/6. TURP = Transurethral resection of the prostate; NA = not applicable; PC = prostate cancer.

Patients recruitment and sampling procedures were performed in accordance with the
Declaration of Helsinki and applicable local regulatory requirements and laws. All patients
provided written informed consent. Ethical approvals were obtained from the local ethics
committees of the Sir Run Run Shaw Hospital affiliated to Zhejiang University (Ethical
review approval number: 20190725-290) and Shanghai University of Medicine & Health
Sciences (Ethical review approval number: HMMEP-2016-017).

2.2. Sample Preparation and 1H-NMR Based Metabolomics Analysis
Midstream urine samples of all PC patients and controls were taken in the morning

during standard clinical routine procedure. The samples were frozen within 1 h after
collection and stored at �80 �C. At the time of 1H-NMR analysis, urine samples were
thawed in an ice-water bath. Where not otherwise stated, chemicals were from Sigma-
Aldrich Trading Co., Ltd., Shanghai, China. Two hundred µL of phosphate buffered
saline (PBS) solution (0.1ml Na2HPO4 and 0.1ml NaH2PO4; 10% D2O and 0.03% TSP
(trimethylsilylpropionic acid-d4 sodium salt; pH 7.4) was added and the samples were
centrifuged at 13,000 rpm for 20 min. After this, 550 µL of the supernatants were transferred
to a 5-mm NMR tube for analysis. 1H-NMR spectral acquisition was performed using a
Bruker Avance III NMR spectrometer equipped with 600 MHz magnets Ultrashield Plus
(spectrometer frequency: 600.13 MHz; Bruker BioSpin Corporation, Billerica, MA. USA).
All 1H-NMR experiments were performed at 25 �C.

All spectra were phase and baseline corrected, and chemical shifts were adjusted with
reference to TSP signal using MestRenova 6.2 software (Mestrelab Research S.L., Santiago
de Compostela, Spain). The spectra were binned into 0.02 ppm buckets between 0.52 and
9.30 ppm, and the region between � 4.32 and 6.10 ppm, including the water (� 4.32 and
5.26 ppm), and urea signal (� 5.58 and 6.10 ppm) regions, was excluded from the analysis
to avoid interference arising from differences in water suppression and variability from the
urea signal.

2.3. Data Modelling and Statistical Analysis
Before data analysis, we checked the data integrity. All missing values, zeros, and nega-

tive values were replaced by the 1/5 of the minimum positive value of each variable [21,22].
In addition, after the replacement, we compared the two data sets: before replacement
and after replacement. We made sure that all the necessary information has been collected,
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and that there was no significant difference between the two data sets (Table S1) and sub-
groups (cancer group and control group) (Tables S2 and S3). The normalization of the
spectra was performed by R statistical package 4.0.2 (http://www.r-project.org) based on
geometric mean, and generalized log transformation was performed to make features more
comparable (Figure S1 Supplementary Materials; Figure 2).
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2.4. Identification of Relevant Metabolites
For identification of relevant metabolites, we used several statistical approaches

resulting in the definition of a subset of metabolites identified by at least two methods. The
Multivariate statistical analysis was carried out using R packages “MetaboAnalyst” [21–23],
”ropls” [24], ”mixOmics” [25]. Principal component analysis (PCA) as a non-supervised
statistical method, we used to uncover the outliers and the directions that best explain
the variance in the dataset. Partial Least Squares discriminant analysis (PLS-DA), and
Orthogonal Partial Least Squares discriminant analysis (OPLS-DA) were used to reduce the
number of metabolites in high-dimensional data to produce robust and easy-to-interpret
models, and to identify spectral features that drive group separation. Subsequently, based
on R, Wilcoxon rank sum test was performed to find the difference between the cancer
group and control group. The difference was considered significant at a Bonferroni-adjusted
p-value < 0.05.

The variable importance in projection (VIP), and corresponding loading/contribution
value in each model was used to identify the variables responsible for distinguishing.
Furthermore, a permutation test with 100 permutations was employed to validate the
performance of PLS-DA models and OPLS-DA models. For quality criterion we chose in
PCA model, R2X > 0.4; in PLS-DA or OPLS-DA, R2Y (goodness of fit parameter) and Q2

(predictive ability parameter) > 0.5 [26,27].

2.5. Acquisition of the Pathways and Biological Processes Corresponding to Metabolites
To explore the significance of a specific metabolite for prostate cancer, we used public

databases to identify associated pathways. We focused on the most prominent metabo-
lites defined by several criteria: (i) the metabolite was at least recommended in two
different models (PCA, PLS-DA, or OPLS-DA); (ii) Wilcoxon test adjusted p-value < 0.01;
(iii) VIP-values of the OPLS-DA >1.

Furthermore, the R package “MetaboAnalyst” [21–23] was performed analyze the
contribution of the metabolites in depth. To implement a knowledge-based network of
metabolite-metabolite interactions we used the Search Tool for Interactions of Chemicals
(STITCH) database [28]. We also performed a Metabolite Sets Enrichment Analysis (MSEA),
including pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and
Genomes (KEGG) and the Small Molecule Pathway Database (SMPDB) [29,30]. A hyper-
geometric test was used to evaluate whether a particular metabolite set is represented,
and the metabolite set contains at least more than 2 metabolites in the given compound
list. Additionally, one-tailed p-values were provided after adjusting for multiple testing. A
p-value < 0.05 was considered statistically significant.
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2.6. Statistics
All statistical analyses were performed using SPSS software (version 26; IBM Corp.,

Armonk, NY, USA) or R statistical package 4.0.2 (http://www.r-project.org). Univariate
analysis was performed using ANOVA, t-test, Wilcoxon test, hypergeometric test and
permutation test. Bonferroni was used to adjust p-values. The correlation analyses were
performed by Pearson’s test. Multivariate analyses were also performed using the PCA,
PLS-DA, and OPLS-DA model. Subsequently, we used binary regression and a linear
fitting model to do receiver operating characteristic (ROC) curve analysis to evaluate the
performance of the metabolite or metabolite panel for the prediction of PC. p-values < 0.05
or adjusted p-values < 0.05 were considered statistically significant.

3. Results

3.1. Metabolites in Urine Samples of PC
NMR offers the opportunity of quantifying metabolites directly from 1H-NMR metabo-

lite profiles through analyzing the chemical shift, coupling constant, and shapes of peaks
from NMR experiments, and to identify the metabolites based on existing public databases
and literature reports [31–36]. Typical 1H-NMR spectra were derived from urine samples
of the PC group and the Control group; interesting metabolites were identified (labeled as
digits from 1 to 30 in Figure 3).
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Figure 3. Representative 600 MHz 1H-NMR spectrum and assignment of identified metabolites (digits from 1 to 30) in
two representative urine samples. Signals were analyzed from � 0.52 to 9.30 ppm, excluding water and urea regions
(� 4.32–6.10 ppm). (A) Control group; (B) Cancer group; f1 (ppm) = chemical shift to TSP.

