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Abstract
In this thesis we study three stochastic partial differential equations (SPDE) that arise
as stochastic gradient flows via the fluctuation-dissipation principle.
For the first equation we establish a finer regularity statement based on a generalized
Taylor expansion which is inspired by the theory of rough paths.
The second equation is the thin-film equation with thermal noise which is a singular
SPDE. In order to circumvent the issue of dealing with possible renormalization, we
discretize the gradient flow structure of the deterministic thin-film equation. Choosing a
specific discretization of the metric tensor, we resdiscover a well-known discretization of
the thin-film equation introduced by Grün and Rumpf that satisfies a discrete entropy
estimate. By proving a stochastic entropy estimate in this discrete setting, we obtain
positivity of the scheme in the case of no-slip boundary conditions. Moreover, we analyze
the associated rate functional and perform numerical experiments which suggest that the
scheme converges.
The third equation is the massive ϕ4

2-model on the torus which is also a singular SPDE.
In the spirit of Bakry and Émery, we obtain a gradient bound on the Markov semigroup.
The proof relies on an L2-estimate for the linearization of the equation. Due to the
required renormalization, we use a stopping time argument in order to ensure stochastic
integrability of the random constant in the estimate. A postprocessing of this estimate
yields an even sharper gradient bound. As a corollary, for large enough mass, we establish
a local spectral gap inequality which by ergodicity yields a spectral gap inequality for
the ϕ4

2-measure.
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CHAPTER 1

Introduction

A gradient flow is an ordinary differential equation (ODE) that (locally) minimizes a
given functional, often referred to as energy. It does so by infinitesimally flowing into the
direction of steepest descent in the energy landscape. The notion of steepest descent is
intimately connected to the notion of a gradient, but in order for a gradient to exist, an
inner product is needed or, in other words, a geometry. Hence, more precisely, a gradient
flow is an ODE that minimizes an energy as fast as a given geometry allows it to. Often,
the configuration space is infinite-dimensional and then such a gradient flow is given by
a partial differential equation (PDE). For example, there are two important gradient
flows associated with minimizing the Dirichlet energy. While in the Euclidean geometry
such a gradient flow would correspond to the heat equation, in the Wasserstein geometry,
known from the theory of optimal transportation, it corresponds to the thin-film equation
and the Dirichlet energy has the interpretation of the surface tension. These examples
highlight the fact that a change in geometry can have striking differences; while the
heat equation is a second-order, linear PDE, the thin-film equation is a fourth-order,
quasi-linear PDE.

When introducing fluctuations to the equation, and thus turning it into a stochastic
gradient flow, the fluctuation–dissipation theorem suggests a noise that is compatible
with the geometry. This means that the noise term does not depend on the energy,
but only on the geometry. Hence, while a gradient flow, like the diffusion equation, can
have multiple (even infinitely many) gradient flow structures, they give rise to completely
different stochastic gradient flows. A feature that all of them have in common is that the
fluctuation-dissipation theorem suggests the same invariant measure; the Gibbs-measure
associated to the energy. This is not completely correct, though; while the Gibbs-measure
indeed does not depend on the geometry, it depends on the underlying configuration
space. Formally, the Gibbs measure and the energy are in a one-to-one correspondence,
but in the infinite-dimensional setting it happens that the Gibbs measure does not make
any sense. In that case one needs to perform a renormalization procedure in order to
rigorously define it. While in thermodynamics an invariant measure (corresponding to
equilibrium) is postulated and the interest lies mostly in the dynamics of the system, in
quantum field theory a program of stochastic quantization has been suggested. Quantum
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2 1. INTRODUCTION

field theorists are concerned with certain infinite-dimensional Gibbs measures that are
not a priori well-defined. Stochastic quantization refers to the procedure of introducing
a Langevin equation that is supposed to have as an invariant measure exactly this Gibbs
measure. In that case, the time and the dynamics are completely artificial, serving the
only purpose of sampling from the Gibbs measure after long times.

In the infinite-dimensional case, stochastic gradient flows are often singular stochastic
partial differential equations: as in the case of infinite-dimensional Gibbs measures, these
equations contain nonlinear terms that are ill-defined. This is due to a rough, stochastic
forcing term: a white noise. Similarly to stochastic integrals, probabilistic techniques
are necessary to give sense to these products. Since the emergence of the theories of
regularity structures and paracontrolled distributions a lot of progress has been made to
study singular SPDEs in the subcritical regime. These include many equations arising
in quantum field theory via stochastic quantization, but also random growth interface
models like the KPZ equation have been considered.

The approach of Bakry and Émery to prove functional inequalities which quantify ergod-
icity or convergence to equilibrium has been very successful since it was introduced. The
data provided by a gradient flow structure fits well in the framework of this approach.
Their insight essentially was that the geometry of the configuration space, as well as
the convexity of the energy landscape, play a decisive factor, if the associated stochastic
dynamics converge to equilibrium exponentially fast. A weaker condition for these func-
tional inequalities concern the commutativity of the semigroup and the gradient which
come in the form of heat kernel estimates and are of independent interest.

We want to stress that, in the following, we will be mostly formal. In particular, we will
not specify any regularity or integrability conditions, which means that some expressions
are not well-defined. While in the finite-dimensional setting gradient flow structures are
mostly rigorous, in the infinite-dimensional setting they have to be taken with a grain
of salt. The same warning applies to the fluctuation-dissipation theorem; we focus on
giving a heuristic overview of the underlying principles that come up in this thesis. The
contributions of the subsequent chapters are to make some of the heuristic arguments
presented rigorous in the introduction, at least in special cases.

1.1. The diffusion equation and Brownian motion

The diffusion equation ∂tu = ∆u on R>0 × Rd

u|t=0 = f
(1.1)
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is a prime example of a second-order, parabolic partial differential equation. Its solution
is explicitly given by the semigroup (Pt)t≥0 defined as

Ptf(x) :=
∫
Rd
pt(x− y)f(y) dy

for f : Rd → R where pt is the heat kernel

pt(x) := 1
(4πt)

d
2
e− |x|2

4t(1.2)

and |·| denotes the Euclidean norm. Now consider a Brownian particle that starts at
x ∈ Rd, i.e. a solution to the following stochastic differential equation (SDE)dXt =

√
2 dWt

X0 = x
(1.3)

where (Wt)t≥0 is a d-dimensional Wiener process, i.e. Wt =
(
W 1

t , . . . ,W
d
t

)
and

(
W i

t

)
t≥0

are independent Brownian motions. Then one has the following two consequences of the
Itô formula (cf. [9, p.5]):

E[f(Xt)|X0 = x] =
∫
Rd
pt(x− y)f(y) dy

for all bounded and measurable f : Rd → R and, in particular,

P(Xt ∈ B|X0 = x) =
∫

B
pt(x− y) dy

for all Borel sets B ⊂ Rd. This already hints at a close relationship of the PDE (1.1)
and the SDE (1.3). Indeed, let N ∈ N and let

(
Xi

t

)
t≥0 be independent solutions to (1.3)

for i = 1, . . . , N . Then we define the empirical measure

ρN (t) := 1
N

N∑
i=1

δXi
t

(1.4)

and notice that by the law of large numbers, for any bounded and measurable f : Rd → R
we have

〈ρN (t), f〉 := 1
N

N∑
i=1

f(Xi
t)

N→∞−→ E[f(Xt)|X0 = x] a.s..(1.5)

In other words, (1.5) implies

ρN (t) w
⇀ P ∗

t δx a.s.(1.6)

where (P ∗
t )t≥0 is the dual semigroup, i.e., in particular, we have P ∗

t δx(f) = Ptf(x).
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1.2. Gradient flows

Let u be a solution to (1.1). We integrate by parts to compute
d
dt

1
2

∫
Rd

|∇u|2 dx =
∫
Rd

∇u · ∇∂tudx = −
∫
Rd

|∆u|2 dx = −
∫
Rd

|∂tu|2 dx ≤ 0.(1.7)

This shows that under the flow of (1.1) the Dirichlet energy

E(u) := 1
2

∫
Rd

|∇u|2 dx(1.8)

decreases and the rate of the dissipation of the energy is measured in the L2-geometry.
This suggests that the diffusion equation (1.1) is an instance of a gradient flow. Indeed,
(1.1) can be rewritten as

d
dt
u = −∇E(u)

where ∇E(u) ∈ L2(Rd) is the L2-gradient defined via the duality

diffE|u.u̇ := d
dε

∣∣∣
ε=0

E(u+ εu̇) = (∇E(u), u̇)L2(Rd).

for all sufficiently nice test functions u̇.

In general, a gradient flow structure consists of a triple (M, E, g) where M is a configu-
ration space, E : M → R is an energy and g is a metric tensor on M1. This data gives
rise to an ordinary differential equation

d
dt
u = −∇E(u)(1.9)

which is then referred to as a gradient flow, where ∇ denotes the Riemannian gradient
with respect to g. The interpretation of (1.9) is that

diffE|u.u̇+ gu(∂tu, u̇) = 0(1.10)

for all u̇ ∈ TuM. The choice u̇ = ∂tu in (1.10) yields the energy estimate
d
dt
E(u) = −gu(∂tu, ∂tu).(1.11)

The discussion above shows that the diffusion equation (1.1) is a gradient flow with
respect to the L2-geometry and the Dirichlet energy (1.8). The abstract energy estimate
(1.11) corresponds to (1.7). While the Hilbertian structure that arises from the Dirichlet
energy is certainly pertinent to (1.3) – the Cameron–Martin space of Brownian motion
is essentially the (homogeneous) Sobolev space H1(Rd) (cf. [103, Theorem (2.2), p.339])
– there is another gradient flow structure of the heat equation (1.1) revealing an even
deeper connection.
1more precisely on the tangent bundle T M ⊗ T M
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1.3. Wasserstein geometry

Again, let u be a solution to (1.1), that we think of as being positive. Integrating by
parts yields

d
dt

∫
Rd
u ln udx =

∫
Rd
∂tu(ln u+ 1) dx =

∫
Rd

∆u(ln u+ 1) dx(1.12)

= −
∫
Rd

|∇u|2

u
dx

= −
∫
Rd
u|∇ ln u|2 dx.

Hence, under the flow of the diffusion equation (1.1) moreover the entropy

Ent(u) :=
∫
Rd
u ln udx(1.13)

decreases. In this case the geometry is more complicated. We first of all specify a
configuration space

M :=
{
u : Rd → R : u > 0,

∫
Rd
u dx = 1

}
,(1.14)

and for any u ∈ M the tangent space

TuM :=
{
u̇ : Rd → R :

∫
Rd
u̇dx = 0

}
.

We next observe that ∆u = ∇·(u∇ ln u) which motivates the following definition in view
of (1.12). The Wasserstein metric tensor is given by

gu(u̇, u̇) :=
∫
Rd
u|∇p|2 dx, where u̇+ ∇ · (u∇p) = 0(1.15)

for u̇ ∈ TuM. Then it is easy to see that one indeed has
d
dt

Ent(u) = −gu(∂tu, ∂tu)

and, moreover, for any u̇ ∈ TuM

diff Ent|u.u̇+ gu(∂tu, u̇) = 0.

In words, the diffusion equation (1.1) is a gradient flow with respect to the entropy and
the Wasserstein geometry. This was first observed in [69] in the more general context of
Fokker–Planck equations, and in [95] the metric tensor (1.15) has been first introduced.
In recent years this has triggered a vast research interest in gradient flows in general, and
Wasserstein gradient flows in particular. We refer to [5], [109], [110], to only mention a
few.
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The metric tensor (1.15) is referred to as the Wasserstein metric tensor due to the fact
that it generates the 2-Wasserstein distance (cf. [115, Definition 7.1.1.]) defined as

W 2
2 (λ1, λ2) := inf

{∫
Rd×Rd

|x− y|2π(dx, dy) : π
(
Rd × ·

)
= λ1, π

(
· × Rd

)
= λ2

}
,(1.16)

at least if restricted to measures which are absolutely continuous with respect to the
Lebesgue measure on Rd. Indeed, by the Benamou – Brenier formula2 one has (cf. [13],
[115, Theorem 8.1])

W 2
2 (f0, f1) = inf

f,v

{∫ 1

0

∫
Rd
ft|vt|2 dx dt : ∂tft + ∇ · (ftvt) = 0, f |t=i = fi, i = 0, 1

}
= inf

f

{∫ 1

0
gft(∂tft, ∂tft) dt : f |t=i = fi, i = 0, 1

}
.

The second inequality follows from the fact that if v is a minimizer it is divergence-free
and hence must be a gradient (cf. [95, (22)]). In other words, the Wasserstein metric
tensor gives rise to the 2-Wasserstein distance in the same way that a general Riemannian
metric gives rise to a distance on a Riemannian manifold.

1.3.1. More examples of gradient flows. The diffusion equation (1.1) is an
example of a PDE that admits many3 gradient flow structures. We want to introduce
two more gradient flows that play a role in this thesis. These are the thin-film equation
and the Allen–Cahn equation.

1.3.1.1. The thin-film equation. The thin-film equation on Rd is given by∂th+ ∇ · (M(h)∇∆h) = 0 on R>0 × Rd

h|t=0 = h0
(1.17)

for some initial condition h0 > 00. We again think of the solution h as being positive.
The equation (1.17) is a fourth-order, parabolic, quasi-linear and degenerate PDE that
describes the time evolution of the height function h of a very thin liquid on a solid. Here
M(h) is referred to as the mobility and it describes the boundary conditions of the fluid
velocity at the solid-liquid interface. We are mostly interested in a power-law type non-
linearity, i.e. M(h) = hm. Indeed, the most relevant case is M(h) = h3 corresponding to
Dirichlet boundary conditions. For a more in-depth discussion we refer to Section 3.3.

A quick computation shows that (1.17) is a gradient flow on the configuration space
M (1.14) with respect to the Dirichlet energy E (1.8) and the generalized Wasserstein
metric tensor given by

gh(ḣ, ḣ) :=
∫
Rd
M(h)|∇ϕ|2 dx, where ḣ+ ∇ · (M(h)∇ϕ) = 0

2modulo some technicalities
3in fact infinitely many
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for ḣ ∈ ThM (cf. [4], [94]). A similar metric tensor, for concave M , has been considered
in [35] and [20]. Since (1.17) is derived by a lubrication approximation of the Navier-
Stokes equations in d = 3 (cf. [50]), the natural dimension for (1.17) is d = 2. By
assuming a shear flow, it is also not unreasonable to consider (1.17) for d = 1. In the
case of d = 1 non-negative weak solutions to (1.17) have been first obtained in [16].

A major interest concerning equation (1.17) is that of preservation of positivity. In the
simplest form this would amount to the question if

h0 > 0 =⇒ ht > 0 for t > 0.(1.18)

We first note that (1.18) depends crucially on the degeneracy of the mobility M(h).
Indeed, there is no comparison principle for fourth-order equations and in the case of
M(h) = 1 there exists a counter-example such that (1.18) does not hold (cf. [17]). On
the other hand, for d = 1, it was shown in [14] that (1.18) holds if M(h) = hm for m ≥ 7

2 .
Hence, an important question remains if positivity is preserved in the case of M(h) = h3.
In the case of d = 2 much less is known. One should note that in general (1.17) must be
seen as a so-called free boundary problem with free boundary given by ∂{h > 0} where
additional boundary conditions need to be imposed (cf. [49]).

Moreover, there has been important developments concerning numerical discretizations
of (1.17). This includes, in particular, the articles [54] and [121] where the authors pro-
pose a discretization that preserves the so-called entropy estimate which is in turn related
to the question of positivity (1.18). Indeed, in their discretization, the property (1.18)
holds for M(h) = hm if m ≥ 2. However, this result is not uniform in the discretization
parameter and thus can not be used to infer the same result for the continuum case.

1.3.1.2. The Allen–Cahn equation. The Allen–Cahn equation on Rd is given by∂tu = ∆u− 1
ε2W

′(u) on R>0 × Rd

u|t=0 = u0
(1.19)

for some initial condition u0 and a potential W : R → R. The PDE (1.19) arises as the
gradient flow of the energy defined by

Fε(u) :=
∫
Rd

ε

2
|∇u|2 + 1

ε
W (u) dx(1.20)

and the L2-inner product (modulated by the factor 1
ε ).

A typical example for W is the double-well potential, i.e. W (u) := 1
4
(
1 − u2)2. Hence,

in this case, the minimizer of Fε should concentrate on the set {−1, 1} as ε → 0. Indeed,
in [88] it was shown that if Fε is posed on a bounded domain, then it converges4 to the

4in the sense of Γ-convergence to be precise
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perimeter functional of that domain as ε → 0. Moreover, there is a close connection to
mean curvature flow5 which describes the evolution of surfaces according to their mean
curvature (cf. [10, Section 6.1.3]). It was also recently shown that if one starts (1.19)
with sufficiently mixing (and random) initial data, then after some time the generated
fronts also evolve according to mean curvature flow (cf. [60]).

1.4. Fluctuating gradient flows

For a given gradient flow we now want to introduce randomness into the system which
will usually mean a random forcing term involving white noise. To this end, consider
again the empirical measure ρN (cf. (1.4)). Following the (formal) computation in [32]6

one finds that ρN is formally an exact solution to the d-dimensional Dean–Kawasaki
equation

∂tρ = ∆ρ+
√

2
N

∇ · (√ρ η) on R>0 × Rd(1.21)

where η is d-dimensional space-time white noise. Note that for N → ∞, the equation
(1.21) formally converges to the deterministic diffusion equation. This reflects again
the fact that for N large enough, the empirical measure ρN can be reasonable well be
approximated by the diffusion equation (1.1) (cf. (1.6)). Hence, the advantage of the
Dean–Kawasaki equation is that it describes exactly the behaviour of N independent
Brownian particles while the disadvantage is that it is a much more complicated and
stochastic PDE. While (1.6) provides a macroscopic description of the particle density – it
is purely deterministic – the description of (1.21) is mesoscopic and retains randomness.
Indeed, the precise meaning of (1.21) is debatable. Due to the low regularity of the
space-time white noise, the product √

ρη does not a priori make sense, even for d = 1.
In fact, (1.21) is an instance of a singular SPDE and even in this class stands out since
it is a supercritical equation, which, roughly speaking, means that the non-linearity only
becomes more pronounced on small scales. In this case there are no known techniques
in order to give a pathwise sense to (1.21). Nevertheless, (1.21) has been the object of a
vast amount of research. In [75] it was shown that even weak solutions, i.e. solutions to
the martingale problem corresponding to (1.21), are sums of Dirac measures. This poses
the question if (1.21) is just a complicated way of speaking about the empirical measure.
The recent work [24] establishes that suitable discretizations of (1.21) and (1.4) are
arbitrarily close in a weak norm, meaning that (1.21) can be used in order to approximate
the diffusion of independent Brownian particles. Moreover, in [41] a solution theory for
(1.21) with colored noise is established whereas in [40] a large deviations principle in the
scaling regime 1

N � 1
K , where K denotes the cut-off in the noise, is proved.

5which coincidentally is also a gradient flow
6and omitting the potential V
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1.4.1. The fluctuation–dissipation theorem. We now want to explain a differ-
ent way to derive (1.21). Consider again the diffusion equation (1.1) and its gradient
flow structure with respect to the entropy and the Wasserstein geometry, i.e. we write
(1.1) as

∂tu = ∇ ·
(
u∇ δ

δu
Ent(u)

)
where δ

δu denotes the L2-derivative. Formally, in Riemannian geometry the Riemannian
gradient is given by

∇g = g−1∇(1.22)

where ∇ denotes the standard Euclidean gradient. One can make sense of (1.22) in
local coordinates, but otherwise the inverse of a Riemannian metric tensor g or generally
of a bilinear form does not make any sense. What we mean by g−1 is the inverse of
the operator corresponding to g with respect to a reference metric tensor given by the
L2-inner product7. More precisely, integrating by parts in (1.15) yields

gu(u̇, u̇) =
∫
Rd
u̇K−1

u u̇dx

where

Kuu̇ := ∇ · (u∇u̇)(1.23)

and then we identify Ku with g−1
u . Often, the operator K is referred to as Onsager

operator. With this notation in hand the diffusion equation (1.1) takes the form

∂tu = −Ku
δ

δu
Ent(u).

The fluctuation-dissipation theorem (cf. [122, (1.57)]) proposes that in order to introduce
fluctuations in a meaningful way – which will be explained shortly – a noise must be
added to the equation whose covariance structure matches the geometry. More precisely,
that means that fixing the gradient flow structure with respect to the entropy and the
Wasserstein geometry, the diffusion equations involving fluctuations takes the form

∂tu = −Ku
δ

δu
Ent(u) +

√
2β−1

√
Kuη(1.24)

= ∆u+
√

2β−1∇ ·
(√
u η
)

where η is a vector-valued space-time white noise and β > 0. The operator
√

Ku is the
square root of the positive-definite and symmetric operator Ku. Thus we have recovered
the Dean–Kawasaki equation8 (1.21). Adding fluctuations in this way suggests that the

7in finite-dimensions this is the matrix representation of g
8this has already been noted in Dean’s original paper [32]
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equation (1.24) has an invariant measure and this invariant measure is given by the
Gibbs measure

1
Z
e−βEnt(u) du(1.25)

where Z is a normalization constant which makes the measure (1.25) into a probability
measure and du formally is the Lebesgue measure on the corresponding configuration
space: in this case (1.14). In order for (1.25) to be invariant for (1.24), the stochastic
integral has to be chosen accordingly. Since (1.14) is infinite-dimensional, it is known
that there exists no such Lebesgue measure. Nevertheless, the construction of (1.25)
was addressed in [117].

For a general gradient flow given by an energy E and the geometry induced by an On-
sager operator K, the fluctuation-dissipation theorem suggests a corresponding stochastic
gradient flow of the form

∂tu = −Ku
δ

δu
E(u) +

√
2β−1

√
Kuη(1.26)

with Gibbs measure given by

dνs := 1
Z
e−βE(u) du(1.27)

where Z is a normalization constant and du is formally the Lebesgue measure on the
associated configuration space. Again, in general, the stochastic integral in (1.26) has
to be chosen in such a way that (1.27) is the invariant measure.

In order to illustrate the relevance of different gradient flow structures, let us again
consider the diffusion equation as a gradient flow with respect to the L2-metric and
the Dirichlet energy E (1.8). Applying the fluctuation–dissipation theorem yields the
stochastic heat equation

∂tv = ∆v +
√

2β−1ξ on R>0 × Rd(1.28)

where ξ is (real-valued) space-time white noise and the postulated invariant measure is
given by

dµ(v) := 1
Z
e−βE(v) dv.(1.29)

Here, µ can be interpreted as a Gaussian measure. Indeed, E(v) = 1
2(−∆v, v)L2(Rd) is a

quadratic functional, and hence µ is Gaussian with covariance operator (−β∆)−1. This
covariance operator corresponds to the so-called Gaussian free field9 (cf. [107]). The
equation (4.10) is also known as the Edward–Wilkinson process (cf. [85]) and plays an
important role in the study of subcritical singular SPDE.
9most often, this measure is considered on a bounded domain for d = 2
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The fluctuation-dissipation theorem is closely related to the notion of detailed balance
(cf. [100, (4.97)]). Assuming that (1.26) has a unique invariant measure given by (1.27),
then formally one has L∗ρs = 0 where ρs(u) := 1

Z e
−βE(u) and L is the Kolmogorov

operator, also referred to as the generator of (1.26). Then

∂tρ = L∗ρ(1.30)

is the Fokker–Planck equation. A stochastic process satisfies the detailed balance condi-
tion (cf. [100, (4.97)]) if its associated Fokker–Planck equation (1.30) can be written as
a continuity equation10

∂tρ = ∇ · J(ρ)

with probability flux J and if, moreover,

J(ρs) = 0.

Under this condition the operator L is symmetric on L2(dνs) and it is well-known that
this implies that the resulting stochastic process is time-reversible (cf. [100, Section
4.6], [37, (49)]). In thermodynamics the interpretation is that in equilibrium it should
not be possible to tell if time is going forward or backward. We want to stress that
the preceding discussion is very formal on the level of infinite-dimensional stochastic
gradient flows. In that setting, the Kolmogorov operator L is a priori only defined on
cylindrical functions and if the equation in question requires renormalization it is in
general not possible to specify L. In the finite-dimensional setting, on the other hand,
this is classical (cf. [100]).

1.4.1.1. The stochastic thin-film equation. We have already seen that the thin-film
equation (1.17) is a gradient flow with respect to the Dirichlet energy E (1.8) and the
Wasserstein metric tensor g (1.15) on the configuration space (1.14). Hence it can be
written as

∂th = −Kh
δ

δh
E(h)

where Khḣ := ∇ ·
(
M(h)∇ḣ

)
(cf. (1.23)). According to the fluctuation-dissipation

theorem, the corresponding stochastic thin-film equation (cf. [30]) takes the form

∂th = −Kh
δ

δh
E(h) +

√
2β−1

√
Khη

= −∇ · (M(h)∇∆h) +
√

2β−1∇ ·
(√

M(h)η
)

(1.31)

10here ∇· might refer to a infinite-dimensional divergence
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where η is vector-valued space-time white noise. The invariant measure is given by

dν(h) = 1
Z
e−βE(h) dh.(1.32)

On first sight, the interpretation of (1.32) appears to be the same as for the stochastic
heat equation (4.10), i.e. that dν looks like the Gaussian free field (1.29). This is where
the configuration space makes a difference: while du formally denotes the Lebesgue
measure on L2(Rd), dh denotes the Lebesgue measure on M.Hence, the interpretation
of (1.32) is that of a Gaussian free field conditioned to be positive with spatial average
being one. For more details we refer to Section 3.4. Also, (1.31) is a singular SPDE and
the renormalization should be chosen in such a way that (1.32) is the invariant measure
of (3.13). See also Section 3.4.2.

1.4.1.2. The ϕ4
d-model. Euclidean quantum field theory is concerned with the con-

struction of Gibbs measures of the form

dν(u) = 1
Z
e−F (u) du(1.33)

where F is given by (1.20) (for ε = 1) and du is formally the Lebesgue measure on
L2(Rd) 11. If W (u) = 1

4 |u|4 12, the measure ν is called the ϕ4
d-measure. Since, again, the

Lebesgue measure on L2(Rd) does not exist, the interpretation of ν is13

dν(u) = 1
Z
e−
∫
Rd

1
4 |u|4 dx dµ(u)

where µ is the Gaussian free field (1.29). It is well-known that the support of the
Gaussian free field is the Hölder space C

2−d
2 −ε for any ε > 0 14. Since for d ≥ 2 this is

a space of distributions the term |u|4 is a priori ill-defined and hence it is expected that
renormalization is necessary. In [99] it was suggested to sample from (1.33) by writing
down a stochastic gradient flow via the fluctuation-dissipation theorem that has (1.33)
as an invariant measure. This procedure is now known as stochastic quantization and it
gives rise to the ϕ4

d-model

∂tu = ∆u− u3 +
√

2 ξ on R>0 × Rd(1.34)

where ξ is space-time white noise. The geometry is chosen to be L2(Rd) which means
that the Onsager operator is nothing but the identity. We want to note that in the case
of the stochastic thin-film equation, at least for d = 1, the postulated invariant measure

11of particular interest is the case d = 4
12somewhat of a simplification of the double-well potential
13in d = 3 the measure has been constructed but it is not absolutely continuous with respect to the
Gaussian free field. This ansatz still gives the correct heuristic.
14This can be seen by a scaling argument and a variant of Kolmogorov’s continuity theorem. In [107]
it is proven that the Gaussian free field for d ≥ 2 can only be realized as a distribution which is enough
for our argument.
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is not in need of a renormalization whereas in this case the invariant measure has to
be renormalized. The ϕ4

3-model has been considered in [59]. For more details on the
ϕ4

d-model, in particular for d = 2, we refer to Chapter 4.

1.4.2. Singular SPDEs. We have already seen SPDEs, i.e. (1.21), (1.31), (1.34),
that have been referred to as being singular ; let us now explain this notion. The following
theorem is concerned with the multiplication of distributions (cf. [6, Theorem 2.52],
Lemma 4.17).

Theorem 1.1. Let ϕ ∈ Cα and ψ ∈ Cβ. Then it holds that ϕ · ψ ∈ Cmin{α,β} if and
only if α+ β > 0.

Here, the function space Cα for α ∈ R denotes a Hölder spaces of possibly negative
regularity, which usually is identified with the Besov space Bα

∞,∞ (cf. [6, Section 2]). To
illustrate Theorem 1.1 we consider again a one-dimensional Brownian motion {Bt}t≥0.
It is well-known15 that B ∈ C

1
2 −ε for all ε > 016. The theory of stochastic integration

is essentially concerned with the product Bt
d
dtBt where the derivative is in the sense

of distributions. Since d
dtB ∈ C− 1

2 −ε, the product is not-well defined according to
Theorem 1.1 since 1

2 − ε+
(
−1

2 − ε
)

= −2ε < 0. In order to give sense to this product
probabilistic techniques are necessary.

Motivated by this observation, a SPDE is called singular if there are products in the
equation which are not well-defined since their regularity does not sum up to a positive
number. This is due to the low regularity of the space-time white noise. A space-time
white noise on R+ × Rd is a Gaussian centered random field {ξ(f)}f∈L2(R+×Rd) with
covariance given by

E
[
ξ(f)ξ(f ′)

]
=
(
f, f ′)

L2(R+×Rd)

which is often informally written as

E[ξ(t, x)ξ(s, y)] = δ(t− s)δ(x− y).(1.35)

Writing the covariance as in (1.35) is misleading, since ξ cannot be realized as a (random)
function. The equation (1.1) is invariant under the parabolic scaling (t, x) 7→ (λ2t, λx)
(λ > 0) and hence this is the natural scaling that we want to assume when treating
second-order SPDEs like (1.21) or (1.34). Then the rescaled space-time white noise
ξ(t, x) 7→ ξλ(t, x) := ξ(λ2t, λx)17 has the covariance

E
[
ξλ(f)ξλ(f ′)

]
= λ−(d+2)(f, f ′)

L2(R+×Rd)

15by Kolmogorov’s continuity theorem
16on a finite time-interval [0, T ]
17this is meant in the sense of distributions
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and hence ξ̂(t, x) := λ
d+2

2 ξ(λ2t, λx) and ξ(t, x) have the same covariance. Existence of ξ
is established by Kolmogorov’s existence theorem (cf. [103, Theorem 3.2]) and then the
distribution of ξ is uniquely determined by its covariance, implying that ξ̂ and ξ have
the same distribution. This scale invariance suggests that by Kolmogorov’s continuity
theorem there is a version of ξ, which, by abuse of notation, we will also refer to as ξ
that satisfies (locally) ξ ∈ C− d+2

2 −ε for all ε > 018 (cf. [102, Lemma 18])19.

Let us again consider the ϕ4
d-model. Rescaling (1.34) according to

λx = x̂, λ2t = t̂, λ
d−2

2 u = û, λ
d+2

2 ξ = ξ̂

yields

∂t̂û = ∆̂û− λ4−d û3 + ξ̂ on R>0 × Rd.

Trivially, we have the following behavior

lim
λ→0

λ4−d =


0, d < 4

1, d = 4

∞, d > 4,

which, in words, means that zooming in on small scales for d < 4 has the effect that
the non-linearity vanishes, for d = 4 it has no effect and for d > 4 it has the effect
that the non-linearity blows up. If the non-linearity vanishes on small scales we call the
singular SPDE subcritical, if the rescaling leaves the equation invariant we call it critical
and otherwise the equation is called supercritical. If the equation is subcritical it locally
looks like the stochastic heat equation (4.10). For (4.10) standard Schauder estimates
yield that the solution v satisfies v ∈ C

2−d
2 −ε for all ε > 0 (cf. [108], [58, Lemma

A.9]). Since regularity is a local property after all, this suggests that the solution u of
the ϕ4

d-model, for d < 4, i.e. if it is subcritical, satisfies u ∈ C
2−d

2 −ε for all ε > 0. In
the case of d = 1, u is actually a function and there is no problem defining the non-
linearity u3. However, for d = 2 it is expected that u is not a function anymore and
hence by Theorem 1.1 multiplication with itself is not possible and the ϕ4

d-model (1.34)
is a singular SPDE for d > 1. Other examples of subcritical singular SPDEs include
the KPZ equation and the stochastic thin-film equation in 1 + 1 dimensions. In 2 + 1
dimensions the KPZ equation and the stochastic thin-film equation are critical. The
Dean–Kawasaki equation is supercritical in any dimension.

In recent years there were many developments in the field of singular SPDEs. One of the
earliest examples of a successful solution theory of a singular SPDE has been [25] where

18this refers to a parabolic (negative) Hölder-space defined via a scale-invariant metric
19Note the reminiscence to Sobolev-embeddings
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the ϕ4
2-model has been considered. The main insight in this article was to decompose

the solution into a irregular, but linear part, namely the solution to the stochastic heat
equation, and a regular, but non-linear part. This is known as the Da Prato–Debussche
trick. In order to proceed with the latter, a renormalization procedure is necessary to
define powers of the stochastic heat equation. At the same time, the theory of rough
paths (cf. [83], [55]) was being developed which, in a similar way, was concerned with
a pathwise treatment of stochastic integrals like Bt

d
dtBt. One of the main insights was

to define the stochastic integral off-line, for example by the usual Itô-calculus, which
together with a suitable topology made the solution map of a standard SDE continuous.
A vast generalization of these ideas has been the development of regularity structures
(cf. [59]). Like in the theory of rough paths, the idea is to define certain trees off-line
which also possibly involves renormalization; in the ϕ4

2-model this would correspond
to the square and the cubic power of the stochastic heat equation. Then the solution
can be considered as a functional of the trees. At the same time, another approach
using paracontrolled distributions (cf. [58]) was developed relying on Fourier theoretic
concepts. In particular, in paracontrolled distributions a singular product is considered
as a paraproduct and then uses an ansatz for the solution known from controlled rough
paths (cf. [55]). Also, a variant of regularity structures (cf. [81]) for quasi-linear
equations has been introduced which could be used in order to study the stochastic
thin-film equation.

A unifying principle that underlies both approaches is that there is a clear distinction
between a probabilistic step which involves the off-line construction of the auxiliary
elements, and the analytic step which consists of the solution theory taking the off-line
products into account. The probabilistic step usually also consists of a renormalization
procedure which in the analytic step is reflected in the form of a counter term. This
counter term is in general not unique and corresponds to choosing a stochastic integral.
Indeed, in [19] the renormalization group has dimension 54 and the authors identify
various subspaces corresponding to Itô-integration, Stratonovich-integration or both!
For the stochastic thin-film equation we would be interested in a counter term that
ensures that the postulated invariant measure (1.32) is indeed invariant for the equation
(1.31). In the case of the ϕ4

2-model on the torus this has been addressed in [111].

1.4.3. The theory of large deviations and gradient flows. The theory of large
deviations (cf. [45], [114]) delivers yet another justification to consider the diffusion
equation (1.1) as a gradient flow with respect to the Wasserstein geometry and the
entropy. Informally, a sequence of real valued stochastic process

{
Y N

t

}
t≥0,N∈N

is said
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to satisfy a (conditional) large deviations principle with rate functional I if (cf. [1, (2)])

P
(
Y N

t ' λ|Y N
0 ' λ0

)
∼ e−NIt(λ;λ0) as n → ∞(1.36)

for some probability measures λ, λ0 on R. For the precise definition of a large deviations
principle we refer to [45] and [114]. In [1] the authors were concerned with a large
deviations principle for the empirical measure ρN (cf. (1.4)). Indeed, they state a large
deviations principle for ρN (cf. [1, Theorem 1, Lemma 2]) in the spirit of (1.36) with
rate functional given by

It(λ, λ0) := inf
Λ
H(Λ|Λ0)

where the infimum runs over all probability measures Λ on R2 that have λ and λ0 as
marginals, Λ0(dx dy) := λ0(dx)pt(x− y) dy and pt is given by (1.2) for d = 1. Moreover,
H denotes the relative entropy, i.e.

H(Λ|Λ0) :=


∫
R2 f(x, y) log f(x, y)Λ0(dx, y), ifΛ � Λ0, f := dΛ

dΛ0

+∞, otherwise.

Then their main observation is (cf. [1, Theorem 3]) that

It(· ;λ0) ' 1
2
Kt(· ;λ0) as t → 0(1.37)

where

Kt(λ;λ0) := 1
2t
W (λ, λ0)2 + Ent(λ) − Ent(λ0),

W is the 2-Wasserstein distance (1.16) and Ent is the entropy (1.13) (for d = 1). Think-
ing of t now as a time-step reveals the deep insight of (1.37) connecting the theory of
large deviations and gradient flows. In [69] it was shown that under mild conditions on
the initial condition λ0 the iterative minimization scheme (cf. [1])

λn ∈ argmin
λ

Kt(λ, λn−1)

has a unique solution and the piecewise (in time) constant interpolation converges weakly
to the solution of (1.1) with initial condition λ0. As pointed out in [2, Section 6], (1.37)
also implies the variant of (1.36)

P(ρN (t) ' ρ|ρN (0) ' ρ0) ∼ e−N
W (ρ,ρ0)2

4t as N → ∞

which explicitly connects Wasserstein geometry and Brownian particles20 (cf. [101, Sec-
tion 4]). The authors of [2, Conjecture 6.1] conjecture that any gradient flow structure
is connected to a stochastic process by a large deviations principle. For example, in [34]

20Note that W (δx, δy) = |x − y|
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the case of the diffusion equation is extended to a porous medium type equation and the
zero range process.

1.5. The Bakry–Émery approach to functional inequalities

A gradient flow structure consisted of the triple (M, E, g), and the fluctuation–dissipation
theorem provided us with a stochastic gradient flow that ensured that the Gibbs mea-
sure dµ(u) := 1

Z e
−E(u) du is invariant. Evidently, there is a one-to-one correspondence

between the energy E and the invariant measure µ, but as we have seen this formal
definition can lead to problems, in the sense that some renormalization procedure is
necessary such that µ even makes sense. Nonetheless, a Markov triple consists of the
data (X,µ,Γ) where X is a state space, µ a (invariant) measure on X and Γ is a carré
du champ operator, i.e. a bilinear operator on functions X → R, satisfying a certain
condition (cf. [9, Definition 3.1.1]). This notion of carré du champ is very general and
one should think of the choice

Γ(ζ, ζ) := g(∇ζ,∇ζ).

This data already gives rise to a bilinear form which we will refer to as a Dirichlet
form21(cf. [84])

E(ζ, ζ) :=
∫

X
Γ(ζ, ζ) dµ

and under very general conditions (cf. [84, Definition 3.1]) it is known that E gives
rise to a stochastic process {Mt}t≥0 on X (cf. [84, Theorem 3.5]). For example, this
condition is met if there is a operator L such that

E(ζ, ζ) =
∫

X
ζ(−Lζ) dµ

and then L should be thought of as the generator of the process {Mt}t≥0. At this point,
it should be mentioned that the stochastic process {Mt}t≥0 does not have to be unique.

For our purposes, we think of the data (X,µ,Γ) being supplemented with a semigroup
(Pt)t≥0, which then gives rise to a generator L, such that µ is invariant for (Pt)t≥0, and
the carré du champ satisfies

Γ(ζ, ζ ′) = 1
2
(
L(ζζ ′) − ζLζ ′ − ζ ′Lζ

)
.

The insight of Bakry–Émery (cf. [8]) was that comparing the derivative of the semigroup
and the semigroup of a derivative can unveil regularization properties of the semigroup
which in turn gives rise to regularity properties of the invariant measure µ. To be more

21to be precise, a Dirichlet form is a bilinear form satisfying certain conditions [84, Definition 4.5]
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precise, they considered the gradient bound22 (cf. [9, Theorem 3.2.3])

Γ(Ptζ) ≤ e−2CtPt(Γ(ζ))(1.38)

and the strong gradient bound (cf. [9, Theorem 3.2.4])√
Γ(Ptζ) ≤ e−CtPt

(√
Γ(ζ)

)
(1.39)

where 0 < C < ∞. Clearly, the strong gradient bound implies the gradient bound by
Jensen’s inequality. These gradient bounds are key in the Bakry–Émery approach to
functional inequalities since a strong gradient bound will imply a log-Sobolev inequality
whereas a gradient bound will imply a spectral gap inequality. Note that (1.38) and
(1.39) are in general not true and great effort has been put into determining sufficient
conditions. Certainly the most famous sufficient condition is the Bakry–Émery curvature
condition CD(C,∞) which holds if and only if

Γ2(ζ) ≥ CΓ(ζ)(1.40)

for all ζ in a sufficiently large class of functions on X (cf. [9, (1.16.6)]). Here, Γ2 is the
iterated carré du champ defined by (cf. [9, (1.16.2)])

Γ2(ζ, ζ ′) := 1
2
(
LΓ(ζ, ζ ′) − Γ(ζ,Lζ ′) − Γ(Lζ, ζ ′)

)
.

The Γ2-operator is closely related to the celebrated Bochner formula (cf. [9, Theorem
C.3.3]) known from Riemannian geometry. Indeed, ifX is a (finite) Riemannian manifold,
Γ(ζ, ζ) := |∇ζ|2 with L := ∆ − ∇E · ∇, then

Γ2(ζ) = |∇∇ζ|2 + Ric(∇ζ,∇ζ) + ∇ζ · ∇∇E∇ζ

where ∇∇ denotes the Hessian and Ric denotes the Ricci-curvature tensor on X 23 (cf. [9,
1.16.4]). In the same setting, if Pt is given by the heat kernel on X, the gradient bound
(1.39) is equivalent to Ric(X) ≥ C (cf. [116, Theorem 1.3]). In turn, this relationship
gave rise to a synthetic definition of Ricci-curvature on non-smooth spaces (cf. [109],
[110], [82]).

As already mentioned, a consequence of the strong gradient bound (1.39) is that the
measure µ satisfies a log-Sobolev inequality whereas the gradient bound (1.38) implies
a spectral gap inequality. We quickly recall the notion of these inequalities. A measure
µ is said to satisfy a logarithmic Sobolev inequality if for all sufficiently nice functions ζ
on X it holds that∫

X
ζ2 log ζ2 dµ−

∫
X
ζ2 dµ log

(∫
X
ζ2 dµ

)
≤ 2CE(ζ, ζ)

22from now on we put Γ(ζ) := Γ(ζ, ζ)
23all of the notions, e.g. |·|2 and ∇, are defined with respect to the Riemannian metric on X
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whereas it satisfies a spectral gap inequality if∫
X
ζ2 dµ−

(∫
x
ζ dµ

)2
≤ 2CE(ζ, ζ).(1.41)

If µ satisfies a log-Sobolev inequality then it also satisfies a spectral gap inequality; in
fact, a spectral gap inequality can be regarded as a linearized log-Sobolev inequality
(cf. [9, Proposition 5.1.3]). A class of measures that satisfy a log-Sobolev inequality are
Gaussian measures (cf. [9, Proposition 5.5.1], [36, Proposition 4.1]). The importance
of these two inequalities stems from the fact that they quantify ergodicity: the spectral
gap inequality is equivalent to exponential decay in variance (cf. [9, Theorem 4.2.5]),
while the log-Sobolev inequality is equivalent to exponential decay in entropy (cf. [9,
Theorem 5.2.1]) which in turn by the Pinsker–Csizsár–Kullback inequality (cf. [9, 5.2.2])
implies exponential convergence in the total variation norm. Moreover, the log-Sobolev
implies a hypercontractivity estimate for the associated semigroup (cf. [9, 5.2.3]). On
the other hand, the appeal of these inequalities stem from the fact they are stable under
tensorization (cf. [9, Proposition 4.3.1, Proposition 5.2.7]) which makes them useful in
infinite dimensional settings. Recall that the standard Sobolev inequality on Rd (cf. [39,
Theorem 1, p.263]) reads

‖u‖Lp∗ (Rd) ≤ C‖∇u‖Lp(Rd), where 1
p∗ = 1

p
− 1
d

(1.42)

where u is compactly supported. Clearly, the inequality (1.42) gets worse as d → ∞
whereas the log-Sobolev inequality retains an improvement in terms of a logarithm.
Similarly, the spectral gap inequality (1.41) is just an infinite-dimensional version of the
famous Poincaré inequality (cf. [39, Theorem 1, p.275]). A sufficient criterion for a
log-Sobolev inequality is the strong gradient bound (1.39) whereas the gradient bound
(1.41) only implies the weaker spectral gap inequality (cf. the discussion in [22, p.237]).
Note that if X is a Riemannian manifold as above, the curvature dimension condition
(1.40) is satisfied if

Ric + ∇∇E ≥ CId

and in this setting a log-Sobolev inequality holds for the measure 1
Z e

−E dx where dx
denotes the Riemannian volume measure (cf. [9, Proposition 5.7.1]). This suggests that
Gibbs measures on infinite-dimensional state spaces, as discussed in Section 1.4, satisfy
a log-Sobolev inequality provided they are convex. Since a renormalization procedure,
which destroys the convexity, is often necessary in infinite dimensions, this is nevertheless
unclear. Recently, progress has been made on generalizing the approach of Bakry and
Émery in a certain sense (cf. [11]). This approach does not use the Markov semigroup,
but the semigroup associated with the Polchinski equation and has been successful in
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proving a log-Sobolev inequality for the ϕ4
d-measure for d = 2, 3 (cf. [12]). We refer to

Chapter 4 for more details on gradient bounds for the ϕ4
2-model.