The region at 0.0–3.10 ppm shows aliphatic compounds including prominent signals
from organic acids and amino acids, such as L-alanine, citric acid, pyruvate, succinate,
and L-lactate; the region at 5.5–9.0 ppm shows aromatic compounds, such as hippurate
and also formate, deeply downshifted due to the adjacent carboxy group. Additionally,
moieties and chemical shifts of the 30 metabolites were summarized in Table S4. Finally,
after removal of metabolites with overlapping signals, we got 20 metabolites which were
further analyzed in this study (Table 2). For intensity quantification, the peak areas of these
20 metabolites were integrated using sodium trimethylsilyl propionate (TSP) as standard
for further analysis.

53



Diagnostics 2021, 11, 149 6 of 18

Table 2. Twenty identified metabolites.

Key Metabolites HMDB ID Moieties Chemical Shifts
a

VIP

1 L-lactate HMDB0000190 ↵CH, �CH3 1.33 (d,J = 6.6Hz),4.13 (q,J = 4.8Hz) 1.43
2 L-alanine HMDB0000161 �CH3 1.48 (d, J = 7.2Hz) 1.76
3 acetate HMDB0000042 CH3 1.92 (s) 1.45
5 succinate HMDB0000254 CH2 2.41 (s) 0.06
6 citrate HMDB0000094 half CH2, half CH2 2.54 (d,J = 16.2 Hz), 2.70 (d, J = 15.6 Hz) 0.42
7 dimethylglycine HMDB0000092 N-CH3, CH2 2.92 (s), 3.72 (s) 1.06
8 formate HMDB0000142 CH 8.46 (s) 0.99

11 dimethylamine HMDB0000087 CH3 2.73 (s) 0.82
12 methylguanidine HMDB0001522 CH3 2.85 (s) 0.17
13 trimethylamine HMDB0000906 CH3 2.88 (s) 0.89
14 creatinine HMDB0000562 CH3, CH2 3.04 (s), 4.06 (s) 0.45
15 taurine HMDB0000251 S-CH2, N-CH2 3.27 (t), 3.42 (t) 0.29
16 betaine HMDB0000043 N(CH3)3, CH2 3.27 (s), 3.90 (s) 0.09
17 guanidinoacetate HMDB0000128 CH2 3.80 (s) 1.94

18 hippurate HMDB0000714 CH2, CH, CH, CH 3.97 (d,J = 6Hz), 7.55 (t,J = 7.8Hz),
7.64 (t,J = 7.8Hz), 7.84 (d,J = 7.2Hz) 0.02

19 N-methylnicotinamide HMDB0003152 2-CH, 4-CH, 6-CH,
5-CH, CH3

9.29 (s), 8.97 (d,J = 6Hz), 8.91 (dt),
8.19 (m), 4.48 (s) 0.55

20 2-Hydroxyisobutyrate HMDB0000729 CH3 1.36 (s) 0.36
21 glycine HMDB0000123 CH2 3.57 (s) 1.36
22 fumaric acid HMDB0000134 CH 6.56 (s) 0.32
28 Phenylacetylglycine HMDB0000821 CH2, CH, CH 3.68 (s), 7.37 (m), 7.43 (m) 1.59

a Signal position in parts per million (ppm) in relation to TPS (set to 0 ppm).

3.2. Identification of Important Metabolites and the Metabolic Changes
PCA, PLS-DA, and OPLS-DA were performed to evaluate the metabolic pattern

changes in PC patients compared to non-cancerous controls. PCA could not distinguish
the cancer patients from the non-cancerous cases (Figure 4(A1)). The first two princi-
pal components (PC) explained 66.2% variables; however, no trends in differences were
detected (Figure 4(A2)). Based on the contribution value, we obtained the top seven metabo-
lites, including guanidinoacetate, betaine, phenylacetylglycine, taurine, dimethylglycine,
L-alanine, and L-lactate (Figure 4(A3)) (Table S3). The goodness of fit of the PCA model
was R2X = 0.607.

Key numbers are related to the metabolite numbering in Figure 1; the variable impor-
tance in the projection (VIP) values were obtained from the OPLS-DA model.

If PLS-DA was used as classification model, we found a trend to distinguish can-
cer from the control (Figure 4(B1)). In this model, the first two principal components
explained 55.6% of the variance (Figure 4(B2)). Based on the |loading values| > 0.2, we
found 8 significant metabolites: guanidinoacetate, L-alanine, phenylacetylglycine, L-lactate,
glycine, acetate, dimethylglycine, and formate (Figure 4(B3)) (Table S3). Furthermore, the
PLS-DA performance was assessed by the goodness of fit R2Y = 0.628 and quality assess-
ment statistic Q2Y = 0.447; the outcome indicated good class separation and a moderate
predictive ability.

Further improvement in discrimination of the sample groups was achieved by using
the OPLS-DA model (Figure 4(C1)). Based on the |loading values| > 0.2, OPLS-DA iden-
tified nine critical metabolites: guanidinoacetate, L-alanine, phenylacetylglycine, acetate,
l-lactate, glycine, dimethylglycine, formate, and trimethylamine (Figure 4(C3)) (Table S3).
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Figure 4. Metabolic pattern recognition analysis. Classifying PC from non-cancerous men based on the metabolomic
profiles in the urine; (A1) PCA based on the first two principal components; (A2) sample scatterplot displays the first two
components in each data set in PCA; (A3) contribution of each feature selected on the first component in PCA; (B1) PLS-DA
based on the first two components; (B2) sample scatterplot display the first two components in each data set in PLS-DA;
(B3) loading plot weights of each feature selected on the first component of PLS-DA; (C1) OPLS-DA based separation of
the groups; (C2) internal validation of the corresponding OPLS-DA model by permutation analysis (n = 100); fraction of
the variance of descriptor class response (Y) (R2Y) = 0.675 (Green bar), p-value < 0.01; fraction of the variance predicted
(cross-validated)(Q2) = 0.508 (Red bar), p-value < 0.01; (C3) loading plot weights of each feature selected from OPLS-DA;
The color in B3 and C3 indicates the class in which the variable has the maximum level of expression; control = blue;
cancer = orange.

As shown in Figure 4, we could not completely discriminate the two groups based on
PLS-DA and OPLS-DA scores plot. However, more samples were separated in OPLS-DA
in contrast to the PCA method. This OPLS-DA model showed a proper fitting of the data
(R2Y = 0.675, p-value < 0.01), and exhibit predictive power (Q2 = 0.508, p-value < 0.01)
(Figure 4(C2)).
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The variable importance in the projection (VIP) values of all peaks from OPLS-DA models
were taken for selection, and those variables with VIP > 1 [37] were considered as potential
biomarker candidates for group discrimination (Table 2). Accordingly, metabolomics revealed
prominent alterations in seven metabolites: guanidinoacetate, l-alanine, phenylacetylglycine,
acetate, l-lactate, glycine, and dimethylglycine (Table S3). In summary, the 1H-NMR spectra
potentially discriminate the urine samples between PC patients and controls.

For direct comparison of the levels of the 20 metabolites, an integrated strategy
combining Wilcoxon analysis was used to identify critical metabolites between the PC
and the control group. We compared the urinary metabolomic profiles of the two groups,
based on the Bonferroni method of p-value adjustment. The analysis revealed a total of
eight significant metabolites (adjusted p-value < 0.05): guanidinoacetate, l-lactate, l-alanine,
phenylacetylglycine, glycine, acetate, formate, and dimethylglycine (Figure 5A–I).
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3.3. Acquisition of the Most Prominent Metabolites, Correlation Analysis, and ROC Analysis
Regarding the criterion of the most prominent metabolites: (i) the metabolite was at least

recommended in two different models, from PCA, PLS-DA and OPLS-DA (Figure 6 (A1))
(Table S5); (ii) Wilcoxon test adjusted ps < 0.01 (Figure 6 (A2); Table S5); (iii) the VIP-values
of the OPLS-DA >1 (Figure 6 (A2); Table S5). Herein, after the overlapping progression, we
focused on the five most prominent metabolites: guanidinoacetate, phenylacetylglycine,
glycine, L-lactate and L-alanine (Figure 6 (A3); Table S5). Interestingly, based on the
Human Metabolome Database (HMDB) [37], guanidinoacetate and phenylacetylglycine
have not been detected in prostate tissue, so far (Table S4). We found a strong positive
correlation between guanidinoacetate and phenylacetylglycine (Pearson’s correlation coef-
ficient; r = 0.93, p-value < 0.001), and moderate positive correlations between l-alanine and
l-lactate (r = 0.65, p-value < 0.001), guanidinoacetate and glycine (r = 0.67, p-value<0.01),
and phenylacetylglycine and glycine (r = 0.64, p-value < 0.001) (Figure 6B).
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fitted line are displayed, (iii) On the top of the diagonal: the value of the correlation plus the significance level as stars; each
significance level is associated to a symbol: p-values (0, 0.001, 0.01, 0.05, 1) relate to symbols (“***”, “***”, “**”, “*”, “ ”); the
number in the charts is the Pearson’s correlation coefficient (r); (iv) Numbers at the sides of the charts indicate the range of
variable values are depicted as Log(Spectral area). (C–F) Representative ROC curves showing the diagnostic accuracy (AUC)
based on guanidinoacetate (C), phenylacetylglycine (D), glycine (E), and in (F) the combination of the three metabolites:
guanidinoacetate (Gua), phenylacetylglycine (Phe), and glycine (Gly).
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ROC analysis of significant metabolites in multiple t-test revealed for guanidinoacetate
an AUC of 0.77 (sensitivity = 60%, specificity = 88%; Figure 6C), phenylacetylglycine an
AUC of 0.73 (sensitivity = 74%, specificity = 60%; Figure 6D), and glycine an AUC of 0.70
(sensitivity = 72%, specificity = 64%; Figure 6E). The AUCs of l-alanine and l-lactate were
lower than 0.70, respectively (data not shown).

Based on a linear fitting model, various combinations were evaluated for their ability
to predict PC. The combination of guanidinoacetate, phenylacetylglycine and glycine
identified PC with an AUC = 0.77, sensitivity = 80%, and specificity = 64%. However,
while improving the sensitivity from 60% to 80% (p-value = 0.03), this combination did
not significantly improve the diagnostic probability of PC (Figure 6F). The combination
of guanidinoacetate, phenylacetylglycine, glycine, l-alanine, and l-lactate showed less
performance (AUC = 0.65, sensitivity = 52%, specificity = 80%; data not shown), as did the
combinations of l-alanine and l-lactate and others (AUCs < 0.7 with low specificity and
sensitivity; data not shown).

3.4. Subgroup Analysis
To explore the property of the metabolites to separate between different PC stages, we

compared the urine levels of the five metabolites L-lactate, L-alanine, glycine, guanidinoac-
etate, and phenylacetylglycine in different subgroups of PC. Three metabolites: glycine,
guanidinoacetate, and phenylacetylglycine showed significant differences between low
GS  6 and high GS � 7 when using the biopsy GS (GS (pre)) or final post-surgery GS
(GS (post)) for stratification (Figures S3 and S4, ANOVA with Bonferroni-adjusted p-values,
p < 0.05).

In addition, we found significant differences in the urine levels of glycine, guanidi-
noacetate and phenylacetylglycine between PSA-groups (low PSA: 10 ng/mL and high
PSA: >20 ng/mL), while l-lactate and l-alanine were not different (Figure S5). Comparison
of TNM or risk groups did not reveal significant differences (data not shown).

3.5. Analysis of the Metabolite Interaction Networks and Corresponding Pathways
The network explorer module is a comprehensive tool to describe potential impacts,

and to visualize interactions between metabolites. Network analysis highlights potential
functional relationships between a broad set of annotated metabolites. Based on the degree
of interaction cut-off value >2, we found another 16 annotated metabolites potentially inter-
acted with the five metabolites defined above, and we also found 53 different interactions
among them (Figure 7A).

According to the p-values from the pathway enrichment analysis, the pathways contain-
ing at least two components of the five prominent metabolites are listed in Figure 7B. Based on
KEGG database analysis, “Glycine, serine, and threonine metabolism” and ”Aminoacyl-tRNA
biosynthesis” were the associated pathways with p-value < 0.05. Figure 7C describes the
five associated pathways based on SMPDB, such as “Glycine and Serine Metabolism” and
“Arginine and Proline Metabolism”. Figure 7D Detailed view of the “Glycine, serine, and
threonine metabolism” as the most significant pathway.
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Figure 7. Interaction network analysis and pathways associated with the five identified metabolites. (A) Interaction map of
the annotated metabolites; nodes are color coded for the degree of the metabolite interactions; (B) pathways associated with
the most prominent metabolites based on KEGG analysis; (C) pathways associated with the most prominent metabolites
based on SMPDB analysis; (D) detailed view of the “Glycine, serine and threonine metabolism” (KEGG map00260) as
the most significant pathway according to the KEGG analysis; the numbers in the boxes represent the IDs of annotated
metabolites in KEGG database; prominent metabolites as a result of the current analysis are marked in red. Key signaling
pathways with p-values < 0.05 were marked in boxes with red font in (B,C).

4. Discussion

4.1. The Location and Expression of Metabolites in PC
Notably, urine is a challenging bio-specimen used for biomarker discovery due to its

compositional variability [38,39]. Multiple factors can affect the composition and quality of
urine liquid biopsy, such as disease state, prescription taken by individuals, diet, gender,
and collection time [38,39]. In the present study, multivariate statistical models were used
to identify reliable candidate biomarkers of PC. Eventually, we found that guanidinoacetate,
phenylacetylglycine, glycine, l-lactate, and l-alanine were the most prominent metabolites.

Lima and colleagues reported that lactate and alanine were frequently altered in PC tis-
sues [40]. Our finding of glycine upregulation is supported by Giskeodegard GF et al. [41],
who studied the metabolome in prostate cancer tissue from a Spanish cohort by high reso-
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lution magic angle spinning magnetic resonance spectroscopy (HR-MAS). While glycine,
L-lactate, and L-alanine have already been shown in literature, to the best knowledge of the
authors, the present study for the first time describes guanidinoacetate and phenylacetyl-
glycine as significant metabolites in PC [42].