1.6. Structure of the thesis and main contributions

The thesis consists of the following three articles: [77], [48] which is joint work with
Benjamin Gess, Rishabh Gvalani and Felix Otto, and [78] which is joint work with
Pavlos Tsatsoulis.

Chapter 2 is based on [77] and is concerned with a fully non-linear SPDE in divergence
form with rough forcing. The forcing should be thought of as a colored Gaussian noise,
although no probabilistic tools are used in the chapter. In [97] a solution theory for this
equation has already been established, showing that the solution has a certain regularity.
In general, this regularity is sharp as can be seen by considering Brownian motion. In
this chapter we show a better regularity for the solution if one subtracts the solution
to an anistropic stochastic heat equation which takes the non-linearity into account (cf.
Theorem 2.2). This type of regularity is a sort of modelledness assumption à la [55] and
is also at the core of [98].

Chapter 3 is based on [48] and is concerned with the derivation of a thin-film equation
with noise or stochastic thin-film equation. By using the gradient flow structure, we can
postulate an invariant measure and make an ansatz for the stochastic dynamics using the
fluctuation–dissipation principle in the form of a variational Fokker–Planck equation. In
order to circumvent the issue of solving this infinite-dimensional equation, we discretize
in the space variable which yields by standard arguments a (high-dimensional) system of
SDEs. The main observation is that, in general, an additional drift term appears which
can be interpreted as the stochastic integral that ensures invariance of the (discrete)
Gibbs measure. Discretizing the metric tensor in a specific way, as well as choosing spe-
cific coordinates, leads us to recover a well-known discretization of the mobility in the
thin-film operator. This discretization was discovered in order to preserve the entropy
estimate in the discrete setting which yields positivity of the deterministic scheme. Simi-
larly, the main theorem (cf. Theorem 3.8) of the chapter is a stochastic entropy estimate
which in turn also yields positivity in the case of no-slip boundary conditions, whereas
the discretization which was used in the literature before does not preserve positivity.
Furthermore, the gradient flow structure gives rise to a rate functional from the theory
of large deviations. It turns out that finiteness of the rate functional has implications on
the path being able to become zero at some point, as well as yielding Hölder regularity
in time and space. Finally, numerical simulations suggest that both considered schemes
do converge and they seem to converge to the same object.
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Chapter 4 is based on [78] and is concerned with the ϕ4
2-model on the torus. It is known

that this equation has an invariant measure which is in Gibbs form and the energy is
formally convex. Due to the necessary renormalization procedure this convexity is de-
stroyed though and the standard Bakry–Émery machinery does not apply immediately.
We analyze the linearized (with respect to the initial condition) equation and establish
an energy estimate using a crucial stopping time argument. Then we postprocess this
estimate which yields a sharper gradient bound for the Markov semigroup (cf. Theo-
rem 4.1). As in the Bakry–Émery approach this yields a (local) spectral gap inequality
(cf. Theorem 4.2) with a Dirichlet form that is (almost) optimal in terms of local reg-
ularity. Moreover, by ergodicity this implies the same spectral gap inequality for the
ϕ4

2-measure (cf. Corollary 4.3).





CHAPTER 2

A first order description of a nonlinear SPDE with colored
noise

In this chapter we consider a nonlinear stochastic partial differential equation in diver-
gence form. In contrast to the rest of the thesis, the forcing term is a Gaussian noise,
that is white in time, but colored in space. This makes sure that the gradient of the
solution is Hölder-continuous, but it will not be differentiable. This SPDE is a stochastic
gradient flow if the non-linearity is a potential1. We prove a generalized Taylor expansion
of the difference between the solution to the SPDE and the solution to its linearization
around a fixed basepoint.

This chapter is based on the article [77].

2.1. Introduction and statement of main results

Let A : Rd → Rd be given. We consider the following stochastic partial differential
equation (SPDE) ∂tu = ∇ ·A(∇u) + ξ on R × Rd

u|t≤0 = 0.
(2.1)

The forcing term ξ is a space-time Gaussian noise, which is white in time, and periodic,
colored and stationary in space. More precisely, we consider a Gaussian process ξ,
formally defined via its covariance

E
[
ξ(t, x)ξ(t′, x′)

]
= δ(t− t′)K(x− x′),

where K : Rd → R is periodic (cf. Section 2.3), and that for convenience is localized in
the time interval [0, 1]. The spatial covariance function K is chosen in such a way that
the solution v to the linearized equation, i.e. the stochastic heat equation (SHE)∂tv = ∆v + ξ on R × Rd

v|t≤0 = 0,
(2.2)

1and if the noise is white in space as well

23
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is not only a (continuous) function, but differentiable, and we have

[∇v]α < ∞ a.s.(2.3)

for some α ∈
(

1
2 , 1
)

2. For the precise notation we refer to Section 2.2. Since v is a linear
functional of the Gaussian field ξ – and thus is itself Gaussian – more is true. Indeed,
in [97, Lemma 3] Gaussian moments for v were established, meaning that there exists a
C0 > 0 such that

E
[
exp

( 1
C0

[∇v]2α
)]

< ∞.(2.4)

Moreover, we assume that the non-linearity A is elliptic (cf. (2.11)). Under these
assumptions, it is expected that we should also have

[∇u]α < ∞ a.s.(2.5)

and in fact [97, Corollary 1] yields the (a priori) estimate

[∇u]α ≲ [∇v]
α

α0
α + [∇v]α(2.6)

for an α0 ∈ (0, 1) as in [97, Lemma 1]3. Here, we note that the implicit constant in ≲ only
depends and will depend on the dimension, α and the ellipticity of A (cf. Section 2.2).

In particular, we want to stress that for spatially colored noise, (2.1) is not a singular
SPDE. In fact, the SPDE (2.1) with space-time white noise is, in general, not subcritical
in any space-dimension, in the sense that by zooming in on small scales, the nonlinear
terms blow up. For a reference concerning singular (semi-linear) SPDEs and the notion
of subcriticality we refer to [59].

We should mention, that there are no probabilistic arguments in this chapter and if ξ
is a distribution of suitable regularity such that (2.3) holds, the same result can be ob-
tained. Nevertheless, we have chosen to consider the case where ξ is a (Gaussian) noise,
on the one hand because we are heavily building on the work [97]4 and on the other
hand because a typical example of a distribution with a negative Hölder-regularity is a
realization of some Gaussian field with a short correlation length. Thus, everything in
this chapter can be seen as a pathwise analysis, which is in the spirit of the theory of
regularity structures (cf. [59]), where there is a clear distinction between the determinis-
tic and probabilistic steps. Usually, the probabilistic arguments involve the construction
of singular products along with the corresponding renormalization. In our setting no

2This is in contrast to the SHE with space-time white noise forcing, where already in dimension 2 the
solution is not a function anymore
3coming from the DeGiorgi–Nash theorem
4where the analysis is also purely deterministic except for (2.4)
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renormalization is necessary and hence it appears to be natural that the arguments are
purely deterministic.

In [97, p.70, Theorem 1], it is shown that, under suitable assumptions on A – that for
convenience we recall in Section 2.2 – a (unique) solution to (2.1) exists such that (2.6)
and thus (2.5) hold. Due to the rough setting, the authors introduce a spatial increment
operator δy (cf. (2.15)) with which they linearize equation (2.1)5. Then it is convenient
(and a guiding principle) to subtract the increment δyv (where v solves (2.17)) in order
to get rid of the noise ξ. Hence δy(u− v) satisfies a variable, but linear coefficient
equation and the celebrated DeGiorgi–Nash theorem6 yields an a priori estimate for its
Hölder-norm for some α0 ∈ (0, 1). Postprocessing this estimate in turn establishes (2.5)
for α = α0. In the next step, this estimate is upgraded using standard C1+α-Schauder
theory as well as the stochastic estimate (2.4), thus yielding (2.5) for any α ∈ (0, 1).
In general, (2.5) is sharp; in case of Brownian motion it is well-known that its paths
have Hölder–regularity of at most 1

2 but not better. We want to address the following
question: Is there a way to give a finer description of the regularity of u?

In this chapter we intend to give such a regularity statement in the following way. It is
often the case that the difference of the solution to a non-linear equation with a rough
driving signal and the solution to the linearized equation is more regular. A prominent
example that has been treated in the recent years is the ϕ4

2-model (cf. [25]). Indeed,
its solution ϕ and the solution f to the stochastic heat equation in dimension 2 are
distributions but their difference ϕ − f is smoother, in particular a function. This has
been exploited in [25] in order to construct a solution which is local in time. In fact,
this is also a guiding principle for the theory of (controlled) rough paths (cf. [55]) and
ultimately in the theory of regularity structures (cf. [59]), where this concept has been
vastly generalized.

The main result of this chapter is that ∇u is modelled after ∇v which essentially means
that a certain a priori-estimate holds (cf. (2.10)). In the context of singular SPDEs such
a modelling assumption is used in the following way. First, one constructs a singular
product on the level of the linear, but irregular model, i.e. ∇v in this case. In a second
step, one constructs the singular product on the level of the solution ∇u using the
singular product on the level of the model and the assumption that ∇u is modelled after
∇v. Due to the nonlinear nature of the problem it is not sufficient to just consider the
solution v to the SHE, but for all space-time points z = (t′, x′) we consider the solution
to an anisotropic SHE.

5as opposed to taking the derivative of the equation due to the low regularity of the noise
6a localized version thereof, to be precise
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Let a(t′, x′) := DA(∇u(t′, x′)) ∈ Rd×d. Then we write va(t′,x′) for the solution to the
anisotropic stochastic heat equation, i.e. va(t′,x′) solves∂tva(t′,x′) = ∇ · a(t′, x′)∇va(t′,x′) + ξ on R × Rd

va(t′,x′)|t≤0 = 0
(2.7)

with ξ as in (2.2). By the C1+α-Schauder theory developed in [97] we get the following
uniform7 estimate.

Lemma 2.1. There exists a solution va(t′,x′) to (2.7) where a(t′, x′) = DA(∇u(t′, x′))
and A satisfies (2.11), (2.12) as well as (2.13), and we have

sup
(t′,x′)∈R×Rd

[
∇va(t′,x′)

]
α
≲ [∇v]

α
α0
α + [∇v]α.

Then we can state our main result.

Theorem 2.2. Let u be a solution to the equation∂tu = ∇ ·A(∇u) + ξ on R × Rd

u|t≤0 = 0

where A satisfies (2.11), (2.12) and (2.13), and where ξ is a Gaussian noise that is white
in time, periodic, stationary and colored in space such that the corresponding solution v

to the stochastic heat equation (2.2) satisfies [∇v]α < ∞ for some α ∈ (1
2 , 1). Moreover,

let a(t′, x′) = DA(∇u(t′, x′)) ∈ Rd×d and let va(t′,x′) be a solution to (2.7). Then there
exists a family of symmetric matrices (B(t′, x′))(t′,x′) such that for all x, x′ ∈ Rd and
t, t′ ∈ R it holds a.s. that∣∣∣∇u(t, x) − ∇u(t′, x′) −

(
∇va(t′,x′)(t, x) − ∇va(t′,x′)(t′, x′)

)
−B(t′, x′)(x− x′)

∣∣∣(2.8)

≲ d2α((t, x), (t′, x′))

and ≲ denotes ≤ C where C depends only on [∇v]α, λ as well as Λ, α and d.

One way to think of (4.27) is as a generalized Taylor expansion. Indeed, rewriting (4.27)
slightly as∣∣∣(∇u(t, x) − ∇va(t′,x′)(t, x)) − (∇u(t′, x′) − ∇va(t′,x′)(t′, x′)) −B(t′, x′)(x− x′)

∣∣∣(2.9)

≲ d2α((t, x), (t′, x′)).

the symmetric matrix B(t′, x′) plays the role of the Hessian of the function u(t′, ·) −
va(t′,x′)(t′, ·) at the basepoint (t′, x′). Since 2α > 1 it is natural, that an affine correc-
tion appears. Moreover, since 2α > 1, the matrix B can be seen to be unique and

7in the basepoint
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does not depend on (t, x), or more precisely it does not depend on d((t, x), (t′, x′)).
Note that (4.28) is essentially the modelledness condition8 of [98, Definition 3.1, p.880],
which is an extension of controlled rough paths (cf. [55]). In [98], they construct
singular products on the level of the stochastic heat equation using probabilistic ar-
guments. They then use the modelledness condition [98, Definition 3.1, p.880] to
lift these singular products to the nonlinear setting. Since (2.1) is not singular, the
regularity theory in [97] does not rely on such a modelledness. Nevertheless, Theo-
rem 2.2 states that such a modelledness holds true. Of course, (4.27) also implies that
∇u(t′, ·) − ∇va(t′,x′)(t′, ·) is differentiable in x′ as well as the improved Hölder-regularity
in time

∣∣∣∇u(t, x′) − ∇va(t′,x′)(t, x′) −
(
∇u(t′, x′) − ∇va(t′,x′)(t′, x′)

)∣∣∣ ≲ |t− t′|α at z =
(t′, x′).

From now on, we set wa(t′,x′) := u− va(t′,x′). Then we define the modelling constant

M := sup
z=(t′,x′)

inf
B

sup
r>0

r−2α
∥∥∥∇wa(t′,x′) −Bx′

∥∥∥
Pr(z)

,

where the infimum ranges over all affine functions Bx′(x) := B(x−x′)+b with B ∈ Rd×d

being symmetric and b ∈ Rd, and Pr(z) is the parabolic cylinder of radius r defined in
Section 2.2. In order to prove Theorem 2.2 we show that we have

M ≤ C(d, λ,Λ, α, [∇v]α).(2.10)

Then it is straightforward to see that the optimal choice is b = ∇wa(t′,x′)(t′, x′) and
hence (2.10) yields Theorem 2.2. Note that the definition of M is essentially the same
as the definition of the modelling constant in [98, Definition 3.1]. Moreover, we want to
make the following connection. Apart from the dependence of wa(t′,x′) on the basepoint
z = (t′, x′), the semi-norm M bears close resemblance to the Hölder-norm defined in
[76, Section 3.3] where Hölder-regularity is measured in terms of how well a function is
approximated by polynomials.

2.2. Notation and assumptions

Our notation and assumptions are the same as in [97, Section 2]. For the convenience
of the reader we will recall them here. The non-linearity A : Rd → Rd is assumed to
be continuously differentiable and uniformly elliptic in the sense that there exists λ > 0
such that

η ·DA(x)η ≥ λ|η|2 for all x, η ∈ Rd(2.11)

and we have

|DA(x)η| ≤ |η| for all x, η ∈ Rd(2.12)

8on the level of the solution and not the gradient for σ ≡ 1
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where by DA we denote the Jacobian of A. Moreover, we assume that there exists Λ > 0
such that

|DA(x) −DA(y)| ≤ Λ|x− y| for all x, y ∈ Rd.(2.13)

For α ∈ (0, 1) the semi-norm [·]α is defined as

[f ]α := sup
z 6=z′∈R×Rd

|f(z) − f(z′)|
dα(z, z′)

< ∞(2.14)

for all space-time functions f : R × Rd → R or vector fields f : R × Rd → Rd where

d((t, x), (t′, x′)) := |t− t′|
1
2 + |x− x′|

denotes the Carnot–Caratheodory metric and by abuse of notation |·| refers either to
the absolute value or the Euclidean norm on Rd. Naturally, the space Cα denotes all
functions f such that [f ]α < ∞. For r > 0 and z = (t′, x′), by

Pr(z) := (t′ − r2, t′) ×Br(x′)

we denote the parabolic cylinder centered around z with radius r. Then ‖·‖Pr(z) is the
supremum norm on Pr(z). We will also frequently write [f ]α,Pr(z) which is the same
semi-norm as in (2.14) restricted to Pr(z).

For y ∈ Rd we define the spatial increment operator δy as

δyf(t, x) := f(t, x+ y) − f(t, x)(2.15)

where f is either a scalar or a vector field. Then, by the mean value theorem, we can
linearize our non-linearity according to

δyA(∇u) = ay∇δyu

where

ay(t, x) =
∫ 1

0
DA(θ∇u(t, x+ y) + (1 − θ)∇u(t, x)) dθ ∈ Rd×d.

The assumptions on the Jacobian DA translate to estimates on ay as follows. We have

η · ay(t, x)η ≥ λ|η|2 for all x, η ∈ Rd, t ∈ R

as well as

|ay(t, x)η| ≤ |η| for all x, η ∈ Rd, t ∈ R

and

[ay]α ≤ [∇u]α.(2.16)
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Let ψ be a smooth, positive and radially symmetric mollifier that satisfies suppψ ⊂ B1(0)
as well as

∫
Rd ψ dx = 1. The radial symmetry assumption also ensures that first moments

vanish, i.e. for all i = 1, . . . , d it holds
∫
Rd ψ(x)xi dx = 0. Then we write ψr(x) := 1

rdψ
(

x
r

)
and we define for any function f

fr := fr,0 := f ∗ ψr

as well as for i = 1, . . . , d

fr,i := f ∗ (∂iψ)r.

For vector fields9 this notation is to be understood entrywise. Moreover, we will always
write Bx′ for the affine function

Bx′(x) := B(x− x′) + b

where B ∈ Rd×d and b ∈ Rd.

2.3. The stochastic heat equation

In the work [97], they consider a stationary, spatially periodic Gaussian noise ξ on R×Rd,
localized in the time interval [0, 1], that is white in time and colored in space, and such
that the corresponding stochastic heat equation∂tv = ∆v + ξ on R × Rd

v|t≤0 = 0
(2.17)

satisfies

[∇v]α < ∞ a.s.(2.18)

for some α ∈ (1
2 , 1). More specifically, they consider a Gaussian field ξ = {ξ(f)}f with

1−periodic, positive definite covariance function K : Rd → R such that for smooth
test-functions f, g

E[ξ(f)ξ(g)] =
∫ 1

0

∫
[0,1]d

∫
[0,1]d

f(t, x)K(x− y)g(t, y) dx dy dt

and ξ(f) is normally distributed with mean zero. Such a Gaussian field is easily seen
to exist by Kolmogorov’s consistency theorem. The fact that K only depends on one
variable yields stationarity of ξ. Periodicity of K translates to periodicity of ξ. Positive
definiteness of K implies that its Fourier transform K̂ is real-valued and non-negative
and requiring that K is symmetric, i.e. K(−x) = K(x), yields K̂(−k) = K̂(k). Most

9such as a gradient
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importantly, requiring that the Fourier transform of K satisfies

K̂(k) ≲ (1 + |k|2)− s
2

for all k ∈ (2πZ)d, where s = 2α + d ∈ (d, d+ 2) finally implies (2.18) (cf. [97, Lemma
3]).

Now we give the proof for Lemma 2.1.

Proof of Lemma 2.1. For any (t′, x′) ∈ R × Rd we apply Theorem 1 of [97] to A given
by

A(∇u) = a(t′, x′)∇u

where u = va(t′,x′)
10. Thus we get a unique solution va(t′,x′) that satisfies

[
∇va(t′,x′)

]
α
<

∞ a.s.. Then we can apply Corollary 1 of [97] which yields uniformly in (t′, x′) the
estimate [

∇va(t′,x′)
]

α
≤ C(d, λ,Λ, α)([∇v]α + [∇v]

α
α0
α )

and hence the conclusion. □

2.4. Deterministic estimates

From now on we fix a space-time point z = (t′, x′). We set wa(t′,x′) := u− va(t′,x′), where
we recall that a(t′, x′) = DA(∇u(t′, x′)). For notational convenience we will drop the
subscripts referring to a(t′, x′).

In the first step, for simplicity, we focus on the spatial part of the modelling constant.
The proof is elementary and essentially an extension of the proof of Lemma 1 in [97].

Proposition 2.3. Let x′ ∈ Rd. For f : Rd → R such that ∇f ∈ Cα11, we have

sup
r>0

1
r2α

inf
B

‖∇f −Bx′‖Br(x′) ≲ sup
l>0

1
l2α

sup
|y|≤l

inf
k∈Rd

‖∇δyf − k‖Bl(x′) =: N

where Bx′(x) = B(x− x′) + b, B ∈ Rd×d symmetric, b ∈ Rd.

Proof. First of all, we assume that f is smooth. We denote by {ei}i=1,...,d the standard
orthonormal basis of Rd. Let k = k(y, l) be the (near) optimal constant for N . Fix
i, j = 1, . . . , d and l > 0. Note that for all y1, y2 we have the identity δy1+y2∂if =
δy2∂if(· + y1) + δy1∂if .
Then we estimate

|ki(2lej , 2l) − 2ki(lej , 2l)| ≤
∥∥∥ki(2lej , 2l) − δ2lej

∂if
∥∥∥

B2l(x′)
+
∥∥∥ki(lej , 2l) − δlej

∂if
∥∥∥

B2l(x′)

10In this case A is non-deterministic, but since the analysis is pathwise and all the constants depend on
A only through the ellipticity constants λ, Λ, which are deterministic, the proofs are unaffected.
11only in space in this case



2.4. DETERMINISTIC ESTIMATES 31

+
∥∥∥ki(lej , 2l) − δlej

∂if
∥∥∥

Bl(x′)

≤ 3(2l)2αN

and similarly

|ki(lej , 2l) − ki(lej , l)| ≤
∥∥∥ki(lej , 2l) − δlej

∂if
∥∥∥

B2l(x′)
+
∥∥∥ki(lej , l) − δlej

∂if
∥∥∥

Bl(x′)

≤ 2(2l)2αN.

Combining these two estimates yields via the triangle inequality

|ki(2lej , 2l) − 2ki(lej , l)| ≲ Nl2α.