More evidence for PC-specific metabolic alterations come from metabolomics studies
in serum. Kumar et al. found by 1H-NMR that alanine, pyruvate, glycine, and sarco-
sine were significantly altered in serum of an Indian cohort of PC patients [43]. These
results were supported by Miyagi et al., using high performance liquid chromatography-
electrospray ionization mass spectrometry (HPLC-ESE-MS), showing a significant change
of alanine, glutamine, valine, tryptophan, arginine and isoleucine, ornithine, and lysine
levels associated with PC in a Japanese cohort [44]. However, while Kumar et al. found
an upregulation of alanine [43], the alanine levels were downregulated in the study by
Miyagi et al. [43]. The discrepancy of two studies showed that the different methods
potentially may cause different findings [45].

Extensive literature survey revealed only few studies of urine metabolite levels in PC
(Table 3). Only one study reported changes for two of the metabolites identified in our
study: glycine and dimethylglycine. However, opposite to our results, those metabolites
were downregulated in the study of Pérez-Rambla and colleagues [46]. No urine level data
are available for the other metabolites that turned up significantly altered in our PC cohort.

Table 3. Metabolites studied in previous studies of Prostate cancer (PC).

Metabolites
Samples (Methods) Reference Ethnos

Up-Regulated Down-Regulated

BCAA, glutamate;
pseudouridine

Glycine @, dimethylglycine @,
fumarate,

4-imidazole-acetate

Urine
(1H-NMR) Pérez-Rambla et al. [46] Spanish

glycocholic acid,
hippurate,

chenodeoxycholic acid

5-Hydroxy-l-tryptophan,
taurocholic acid

Urine
(FPLC/MS) Liang, et al. [47] Chinese

(Northern of China)

citrate,
Myo-inositol, spermine

EPS
(1H-NMR) Serkova et al. [48] American

sarcosine Urine/PT/Plasma
(GC-MS) Sreekumr et al. [49] American

propenoic acid,
dihyroxybutanoic acid

xylonic acid

pyrimidine, creatinine,
purine, glucopyranoside,

xylopyranoseand,
ribofuranoside

Urine
(GC-MS) Wu et al. [50] Chinese

(Southern of China)

@ opposite to the present study; EPS: Human expressed prostatic secretions; BCCA: Branched-chain amino acids; PT: Prostate Tissue;
GC-MS: Gas chromatography/mass spectrometry; FPLC/MS: Faster ultrahigh performance liquid chromatography-mass spectrometry;
1H-NMRS: Proton nuclear magnetic resonance spectroscopy.

The interpretation of these differences is difficult. Different compositions of the PC
cohorts in respect to tumor stage may be one reason, as the majority of our samples were
from patients with metastasis and high-grade tumors. In addition, the control cohort in the
study of Pérez-Rambla et al., were BPH patients, which could possibly explain the different
findings [46]. Only 36% (18/50) of our control patients were diagnosed with BPH and the
expression levels of glycine and dimethylglycine were not significantly different between
BPH and non-BPH patients (Figure S2). Furthermore, the studies listed in Table 3, were
done in different populations. Caucasian population samples were from western countries,
which not only have a different genetic background but also represent different lifestyle
and diet [51]. The study populations of two other studies were from Chinese patients, as in
our study, but used different methods. Moreover, the lifestyle and diet of the patients from
northern and southern China may not be comparable to the urban population we studied.
Therefore, the results might reflect a research method, ethnic peculiarity and/or lifestyle or
diet impact [45,51].

4.2. Potential Biomarkers of PC
Over the past 30 years, NMR and MRSI (magnetic resonance spectroscopic imag-

ing) as a non-invasive test, are continuous performed to identify predictive/prognostic
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metabolic marker of PC [52]. Furthermore, considerable efforts are ongoing to develop
high precision, reliable, safe and non-invasive diagnosis strategies. Kumar proposed a
great question: “Metabolomics-Derived Prostate Cancer Biomarkers: Fact or Fiction?” In
fact, their findings confirmed that NMR-based serum metabolomics analysis is a promising
method for probing PC [43].

Using serum metabolomics, Kumar et al. found that L-alanine, pyruvate, glycine,
and sarcosine were able to accurately differentiate 90.2% of cancer cases from healthy
persons, with high sensitivity (84.4%) and specificity (92.9%) [43]. Glycine alone showed
an AUC of 0.817 [43]. In our 1H-NMR study, we found, that glycine in urine was up-
regulated in PC, and ROC analysis revealed for glycine an AUC of 0.70 (sensitivity = 72%,
specificity = 64%), which is comparable to the performance in serum. Furthermore, ROC
analysis was also performed to evaluate the various combination; however, the best
combination of guanidinoacetate, phenylacetylglycine, and glycine did not significantly
improve the discriminant ability (AUC of 0.77, sensitivity = 80%, and specificity = 64%),
but significantly improved the sensitivity. In essence, the ROC findings revealed that
guanidinoacetate, phenylacetylglycine, and glycine were potential biomarkers.

4.3. Metabolite Interactions and Pathways Potentially Involved in PC
A better understanding of relative correlation and interaction of the potential biomark-

ers in urine could provide insights into the pathological progression of the disorder. Inter-
estingly, we observed a strong positive correlation between guanidinoacetate and pheny-
lacetylglycine (r = 0.93, p-value < 0.001), while only moderate positive correlation between
guanidinoacetate and glycine, phenylacetylglycine, and glycine. Furthermore, the compre-
hensive network showed that the direct and indirect interactions between the prominent
metabolites (Figure 7A). Thus, the above results probably indicated that these metabolites
are conditioning each other through direct or intermediates interaction.

Glycine is a nonessential amino acid with a central role in protein metabolism and also
functions as inhibitory neurotransmitter in the central nervous system [53,54]. Additionally,
glycine is involved in the body’s production of DNA and in the energy balance [55–57]. No-
tably, its role in the biosynthesis of purines and in mitochondrial oxidative phosphorylation
has been recognized as driver of cancer initiation and proliferation [58,59]. The elevated
glycine urine levels in PC support this view and could explain the higher guanidinoacetate
levels measured. Guanidinoacetate is a direct metabolite of glycine formed by the glycine
aminotransferase. Interestingly, guanidinoacetate is further methylated by the guanidinoac-
etate N-methyltransferase to creatine, which can be converted to creatinine, which also was
elevated in our PC patients as a trend [60]. In addition, Kim et al. found an association of
aberrant genes of the “Glycine, serine, and threonine metabolism” pathway with metastasis
in PC [61]. Our results also support the notion of altered “Glycine, serine, and threonine
metabolism” pathway in PC, and that two of the related metabolites, namely glycine and
guanidinoacetate, are potential biomarkers for differentiation of PC from healthy controls.

Previous research described that phenylacetylglycine is working as an acyl glycine [45].
As we known, acyl glycines as classical minor metabolites are one kinds of fatty
acids [45,62,63]. Together with phenylacetylglutamine and phenylalanine, phenylacetyl-
glycine is a representative of the phenylalanine/tyrosine metabolism (KEGG: map00360)
and showed significant association with T stage in gastric cancer [42,64]. Our study for
the first time shows elevated levels of phenylacetylglycine in the urine of prostate can-
cer patients and thereby further supports the importance of the phenylalanine/tyrosine
metabolic pathway in cancer.

4.4. The Major Findings of the Present Study
In summary, the present study identified five prominent metabolites: guanidinoacetate,

phenylacetylglycine, glycine, l-lactate, and l-alanine. NMR-derived urinary metabolomics
seem sufficiently robust to detect PC. In comparison with previous studies, the most
interesting findings were
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I. The metabolites guanidinoacetate, phenylacetylglycine, and glycine were signifi-
cantly upregulated in urine samples of PC. On the contrary, l-alanine and l-lactate
were significantly downregulated. Furthermore, the majority of them were posi-
tively correlated. Especially strong correlations were seen between guanidinoac-
etate, phenylacetylglycine and glycine.

II. Guanidinoacetate, phenylacetylglycine, and glycine urine levels were significantly
different between PC patients stratified for low GS (6) and high GS (�7).

III. Using the network module, we comprehensively described the potential inter-
action between the most prominent metabolites. ROC analyses of prominent
metabolites revealed a reasonably high diagnostic accuracy of guanidinoacetate,
phenylacetylglycine, and glycine.

IV. Pathway enrichment analysis indicated “Glycine, Serine, and Threonine metabolism”
as the most importantly altered pathway. Those results provide evidence for the
metabolites, and associated pathway potentially playing an essential role in PC.

V. Here, we reported for the first time that guanidinoacetate, and phenylacetylglycine
could be promising novel urine biomarkers for PC.

The limitations of our study are (1) the cohort size is small, and we lack an external
validation cohort; therefore, our results are at risk of overfitting; (2) as the aim of this study
was to evaluate the performance of urine 1H-NMR metabolomics in an Asian cohort, we did
not include Caucasian patients for comparison; (3) due to the small cohort we were not able to
analyze PC subgroups, e.g., PSA/Gleason Score/Metastases; and (4) In addition, we focused
on the metabolites in urine. Therefore, we cannot estimate the differences of discrimination
ability between the blood sample, urine sample and tissue sample at the same time.

Further research will have to validate the urine metabolite biomarker panel in a larger
cohort. Comparison to a matched Caucasian cohort could provide interesting insights into
ethnical differences, which would have a severe impact on the clinical implementation of
urine metabolomics biomarker in different populations.

5. Conclusions

Based on the metabolic profiling of urine, the present study showed that PC could be
distinguished from non-cancerous individuals by guanidinoacetate, phenylacetylglycine,
and glycine. The findings may add to our understanding of the basic mechanisms and
progression of PC and indicated that these metabolites are potential candidate markers
for PC. Moreover, the present study supported the view that urine metabolomics-derived
biomarkers for PC can be a new option for non-invasive PC diagnostics.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075
-4418/11/2/149/s1, Figure S1: Data normalization, density and intensity before and after data
normalization; Figure S2: glycine and dimethylglycine levels. Comparion between normal cases, BPH
cases and cancer patients; difference are significant between normal and cancers, but not between BPH
and normal cases; ANOVA, Tukey’s multiple comparison test, ** p < 0.01; **** p < 0.0001; Figure S3:
subgroup analysis based on biopsy GS (GS (pre)); Figure S4: subgroup analysis based on radical
prostatectomy GS (GS (post)); Figure S5: subgroup analysis based on PSA of PCa; stratification
following the guidelines of the EAU [65]: PSA  10 ng/mL (n = 14), PSA 10.1–20 ng/mL (n = 14),
PSA > 20 ng/mL (n =22); Figure S3 and Figure S5: data presented as box plots with scatter plot,
line in box indicates mean, whiskers indicate 95% CI; Table S1: data cleansing of the combined data
sets; Table S2: data cleansing of the cancer data set; Table S3: data cleansing of the control data set;
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AUC Area under the receiver operating characteristic (ROC) curve
CI Confidence Interval
DRE Digital rectal examination
FC Fold change
GAA Guanidinoacetate
GC/MS Gas chromatography-mass spectrometry
GS Gleason score
HMDB Human Metabolome Database
NMR Nuclear magnetic resonance
OPLS-DA Orthogonal Partial Least Squares discriminant analysis
PBS Phosphate buffer solution
PC Prostate cancer
PCA Principal component analysis
PLS-DA Partial Least Squares discriminant analysis
PSA Prostate specific antigen
ROC Receiver operating characteristic curve
STITCH Search tool for interactions of chemicals
TSP Trimethylsilylpropionic acid-d4 sodium salt
TURP Transurethral resection of the prostate
VIP Variable importance in projection
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3. Summary 

3.1 Introduction 

Prostate cancer (PC) is one of the most common male cancers worldwide. Until now, 
there is no consensus about using urinary metabolomic profiling as novel biomarkers 
to identify PC. Nuclear magnetic resonance (NMR) spectroscopy is a powerful 
analytical approach for both identification and quantification of analytes with superior 
advantages, such as good reproducibility and simple sample processing. In the last 
decade, NMR has been applied toward identifying metabolic alterations in PC that may 
provide clinically useful biomarkers (Smolinska et al., 2012; Srivastava et al., 2010; 
Zhang et al., 2012; Bertini et al., 2012; Yang et al., 2017). �+�105 spectroscopy 
followed by multivariate analysis is a systems biological approach that has been used 
to identify essential changes in metabolism. Therefore, metabolomics profiling offers a 
robust methodology for understanding the biochemical process of diseases.  

Our current study aimed to identify novel biomarkers in the urine and to investigate the 
possible function and role of potential biomarkers in PC. Based on �+�105, we 
identified 20 metabolites from urine samples. All spectra were analyzed by multivariate 
statistical analysis to extract the vital variables. Moreover, to evaluate the 
discrimination ability of the variables for diagnosis of PC. Additionally, metabolomics 
analysis cannot provide direct information about the active pathways related to the 
diseases. Furthermore, the regulation of the reactions and metabolic programs still 
need to be addressed (Cai et al., 2020).  