Hence for any l > 0 and n ∈ N we get∣∣∣∣∣ki( l
2n ej ,

l
2n )

l
2n

−
ki( l

2n+1 ej ,
l

2n+1 )
l

2n+1

∣∣∣∣∣ ≲ Nl2α−1(2−n)2α−1
.

Using our assumption that 2α− 1 > 0 we see that the corresponding sequence is Cauchy
and thus there exists aij(l) ∈ R such that

ki( l
2n ej ,

l
2n )

l
2n

→ aij(l) for n → ∞

and, by dyadic summation12, this yields∣∣∣∣ki(lej , l)
l

− aij(l)
∣∣∣∣ ≲ Nl2α−1.(2.19)

Note that aij(l) is constant on dyadics, i.e.

aij(l) = aij(2−ml)(2.20)

for all m ∈ N. Feeding the estimate (2.19) into N we consequently have∥∥∥∥1
l
δlej

∂if − aij(l)
∥∥∥∥

Bl(x′)
≲ Nl2α−1

and, since f is smooth, we infer that

aij(l) → ∂ijf(x′) for l → 0.

Hence we conclude by (2.20) that aij is constant and we have aij = ∂ijf(x′). Moreover,
the estimate ∥∥∥∥1

l
δlej

∂if − ∂ijf(x′)
∥∥∥∥

Bl(x′)
≲ Nl2α−1(2.21)

12again using the fact that 2α − 1 > 0
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holds. Now let x ∈ Br(x′) and we set y := x − x′. Then we estimate componentwise
using (2.21) ∣∣∂if(x) − ∂if(x′) − ∇∂if(x′) ·

(
x− x′)∣∣(2.22)

≤
d∑

k=1

∣∣δykek
∂if(x′

1, . . . , x
′
k+1 + yk+1, . . . , x

′
d + yd) − ∂kif(x′)yk

∣∣
≲ N

d∑
k=1

|yk|2α ≲ Nr2α.

Now we drop the assumption that f is smooth. To this end, let ε > 0. Let k be the
(near) optimal constant for f in N . Then we have for all x ∈ Bl(x′) and |y| ≤ l by the
triangle inequality

|δyfε(x) − k| ≤ ‖δyf − k‖B2l(x′)

and hence

sup
l>0

1
l2α

sup
|y|≤l

inf
kε

‖δyfε − kε‖Bl(x′) ≤ sup
l>0

1
l2α

sup
|y|≤l

‖δyfε − k‖Bl(x′)(2.23)

≤ sup
l>0

1
l2α

sup
|y|≤l

‖δyf − k‖Bl(x′).

Note that, since ∂if is Hölder-continuous, ∂ifε converges uniformly to ∂if and thus, for
fixed r, it holds that infBε‖∇fε −Bε

x′‖Br(x′) converges to infB‖∇f −Bx′‖Br(x′). Dividing
by r2α and taking the supremum over r yields lower semicontinuity of the seminorm

sup
r>0

1
r2α

inf
B

‖∇f −Bx′‖Br(x′) ≤ lim inf
ε→0

sup
r>0

1
r2α

inf
Bε

‖∇fε −Bε
x′‖Br(x′).(2.24)

We conclude

sup
r>0

1
r2α

inf
B

‖∇f −Bx′‖Br(x′)
(2.24)

≤ lim inf
ε→0

sup
r>0

1
r2α

inf
Bε

‖∇fε −Bε
x′‖Br(x′)

(2.22)
≲ sup

l>0

1
l2α

sup
|y|≤l

inf
kε

‖δyfε − kε‖Bl(x′)

(2.23)
≲ sup

l>0

1
l2α

sup
|y|≤l

inf
k

‖δyf − k‖Bl(x′).

□

In order to include time we extend Proposition 2.3 to space-time functions via the
following interpolation inequality.
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Corollary 2.4. For f : R × Rd → R such that ∇f ∈ Cα we have

sup
r>0

1
r2α

inf
B

‖∇f −Bx′‖Pr(z) ≲ sup
l>0

1
l2α

sup
|y|≤l

inf
k∈Rd

‖∇δyf − k‖Pl(z)

+
d∑

i=0
sup
r>0

r1−2α sup
|y|≤r

∥∥∥∂t(δyf)r,i

∥∥∥
Pr(z)

Proof. Let (t, x) ∈ Pr(z). By Proposition 2.3 there exist a symmetric matrix B(t′, x′)
and a vector b(t′, x′) such that∣∣∇f(t′, x) −

(
B(t′, x′)

(
x− x′)+ b(t′, x′)

)∣∣ ≲ r2α sup
l>0

1
l2α

sup
|y|≤l

inf
k=k(t)

∥∥∇δyf(t′, ·) − k
∥∥

Bl(x′)

≲ r2α sup
l>0

1
l2α

sup
|y|≤l

inf
k∈Rd

‖∇δyf − k‖Pl(z).

Via the triangle inequality we split the remainder into a spatial increment and a temporal
increment∣∣∇f(t, x) − ∇f(t′, x)

∣∣ ≤|∇f(t, x) − (∇f)r(t, x)| +
∣∣(∇f)r(t, x) − (∇f)r(t′, x)

∣∣
+
∣∣∇f(t′, x) − (∇f)r(t′, x)

∣∣.
Again by Proposition 2.3 there exist a symmetric matrix B(t, x′) and a vector b(t, x′)
such that∣∣∇f(t, x) −

(
B(t, x′)

(
x− x′)+ b(t, x′)

)∣∣ ≲ r2α sup
l>0

1
l2α

sup
|y|≤l

inf
k∈Rd

‖∇δyf − k‖Pl(z).

and, in order to estimate the spatial increment, we appeal to radial symmetry of our
mollifier, which implies

B(t, x′)(x− x′) =
∫
Rd
ψr(x− ζ)B(t, x′)(ζ − x′) dζ

and, hence again by Proposition 2.3 and the triangle inequality

|∇f(t, x) − (∇f)r(t, x)|

=
∣∣∣∇f(t, x) − b(t, x′) −B(t, x′)

(
x− x′)

−
∫
Rd
ψr(x− ζ)

(
∇f(t, ζ) − b(t, x′) −B(t, x′)

(
ζ − x′)) dζ

∣∣∣
≲ r2α sup

l>0

1
l2α

sup
|y|≤l

inf
k∈Rd

‖∇δyf − k‖Pl(z).

In order to treat the time difference, we show

‖∂t(∇f)r‖Pr(z) ≲
d∑

i=0

1
r

sup
|y|≤r

∥∥∥∂t(δyf)r,i

∥∥∥
Pr(z)

.(2.25)
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Let i = 1, . . . , d. For any t̂ ∈ R we compute, appealing to the mean value theorem in
space and then Fubini’s theorem

(∂if)r(t̂, x) −
(1
r
δreif

)
r
(t̂, x) =

∫
Rd
ψr(x− ζ)

(
∂if(t̂, ζ) −

∫ 1

0
∂if(t̂, ζ + θrei) dθ

)
dζ

= −
∫ 1

0

∫
Rd
ψr(x− ζ)δθrei

∂if(t̂, ζ) dζ dθ.

Integration by parts then yields

(∂if)r(t̂, x) −
(1
r
δreif

)
r
(t̂, x) = −

∫ 1

0

(1
r
δθrei

f

)
r,i

(t̂, x) dθ.

Taking the time derivative proves (2.25).
By the mean value theorem in time, for any x ∈ Rd we have

(∂if)r(t, x) − (∂if)r(t′, x) = (t− t′)
∫ 1

0
∂t(∂if)r(δt+ (1 − δ)t′, x) dδ.(2.26)

and combining (2.26) with (2.25) finally yields

∣∣(∇f)r(t, x) − (∇f)r(t′, x)
∣∣ ≲ r2‖∂t(∇f)r‖Pr(z) ≲

d∑
i=0

r sup
|y|≤r

∥∥∥∂t(δyf)r,i

∥∥∥
Pr(z)

.

Hence we have proven that for (t, x) ∈ Pr(z)∣∣∇f(t, x) −
(
B(t′, x′) ·

(
x− x′)+ b(t′, x′)

)∣∣ ≲r2α sup
l>0

1
l2α

sup
|y|≤l

inf
k∈Rd

‖∇δyf − k‖Pl(z)

+ r2α
d∑

i=0
sup
l>0

l1−2α sup
|y|≤l

∥∥∥∂t(δyf)l,i

∥∥∥
Pl(z)

□

Let y ∈ Rd. Since δyu satisfies

∂tδyu− ∇ · ay∇δyu = ∂tδyv − ∇ · a(t′, x′)∇δyv

we see that δyw satisfies the equation

∂tδyw − ∇ · ay∇δyw = ∇ · (ay − a(t′, x′))∇δyv.

Then, we can write this as a constant coefficient equation

∂tδyw − ∇ · a(t′, x′)∇δyw = ∇ · g(2.27)

by introducing

g := (ay − a(t′, x′))∇δyu.

Note that (2.27) is now invariant under affine spatial translations, i.e. of functions of
the form aff(x) := b · x + a for some b ∈ Rd, a ∈ R. Hence, we can apply the C1+α
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interior Schauder estimate [79, Theorem 4.8], using this invariance, as well as parabolic
rescaling, to obtain that, for all l > 0 and all space-time points z = (t′, x′), it holds

lα inf
aff

[∇(δyw − aff)]α,Pl(z) + inf
aff

‖∇(δyw − aff)‖Pl(z) ≲ lα[g]α,P2l(z)

+ l−1 inf
aff

‖δyw − aff‖P2l(z)

which is equivalent to

lα[∇δyw]α,Pl(z) + inf
k∈Rd

‖∇δyw − k‖Pl(z) ≲ lα[g]α,P2l(z)(2.28)

+ l−1 inf
aff

‖δyw − aff‖P2l(z).

This suggests that we need to further estimate the right hand side which is captured in
the next Proposition and which is an extension of [97, p.73, (34)]. The proof is similar.

Proposition 2.5. Let z = (t′, x′). For f : R × Rd → R continuously differentiable and
y ∈ Rd we have the estimate

inf
aff

‖δyf − aff‖Pl(z) ≲ |y| inf
B

‖∇f −Bx′‖P2l(z)

where Bx′(x) = B(x− x′) + b, B ∈ Rd×d is symmetric and b ∈ Rd.

Proof. For B ∈ Rd×d symmetric we define

f̃(t, x) := f(t, x) −
(1

2
(x− x′) ·B(x− x′) + b · (x− x′)

)
.

Then we compute

∇f̃(t, x) = ∇f(t, x) − (B(x− x′) + b)

as well as

δyf̃(t, x) = δyf(t, x) −
(
y ·B(x− x′) + 1

2
y ·By + b · y

)
.

Notice that for any y the map x 7→ yTB(x−x′)+ 1
2y

TBy+b·y is again affine. Thus, by the
mean value theorem, we have

∥∥∥δyf̃
∥∥∥

Pl(z)
≤ |y|

∥∥∥∇f̃∥∥∥
P2l(z)

which yields the statement. □

2.4.1. Proof of the main theorem. We are now able to prove our main theorem.

Proof of Theorem 2.2. In the following B always denotes a symmetric matrix. We write
M = supz=(t,x)Mz where Mz = infB supr>0 r

−2α
∥∥∥∇wa(t′,x′) −Bx′

∥∥∥
Pr(z)

. For now we
assume that Mz is finite for any z. By Corollary 2.4, we have

sup
r>0

1
r2α

inf
B

‖∇w −Bx′‖Pr(z) ≲ sup
r>0

1
r2α

sup
|y|≤r

inf
k

‖∇δyw − k‖Pr(z)(2.29)

+
d∑

i=0
sup
r>0

r1−2α sup
|y|≤r

∥∥∥∂t(δyw)r,i

∥∥∥
Pr(z)

.
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Let |y| ≤ r ≤ l. First, we focus on the second term on the right hand side of (2.29). To
this end, we recall (cf. (2.27)) that δyw satisfies the constant coefficient equation

∂tδyw = ∇ · a(t′, x′)∇δyw + ∇ · g

where

g = (ay − a(t′, x′))∇δyu

and we estimate for any i = 0, . . . , d

‖∂t(δyw)r,i‖Pr(z) ≲ rα−1[a(t′, x′)∇δyw + g
]
α,P2r(z)(2.30)

≲ rα−1
(
[∇δyw]α,P2r(z) + [g]P2r(z)

)
.

Hence we have

sup
r>0

1
r2α

inf
B

‖∇w −Bx′‖Pr(z) ≲ sup
r>0

1
r2α

sup
|y|≤r

inf
k

‖∇δyw − k‖Pr(z)

+ sup
r>0

r−α sup
|y|≤r

(
[∇δyw]α,P2r(z) + [g]P2r(z)

)
.

For |y| ≤ r ≤ l we estimate by (2.28)

inf
k

‖∇δyw − k‖Pr(z) ≤ rα[∇δyw]α,Pl(z) ≲ rα[g]α,P2l(z) + rα

l1+α
inf
aff

‖δyw − aff‖P2l(z)(2.31)

as well as

[∇δyw]α,Pl(z) ≲ [g]α,P2l(z) + 1
l1+α

inf
aff

‖δyw − aff‖P2l(z).

Now we turn to the estimate of [g]α,P2l(z). We appeal to the Lipschitz continuity of DA
(cf. (2.13)) and recall the definition of a(t′, x′) as well as ay in order to estimate

|ay(t, x) − a(t′, x′)| ≲
∫ 1

0
|θ∇u(t, x+ y) + (1 − θ)∇u(t, x) − ∇u(t′, x′)| dθ

≲
∫ 1

0
θ|∇u(t, x+ y) − ∇u(t, x)| + |∇u(t, x) − ∇u(t′, x′)| dθ

≲ |y|α + d((t, x), (t′, x′))α

and thus, for |y| ≤ r ≤ l we get∥∥ay − a(t′, x′)
∥∥

P2l(z) ≲ lα.

By (2.16), we have

[ay − a(t′, x′)]α,P2l(z) = [ay]α,P2l(z) ≲ [∇u]α,P3l(z).

Moreover, it holds that

‖∇δyu‖P2l(z) ≲ lα[∇u]α,P3l(z)
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as well as

[∇δyu]α,P2l(z) ≲ [∇u]α,P3l(z).

Summing up, we arrive at

[g]α,P2l(z) = [(ay − a(t′, x′))∇δyu]α,P2l(z) ≤ [ay − a(t′, x′)]α,P3l(z)‖∇δyu‖P3l(z)(2.32)

+
∥∥ay − a(t′, x′)

∥∥
P3l(z)[∇δyu]α,P3l(z)

≲ lα[∇u]α,P3l(z)

for |y| ≤ r ≤ l. Combining (2.32) with (2.31) yields for |y| ≤ r ≤ l

rα[∇δyw]α,Pl(z) ≲ l2α[∇u]α,P3l(z) + rα

l1+α
inf
aff

‖δyw − aff‖P2l(z).(2.33)

Then using Proposition 2.5 we further estimate (2.33) to the effect that

rα[∇δyw]α,Pl(z) ≲ l2α[∇u]α,P3l(z) +
(
r

l

)1+α

inf
B

‖∇w −Bx′‖P4l(z).(2.34)

Summing up, we get by (2.30) and (2.34)

1
r2α

sup
|y|≤r

inf
k

‖∇δyw − k‖Pr(z) +
d∑

i=0
r1−2α sup

|y|≤r

∥∥∂t(δyw)r

∥∥
Pr(z)(2.35)

≲
(
l

r

)2α

[∇u]α,P3l(z) +
(
r

l

)1−α 1
l2α

inf
B

‖∇w −Bx′‖P4l(z).

Let K ≥ 1 and set l = Kr. By introducing M ′
z := supr>0

1
r2α infB‖∇w −Bx′‖Pr(z) we

estimate combining (2.29) and (2.35)

M ′
z ≲ K2α[∇u]α +Kα−1Mz

Thus, after using (2.6) as well as Lemma 2.1 we arrive at

M ′
z ≲ K2αC([∇v]α) +Kα−1Mz

where the implicit constant in ≲ depends only on d, λ,Λ and α and C([∇v]α) depends
polynomially on [∇v]α. Since α > 1

2 , using the reasoning in Step 3 in the proof of Lemma
3.6 of [98] the matrix B is independent of r, i.e.

Mz ≲M ′
z

and hence

Mz ≲ K2αC([∇v]α) +Kα−1Mz.
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Choosing K sufficiently large, and since α < 1, as well as the assumption that Mz is
finite, we can absorb Kα−1Mz into the left hand side and end up with

Mz ≲ C([∇v]α)(2.36)

and taking the supremum in z we get

M ≲ C([∇v]α).

In order to get rid of the assumption that Mz is finite we appeal to the following approx-
imation argument. Up to now we made the abbreviation v = va(t′,x′) but from now on
by v we mean the solution to the SHE (2.17). As in the proof of [97, Theorem 1], we
can consider smooth approximations uε, va(t′,x′),ε and vε to u, va(t′,x′) and v such that

∇
(
uε − va(t′,x′),ε

)
→ ∇

(
u− va(t′,x′)

)
= ∇w

uniformly on compact sets and such that [∇vε]α ≲ [∇v]α. Then the corresponding
constant Mz,ε is finite for all z and hence (2.36) applies and we have

Mε ≲ C([∇vε]α) ≲ C([∇v]α).

Hence, by the same reasoning as in Proposition 2.3, we conclude by lower-semicontinuity

M ≲ lim inf
ε→0

Mε ≲ C([∇v]α).(2.37)

In other words, (2.37) means that for all r > 0 and all space-time points z = (t′, x′)
there exists a family of symmetric matrices (B(t′, x′))(t′,x′) and a family of vectors
(b(t′, x′))(t′,x′), such that we have

|∇u(t, x) − ∇va(t′,x′)(t, x) − (B(t′, x′)(x− x′) + b(t′, x′))| ≲ r2α for (t, x) ∈ Pr(z).

Letting r → 0 implies (t, x) → (t′, x′) and hence the optimal b is of the form

b(t′, x′) = ∇u(t′, x′) − ∇va(t′,x′)(t′, x′).

Then we can choose r = d((t, x), (t′, x′)) and thus

|∇u(t, x) − ∇va(t′,x′)(t, x) − (∇u(t′, x′) − ∇va(t′,x′)(t′, x′)) −B(t′, x′)(x− x′)|

≲ d2α((t, x), (t′, x′)),

which we wanted to prove. □



CHAPTER 3

Structure-preserving discretization of the stochastic
thin-film equation

In this chapter we consider the thin-film equation. It is known that this equation has
a gradient flow structure with respect to a (generalized) Wasserstein metric and the
usual Dirichlet energy. Based on that, the fluctuation-dissipation theorem gives rise to
a stochastic thin-film equation. This equation is a singular stochastic partial differential
equation which is out of scope of the framework of regularity structures for now. In
order to circumvent this issue, we discretize the gradient flow structure and rediscover
a well-known discretization of the (deterministic) thin-film equation that preserves the
so-called entropy estimate. In the stochastic setting this entropy estimate then yields
positivity for the solution in the case that the mobility arises from the no-slip boundary
condition. Moreover, we show that the discretization of the stochastic thin-film equation,
considered in the literature before, does not preserve positivity and we perform various
numerical experiments to compare the discretizations in question.

This chapter is based on the article [48] which is joint work with Benjamin Gess, Rishabh
S. Gvalani and Felix Otto.

3.1. Introduction

The thin-film equation models the evolution of the height h of a liquid film over a solid
flat substrate, as driven by capillarity1 and limited by viscosity. In the considered regime
of small slope (|∂xh| � 1) and due to the no-slip boundary condition at the liquid-solid
interface, viscous dissipation is so strong that the liquid’s inertia can typically be ne-
glected. Hence the dynamics are determined by a quasi-static balance between capillary
and viscous forces. The lubrication approximation, which is based on a modulated
Poiseuille Ansatz for the fluid velocity, leads to a fourth-order parabolic equation with
a mobility that cubically degenerates in the film height.

In this chapter, we are interested in the thin-film equation driven by the noise that
models thermal fluctuations. That noise takes the form of a conservative white noise
with a multiplicative non-linearity. The specific form of the multiplicative non-linearity

1surface tension

39
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– it is given by the square root of the mobility – formally arises from the fluctuation-
dissipation principle (cf. [30, (4)]). While there exist elements of a well-posedness
theory for (spatially) more regular forms of the noise in the mathematical literature (cf.
[44], [47] and [29] and the next section for a detailed discussion), the stochastic partial
differential equation (SPDE) we are interested in is expected to require a renormalization,
and is theoretically uncharted. However, at least in 1+1-space dimensions2 as considered
in this chapter, the invariant measure (on configuration space) of the SPDE does not
require a renormalization. In this chapter we ignore the issue of renormalization and
focus on spatial3 discretizations of this SPDE.

The main issue is that the configuration space {h > 0}, which after discretization has
the structure of an orthant, obviously has a boundary. The related preservation of
positivity4 has been at the core of the analysis of the deterministic thin-film equation,
both on the continuum level (cf. [16, 14, 27]) and others, and on the level of spatial
discretization (cf. [54, 121]). We refer to the end of the section for a more in-depth
overview. The preservation of strict positivity is intimately related to what is called the
entropy estimate, i. e. the existence of a Lyapunov functional on configuration space that
blows up when h approaches zero. This Lyapunov functional depends on the mobility,
and thereby arises from kinetics and dissipation, and thus is actually unrelated to the
notion of entropy in thermodynamic equilibrium theory. In fact, the blowing up of the
entropy as h ↓ 0 is a consequence of a sufficiently strong degeneracy of the mobility.
Of course, both in the discrete and the continuum case, such a touch-down can be
suppressed by introducing a disjoining pressure. However, this feature comes with an
additional (vertical) length scale of molecular size, and which one thus would like to avoid
resolving. In this chapter, we therefore disregard this energetic mechanism preventing
touch-down, and just focus on the above-mentioned kinetic mechanism.