3.2 0DWHULDO�DQG�PHWKRGV 

0LGVWUHDP� XULQH� VDPSOHV� RI� DOO� 3&� SDWLHQWV� �Q ���� DQG� QRQ�FDQFHURXV� LQGLYLGXDOV�
�Q ���� ZHUH� WDNHQ� LQ� WKH� PRUQLQJ� GXULQJ� VWDQGDUG� FOLQLFDO� URXWLQH� SURFHGXUH�� 7KH�
VDPSOHV�ZHUH�IUR]HQ�ZLWKLQ���K�DIWHU�FROOHFWLRQ�DQG�VWRUHG�DW�í����&��$W�WKH�WLPH�RI��+�
105� DQDO\VLV�� XULQH� VDPSOHV� ZHUH� WKDZHG� LQ� DQ� LFH�ZDWHU� EDWK�� $OO� �+�105�
H[SHULPHQWV�ZHUH�SHUIRUPHG�DW�����&��$OO�VSHFWUD�ZHUH�SKDVH�DQG�EDVHOLQH�FRUUHFWHG��
DQG�FKHPLFDO�VKLIWV�ZHUH�DGMXVWHG�ZLWK�UHIHUHQFH�WR�763�VLJQDO�XVLQJ�0HVW5HQRYD�����
VRIWZDUH��0HVWUHODE�5HVHDUFK�6�/���6DQWLDJR�GH�&RPSRVWHOD��6SDLQ��� 

%HIRUH� GDWD� DQDO\VLV�� ZH� FKHFNHG� WKH� GDWD� LQWHJULW\��$OO�PLVVLQJ� YDOXHV�� ]HURV� DQG�
QHJDWLYH� YDOXHV� ZHUH� UHSODFHG� E\� WKH� ���� RI� WKH� PLQLPXP� SRVLWLYH� YDOXH� RI� HDFK�
YDULDEOH��&KRQJ�HW�DO���������;LD�HW�DO����������,Q�DGGLWLRQ��DIWHU�WKH�UHSODFHPHQW��ZH�
FRPSDUHG�WKH�WZR�GDWD�VHWV��EHIRUH�UHSODFHPHQW�DQG�DIWHU�UHSODFHPHQW��:H�PDGH�VXUH�
WKDW�DOO�WKH�QHFHVVDU\�LQIRUPDWLRQ�KDG�EHHQ�FROOHFWHG��DQG�WKDW�WKHUH�ZDV�QR�VLJQLILFDQW�
GLIIHUHQFH�EHWZHHQ�WKH�WZR�GDWD�VHWV�DQG�VXEJURXSV�� 

)RU� LGHQWLILFDWLRQ� RI� UHOHYDQW� PHWDEROLWHV�� ZH� XVHG� VHYHUDO� VWDWLVWLFDO� DSSURDFKHV�
UHVXOWLQJ�LQ�WKH�GHILQLWLRQ�RI�D�VXEVHW�RI�PHWDEROLWHV�LGHQWLILHG�E\�DW�OHDVW�WZR�PHWKRGV��
7KH�0XOWLYDULDWH�VWDWLVWLFDO�DQDO\VLV�ZDV�FDUULHG�RXW�XVLQJ�5�SDFNDJHV�³0HWDER$QDO\VW´�
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�&KRQJ� HW� DO��� ������ ;LD� HW� DO��� ������ 3DQJ� HW� DO��� ������� ´URSOV´� �7KHYHQRW� HW� DO���
������´PL[2PLFV´��5RKDUW�HW�DO���������� 

7R�H[SORUH�WKH�VLJQLILFDQFH�RI�D�VSHFLILF�PHWDEROLWH�IRU�SURVWDWH�FDQFHU��ZH�XVHG�SXEOLF�
GDWDEDVHV� WR� LGHQWLI\� DVVRFLDWHG� SDWKZD\V�� :H� IRFXVHG� RQ� WKH� PRVW� SURPLQHQW�
PHWDEROLWHV�GHILQHG�E\�VHYHUDO�FULWHULD���L��WKH�PHWDEROLWH�ZDV�DW�OHDVW�UHFRPPHQGHG�LQ�
WZR�GLIIHUHQW�PRGHOV��3&$��3/6�'$�RU�23/6�'$����LL��:LOFR[RQ�WHVW�DGM��S�YDOXH���������
�LLL��9,3�YDOXHV�RI�WKH�23/6�'$�!�� 

$OO�VWDWLVWLFDO�DQDO\VHV�ZHUH�SHUIRUPHG�XVLQJ�6366�VRIWZDUH��YHUVLRQ�����,%0�&RUS���
86$��RU�5�VWDWLVWLFDO�SDFNDJH��������KWWS���ZZZ�U�SURMHFW�RUJ���8QLYDULDWH�DQDO\VLV�ZDV�
SHUIRUPHG�XVLQJ�$129$��W�WHVW��:LOFR[RQ�WHVW��K\SHUJHRPHWULF�WHVW�DQG�SHUPXWDWLRQ�
WHVW��%RQIHUURQL�ZDV�XVHG�WR�DGMXVW�S�YDOXHV��7KH�FRUUHODWLRQ�DQDO\VHV�ZHUH�SHUIRUPHG�
E\�3HDUVRQ¶V�WHVW��0XOWLYDULDWH�DQDO\VHV�ZHUH�DOVR�SHUIRUPHG�XVLQJ�WKH�3&$��3/6�'$�
DQG�23/6�'$�PRGHO��6XEVHTXHQWO\��ZH�XVHG�ELQDU\� UHJUHVVLRQ� DQG� D� OLQHDU� ILWWLQJ�
PRGHO� WR�GR� UHFHLYHU� RSHUDWLQJ� FKDUDFWHULVWLF� �52&��FXUYH�DQDO\VLV� WR�HYDOXDWH� WKH�
SHUIRUPDQFH�RI�WKH�PHWDEROLWH�RU�PHWDEROLWH�SDQHO�IRU�WKH�SUHGLFWLRQ�RI�3&��3�YDOXHV���
�����RU�DGM�S�YDOXHV��������ZHUH�FRQVLGHUHG�VWDWLVWLFDOO\�VLJQLILFDQW� 

����5HVXOWV 

������,GHQWLILFDWLRQ�RI�LPSRUWDQW�PHWDEROLWHV�DQG�WKH�PHWDEROLF�FKDQJHV 

Based on 1H nuclear magnetic resonance (�+�105) analysis, 20 metabolites were 
identified�� )RU� GLUHFW� FRPSDULVRQ� RI� WKH� OHYHOV� RI� WKH� ���PHWDEROLWHV�� DQ� LQWHJUDWHG�
VWUDWHJ\�FRPELQLQJ�:LOFR[RQ�DQDO\VLV�ZDV�XVHG�WR�LGHQWLI\�FULWLFDO�PHWDEROLWHV�EHWZHHQ�
WKH�3&�DQG�WKH�FRQWURO�JURXS��:H�FRPSDUHG�WKH�XLQDU\�PHWDERORPLF�SURILOHV�RI�WKH�WZR�
JURXSV��EDVHG�RQ�WKH�%RQIHUURQL�PHWKRG�RI�S�YDOXH�DGMXVWPHQW��7KH�DQDO\VLV�UHYHDOHG�
D�WRWDO�RI���VLJQLILFDQW�PHWDEROLWHV��DGM�S�YDOXH��������JXDQLGLQRDFHWDWH��/�ODFWDWH��/�
DODQLQH��SKHQ\ODFHW\OJO\FLQH��JO\FLQH��DFHWDWH��IRUPDWH��DQG�GLPHWK\OJO\FLQH� 

������$FTXLVLWLRQ�RI�WKH�PRVW�SURPLQHQW�PHWDEROLWHV��&RUUHODWLRQ�DQDO\VLV�
DQG�52&�DQDO\VLV 

$IWHU�WKH�RYHUODSSLQJ�SURJUHVVLRQ��ZH�IRFXVHG�RQ�WKH�ILYH�PRVW�SURPLQHQW�PHWDEROLWHV��
JXDQLGLQRDFHWDWH��SKHQ\ODFHW\OJO\FLQH��JO\FLQH��/�ODFWDWH�DQG�/�DODQLQH��:H� IRXQG�D�
VWURQJ� SRVLWLYH� FRUUHODWLRQ� EHWZHHQ� JXDQLGLQRDFHWDWH� DQG� SKHQ\ODFHW\OJO\FLQH�
�3HDUVRQ¶V� FRUUHODWLRQ� FRHIILFLHQW�� U ������ S�YDOXH��������� DQG� PRGHUDWH� SRVLWLYH�
FRUUHODWLRQV� EHWZHHQ� /�DODQLQH� DQG� /�ODFWDWH� �U ������ S�YDOXH���������
JXDQLGLQRDFHWDWH� DQG� JO\FLQH� �U ������ S�YDOXH�������� DQG� SKHQ\ODFHW\OJO\FLQH� DQG�
JO\FLQH��U ������S�YDOXH�������� 

52&�DQDO\VLV�RI�VLJQLILFDQW�PHWDEROLWHV�LQ�PXOWLSOH�W�WHVW�UHYHDOHG�IRU�JXDQLGLQRDFHWDWH�
DQ�$8&�RI�������VHQVLWLYLW\� ������VSHFLILFLW\� �������SKHQ\ODFHW\OJO\FLQH�DQ�$8&�RI�
������VHQVLWLYLW\� ������VSHFLILFLW\� �������DQG�JO\FLQH�DQ�$8&�RI�������VHQVLWLYLW\� �
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�����VSHFLILFLW\� �������7KH�$8&V�RI�/�DODQLQH�DQG�/�ODFWDWH�ZHUH�ORZHU�WKDQ�������
UHVSHFWLYHO\� 

%DVHG�RQ�D�OLQHDU�ILWWLQJ�PRGHO��YDULRXV�FRPELQDWLRQV�ZHUH�HYDOXDWHG�IRU�WKHLU�DELOLW\�WR�
SUHGLFW� 3&�� 7KH� FRPELQDWLRQ� RI� JXDQLGLQRDFHWDWH�� SKHQ\ODFHW\OJO\FLQH� DQG� JO\FLQH�
LGHQWLILHG�3&�ZLWK�DQ�$8& ������VHQVLWLYLW\� ������VSHFLILFLW\� ������+RZHYHU��ZKLOH�
LPSURYLQJ� WKH�VHQVLWLYLW\� IURP�����WR����� �S�YDOXH ������� WKLV�FRPELQDWLRQ�GLG�QRW�
VLJQLILFDQWO\� LPSURYH� WKH� GLDJQRVWLF� SUREDEOLW\� RI� 3&�� 7KH� FRPELQDWLRQ� RI�
JXDQLGLQRDFHWDWH��SKHQ\ODFHW\OJO\FLQH��JO\FLQH��/�DODQLQH�DQG�/�ODFWDWH�VKRZHG� OHVV�
SHUIRUPDQFH��$8& ������VHQVLWLYLW\� ������VSHFLILFLW\� �������DV�GLG�WKH�FRPELQDWLRQV�
RI�/�DODQLQH�DQG�/�ODFWDWH�DQG�RWKHUV��$8&V�������ZLWK�ORZ�VSHFLILFLW\�DQG�VHQVLWLYLW\�� 

3.3.3 Subgroup analysis 

7R�H[SORUH�WKH�SURSHUW\�RI�WKH�PHWDEROLWHV�WR�VHSDUDWH�EHWZHHQ�GLIIHUHQW�3&�VWDJHV��
ZH� FRPSDUHG� WKH� XULQH� OHYHOV� RI� WKH� ILYH� PHWDEROLWHV� /�ODFWDWH�� /�DODQLQH�� JO\FLQH��
JXDQLGLQRDFHWDWH� DQG� SKHQ\ODFHW\OJO\FLQH� LQ� GLIIHUHQW� VXEJURXSV� RI� 3&�� 7KUHH�
PHWDEROLWHV�� JO\FLQH�� JXDQLGLQRDFHWDWH� DQG� SKHQ\ODFHW\OJO\FLQH� VKRZHG� VLJQLILFDQW�
GLIIHUHQFHV� EHWZHHQ� ORZ� *6�İ� �� DQG� KLJK� *6�ı� �� ZKHQ� XVLQJ� WKH� ELRSV\� *6�
�*6�SUH���RU�ILQDO�SRVW�VXUJHU\�*6��*6�SRVW���IRU�VWUDWLILFDWLRQ��$129$�ZLWK�%RQIHUURQL�
DGMXVWHG�S�YDOXHV��S���������� 

,Q� DGGLWLRQ�� ZH� IRXQG� VLJQLILFDQW� GLIIHUHQFHV� LQ� WKH� XULQH� OHYHOV� RI� JO\FLQH��
JXDQLGLQRDFHWDWH�DQG�SKHQ\ODFHW\OJO\FLQH�EHWZHHQ�36$�JURXSV��ORZ�36$�İ���QJ�PO�
DQG�KLJK�36$!���QJ�PO���ZKLOH�/�ODFWDWH�DQG�/�DODQLQH�ZHUH�QRW�GLIIHUHQW��&RPSDULVRQ�
RI�710�RU�ULVN�JURXSV�GLG�QRW�UHYHDO�VLJQLILFDQW�GLIIHUHQFHV� 

������$QDO\VLV�RI�WKH�PHWDEROLWH�LQWHUDFWLRQ�QHWZRUNV�DQG�FRUUHVSRQGLQJ�
SDWKZD\V 

%DVHG�RQ�WKH�GHJUHH�RI� LQWHUDFWLRQ�FXW�RII�YDOXH!���ZH�IRXQG�DQRWKHU����DQQRWDWHG�
PHWDEROLWHV�SRWHQWLDOO\�LQWHUDFWHG�ZLWK�WKH�ILYH�PHWDEROLWHV�GHILQHG�DERYH��$QG�ZH�DOVR�
IRXQG� ��� GLIIHUHQW� LQWHUDFWLRQV� DPRQJ� WKHP�� Based on KEGG database analysis, 
³*O\FLQH��VHULQH��DQG�WKUHRQLQHPHWDEROLVP´�DQG�´$PLQRDF\O-W51$�ELRV\QWKHVLV´�ZHUH�
the associated pathways with p-value < 0.05. 