In case of the thin-film equation with thermal noise, which in its discretized version
describes a drift-diffusion process on the high-dimensional orthant {h > 0}, the question
is even more pressing: Does the process reach the boundary or is the degeneracy of the
mobility as h ↓ 0, which translates into a degeneracy of the diffusion near the boundary
of {h > 0}, strong enough to prevent reaching the boundary? The fact that the boundary
may be reached has been already recognized in [30], where also an (uncontrolled) fix
has been proposed. For a rigorous analysis of a given discretization, we need a multi-
dimensional version of a Feller test. One main insight of this chapter is that such a Feller
test can be carried out with help of the entropy mentioned above. It shows that for the

2which means that the profile is constant in one direction, so that the space variable x is one-dimensional
3by which we mean the physical space variable x, and not the state-space variable h
4often in form of preservation of non-negativity if the interest was in film spreading and (partial) wetting
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physical mobility considered in this chapter, and in the case of 1 + 1-dimensions, the
numerical mobility, which was introduced in [54, Section 5] in order to prevent touch-
down in the deterministic case, does also prevent touch-down in the presence of thermal
noise (cf. Theorem 3.8). However, in Section 3.10 we provide evidence, through analysis
of the path-space rate functional of the continuum stochastic thin-film equation, that the
absence of touch-down maybe an artifact of discretization - for the continuum system
touch-down is unlikely only for m ≥ 8 (cf. Proposition 3.13).

The use of entropy estimates to construct non-negative solutions to the (deterministic)
thin-film equation goes back to the original work [16, p.190, (4.12)], proving the existence
of non-negative solutions for mobility exponents 1 < m < 4 (see Assumption 3.6) and
preservation of positivity for m ≥ 4. Subsequently, these estimates were refined by
means of so-called α-entropy estimates in [14, p.182, Proposition 2.1] and [17, p.99,
(4.8) - (4.13)], which allowed to deduce the preservation of positivity for m ≥ 7

2 . A
generalization of the existence of non-negative solutions to multiple space dimension
was given in [52] and extended to a wider range of mobility exponents in [27, p.324,
Proposition 2.2]. Localized forms of α-entropy estimates were subsequently introduced
in [15, Section 4] in 1 + 1 dimensions and [18, p.422, Theorem 3.1] in higher space
dimensions and in [28] used to prove upper bounds on the propagation of the support
of solutions. Backward weighted entropy estimates have been introduced in [42, Section
3] and [43, p.3142, Lemma 11] to prove lower bounds on propagation rates. Also in the
context of stochastic thin-film equations (with spatially regular noise) entropy estimates
have been used in order to derive a-priori estimates and the existence of non-negative
solutions [44, p.423, Proposition 4.3] and [29, p.20, Lemma 4.3].

As has been already mentioned, for the discretized thin-film equation the use of entropy
estimates, which rely on an appropriate discretization of the mobility, dates back to [54,
Section 5] in the case of a finite element discretization, and to [121, p.529, Proposition
3.1] in the case of a finite difference discretization. In the discrete case the corresponding
entropy estimates have a stronger effect yielding positivity already for m ≥ 2 in case
of the two aforementioned discretizations. In this chapter we transfer the discretization
and entropy estimate of [54] to the stochastic setting and get positivity for the scheme
for m ≥ 3 (cf. (3.8)).

3.2. State of the art

In [53, Section 2.3], the authors make the ansatz of an (infinite-dimensional) SDE in
Itô form with a drift term given by5 the deterministic thin-film operator (cf. [53, (36)]),
and seek a noise term such that the process satisfies detailed balance with respect to the
5just, i. e. there is no Itô correction term
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associated Gibbs measure (cf. [53, (21)]). They carry this out on the level of a finite-
difference discretization in space, based on centered finite differences (cf. [53, p.1269])
which allows to use a local numerical mobility function (cf. [53, (29b)]). Thanks to this
simple structure6 they find that this is the case, provided the multiplicative noise involves
the exact square root of the numerical mobility function (cf. [53, (33)]). However in
this case, it is easy to see that the process does touch-down (cf. Section 3.9).

When it comes to actual simulations, [53] departs from this somewhat academic spatial
discretization: They treat the noise term, which due to its conservative and multiplicative
nature has the structure of a scalar conservation law with nonlinear and heterogeneous
(in fact, rough) drift, via a finite volume discretization with an upwind scheme (cf. [53,
(63),(64)]). The upwind scheme preserves non-negativity. For the deterministic term,
they however use the numerical mobility introduced in [54] (cf. [53, (B.3)]), which is
rather based on a lumped finite element interpretation (cf. [53, p.1275]). Again, at least
on the purely deterministic level, this ensures non-negativity. Using two different, and
nonlocal, numerical mobility functions however destroys the structure of exact detailed
balance. The authors acknowledge this deficiency (cf. [53, p.1278]), mentioning that the
deviation from detailed balance is vanishing (of first order) in the grid size. However, it
is well-known that in the case of a singular SPDE, two different spatial discretizations,
while both nominally first-order consistent, may lead to order-one different solutions (cf.
[61]).

In [37, Sections 2 and 4], the authors repeat the derivation of the infinite-dimensional
SDE of [53], but obtain it in the limit of fully correlated noise in the wall-normal direction
for the long-wave/lubrication approximation of the so-called fluctuating hydrodynamics
equations (cf. [80, §88, (88.6)-(88.18)]). Following [53], the authors make, essentially, an
identical observation, that a finite difference discretization of the associated stochastic
thin-film equation is formally reversible with respect to the associated Gibbs measure if
and only if the multiplicative noise is given by the square root of the associated mobility.

Again, for the purposes of numerical simulations, [37] departs from the finite-difference
discretization and instead proposes a spectral collocation method. The idea is to carry
out the differentiation operations by decomposing the solution in terms of the eigenfunc-
tions of the covariance operator of the noise, while treating the numerical mobility in a
similar manner to the finite-difference discretization (cf. [37, Section 5.1, (71)-(72b)]).
While this may have some structural advantages, it suffers from the drawback that it is
unclear, and possibly untrue, that the spectral discretization satisfies detailed balance.
Furthermore, it is also unclear if this scheme preserves the positivity of the film height.

6where there is no difference between the Itô and Stratonovich form
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In recent years, the existence of probabilistically weak solutions to the stochastic thin-
film equation has been considered in a sequence of works. In all of these works the noise
term is spatially regularized. In [44], the authors constructed weak solutions for the
case of quadratic mobility, relying on a conjoining-disjoining pressure term, and noise
interpreted in Itô sense. In [23] more general mobilities were treated depending on a non-
conservative source term. Both works require the initial condition to be strictly positive.
For quadratic mobility and noise in Stratonovich sense, this restriction was lifted in [47].
The case of cubic mobility without additional conjoining-disjoining pressure term was
recently treated in [29]. Recently, these results were extended to 2 + 1 dimensions in
[86] and [106].

3.3. The thin-film equation as a formal gradient flow

As discussed in Section 1.3.1 the thin-film equation is a gradient flow (cf. [94, p.2092
ff.]); we recall it here. In 1 + 1 dimensions the equation takes the form

∂th+ ∂x(M(h)∂3
xh) = 0 on R>0 × R ,(3.1)

where h is the film height and M is called the mobility. In the following discussion,
we tacitly think of h > 0 – this chapter does not address partial wetting, which would
require more modelling assumptions at the contact line, like the equilibrium contact
angle, possibly in conjunction with additional dissipation. Equation (3.1) is based on a
lubrication approximation of a fluids equation, like Darcy or Stokes (cf. [50, 73]) and
is a fourth order and possibly degenerate parabolic partial differential equation. The
mobility M(h) depends on the dissipation mechanism (e.g. Stokes vs. Darcy) and the
boundary condition (e.g. no-slip vs. Navier) for the fluid velocity. Often, it is assumed
that the mobility follows a power law, i.e. M(h) ∝ hm for some m ≥ 0. For example,
Stokes with no-slip boundary conditions gives rise to M(h) ∝ h3 and this is also the
most relevant case. Stokes with Navier slip leads to M(h) ∝ h2 for h below the slip
length, and Darcy yields M(h) ∝ h.

In this chapter, we make the convenient assumption that the solution h of (3.1) is 1-
periodic. Since we clearly have conservation of mass, i.e.

d
dt

∫ 1

0
hdx = 0,

we choose as the configuration space

M :=
{
h : R → R : h 1-periodic, h > 0,

∫ 1

0
hdx = 1

}
.
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The thin-film equation on M is driven by capillarity in the form of the Dirichlet energy

E(h) := 1
2

∫ 1

0
(∂xh)2 dx(3.2)

and limited by viscosity as described by the metric tensor 7 8

gh

(
ḣ, ḣ

)
:= inf

j

{∫ 1

0

j2

M(h)
dx : ∂xj + ḣ = 0

}
(3.3)

where ḣ ∈ ThM, and the tangent space is given by

ThM =
{
ḣ : R → R : ḣ 1-periodic,

∫ 1

0
ḣdx = 0

}
.

ForM(h) = h, this metric tensor corresponds to the infinitesimal metric in the 2−Wasserstein
distance (cf. [13, p.384, (35)-(36)] and [95, p.111]).

Hence, it is natural to expect that the thin-film equation has the structure of a gradient
flow, i.e. that (3.1) can formally be written as

∂th = −∇E(h).

This can be understood in the following way. The energy functional E gives rise to a
differential defined as

diffE|h.ḣ := d
ds

∣∣∣
s=0

E
(
h+ sḣ

)
(3.4)

for h ∈ M and ḣ ∈ ThM, and we can define a gradient via the Riemannian structure
for all h ∈ M as the unique element ∇E(h) ∈ ThM satisfying

diffE|h.ḣ = gh

(
∇E(h), ḣ

)
(3.5)

for all ḣ ∈ ThM. Hence, the gradient flow formulation ∂th = −∇E(h) means that we
have

diffE|h.ḣ+ gh

(
∂th, ḣ

)
= 0(3.6)

for all h ∈ M and ḣ ∈ ThM. More precisely, by considering the Euler–Lagrange equation
for (3.3), we have

gh

(
ḣ, ḣ

)
=
∫ 1

0
M(h)(∂xf)2 dx,(3.7)

7for which, by polarization, it is enough to specify the quadratic part
8Note that ∂xj + ḣ = 0 determines j up to an additive constant so that the infimum is taken on a single
parameter. We opted for this representation because it extends verbatim to the higher dimensional case
and will play a crucial role in the discretization.
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where the 1−periodic f is such that ḣ+ ∂x(M(h)∂xf) = 0. By polarization of (3.7) and
integration by parts we indeed obtain (3.6):

gh

(
∂th, ḣ

)
=
∫ 1

0
ḣ∂2

xhdx (3.2),(3.4)= −diffE|h.ḣ.

Choosing ḣ = ∂th in (3.6) we recover the energy dissipation identity characteristic of
gradient flows

d
dt
E(h) = −gh(∂th, ∂th) = −

∫ 1

0
M(h)(∂3

xh)2 dx ≤ 0 .

Often, the energy has further contributions next to the one coming from capillarity (cf.
(3.2)) giving for instance rise to a disjoining pressure. In fact, the choice of the energy
functional will not be important for Section 3.6 and Section 3.7 and so if not otherwise
stated we will not further specify E.

However, following [16, p.188, (4.3)] we define the function s as a solution to the equa-
tion s′′ = 1

M and then for E being the Dirichlet energy this yields another Lyapunov
functional

S(h) :=
∫ 1

0
s(h) dx(3.8)

called entropy in the mathematical literature, and the following entropy estimate
d
dt
S(h) = −

∫ 1

0
(∂2

xh)2 dx ≤ 0(3.9)

holds. This estimate will play a major role in Section 3.8.

The preservation of positivity can also be interpreted geometrically in the sense that the
evolution on the configuration space M does not touch its boundary ∂M.

3.4. Thermodynamically consistent introduction of fluctuations

3.4.1. Invariant measure on configuration space and the associated re-
versible dynamics. In agreement with the standard equilibrium thermodynamics, we
postulate that the invariant measure on configuration space of the stochastic dynamics
is given by the Gibbs measure

dν(h) = 1
Z
e−βE(h) dh(3.10)

for some β > 0, which up to the Boltzmann factor is the inverse temperature, and a
normalization constant Z. Here one thinks of dh as a uniform measure on the configura-
tion space M. In the special case where the energy functional is the Dirichlet energy (cf.
(3.2)), the measure (3.10) looks similar to the classical Wiener measure. This relation,
though, is not quite correct due to the following three reasons. First of all, we are on a
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periodic domain and, secondly, we have the additional constraint
∫ 1

0 hdx = 1. Finally,
the restriction to the orthant {h > 0} is the major difference.

Hence we have to think of (3.10) as a Gaussian measure conditioned to be non-negative,
i.e.

dν(h) = 1
Z
1{h > 0} dµ(h)(3.11)

where µ is the so-called Gaussian free field, i.e. the stationary Gaussian measure with
covariance operator given by

(
−β∂2

x

)−1 and conditioned on the spatial average being
1. We will refer to the measure ν on M as the conservative Brownian excursion due
to its reminiscence to the classical Brownian excursion from stochastic analysis. Notice,
however, that unlike in the case of the classical Brownian excursion, the set {h ≥ 0}
we are conditioning on is not a null set with respect to the measure µ. In other words,
the conservative Brownian excursion (3.11) is absolutely continuous with respect to the
Gaussian free field, and it is well known that the latter is supported on C

1
2 −-functions,

and hence so is ν.

In the case of zero Dirichlet boundary data, the Brownian bridge conditioned to non-
negative functions dν̃(h) = 1

Z1{h≥0} dµ(h) corresponds to the law of the Brownian excur-
sion, which in turn is the law of the 3d Bessel bridge (cf. [118, p.205, Theorem 3]). As
a consequence, the transience of the 3d Brownian motion implies that ν̃ is supported on
positive functions. This repulsive effect of the boundary ∂M is called entropic repulsion.
Entropic repulsion in discrete systems and interface models has been analyzed, for ex-
ample, in [33]. Brownian excursion with fixed average has been realized as an invariant
measure of an SPDE in [119].

We note in passing that in 2 + 1-dimensions, the Gaussian measure would be related
to the two-dimensional Gaussian free field, so that in view of the latter’s ultraviolet
logarithmic divergence, the conditioning on h > 0 is (borderline) singular; hence the
nature of the Gibbs measure is unclear in this case.

We now turn to the stochastic dynamics. We follow the standard Ansatz that the time
evolution of the law νt – which we will assume to be absolutely continuous with respect
to the invariant measure ν – of the stochastic thin-film equation is described by the
following Fokker–Planck equation in variational form, i.e. we have

d
dt

∫
M
ζ dνt = − 1

β

∫
M
g(∇ζ,∇ft) dν(3.12)

for all sufficiently nice test functions ζ and where ft := dνt
dν . It is obvious from (3.12) that

ν is indeed invariant. The symmetry of the so-called Dirichlet form on the r.h.s. of (3.12)
implies that the generator L, which is defined as the representation of the Dirichlet form
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w.r.t. L2(dν), is symmetric. This in turn yields that the stochastic process is reversible,
meaning that the invariant measure on path space is invariant under reversing the time
direction. As we will see later, this ansatz will ensure that the dynamics obey the detailed
balance condition known from thermodynamics.

3.4.2. Renormalization of the thin-film equation with thermal noise. In
[30, (4)] it has been suggested that the thin-film equation with thermal noise is given by

∂th+ ∂x

(
M(h)∂3

xh
)

= ∂x

(√
M(h)ξ

)
(3.13)

where ξ denotes space-time white noise. In the course of this chapter, it will become
apparent that (3.13) arises from (3.12). First, we explain why equation (3.13) is singular
as an SPDE which means that there are nonlinear terms which are not well-defined
a priori in a classical sense. This is in contrast to versions of the thin-film equation
driven by a less singular (and thus less physical) noise than white noise, for which a
well-posedness theory exists, see the discussion in Section 2.

As a consequence of the characterization of the invariant measure on configuration space
in Section 3.4.1, we expect typical solutions h of the thin-film equation with thermal
noise to have spatial regularity in the Hölder class C

1
2 − and not better. Hence, the

product M(h)∂3
xh appearing in the thin-film operator is the product of a function in

C
1
2 − and a distribution in the negative Hölder space9 C− 5

2 − and thus ill-defined (and
more than just border-line since (1

2−) + (−5
2−) = −2−).

Moreover, we encounter a similar difficulty in the multiplicative noise term that formally
is given by ∂x(

√
M(h)ξ): Since the effective dimension for our fourth-order parabolic

operator in one space dimension is 4 + 1 = 5, ξ is in the negative Hölder class C− 5
2 −

(which can be defined as ∂tC
3
2 − +∂3

xC
1
2 −, where space-time Hölder spaces are defined

w. r. t. to the anisotropic fourth-order parabolic Carnot-Carathéodory norm). Hence the
product

√
M(h)ξ has the same singular nature as the product M(h)∂3

xh. This similarity
in the degree of singularity is reminiscent of quasi-linear second-order equations (cf. [97]).
We stress that these difficulties are unrelated to the degeneracy10 of M .

Hence, the thin-film equation with thermal noise is in need of a renormalization, a
pressing and attractive topic for the theory of singular SPDE. In this chapter, we do not
further address this issue for several reasons: 1) In 1+1-space dimensions, as mentioned
above, the invariant measure is not in need of a renormalization. Hence the situation is
better than in case of the well-studied stochastic quantization equation11. The invariant

9see a couple of sentences below for a definition
10meaning that M(0) = 0
11which comes in form of the Allen-Cahn equation driven by space-time white noise
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measure for the latter equation12 is in need of a renormalization for space dimensions
≥ 2 (and renormalizable in dimensions < 4). 2) In this chapter, we focus on structural
properties of spatial discretizations that can be rigorously addressed without a well-
posedness theory for the continuum limit. 3) A simple but typical scaling argument
suggests that our problem is renormalizable in 1+1-space dimensions. Indeed, zooming
in on small length and time scales through

x = `x̂, t = `4t̂, h = 1 + `
1
2 ĥ, ξ = `−

5
2 ξ̂,(3.14)

where the rescaling of ξ is such that ξ̂ is another instance of space-time white noise, and
where 1 could be replaced by any positive constant, the equation (3.13) turns into

∂t̂ĥ+ ∂x̂

(
M(1 + `

1
2 ĥ)∂3

x̂ĥ
)

= ∂x̂

(√
M(1 + `

1
2 ĥ)ξ̂

)
,

from which we learn that on small scales, the non-linearity fades away 13. A similar
computation shows that in 2+1-space dimensions the stochastic thin-film equation is
critical, i.e. the rescaling (3.14) leaves the equation (3.13) invariant and hence the
nonlinear terms persist on small scales.

There is a fourth point that we would like to make. Although at first sight the singular
nature of the equation is very far from borderline, it is better than expected in some
specific cases. As is common in the deterministic rigorous treatment, one could rewrite
the non-linearity in the thin-film operator in a less singular way:

M(h)∂3
xh = ∂3

xM(h) − 3
2
∂x

(
M ′(h)(∂xh)2

)
+ 1

2
M ′′(h)(∂xh)3

where M is the antiderivative of M . Of course the terms (∂xh)2 and (∂xh)3 are still
singular but if we choose the following ansatz for renormalization which is inspired by
the φ4-model

(∂xh)2 → (∂xh)2 − C, (∂xh)3 → (∂xh)3 − 3C∂xh

the divergent constant C drops out since by the chain rule

− 3
2
∂x

(
M ′(h)

(
(∂xh)2 − C

))
+ 1

2
M ′′(h)

(
(∂xh)3 − 3C∂xh

)
= −3

2
∂x

(
M ′(h)(∂xh)2

)
+ 1

2
M ′′(h)(∂xh)3.

While this argument suggests that the non-linearity M(h)∂3
xh is less singular than ex-

pected, we now argue that the non-linearity
√
M(h)ξ can be completely avoided in case

of linear mobility, i.e. M(h) = h. It is well known (cf. [115, p.74, Theorem 2.18])

12also known as φ4 model in quantum field theory
13this discussion obviously ignores additional difficulties that may arise from the degeneracy of the
mobility
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that for linear mobility under the change of variables h 7→ X where X is the inverse
distribution function of h, i.e.

z =
∫ X(z)

0
h(x) dx,(3.15)

the metric tensor transforms as

gh

(
ḣ, ḣ

)
=
∫ 1

0
Ẋ2 dz = gX

(
Ẋ, Ẋ

)
.

The Dirichlet energy transforms according to

E(X) = 1
2

∫ 1

0

(
d2

dz2X(z)
)2

(
d
dzX(z)

)5 dz.

Hence the deterministic dynamics amount to the L2-gradient flow of E, which is seen to
assume the form

∂tX = 1
4
∂3

z (∂zX)−4 − 5
8
∂z

(
∂z(∂zX)−2

)2

and then (3.12) can be seen to translate into

∂tX = 1
4
∂3

z (∂zX)−4 − 5
8
∂z

(
∂z(∂zX)−2

)2
+ ξ(3.16)

where ξ is space-time white noise. The first term on the right hand side of (3.16) is
well-defined since ∂zX behaves like h (cf. (3.75)), and a non-linearity in the Hölder
continuous h is still harmless. For the second term on the right hand side of (3.16), we
notice that it is a “KPZ-like” term followed by a derivative. Since the renormalization
constant for the KPZ equation does not depend on the space variable (cf. [46, p.223,
Theorem 15.1]) we might expect that in this case it is annihilated by the outer derivative.
Thus, one may expect that the leading order counter terms are zero and one obtains only
higher order counter terms.

We will comment further on the possible structure of a renormalizing counter term
in Remark 3.12, once we introduce both our discretization and the central difference
discretization. Furthermore, in the numerical experiments performed in Section 3.11.4
we observe that the two-point14 distribution functions of the two discretizations we are
considering in this chapter converge to the same object. This provides some numerical
evidence for the our guess that equation (3.13) is less singular than expected, even for
M(h) = h3.

14in time
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3.5. Discretization

A numerical treatment requires a discretization. From the Fokker–Planck equation in
its variational form (4.2) we learn that it is determined by the triple (M, g, E), which
hence we need to discretize. For the function space M, we choose a Finite Element
discretization. More precisely, we fix N ∈ N and denote the equidistant partition of the
torus by {xi}i=1,...,N . Then we denote by P1 the space of 1-periodic, continuous, and
piecewise linear (with respect to the equidistant partition) functions and we set

MN := M ∩ P1 =
{
h ∈ P1 : h > 0,

∫ 1

0
hdx = 1

}
,

which then comes with a canonical tangent bundle TMN . For the functional E, we make
a conformal Ansatz by restricting to MN . This gives rise to a discretized conservative
Brownian excursion νN according to (3.10). Finally, we need to specify a metric tensor
on TMN ⊗ TMN . A natural discretization of the metric tensor would be its restriction
to the space MN . However, we will not consider this discretization in this chapter for
reasons explained in Remark 3.7.