����'LVFXVVLRQ 

7KH� SUHVHQW� VWXG\� LGHQWL¿HG� ILYH� SURPLQHQW� PHWDEROLWHV�� JXDQLGLQRDFHWDWH��
SKHQ\ODFHW\OJO\FLQH�� JO\FLQH�� /�ODFWDWH� DQG� /�DODQLQH�� 105�GHULYHG� XULQDU\�
PHWDERORPLFV� VHHP� VXIILFLHQWO\� UREXVW� WR� GHWHFW� 3&�� ,Q� FRPSDULVRQ� ZLWK� SUHYLRXV�
VWXGLHV��WKH�PRVW�LQWHUHVWLQJ�¿QGLQJV�ZHUH� 

I. 7KH� PHWDEROLWHV� JXDQLGLQRDFHWDWH�� SKHQ\ODFHW\OJO\FLQH� DQG� JO\FLQH� ZHUH�
VLJQLILFDQWO\�XSUHJXODWHG�LQ�XULQH�VDPSOHV�RI�3&��2Q�WKH�FRQWUDU\��/�DODQLQH�DQG�
/�ODFWDWH�ZHUH�VLJQLILFDQWO\�GRZQUHJXODWHG��)XUWKHUPRUH��WKH�PDMRULW\�RI�WKHP�
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ZHUH�SRVLWLYHO\�FRUUHODWHG��(VSHFLDOO\�VWURQJ�FRUUHODWLRQV�ZHUH�VHHQ�EHWZHHQ�
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'HWHFWLRQ�DQG�%LRPDUNHU�'LVFRYHU\� 3/R6�2QH�������������H�������3XEOLVKHG������-XQ�
����GRL���������MRXUQDO�SRQH�������� 

=KX�<��0R�0��:HL�<��HW�DO��(SLGHPLRORJ\�DQG�JHQRPLFV�RI�SURVWDWH�FDQFHU�LQ�$VLDQ�
PHQ� 1DW�5HY�8URO����������������������GRL���������V����������������� 

=RX�;��+ROPHV�(��1LFKROVRQ�-.��/RR�5/��$XWRPDWLF�6SHFWURVFRSLF�'DWD�&DWHJRUL]DWLRQ�E\�
&OXVWHULQJ�$QDO\VLV��$6&/$1���$�'DWD�'ULYHQ�$SSURDFK�IRU�'LVWLQJXLVKLQJ�'LVFULPLQDWRU\�
0HWDEROLWHV� IRU� 3KHQRW\SLF� 6XEFODVVHV� $QDO� &KHP�� �����������������������
GRL���������DFV��DQDOFKHP��E����� 
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Abbreviations 

 

AUC Area under the receiver operating characteristic (ROC) curve 

CI Confidence Interval 

DRE Digital rectal examination 

FC Fold change 

GAA Guanidinoacetate 

GC/MS Gas chromatography-mass spectrometry 

GS Gleason score 

HMDB Human Metabolome Database 

NMR Nuclear magnetic resonance 

OPLS-DA Orthogonal Partial Least Squares discriminant analysis 

PBS Phosphate buffer solution 

PC Prostate cancer 

PCA Principal component analysis 

PLS-DA Partial Least Squares discriminant analysis 

PSA Prostate specific antigen 

ROC Receiver operating characteristic curve 

STITCH Search tool for interactions of chemicals 

TSP Trimethylsilylpropionic acid-d4 sodium salt 

TSP Trimethylsilyl propionate 

TURP Transurethral resection of the prostate 

VIP Variable importance in projection 
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����$FNQRZOHGJHPHQWV 

,W
V�P\�JUHDW�KRQRU�WR�WDNH�WKLV�RSSRUWXQLW\�WR�H[SUHVV�P\�VSHFLDO�WKDQNV�WR�D�YDULHW\�RI�
SHRSOH�ZKR�KDYH�KHOSHG�PH�D�ORW�GXULQJ�WKH�SDVW�IHZ�\HDUV��:LWKRXW�WKHLU�VXSSRUW�DQG�
HQFRXUDJHPHQW��,�FDQQRW�ILQLVK�WKH�GRFWRU�WKHVLV� 

7R�EHJLQ�ZLWK�� ,�ZRXOG� OLNH� WR� WKDQN�3URIHVVRU�-RFKHQ�1HXKDXV�ZKR� LV�DQ�H[FHOOHQW�
SURIHVVRU�DQG�H[SHUW�ERWK�DFDGHPLFDOO\�DQG�SUDFWLFDOO\��'XULQJ�P\�ZULWLQJ�SURFHVV��KH�
JXLGHG�PH�SDWLHQWO\�QRW�RQO\�RQ�VHOHFWLQJ�RI�WKH�WKHVLV�WLWOH�DQG�FROOHFWLQJ�WKH�RULJLQDO�
GDWD�EXW�DOVR�UHVHDUFK�PHWKRGV�DQG�DQDO\]LQJ�WKH�WKHVLV�GDWD��ZKLFK�PDNHV�PH�EHQHILW�
D�ORW��+LV�FDUHIXO�DQG�FOHDU�JXLGDQFH�KDV�LQVSLUHG�PH�DQG�KHOSHG�PH�D�ORW�WR�ILQLVK�WKLV�
GRFWRU�WKHVLV��,�EHOLHYH�WKDW�KLV�LQYDOXDEOH�DGYLFH��NLQGQHVV�DQG�VWULFWQHVV�ZLOO�KDYH�D�
VWURQJ�LQIOXHQFH�RQ�PH�ERWK�RQ�WHDFKLQJ�DQG�KRZ�WR�EHKDYH�P\VHOI�LQ�VRFLHW\� 

%HVLGHV��,�DP�DOVR�GHHSO\�JUDWHIXO�WR�DOO�WKH�RWKHU�FROOHDJXHV�RI�WKH�8QLYHUVLW\�RI�/HLS]LJ�
IURP� ZKRP� ,� KDYH� OHDUQHG� D� ORW� DERXW� PRGHUQ� DQG� DGYDQFHG� WHDFKLQJ� LGHDV� DQG�
PHWKRGRORJ\�DEURDG��7KHLU�KDUG�ZRUN�KDV�EXLOW�D�KLJKHU�HGXFDWLRQDO�SODWIRUP�IRU�P\�
IXUWKHU�VWXGLHV� 

,� ZRXOG� DOVR� OLNH� WR� WKDQN� WKH� VWXGHQWV� &KHQJ� 6KHQJ� DQG� =KDQJ� &KXDQ� RI� 3URI��
1HXKDXV�LQ�8URORJ\�'HSDUWPHQW�RI�WKH�8QLYHUVLW\�RI�/HLS]LJ�+RVSLWDO��7KH\�ZHUH�ZLOOLQJ�
WR� VXSSRUW� P\� H[SHULPHQWDO� ZRUN�� WDNLQJ� SDUW� LQ� WKH� H[SHULPHQW� DFWLYHO\� DQG�
HQWKXVLDVWLFDOO\� 

/DVW�EXW�QRW�OHDVW��VSHFLDO�WKDQNV�WR�P\�IDPLO\��'XULQJ�WKH�SRVWJUDGXDWH�OHDUQLQJ��P\�
ZLIH�DQG�P\�GDXJKWHU�JDYH�PH�JUHDW�HQFRXUDJHPHQW�WR�RYHUFRPH�GLIILFXOWLHV�WR�ILQLVK�
WKH�SRVWJUDGXDWH�VWXG\� 
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