3.6. Introducing coordinates

In Section 3.4.1 we have already seen how a gradient flow structure, as determined by
a Riemannian manifold (M, g) and a function E, gives rise to a stochastic process via
the Fokker–Planck equation (cf. (3.12)). In this section, we aim to write this process
in Itô form. To this end, we need to introduce coordinates. Let M be a differentiable
Riemannian manifold with boundary, equipped with a Riemannian metric g, and assume
that we have a global chart

(ϕα)α : M → ∆,

where ∆ is an open subset of RN with coordinates enumerated by α = 1, . . . , N . More-
over, we think of M as equipped with a probability measure ν. Then, these data give rise
to a Fokker–Planck equation in variational form (cf. (3.12)) which describes the time
evolution of the probability measure νt which we assume to be absolutely continuous
with respect to ν. Hence (3.12) gives rise to a Markovian stochastic process on M of
which ν is the invariant measure. By the symmetry of the right hand side of (3.12), the
resulting process on path space is reversible.

The chart (ϕα)α allows to pull back functions from ∆ to M and thus to push forward
measures from M to ∆. For notational convenience we will not distinguish between
ζ ◦ ϕ and ζ, between ft ◦ ϕ and ft, and between ϕ#νt and νt, and will write hα instead
of ϕα(h). A quick calculation shows that Radon-Nikodym derivatives transform like
functions; in particular, the relation dνt = ft dν lifts from M to ∆. By the usual duality,
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we define the gradient of ϕα as the unique element ∇ϕα(h) ∈ ThM satisfying

diffϕα|h.ḣ = gh

(
∇ϕα(h), ḣ

)
for all ḣ ∈ ThM (cf. (3.5)). While here, we think of the metric tensor as a bilinear
form on tangent vectors, it is now convenient to consider its dual, a bilinear form on
co-tangent vectors like differentials. The coordinate representation of this dual metric
tensor is given by

gαα′(h) = diffϕα|h.∇ϕα′(h).(3.17)

The upper indices indicate the 2 contra-variant nature of the dual metric tensor. In fact,
seen as a matrix, it is the inverse of the metric tensor gαα′(h) (cf. (3.81)). Then by 3.82,
we get

g(∇ζ,∇ft) = gαα′
∂αζ∂α′ft.,

where from now on we will use the Einstein convention of summing over repeated indices
if not otherwise stated. Hence, we end up with the Fokker–Planck equation in variational
form on ∆, i.e.

d
dt

∫
∆
ζ dνt = − 1

β

∫
∆
gαα′

∂αζ∂α′ft dν(3.18)

for all sufficiently nice test functions ζ. Without much loss of generality, we assume that
ν is given by

dν(h) = 1
Zβ

e−βE(h) dh

for some function E : ∆ → R where dh denotes the Lebesgue measure on ∆. For brevity
we set ρ∞ := 1

Zβ
e−βE . Then we apply the divergence theorem which yields the following

equation for ft ρ∞∂tft = 1
β∂α

(
gαα′

ρ∞∂α′ft

)
on R>0 × ∆,

nαg
αα′
∂α′ft = 0 on R>0 × ∂∆,

(3.19)

where n = (nα)α denotes the outer normal of the boundary ∂∆. Moreover, considering
the probability density ρt defined through

ρt := ftρ∞

we see by (3.19) and the Leibniz rule that ρt solves the Fokker–Planck equation∂tρt = ∂α

(
gαα′

(
1
β∂α′ρt + ρt∂α′E

))
on R>0 × ∆,

nαg
αα′
(

1
β∂α′ρt + ρt∂α′E

)
= 0 on R>0 × ∂∆.

(3.20)
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Note that (3.20) can be seen as a continuity equation for the probability density with
the probability flux J(ρ) being defined in components as

Jα(ρ) := gαα′
( 1
β
∂α′ρ+ ρ∂α′E

)
.

Then not only is ρ∞ the stationary solution of (3.20) but in fact we have that

J(ρ∞) ≡ 0

which corresponds to the detailed balance condition (cf. [100, p.119, (4.97)]). Instead
of describing the evolution of the law through (3.20), we can use the duality between
measures and continuous functions to compute the evolution of observables u of the
process. Indeed, by computing the formal adjoint of (3.20), we can read off the following
backward Kolmogorov equation:

∂tut = 1
β
∂α

(
gαα′

∂α′ut

)
− ∂αutg

αα′
∂α′E(3.21)

= 1
β
gαα′

∂αα′ut + ∂αut

( 1
β
∂α′gα′α − gαα′

∂α′E

)
in ∆ equipped with the boundary conditions on ∂∆

nαg
αα′
∂α′ut = 0.(3.22)

Note that the right hand side of (3.21) is the generator of the associated diffusion process.
Thus, we can use (3.21) to identify the stochastic process hα

t arising from (3.18). Indeed,
its drift is given by −

(
1
β∂α′gα′α − gαα′

∂α′E
)
(ht) and its diffusion matrix by 1

β g
αα′(ht).

This gives rise to the following stochastic differential equation in Itô form (cf. [93, p.126,
Theorem 7.3.3 and p.152, Theorem 8.4.3])

dhα
t =

(
−gαα′(ht)∂α′E(ht) + 1

β
∂α′gα′α(ht)

)
dt+ σα

α′(ht)
√

2
β

dWα′
t ,(3.23)

where σα
α′ denotes any matrix satisfying gαα′ =

∑N
α′′=1 σ

α
α′′σα′

α′′ , and Wt is a standard
Wiener process. Furthermore, the no-flux boundary conditions in (3.22) correspond
to reflecting boundary conditions in (3.23) (cf. [68, p.222, Theorem 7.1]). The main
purpose of this subsection was to elucidate the emergence of the Itô-correction term
1
β∂α′gα′α.

3.7. The Grün–Rumpf metric

In [54, Section 5] the authors have introduced a discretization of the deterministic thin-
film equation in a way such that a discrete version of the entropy estimate (3.9) holds; see
Lemma (3.5). They propose a finite element discretization and in particular introduce
a specific discretization of the mobility. As it turns out, the latter can be interpreted
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as a mixed finite element discretization with lumping of the metric tensor (3.3); see
Definition (3.1). At the same time, the authors of [121] have considered a finite difference
discretization of (3.1) with a similar discretization of the mobility as [54] that preserves
the entropy estimate.

As has been discussed in the last section, the space MN is the configuration space for
the discretized stochastic thin-film equation. Any function in P1, and thus also any
h ∈ MN , is uniquely determined by its values at the nodal points {xi}i=1,...,N . This
gives rise to a natural chart (

ϕi
)

i
: MN → ∆N

where for h ∈ MN we have

h = ϕi(h)ϕ̂i.(3.24)

Here ∆N is the N -simplex defined as

∆N :=
{
h ∈ RN : hi > 0, 1

N

N∑
i=1

hi = 1
}

and for i = 1, . . . , N we define ϕ̂i to be the unique piecewise linear and continuous
function such that we have

ϕ̂i(xj) = δij .

The family (ϕ̂i)i=1,...,N is of course known as the hat basis in finite elements. As in

xi−1 xi xi+1

1
ϕ̂i

Figure 1. An element ϕ̂i of the hat basis.

Section 4.1 we will write hi instead of ϕi(h). We denote by P0 the space of piecewise
constant functions and we note that ThMN := ThM ∩ P1.

We now turn to the discretization of (3.3); in suitable coordinates it amounts to a
reinterpretation of the metric considered in Section 5 of [54], see Remark 3.3. For the
discretization of (3.3), following the strategy of first discretizing and then periodizing
leads to a simpler result, and we shall follow it here. Hence Definition 3.1 is phrased
with the unit torus replaced by R15.

15with the abuse of keeping the notation MN
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Definition 3.1 (Grün-Rumpf metric). Let h ∈ MN and ḣ ∈ ThMN . We define a
metric tensor on ThMN ⊗ ThMN via

gh(ḣ, ḣ) :=

inf
j


∫
R

j2

M(h)
dx : j ∈ P0,

∫
R
j∂xζ dx = 1

N

∑
i∈Z

ḣiζi ∀ζ ∈ P1 compactly supported

.
Remark 3.2. As mentioned earlier (3.1) is a mixed finite element discretization with
lumping of (3.3). By a mixed discretization, we mean that we are not just discretizing
the configuration space but also the space of fluxes, i.e. we require j ∈ P0. Moreover,
lumping means that instead of the L2-inner product

∫
R ḣζ dx we use the `2-inner product

1
N

∑
i∈Z ḣ

iζi.

xα− = xi xα+ = xi+1

Iα

Figure 2. Relation of the intervals (Iα)α and the nodal points {xi}i.

Now we come to the choice of coordinates. In order to obtain a simpler expression of
the metric tensor it is better to introduce another basis than the hat basis. For any α

let ϕα ∈ P1 be given by (see Figure (2))

ϕα := N
3
2 (ϕ̂α+ − ϕ̂α−).(3.25)

We call the family (ϕα)α=1,...,N the zigzag basis 16. Now we can introduce another set of
coordinates given by the chart

(ϕα)α : MN → RN

where17

h = ϕα(h)ϕα + 1.(3.26)

Here 1 denotes the constant function with that value. Again for simplicity, instead of
writing ϕα(h) we write hα.
We note that by the relation (3.26), for every h ∈ MN the induced basis on ThMN is
given by the zigzag basis. Hence in these coordinates, the metric tensor (3.1) takes the
form

gαα′(h) := gh(ϕα, ϕα′).

16As is easily seen it holds that
∑N

α=1 ϕα = 0 and thus the zigzag basis is not really a basis. This issue
is resolved by requiring that

∑N

α=1 hα = 0.
17The image of (ϕα)α is also affine linear.
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Iα−1 Iα Iα+1

−N
3
2

N
3
2

ϕα

Figure 3. An element ϕα of the zigzag basis.

Note that for any α we have
1
N

∑
i∈Z

(ϕα)iζi =
√
N
(
ζα+ − ζα−

)
.

Similarly, we compute ∫
R
j∂xζ dx =

∑
α′∈Z

jα′

(
ζα′+ − ζα′−

)
where j =

∑
α∈Z jα1Iα . Hence we see that an admissible choice is j =

√
N1Iα and since

any other choice only differs by an additive constant this is already the optimal choice
and this yields

gαα′(h) = −
∫

Iα

1
M(h)

dx δαα′ .

As in Section 4.1 we denote the dual metric associated to (3.1) by
(
gαα′(h)

)
α,α′

and,

since gαα′′(h)gα′′α′(h) = δα
α′ (see (3.81)) we have

gαα′(h) =
(

−
∫

Iα

1
M(h)

dx
)−1

δαα′
.(3.27)

Having derived this discretization, we again impose a periodic data structure on the
discrete level.
Remark 3.3. On every interval Iα the expression (3.27) is the harmonic mean of the
mobility M(h) and thus we recover the discretization proposed in [54, Section 5].
As mentioned in the last section, the discretization of the energy is just the restriction
of E to the space P1. Then according to (3.23) this specific discretization gives rise to
the following SDE

dhα
t =

(
−gαα′(ht)∂α′E(ht) + 1

β
∂α′gα′α(ht)

)
dt+ σα

α′(ht)
√

2
β

dWα′
t .(3.28)
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Definition 3.4. Restricting the derivative ∂x to P1 yields a linear operator ∂x : P1 → P0.
We denote the matrix representation of this linear operator with respect to the hat basis
on P1 and the basis (1Iα)α on P0 by A = (Aα

i )α
i , i.e. we have

Aα
i b

i = N
(
bα+ − bα−

)
(3.29)

for all vectors
(
bi
)i. Moreover, its transpose is given by(

AT
)i

α
= Aα

i

Now we pass from α-coordinates to i-coordinates. To this end, we compute

h
(3.26)= hαϕα + 1 (3.25)= N

3
2hα(ϕ̂α+ − ϕ̂α−) + 1 =

√
Nhα

(
AT
)i

α
ϕ̂i + 1.

Thus by (3.24) we obtain the formula

hi =
√
N
(
AT
)i

α
hα + 1.(3.30)

Then (3.B.2) and the chain rule yield

∂α =
√
N
(
AT
)i

α
∂i.(3.31)

Hence, by applying (3.30) to (3.28) and (3.31) only to the first drift term, we end up
with the following SDE in i-coordinates

dhi
t =
(

−N
(
AT
)i

α
gαα′(ht)

(
AT
)j

α′
∂jE(ht) +

√
N

β

(
AT
)i

α
∂α′gα′α(ht)

)
dt(3.32)

+
(
AT
)i

α
σα

α′(ht)
√

2N
β

dWα′
t

subject to reflecting boundary conditions. It is easy to see that the Itô-correction term
in the discrete thin-film equation with thermal noise (3.32) does in general not vanish,
see (3.84) for the case M(h) = h3.

3.8. Positivity of the scheme

As it turns out, the Grün–Rumpf metric is the right discretization in order to preserve
positivity. From now on it will be important that the energy functional is the Dirichlet
energy (3.2). In view of Definition 3.4, the restriction of E to MN assumes the form

E(h) = 1
2N

N∑
α=1

((Ah)α)2 = 1
2N

hjAα
j δαα′Aα′

k h
k

and hence

∂jE(h) = 1
N
Aα

j δαα′Aα′
k h

k.(3.33)
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Plugging this in the first drift term of (3.32) yields

−
(
AT
)i

α
gαα′(ht)

(
AT
)j

α′
Aα′′

j δα′′α′′′Aα′′′
k hk

t .

Instead of viewing ∂jE as a covector it makes sense to regard it as a vector. To this end,
we contract the metric gαα′ with respect to the ambient Euclidean metric, i.e.

gαα′ = gα
γ δ

γα′

and this yields

gαα′(
AT
)j

α′
Aα′′

j δα′′α′′′Aα′′′
k hk

t = gα
α′Aα′

j

(
AT
)j

α′′
Aα′′

k hk
t = gα

α′

(
AATAht

)α′

k
.(3.34)

Furthermore we specify σα
α′(h) to be the square-root of gα

α′(h) and from now on we will
write √

gα
α′ := σα

α′ .

Combining (3.32) and (3.34) we end up with the following SDE

dhi
t =
(

−
(
AT
)i

α
gα

α′(ht)Aα′
j

(
AT
)j

α′′
Aα′′

k hk
t +

√
N

β

(
AT
)i

α
∂α′gα′α(ht)

)
dt(3.35)

+
(
AT
)i

α

√
gα

α′(ht)
√

2N
β

dWα′
t .

Introducing the abbreviations G−1(h) := (gα
α′(h))α

α′ and
√
G

−1(h) :=
(√

gα
α′(h)

)α

α′
as

well as the (rescaled) divergence-operator in α-coordinates(
D · Σ

)α
:= 1√

N
∂α′Σα′α

for some matrix field Σ =
(
Σα′α

)α′α
we see that (3.35) can be written in matrix form as

dht =
(

−ATG−1(ht)AATAht + N

β
ATD ·G−1(ht)

)
dt+AT

√
G

−1
(ht)

√
2N
β

dWt.

(3.36)

The following table provides the connection to the continuum case:
discrete continuum

G−1(h) M(h), see (3.27)
√
G

−1(h)
√
M(h)

A ∂x, see Definition 3.4

AT −∂x
√
N dWt

dt ξ.
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For the last claim let f1(t), . . . , fN (t) be compactly supported. A quick computation
shows that

E
[(∫ ∞

0

1
N
fα(t)

√
N

dWα

dt
dt
)2
]

= 1
N

E
[(∫ ∞

0

d
dt
fα(t)Wα

t dt
)2
]

= 1
N

N∑
i=1

∫ ∞

0
f2

i (t) dt.

Thus we obtain the following continuum analogs of (3.36):
discrete continuum

ATG−1(h)AATAh ∂x
(
M(h)∂3

xh
)

AT
√
G

−1(h)
√

2N
β

dWt
dt ∂x

(√
M(h)

√
2
β ξ
)
.

This confirms the form (3.13) of the SPDE. We will comment on the continuum form of
the Itô correction term (3.36) in (3.12).

We will now turn our discussion to the entropy S. Recall that s is chosen such that
s′′ = 1

M . For h ∈ ∆N we write s(h) :=
(
s(hi)

)i. The choice of the metric tensor (3.1) is
based on the fact that it satisfies the crucial identity

G−1(h)As′(h) = Ah(3.37)

which is the discrete analog of

M(h)∂xs
′(h) = ∂xh.

By formally letting β → ∞ in (3.36), we recover the Grün–Rumpf discretization of the
deterministic thin-film equation

d
dt
ht = −ATG−1(ht)AATAht.(3.38)

In [54] the authors have used the identity (3.37) to show the following entropy estimate

Proposition 3.5. [54, p.129, Lemma 5.1] Let ht be a solution to (3.38). We define the
discrete entropy18 via

S(h) := 1
N

N∑
i=1

s(hi)

where s is chosen such that s′′ = 1
M . Then we have the identity

d
dt
S(ht) = − 1

N

N∑
i=1

((
ATAht

)i
)2
.

Recall that we are particularly interested in the case M(h) = h3.

18Notice that the discrete entropy is the lumped version of (3.8)
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Assumption 3.6. We assume that for some 0 ≤ m < ∞ we have

L := sup
h∈(0,∞)

M(h)
hm

< ∞.(3.39)

From now on, for m ≥ 2 we specifically set

s(h) :=
∫ ∞

h

∫ ∞

h′

1
M(h′′)

dh′′.

Using Proposition (3.5) it is easy to see that if the mobility satisfies assumption (3.6)
the deterministic scheme preserves positivity for m ≥ 2.
Remark 3.7. In terms of the configuration space positivity means that the flow ht does
not touch the boundary of the manifold MN but stays in the open orthant {h > 0}. In
fact, one can show that the distance (induced by the metric tensor (3.1)) between the
boundary and the interior of MN is finite if and only if m < 3, see (3.11) for the case
of N = 2. Hence, by energy dissipation, any gradient flow with respect to the metric
tensor (3.1) preserves positivity for m ≥ 3. In case of the Dirichlet energy as the energy
functional the entropy estimate (3.5) upgrades this threshold to m ≥ 2.
On the other hand, it can be seen that the restriction of the metric tensor (3.3) to
TMN ⊗ TMN induces a distance that is finite to the boundary iff m < 5.
The main result in this chapter transfers the entropy estimate (3.5) to the stochastic
setting.

Theorem 3.8. Let ht be a solution to (3.32) such that the initial condition h0 satisfies
E[S(h0)] < ∞ and the mobility M satisfies Assumption 3.6 for m ≥ 3, then the following
identity holds

E[S(ht)] +
∫ t

0
E
[

1
N

N∑
i=1

((
ATAhr

)i
)2
]

dr = E[S(h0)] + 2N3

β
t.(3.40)

Let T > 0. If, moreover, for p < ∞ we have that E[Sp(h0)] < ∞, then

E
[(

sup
0≤r≤T

S(hr)
)p] 1

p

≤


C

((
E[Sp(h0)]

1
p + N3T

β

)m−3
m−2 + N

3+ 1
m−2 T
β

)m−2
m−3

for m > 3

C
(
E[Sp(h0)]

1
p + 1

)
e

C N4T
β for m = 3

for some constant C only depending on p, m and L.

Proof. By assumption, the process ht satisfies the SDE

dht = b(ht) dt+ σ(ht) dWt

where the drift b and the diffusion matrix σ are given according to (3.36). We set
MR

N := {h ∈ MN : S(h) ≤ R} for some R. Notice that thanks to m ≥ 2 it holds that
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h ∈ MR
N implies that h is strictly bounded away from 0. It is clear that there exist

Lipschitz extensions b of b and σ of σ to all of RN+1 such that

b|MR
N

= b|MR
N

and σ|MR
N

= σ|MR
N

(3.41)

as well as a smooth extension S of the entropy S such that

S|MR
N

= S|MR
N
.(3.42)

Then we consider the process

dht = b(ht) dt+ σ(ht) dWt.

We apply Itô’s formula (cf. [103, p.222, Theorem 3.3] and [100, p.67, Lemma 3.2]) to
S(ht) which yields

S(ht) = S(h0) +
∫ t

0
LS(hs) ds+

√
2N
β

∫ t

0
∂iS(hs)σi

α(hs) dWα
s(3.43)

where L denotes the generator of the process ht. Moreover, we define the stopping time

τR := inf{t ≥ 0 : S(ht) > R}.

By definition, we have that ht = ht for t ≤ τR and thus by (3.43), (3.41) and (3.42) we
get

S(ht∧τR) = S(h0) +
∫ t∧τR

0
LS(hs) ds(3.44)

+
√

2N
β

∫ t∧τR

0
∂iS(hs)

(
AT

√
G

−1
(hs)

)i

α
dWα

s .

Here L denotes the generator of (3.36); according to (3.21), which we postprocess by
(3.31), we have for any sufficiently nice function f

Lf = N
1
β
∂i

((
ATG−1A

)ij
∂jf

)
−N∂if

(
ATG−1A

)ij
∂jE.

Then, we compute using (3.33)

LS(h) (3.37)= 1
β
∂i

(
ATAh

)i
− 1
N

N∑
i=1

((
ATAh

)i
)2

(3.45)

(3.4)= 2N3

β
− 1
N

N∑
i=1

((
ATAh

)i
)2
.

We now consider the martingale in (3.44)

Xt :=
√

2
βN

∫ t∧τR

0

N∑
i=1

s′(hi
s∧τR

)
(
AT

√
G

−1
(hs∧τR)

)i

α
dWα

s ,
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and note that, for T > 0 and p < ∞, the Burkholder–Davis–Gundy inequality (cf. [103,
p.161, Corollary 4.2]) yields

E
[

sup
0≤s≤t

|Xs|p
] 1

p

≲p E
[
〈Xt〉

p
2
] 1

p ,

where

〈Xt〉 = 2
βN

∫ t∧τR

0

N∑
i=1

s′
(
hi

s∧τR

)(
ATG−1(hs∧τR)A

)i

j
s′
(
hj

s∧τR

)
ds

is the quadratic variation of X. Here and from now on ≲ is equivalent to ≤ C for some
universal constant C that only depends on p,m,L. The integrand can be rewritten as
follows

N∑
i=1

s′
(
hi

s∧τR

)(
ATG−1(hs∧τR)A

)i

j
s′
(
hj

s∧τR

) (3.37)=
N∑

α=1
(Ahs∧τR)α(As′(hs∧τR)

)α
=

N∑
i=1

(
ATAhs∧τR

)i
s′(hi

s∧τR
).

We estimate the second term in the above expression as

s′(hi
s∧τR

)
(3.39)
≲

(
hi

s∧τR

)1−m
≲

 N∑
j=1

(
hj

s∧τR

)2−m


m−1
m−2 (3.39)

≲ N
m−1
m−2S

m−1
m−2 (hs∧τR)

and hence by conservation of mass we arrive at
N∑

i=1
s′
(
hi

s∧τR

)(
ATG−1(hs∧τR)A

)i

j
s′
(
hj

s∧τR

)
≲ N

m−1
m−2S

m−1
m−2 (hs∧τR)

N∑
i=1

∣∣∣∣(ATAhs∧τR

)i
∣∣∣∣

≲ N
m−1
m−2 +3S

m−1
m−2 (hs∧τR).

Looking at (3.44) and collecting all the estimates yields

E
[(

sup
0≤s≤t

S(hs∧τR)
)p] 1

p

≲ E[Sp(h0)]
1
p + N3t

β
+

√√√√N3+ 1
m−2

β
E
[(∫ t∧τR

0
S

m−1
m−2 (hs∧τR) ds

) p
2
] 1

p

≤ E[Sp(h0)]
1
p + N3t

β
+

√√√√N3+ 1
m−2

β
E

( sup
0≤s≤t

S(hs∧τR)
∫ t

0
sup

0≤r≤s
S

1
m−2 (hr∧τR) ds

) p
2


1
p

.
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Then, we use Young’s inequality to the effect that

E
[(

sup
0≤s≤t

S(hs∧τR)
)p] 1

p

≲ E[Sp(h0)]
1
p + N3t

β
+ N3+ 1

m−2

β
E
[(∫ t

0
sup

0≤r≤s
S

1
m−2 (hr∧τR) ds

)p] 1
p

.

Finally, by using Minkowski’s and Jensen’s inequalities, we are left with

E
[(

sup
0≤s≤t

S(hs∧τR)
)p] 1

p

(3.46)

≲ E[Sp(h0)]
1
p + N3t

β
+ N3+ 1

m−2

β

∫ t

0
E
[(

sup
0≤r≤s

S(hr∧τR)
)p] 1

p(m−2)

ds.

By (3.17), for m = 3 the integral inequality (3.46) yields

E
[(

sup
0≤t≤T

S(ht∧τR)
)p] 1

p

≲
(
E[Sp(h0)]

1
p + 1

)
e

C N4T
β(3.47)

for some constant C depending on m and L. On the other hand for m > 3, by (3.17) we
get

E
[(

sup
0≤t≤T

S(ht∧τR)
)p] 1

p

≲

(E[Sp(h0)]
1
p + N3T

β

)m−3
m−2

+ N3+ 1
m−2T

β


m−2
m−3

.(3.48)

We now argue that in the proof the stopping time was not necessary. By Chebyshev’s
inequality, we have

E
[

sup
0≤t≤T ∧τR

S(ht)
]

≥ R P(τR ≤ T )

and thus by envoking (3.47) respectively (3.48) we get

R P(τR ≤ T ) ≲


(E[S(h0)] + 1)eC N4T

β for m = 3((
E[Sp(h0)]

1
p + N3T

β

)m−3
m−2 + N

3+ 1
m−2 T
β

)m−2
m−3

for m > 3.

Hence we have in either case

lim
R→∞

P(τR ≤ T ) = 0(3.49)

and this proves the second assertion using Fatou’s lemma. Finally, taking expectations
in (3.44) and using (3.45) together with (3.49) gives the first assertion. □

As a direct consequence Theorem 3.8 yields
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Corollary 3.9. Let ht be a solution to (3.32) such that the mobility M(h) satisfies
Assumption 3.6 for m ≥ 3 and the initial datum satisfies E[S(h0)] < ∞. Then we have
that

P(h > 0) = 1.

In particular, we do not have to impose the reflecting boundary condition for the SDE
(3.32) if m ≥ 3. The main selling point of our discretization is thus that we do not need
to impose additional physics and/or rely on numerical tricks in the simulation in order
to preserve positivity.
Remark 3.10. Although Theorem 3.8 yields positivity for m ≥ 3 for every fixed N ∈ N
the bound on the entropy grows with N . First of all, it is clear that (3.40) does not
survive naively in the limit N → ∞ since the term 2N3t

β will blow up. On the other
hand, one can rearrange terms in the following way

E[S(ht)] − E[S(h0)] = 2N3

β
t−

∫ t

0
E
[

1
N

N∑
i=1

((
ATAhr

)i
)2
]

dr.(3.50)

The spatial increments of hr behave like Brownian motion and hence the dissipation

term E
[

1
N

∑N
i=1

((
ATAhr

)i
)2
]

scales like N3 which shows that the scaling in N on the

right hand side of (3.40) is natural and it is not unreasonable to expect that the right
hand side of (3.50) converges for N → ∞. On the other hand, at equilibrium the right
hand side of (3.50) does not depend on the mobility but for m ≥ 5 the left hand side
is not finite in the continuum limit and thus we do not expect an equality like (3.40) to
hold for N → ∞.
Remark 3.11. We present an argument that the rangesm < 3 andm ≥ 3 are qualitatively
very different. To this end, for N = 2 we consider the associated Dirichlet form of the
process, i.e. the right hand side of (3.18), namely∫ 2

0

1
g(h)

∂hf(h)∂hζ(h) dν(h)

where (cf. (3.83))

g(h) ∼ h1−m(2 − h)1−m.

We perform a change of variables h 7→ ĥ that is defined according to

dĥ
dh

= √
g(h)

and we note that this yields the transformation

g−1(h)∂hf(h)∂hζ(h) → ∂ĥf(ĥ)∂ĥζ(ĥ).
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Then for h � 1 we have

ĥ ∼


2

3−mh
3−m

2 for m 6= 3

ln h for m = 3.

For 2 − h � 1 this holds similarly with 2 − h instead of h. Hence for m < 3 the
configuration space for ĥ is bounded and for m ≥ 3 it is unbounded and therefore we do
not need any boundary conditions. In fact, this heuristic is in the spirit of the Feller test
(cf. [70, p.348, Theorem 5.29]) which also yields that the process touches the boundary
of the configuration space for m < 3 and does not for m ≥ 3. For this reason, the
threshold m = 3 in Theorem 3.8 is sharp.

3.9. The central difference discretization

In this section we recall the finite-difference discretization used in [37] and compare it
to the Grün–Rumpf discretization in the last section. We will argue that the finite-
difference discretization has ”touch–down” for any mobility M(h), i.e. there is some
i = 1, . . . , N and some t ≥ 0 such that hi

t = 0.

By C =
(
Cj

i

)j

i
we denote the central difference matrix, i.e. we have for all vectors

(
bi
)i

Cj
i b

i = N
(
bj+1 − bj−1

)
.

and, moreover, we let

G(h) := (gαα′(h))αα′ , gαα′(h) := 1
M(hα)

δαα′ .

Then the finite-difference discretization of the SPDE (3.13) is the following SDE (cf. [37,
p.591, (38)])

dht = −CTG−1(ht)CATAht dt+ CT
√
G

−1
(ht)

√
2N
β

dWt(3.51)

which is supplemented with reflecting boundary conditions on ∂{h > 0} and where the
matrix A is given by (3.29). In [37, p.591-593] the authors check that the SDE (3.51)
obeys the detailed balance condition which is largely due to the fact that

N∑
j=1

∂j

(
CTG−1(h)C

)i

j
= 0(3.52)

for all h ∈ RN . The term on the left hand side of (3.52) is reminiscent of the Itô–
correction term emerging in (3.36). In particular, the equation (3.51) has the same
invariant measure as (3.36); see also Section 3.11.2 for further numerical evidence on
this.
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(A) (B)

Figure 4. The configuration space M3 for the two discretizations: cen-
tral difference on the left (A) and Grün–Rumpf on the right (B). The
edges and corners where the diffusion matrix degenerates are colored in
red. As can be seen from the figure, the central difference discretization
does not degenerate orthogonal to the d = 1 codimension subsets of M3,
while the Grün–Rumpf discretization degenerates on the whole bound-
ary.

We will now give an argument that the process ht defined by (3.51) touches down. The
boundary ∂MN can be decomposed into several sets of lower codimension. We call
the sets of codimension 1 the faces of the simplex, i.e. the sets of the form F i

N :=
MN ∩

{
hi = 0, hj > 0, j 6= i

}
for i = 1, . . . , N . Obviously, the hyperplane containing F i

N

is orthogonal to the unit vector ei. Note that the quadratic variation of hi
t is given by∫ t

0

(
CTG−1(ht)C

)
ii

dt. Then we see that the matrix CTG−1C does not degenerate in
the direction orthogonal to the faces since(

CTG−1(h)C
)

ii
= N2

(
M(hi−1) +M(hi+1)

)
> 0

for h ∈ F i
N and hence the quadratic variation stays positive even on F i

N . This suggests
that this discretization of the stochastic thin-film equation indeed features touch-down
and we also observe this phenomenon numerically, see Section 3.11.3. Notice that on the
other hand in case of the Grün–Rumpf discretization, the corresponding diffusion matrix
CTG−1C does degenerate in the direction orthogonal to the faces. We provide a small
schematic for N = 3 in Fig. 4 to demonstrate these features of the two discretizations.
Remark 3.12 (The Itô-correction term). Consider the continuum stochastic thin-film
equation in Stratonovich form with cut-off noise ξN (i.e. cutting off at the N th Fourier
mode):

∂th = −∂x(M(h)∂3
xh) +

√
2
β
∂x

(√
M(h) ◦ ξN

)
.

It is fairly straightforward to check (cf. [113, Equation 2.5]) that the same SPDE can
be written down in Itô form as follows

∂th = −∂x(M(h)∂3
xh) + N

8β
∂x

(
(M ′(h))2

M(h)
∂xh

)
+
√

2
β
∂x

(√
M(h)ξN

)
.
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The above situation closely mimics the one in our scenario: We have presented two
spatial discretizations of the thin-film equation with thermal noise and they differ from
each other by the correction term

N

β
ATD ·G−1(ht) .

The reader can convince themselves, that as N goes to ∞, the above expression formally
converges to

− N

β
∂x

(
(M(h))2∂x

(
M ′(h)

(M(h))2

))
= N

β
∂x

((
2(M ′(h))2

M(h)
−M ′′(h)

)
∂xh

)
19.

For the case of power law mobilities M(h) = hm, one can check that the two correction
terms are the same, up to a multiplicative constant. This observation is consistent with
the finding of [62] in which the authors discuss how different spatial discretizations of
the stochastic Burgers equation can differ by terms which are analogous to the Itô-to-
Stratonovich correction for SDEs. It would not be unreasonable to expect that such a
term plays a role in renormalization as a possible counter term.

3.10. Touch-down for the continuum system

The open question of whether the deterministic thin-film equation with cubic mobility
preserves positivity, is related to the degeneracy of the mobility when the film height
approaches zero. In fact, in the case of high mobility exponent m ≥ 7

2 , it has been shown
that indeed strict positivity is preserved (cf. [14, p.194 , Theorem 4.1, (iii)]), while the
opposite has been shown for m < 1

2 in [14, p.198, Theorem 6.1].

In this section, we would like to discuss the same question (touch-down vs. positivity)
for the continuum thin-film equation with thermal noise. We address this question
through the associated large deviations rate functional of the continuum system. Before
proceeding, we note that the entropic repulsion exhibited by the conservative Brownian
excursion defined in Section 3.4.1 is a purely energetic phenomenon. As such, it is
independent of the degeneracy of the mobility and is thus orthogonal to the discussion
of touch-down which will be presented in this section.

There is a well-known connection between the large deviation principle for a microscopic
reversible Markov process and the (appropriate) gradient flow structure of its mean-field
limit (cf. [31, 87]). It is classical that for a reversible stochastic perturbation of a (finite-
dimensional, but Riemannian) gradient flow, the rate functional I is given in terms of
the metric tensor g and the energy function E (see, for example, [45, Chapter 4, Section

19for the specific case of m = 3 one can see this from the explicit form of the Itô-correction term provided
in (3.85)
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3, Theorem 3.1]): For a given time horizon [0, T ], T > 0, IT is the following functional
on the space of all paths [0, T ] 3 t 7→ ht ∈ M

IT (h) :=1
2

∫ T

0
ght

(dht

dt
+ ∇E(ht),

dht

dt
+ ∇E(ht)

)
dt

=1
2

∫ T

0
ght

(dht

dt
,
dht

dt

)
dt+ 1

2

∫ T

0
ght (∇E(ht),∇E(ht)) dt(3.53)

+ E(hT ) − E(h0).

Formally, (3.53) extends to infinite-dimensional situations like ours: While the SPDE
might require a renormalization, the rate functional often does not (cf. [66]) – and
can be analyzed rigorously (cf. [74]). We take this route in order to give a heuristic
argument that touch-down is generic for power-law mobilities20 M(h) = hm with mobility
exponents m < 8 and constitutes an extremely unlikely event for m ≥ 8. To this end,
we assume that the small-noise/high temperature large deviations rate functional IT

for (3.13) is given by (3.53) with ght defined as in (3.3)21, E given by the Dirichlet
energy (3.2), and the gradient ∇E defined by duality as in (3.5). We first present our
result for m < 8, where we argue that touch-down is a generic phenomenon using an
upper bound for the rate functional obtained via a self-similar ansatz.

Proposition 3.13. Assume M(h) = hm for some m < 8 and fix T > 0. Then, there
exists a curve [−T, 0] 3 t 7→ ht ∈ M such that

IT (h) < ∞, min
x∈R

h−T > 0, and min
x∈R

h0 = 0 .

Proof. For the sake of convenience, we present the proof only for the range 1 < m < 8.
For any curve [−T, 0] 3 t 7→ ht ∈ M, we can write the rate functional as follows

IT (h) =1
2

∫ 0

−T
ght(∂tht, ∂tht) dt+ 1

2

∫ 0

−T
ght(∇E(ht),∇E(ht)) dt

+ E(h0) − E(h−T ) .(3.54)

Note that we can apply Cauchy–Schwarz and Young’s inequality to obtain the bound

|E(h0) − E(h−T )| =
∣∣∣∣∫ 0

−T
ght(∂tht,∇E(ht)) dt

∣∣∣∣
≤1

2

∫ 0

−T
ght(∂tht, ∂tht) dt+ 1

2

∫ 0

−T
ght(∇E(ht),∇E(ht)) dt .(3.55)

20we consider power-law mobilities for convenience. One would expect the same result to hold with more
general mobilities under the appropriate upper and lower bounds on the mobility.
21in the sequel, for the sake of simplicity, we will consider the metric gh (and the equation) on R. It can
be defined in the natural way as in (3.3).
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This leaves us with

IT (h) ≤
∫ 0

−T
ght(∂tht, ∂tht) dt+

∫ 0

−T
ght(∇E(ht),∇E(ht)) dt.

We now consider the following self-similar ansatz

ht(x) = (−t)ηγ ĥ(x(−t)−η), ĥ(x̂) = (x̂2 + 1)
γ
2 ,

with η > 0 and 0 < γ < 1. Then,

lim
t↑0

ht(x) = |x|γ .

We thus have that

ht(x) = (x2 + (−t)2η)
γ
2 .

Note now that, from the definition of the metric tensor (3.3),∫ 0

−T
ght(∂tht, ∂tht) dt =

∫ 0

−T

∫
R

j2
t

hm
t

dx dt ,

where j = jt is a time-dependent flux field satisfying

∂tht + ∂xjt = 0 .

It turns out that jt also has a simple structure in self-similar variables. Indeed, it can
be written as

jt(x) = (−t)ηγ+η−1ĵ(x(−t)−η) ,

where
ĵ(x̂) = −ηγ

∫ x̂

0
(y2 + 1)

γ
2 −1 dy .

We then have that∫ 0

−T
ght(∂tht, ∂tht) dt =

∫ 0

−T
(−t)ηγ(2−m)+2η−2

∫
R

ĵ2(x(−t)−η)
ĥm(x(−t)−η)

dx dt

=
∫ 0

−T
(−t)ηγ(2−m)+3η−2

∫
R

ĵ2(x̂)
ĥm(x̂)

dx̂ dt .

For the integrability of the time-dependent term in the integrand we require that

ηγ(2 −m) + 3η > 1 .(3.56)

On the other hand, for the space-dependent term in the integrand we note that |ĵ|(x̂) ≲
1 + (x̂2 + 1)

γ−1
2 and ĥ(x̂) = (x̂2 + 1)

γ
2 . It follows that for the integrability of this term

it is sufficient to have

−mγ < −1 .(3.57)
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We now turn our attention to the second term in (3.54). We compute

∂3
xht = (−t)η(γ−3)ĥ′′′(x(−t)−η) .

Using the definition of the metric tensor (3.3) and of the gradient ∇E (3.5), we obtain∫ 0

−T
ght(∇E(ht),∇E(ht)) dt =

∫ 0

−T

∫
R
hm

t (∂3
xht)2 dx dt

=
∫ 0

−T
(−t)ηγ(m+2)−6η

∫
R
ĥm(x(−t)−η)(ĥ′′′(x(−t)−η))2 dx dt

=
∫ 0

−T
(−t)ηγ(m+2)−5η

∫
R
ĥm(x̂)(ĥ′′′(x̂))2 dx̂ dt .

For the integrability of the time-dependent term in the above expression, it is sufficient
to have

(3.58) η(γ(m+ 2) − 5) > −1 .

On the other hand, note that
(
ĥm(ĥ′′′)2

)
(x̂) ≲ (x̂2+1)

mγ
2 +γ−3. Thus, for the integrability

of the space-dependent term we require

(3.59) mγ + 2γ − 6 < −1 .

We first note that (3.57) can be reduced to
1
m
< γ < 1 ,

if 1 < m < 8. On the other hand, (3.59) is equivalent to the following condition

(3.60) γ <
5

2 +m
.

The remaining conditions (3.56) and (3.58) can be reformulated as

(3.61) 3 − γ(m− 2) > 1
η
> 5 − γ(m+ 2) .

Note that if (3.60) is satisfied then 5 − γ(m + 2) is always larger than 0. On the other
hand, 3 − γ(m− 2) > 5 − γ(m+ 2) if and only if γ > 1/2 . Thus, we can choose γ such
that

max
(1

2
,

1
m

)
< γ < min

(
1, 5

2 +m

)
,

for all 1 < m < 8. We can then choose η > 0 so that (3.61) is satisfied. Thus, for these
choices of η and h we have IT (h) < ∞, and the result follows. □

We now turn to the case m ≥ 8 where we argue that touch-down is an extremely
rare event by obtaining an ansatz-free diverging (as h → 0) lower bound for the rate
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functional. For simplicity, we restrict ourselves to paths [0, T ] 3 t 7→ ht that start at
h0 ≡ 1.

Proposition 3.14. Assume M(h) = hm for some m ≥ 8. Then, for any path [0, T ] 3
t 7→ ht ∈ M starting from h0 ≡ 1, the rate function IT diverges in the following quanti-
tative sense

T
1
4 IT (h) ≳


supx∈R

(
ln 1

hT
− 1 + hT

)
+

m = 8

supx∈R

(
1

h
m
8 −1

T

− 1
)2

+
m > 8

,(3.62)

as infx∈R hT → 022 where the implicit constant in ≳ depends only on m.

Proof. We note first that the second identity in (3.53) yields the following inequality

E(ht) ≤ IT (h) + E(h0) ,(3.63)

for all t ∈ [0, T ]. Note that in view of (3.3) we learn from (3.53) that there exists a
time-dependent flux field j = jt(x) satisfying the continuity equation

∂tht + ∂xjt = 0 ,(3.64)

such that the dissipation is controlled as

1
2

∫ T

0

∫
R

j2
t

hm
t

dx dt ≤ IT (h) + E(h0) .(3.65)

We again monitor some “entropy”
∫
R s(ht) dx along the path, where s = s(h) is now

defined via
s(1) = s′(1) = 0, s(h) = 0 for h ≥ 1,

s′′(h) = 1
h

m
2

for h < 1.
(3.66)

Since by (3.64)
d
dt

∫
R
s(ht) dx =

∫
R
s′′(ht)jt∂xht dx ,

we obtain from (3.66) and by Cauchy-Schwarz in the x-variable∣∣∣∣ d
dt

∫
R
s(ht) dx

∣∣∣∣2 ≤
∫
R

j2
t

hm
t

dx
∫
R

(∂xht)2 dx ,

Thus, by (3.63) and (3.65),∫ T

0

∣∣∣∣ d
dt

∫
R
s(ht) dx

∣∣∣∣2 dt ≤ 2(IT (h) + E(h0))2 .

22although we present the result for R an essentially identical argument should also work for the torus
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By integration and Cauchy-Schwarz in the t-variable, this yields
1√
2T

∣∣∣∣∫
R
s(hT ) dx−

∫
R
s(h0) dx

∣∣∣∣ ≤ IT (h) + E(h0) .

Appealing once more to (3.63) this entails
1√
2T

∫
R
s(hT ) dx+ E(hT ) ≤ 1√

2T

∫
R
s(h0) dx+ 2E(h0) + 2IT (h) .

For our special initial data h0 ≡ 1 and in view of (3.66), this simplifies to
1√
2T

∫
R
s(hT ) dx+ 1

2

∫
R

(∂xhT )2 dx ≤ 2IT (h) .(3.67)

We note now that

s(h) ≳
( 1
h

m
4 −1 − 1

)2

+
.

Thus, (3.67) implies by Cauchy-Schwarz in the x-variable∫
R

 1

h
m
4 −1

T

− 1


+

|∂xhT | dx ≲ T
1
4 IT (h) .(3.68)

Form = 8, the left hand side of the above expression is equal to
∫ 1

0

∣∣∣∂x(ln 1
hT

+ hT − 1)+
∣∣∣ dx.

Since the spatial average of hT is equal to one, (ln 1
hT

+hT − 1)+ must vanish in at least
one point. Thus, the left hand side of (3.68) controls supx∈R(ln 1

hT
+ hT − 1)+. This

establishes the first item in (3.62); the second item follows similarly. □

We conclude this section by showing that a curve with finite rate functional also has
the expected regularity in time. While this is a priori unrelated to non-negativity of
the film, we will see that we can use this scale-invariant regularity estimate to obtain a
strengthening of Proposition 3.14 in Corollary 3.16, where the mobility exponent m = 8
again plays a special role.

Proposition 3.15. Assume M(h) = hm for some m ≥ 0 and consider a curve [0,∞) 3
t 7→ ht ∈ M such that

I(h) := 1
2

∫ ∞

0
ght(∂tht, ∂tht) dt+ 1

2

∫ ∞

0
ght(∇E(ht),∇E(ht)) dt+ E(h0) < ∞ .

Then, ht is locally Hölder continuous in time with exponent 1
8 . Furthermore, it satisfies

the following scale-invariant estimate

|ht(x) − hs(y)| ≲ I
1
2 (h)

(
min{ht(x), hs(y)}

m
8 |t− s|

1
8 + |x− y|

1
2
)
,

for all x, y ∈ R and |t− s| � I
−4(h) min{ht(x), hs(y)}8−m, where the implicit constants

in ≲, � depend only on m.
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Proof. To start with, we consider the case where [0,∞) 3 t 7→ ht is such that h0(0) ≤ 1
and I(h) ≤ 3. Note that this along with (3.55) implies that

(3.69) sup
t∈[0,∞)

E(ht) ≤ I(h) ≤ 3 ,

which in turn implies that ht is 1
2 -Hölder continuous in space for all t ≥ 0 with the bound

(3.70) |ht(x) − ht(y)| ≲ I
1
2 (h)|x− y|

1
2 .

We now fix a smooth compactly supported nonnegative function ϕ which is strictly
positive in (−1, 1) and satisfies

∫
R ϕdx = 1 and ϕ(x) ≤ 1. We then define

Ft :=
∫
R
ϕht dx .

We then have
d
dt
Ft =

∫
R
ϕ′jt dx ,

where jt = jt(x) is a time-dependent flux field which solves

∂tht + ∂xjt = 0 .

Dividing and multiplying by h
m
2

t and then applying the Cauchy–Schwarz inequality in
space, we obtain

d
dt
Ft ≤

(∫
R

(
ϕ′)2hm

t dx
) 1

2
a(t)

where

a(t) :=
(∫

R

j2
t

hm
t

dx
) 1

2

.

For the first term on the right hand side of the above expression, we have the following
bound ∫

R

(
ϕ′)2hm

t dx ≤ sup
x∈R

(ϕ′)2
∣∣∣∣∫ 1

−1
hm

t dx
∣∣∣∣

≲
∣∣∣∣∣
∫ 1

−1

(
min

x∈[−1,1]
ht(x) +

∫ x

x∗
∂yht(y) dy

)m

dx
∣∣∣∣∣ ,

where x∗ = argminx∈[−1,1]ht(x). Using (3.69) and Jensen’s inequality and the fact that
ϕ is strictly positive in (−1, 1), we obtain∫

R

(
ϕ′)2hm

t dx ≲
(

min
x∈[−1,1]

ht(x) +
∣∣∣∣∫ 1

−1

(∫ x

x∗
∂yht(y) dy

)
dx
∣∣∣∣
)m

≲(Ft + 1)m .
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This leaves us with
d
dt
Ft ≲(1 + Ft)

m
2 a(t) .

We can now use the fact
∫∞

0 a2(t) dt ≤ 2I(h) ≤ 6 along with the Cauchy–Schwarz and
Young inequalities, to rewrite the above inequality as

Ft ≲1 + F0 + t+
∫ t

0
Fm

s ds .

We thus obtain for t ≤ 1 (cf. Lemma 3.17)

Ft ≲
(
(1 + t+ F0)1−m + (1 −m)t

) 1
1−m ,

if m 6= 1 and

Ft ≲(1 + F0)eCt ,

if m = 1 for some constant C > 0. In either of the two cases, we have that Ft ≤ 3 for
all 0 < t ≤ t∗ for some t∗ > 0 depending on m, as long as F0 is finite, which itself holds
true since (3.69) and h0(0) ≤ 1 imply

F0 ≤
∫ 1

−1
h0 dx ≲ 1 .

We can then use Jensen’s inequality and (3.69) to obtain

ht(x) = min
x∈[−1,1]

ht(x) +
∫ x

x∗
∂yht dy ≲ 1 ,(3.71)

for all 0 < t ≤ t∗ and x ∈ [−1/2, 1/2].
By the shift-invariance23 of I, we may check the time regularity of h at some fixed point,
say x, t = 0. Define ϕε(·) := ε−1ϕ(ε−1·). Then, for any 0 ≤ t ≤ t∗, we can use (3.70) to
obtain

|ht(0) − h0(0)| ≲ ε
1
2 +

∣∣∣∣∫ t

0

∫
R
ϕε∂shs dx ds

∣∣∣∣ .
As before, we use the fact that ht satisfies the continuity equation (3.64) with time-
dependent flux field jt = jt(x) to obtain

|ht(0) − h0(0)| ≲ ε
1
2 +

∣∣∣∣∫ t

0

∫
R
ε−2ϕ′(x/ε)js dx ds

∣∣∣∣ .
Dividing and multiplying by h

m
2

t as before and applying the Cauchy–Schwarz and Young
inequalities, we obtain

|ht(0) − h0(0)| ≲ ε
1
2 + ε− 9

2

∫ t

0

∫ ε

−ε
(ϕ′(x/ε))2hm

s dx ds+ ε
1
2

∫ t

0

∫
R

j2
s

hm
s

dx ds .(3.72)

23I is not truly shift invariant, but we simply use the fact that I(τy,sh) ≤ 2I(h) with τy,sht = ht+s(·+x)
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For the second term on the right hand side of the above expression, we rescale in x and
use (3.71), to obtain

ε− 9
2

∫ t

0

∫ ε

−ε
(ϕ′(x/ε))2hm

s dx ds ≲ ε− 7
2 t .

For the third term on the right hand side of (3.72) we simply apply the bound (3.65)
and use the fact that the I(h) is bounded to arrive at

ε
1
2

∫ t

0

∫
R

j2
s

hm
s

dx ds ≲ ε
1
2 .

This leaves us with

|ht(0) − h0(0)| ≲ ε
1
2 + ε− 7

2 t .

Choosing ε = t
1
4 and applying (3.70), we obtain

|ht(x) − h0(0)| ≲ |t|
1
8 + |x|

1
2 ,

for (t, x) ∈ [0, t∗) × R.
We can now rescale to recover the corresponding estimate for an arbitrary [0,∞) 3 t 7→
ht ∈ M with I(h) < ∞. To this end, we introduce

ĥt̂(x̂) = λht(x) , x̂ = µx , t̂ = νt

for some λ, ν, µ > 0 to be chosen later. Under this choice of scaling, we have

E(ht) =
∫
R

(∂xht)2 dx = µλ−2E(ĥt̂) ,

and

1
2

∫ ∞

0

∫
R

j2
t

hm
t

dx dt = νµ−3λm−2 1
2

∫ ∞

0

∫
R

ĵ2
t̂

ĥm
t̂

dx̂ dt̂ ,

where jt = jt(x) is as before and ĵt̂ = ĵt̂(x̂) satisfies

∂t̂ĥt̂ + ∂x̂ĵt̂ = 0 .

Furthermore, the remaining term in I scales as
1
2

∫ ∞

0

∫
R

(
∂3

xht

)2
hm

t dx dt = λ−m−2µ5ν−1 1
2

∫ ∞

0

∫
R

(
∂3

x̂ĥt̂

)2
ĥm

t̂
dx̂ dt̂ .

Since we may assume, without loss of generality, that h0(0) > 0, we make the following
choices

λ = 1
h0(0)

, µ = λ2I(h) , ν = µ3λ2−mI(h) .
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It follows that I(ĥ) ≤ 3, and ĥ0(0) = 1. We thus have

|ht(x) − h0(0)| =λ−1|ĥt̂(x̂) − 1| ≲ λ−1
(
ν

1
8 |t|

1
8 + µ

1
2 |x|

1
2
)

≲h0(0)
(
I

1
2 (h)h

m−8
8

0 (0)|t|
1
8 + h−1

0 (0)I
1
2 (h)|x|

1
2

)
,

for all 0 ≤ t ≤ I
−4(h)h8−m

0 (0)t∗ and x ∈ R. □

Corollary 3.16. Let m ≥ 8 and let t 7→ ht ∈ M satisfy I(h) < ∞. Assume that, for
some x ∈ R, h0 is almost touching down, i.e. h0(x) � 1. Then, for all t ≥ 0 such that
ht(x) = 1 it holds that

t ≳

I
−4(h)h8−m

0 (x) form > 8

I
−4(h) ln(h−1

0 (x)) form = 8 ,

where the implicit constant in ≳ depends only on m.

Proof. The dependence on x does not play any role in the proof since the argument we
will present is pointwise in space. We will thus omit it for the rest of the proof. Moreover,
we will set the implicit constants in ≲ in Proposition 3.15 to 1. By Proposition 3.15, we
have for 0 ≤ t ≤ I

−4(h)h8−m
0

|ht − h0| ≤ I
1
2 (h)h

m
8

0 t
1
8 ≤ h0.

Then, we set τ0 := 0 and τ1 := I
−4(h)h8−m

0 and we observe that we have

hτ1 ≤ 2h0.

Inductively, we define τk := τk−1 + I
−4(h)h8−m

τk−1
for k ∈ N. Then, it holds that

τk = I
−4(h)

k−1∑
i=0

h8−m
τi

as well as (using Proposition 3.15)

(3.73) hτi ≤ 2ih0.

Choosing n := dlog2(h−1
0 )e we have ht ≥ 1 only if t ≥ τn. Note that if m ≥ 8, we can

apply (3.73) to obtain h8−m
τi

≥ 2i(8−m)h8−m
0 . This tells us that

τn =I−4(h)
n−1∑
i=0

h8−m
τi

≥I−4(h) log2(h−1
0 ) ,

for m = 8. The case m > 8 can be derived in an essentially identical manner. □
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3.11. Numerical experiments

3.11.1. Description of the time-stepping scheme. We describe here the time-
stepping scheme for the SDE (3.36) with the Grün–Rumpf metric as described in Sec-
tion 3.7. The central difference discretization (cf. Section 3.9) is treated in an identical
manner. For our simulations, we rely on a semi-implicit Euler–Maruyama method which
treats the noise, Itô-correction term, and metric tensor in (3.36) explicitly but treats the
rest of the drift in an implicit manner. With ∆t > 0 denoting the time step, the scheme
can be described as follows

h0 = h ∈ MN

hk+1 =
(
Id + ∆tATG−1(hk)AATA

)−1[
hk + ∆tN

β ATD ·G−1(hk)

+
√

2N∆t
β AT

√
G

−1(hk)Wk

](3.74)

for all k ∈ N, where hk denotes the vector of film heights at the nodal points (xi)i and
at time k∆t and (Wk)k is a sequence of independent N (0, I)-distributed random vectors.
We refer the reader to Section 3.C where we provide numerically stable expressions for
the inverse metric and the Itô-correction term. For the specific choice of M(h) = h3 the
inverse metric G−1(hk) is computed at each time step using (3.83) and the Itô-correction
term ATD · G−1(hk) using (3.85). Since G−1 is a diagonal matrix, its square root can
be computed explicitly. Due to the semi-implicit nature of the time-stepping scheme, in
each step we have to compute the inverse of Id+∆tATG−1(hk)AATA which we do using
the MATLAB function mldivide, which itself uses a Cholesky decomposition to perform
the required matrix inversion.
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Figure 5. Snapshots of the film height for the Grün–Rumpf and central
difference discretizations at equally spaced time increments (time goes
from (A) → (F)) for the same realization of the noise. As can be seen
from the figures, the central difference discretization touches down (at
t∗ ≈ 8.2×10−4, see (F)) while the Grün–Rumpf discretization stays away
from the boundary. The simulations were performed with the following
parameters: N = 150, ∆t = 10−10, β = 1, and h0 ≡ 1.

3.11.2. Invariance of the measure νN . In this subsection, we perform some
numerical experiments to check the invariance of the measure νN . We start by describing
below a simple numerical procedure to sample from νN .
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Algorithm 1: Sampling from νN

Result: Realization of νN

Sample discrete spatial white noise at temperature β−1, i.e. a random
N -dimensional vector of i.i.d. N (0, β−1N × Id)-distributed random variables
dWN ;

Project onto average zero vectors: dW 0
N = dWN −N−1∑

i dWN,i;
Integrate to get a discrete Brownian bridge:
W 0

N,1 = 0, W 0
N,i = W 0

N,i−1 +N−1 dW 0
N,i−1;

Project onto average 1 vectors: WN = W 0
N −N−1

(∑
iW

0
N,i

)
+ 1;

if ∃i s.t. WN,i < 0 then
reject;

else
accept;

end

We now integrate in time starting from h0 ≡ 1 according to the semi-implicit Euler–
Maruyama algorithm described in (3.74) up to some large time T � ∆t. Repeating
this procedure, we obtain a large number of samples, M � 1, of the process at time
t = T which we compare to the samples of νN generated by Algorithm 1. Note that
T needs to be chosen to be larger than the typical relaxation time (to the invariant
measure) of both discretizations. We found that T = 10−3 works well for this purpose.
We compare both the single-point distributions and the two-point correlations, i.e. the
law of δhT = hT (x+ δx) − hT (x) for some 1

N =: ∆x � δx � 1. Due to the stationarity
(in space) of the invariant measure the choice of x ∈ [0, 1] is irrelevant. We present the
results of this experiment in Fig. 6.

3.11.3. Positivity, exit times, and entropic repulsion. As shown in Theo-
rem 3.8, under appropriate conditions on the initial datum, the Grün–Rumpf discretiza-
tion stays away from the boundary ∂MN . On the other hand, one expects (see the
discussion in Section 3.9) the central difference discretization to touch the boundary
with probability 1. We provide some numerical evidence for these features of the two
discretizations in Fig. 5. Indeed, for the same realization of the noise, the Grün–Rumpf
discretization stays away from 0, while the central difference discretization touches down.

We can provide stronger numerical evidence for the fact that the central difference dis-
cretization touches down by computing the mean exit time from MN of the associated
process. If this quantity is finite, this implies that the central difference discretization
leaves MN , i.e. touches down, almost surely. Let hh0

t be a solution of the central dif-
ference discretization of the stochastic thin-film equation (3.51) with initial condition
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Figure 6. Plots of the histograms for M = 1000 samples of the single-
point statistics and two-point correlations of the film height, i.e. hT and
δhT = hT (x+δx)−hT (x), for the Grün–Rumpf ((A),(B)) and the central
difference ((C),(D)) discretizations compared to the reference measure,
the conservative Brownian excursion νN . The simulations were carried
out with the following parameters: N = 50, ∆t = 10−10, β = 1, T = 10−3,
δx = 0.1, and h0 ≡ 1.

h0 ∈ MN . Then, we define the exit time of hh0
t from the interior to be

τ(h0) := inf
{
t ≥ 0 : hh0

t /∈ MN

}
.

We take h0 ≡ 1 and set τ := τ(1). Then, we sample τ by running a Monte-Carlo
simulation of (3.51) according to the time-stepping scheme described in (3.74). This time,
instead of imposing reflecting boundary conditions, we stop the simulation as soon as we
reach the boundary ∂MN , i.e. when the film touches down. Fig. 7 shows the behavior
of the mean exit time as N grows. In particular, it seems that the mean exit time is
finite and remains bounded as N tends to infinity. In the final part of this subsection,
we study numerically the positivity properties of the continuum conservative Brownian
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Figure 7. The dependence of the mean exit time of the central difference
discretization on N . The simulations were performed with the following
parameters: ∆t = 10−10, β = 1, M = 100, and h0 ≡ 1.

excursion ν, i.e. its entropic repulsion. As has been mentioned before, our conservative
Brownian excursion is qualitatively similar to the classical Brownian excursion from
stochastic analysis. Moreover, it is known that the classical Brownian excursion features
an entropic repulsion, in the sense that the single point distribution decays to 0 at 0.
In fact, one can compute the single point statistics for the classical Brownian excursion
(Yt)t≥0 explicitly (cf. [103, p.463]): For fixed t ≥ 0 and x, y > 0 such that Y0 = x and
YT = y a.s., it takes the form

px,y
t (z) = T

t(T − t)
z
I 1

2
(xz

t )I 1
2
( zy

T −t)
I 1

2
(xy

T )
e− x2+z2

2t e
− z2+y2

2(T −t) e
x2+y2

2T

where I 1
2

is the modified Bessel function of the first kind of order 1
2 . Notice that for z � 1,

it holds that I 1
2
(z) ∼ z

1
2 . From the above expression, it is clear that the distribution

decays to 0 quadratically as z → 0. In Fig. 8 we see that the single point distribution of
our conservative Brownian excursion for N � 1 also exhibits quadratic decay at 0.

3.11.4. Convergence of the two discretizations. As mentioned earlier in the
chapter, two different discretizations of a singular SPDE can converge to different lim-
iting objects (cf. [61]). Thus, it would not be unreasonable to expect that the Grün–
Rumpf and central difference discretizations of the thin-film equation with thermal noise
have different continuum limits. However, numerical evidence seems to indicate that, at
least started at equilibrium, the path space measures of the two discretizations converge
to the same object.



3.11. NUMERICAL EXPERIMENTS 81

0 0.05 0.1 0.15 0.2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 0.01 0.02 0.03

0

0.5

1
10

-3

Figure 8. The entropic repulsion of the continuum conservative Brow-
nian excursion ν as observed through the single point statistics of νN for
N large (= 2000) obtained from M = 2 × 105 samples. The single point
distribution (in blue) decays quadratically as h → 0 as can be seen by
comparing it to the fitted curve (in red) p(h) ≈ 0.4704×h2. The zoomed-
in version of the histogram exhibits the fact that entropic repulsion is a
feature of the continuum invariant measure; for finite but large N the
single point density is positive but small at 0.

We check this by sampling from νN using Algorithm 1 and then integrating in time
with h0 ∼ νN to some final time T . Repeating this process, we obtain a large number,
M � 1, of samples. We can then compute the two-point (in time) distributions of both
discretizations, i.e. the joint law of ht and ht+δt for some ∆t � δt � T , for different
values of N . One then observes that, as N increases, the two discretizations seem to
converge to each other. Note that since we start our simulations at the invariant measure
and the underlying process is reversible the choice of t ≥ 0 is irrelevant. We present the
results of these experiments in Figs. 9 and 10.
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Figure 9. Level sets of the two-point (in time) distributions, i.e. the
joint distributions of ht and ht+δt, for (A) the Grün–Rumpf and (B) the
central difference discretizations for N = 50, 100, 200.
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Figure 10. Comparisons of the level sets of the two-point (in time) dis-
tributions of the the Grün–Rumpf and the central difference discretiza-
tions for (A) N = 50, (B) N = 100, and (C) N = 200.





Appendix

3.A. The thin-film equation with linear mobility in Lagrangian coordinates

Let

z =
∫ X(z)

0
h(x) dx(3.75)

then taking the derivative twice with respect to z of (3.75) yields

1 = h(X(z)) d
dz
X(z)(3.76)

as well as

0 = ∂xh(X(z))
( d

dz
X(z)

)2
+ h(X(z)) d2

dz2X(z).(3.77)

Multiplying (3.77) with h(X(z))2 and invoking (3.76) we end up with

∂xh(X(z)) = −h(X(z))3 d2

dz2X(z).(3.78)

Hence we compute for the Dirichlet energy

E(h) := 1
2

∫ 1

0
(∂xh)2 dx = 1

2

∫ 1

0
(∂xh(X(z)))2 d

dz
X(z) dz

(3.78)= 1
2

∫ 1

0

(
h(X(z))3 d2

dz2X(z)
)2 d

dz
X(z) dz

(3.76)= 1
2

∫ 1

0

(
d2

dz2X(z)
)2

(
d
dzX(z)

)5 dz

=: E(X).

Moreover, for some δX we compute

diffE|X .δX = 1
2

∫ 1

0
2

d2

dz2X(z)(
d
dzX(z)

)5
d2

dz2 (δX(z)) − 5

(
d2

dz2X(z)
)2

(
d
dzX(z)

)6
d
dz

(δX(z)) dz
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=
∫ 1

0

 d2

dz2

 d2

dz2X(z)(
d
dzX(z)

)5

+ 5
2

d
dz


(

d2

dz2X(z)
)2

(
d
dzX(z)

)6


δX(z) dz.

This, as usual, gives rise to the L2-gradient flow

∂tX = −∂2
z

(
∂2

zX

(∂zX)5

)
− 5

2
∂z

((
∂2

zX
)2

(∂zX)6

)

= 1
4
∂3

z (∂zX)−4 − 5
8
∂z

(
∂z(∂zX)−2

)2
.

3.B. Computing the change of coordinates

3.B.1. The dual metric in coordinates. Let the setting be as in the beginning
of Section 3.6. As usual, we define the musical isomorphism via

T ∗M → TM, ω → ω]

where

ω.ḣ = g
(
ω], ḣ

)
for all ḣ ∈ TM. This gives rise to the dual metric g′ on T ∗M ⊗ T ∗M via

g′(ω, ω′) := g
(
ω], ω′]

)
(3.79)

for all ω, ω′ ∈ T ∗M. Let g′αα′ and gαα′ be the representation of g′ respectively g in the
coordinates (ϕα)α and let `, `′ be covectors and τ, τ ′ be vectors that are related by

`α = gαα′τα′
, `′α = gαα′τ ′α′

.(3.80)

Then by definition of (3.79) and by (3.80), we have

gαα′τατ ′α′ = g′αα′
`α`

′
α′

and thus we see that g′αα′′
gα′′α′ = δαα′ such that finally

g′αα′ = gαα′
.(3.81)

Moreover, by (3.79) and (3.81), we see that for ζ, ζ ′ sufficiently smooth functions on M
we have

g
(
∇ζ,∇ζ ′) = g′(diffζ, diffζ ′) = gαα′

∂αζ∂α′ζ ′.(3.82)

3.B.2. Explicit formulae for partial derivatives. For some function f : MN →
R we have

∂if(h) = d
dε

∣∣∣
ε=0

f(h+ εϕ̂i)
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as well as

∂αf(h) = d
dε

∣∣∣
ε=0

f(h+ εϕα).

3.C. Computation of the numerical mobility

We restrict ourselves to mobility functions of the form M(h) = hm. Then we compute

gαα(h) = 1
m− 1

(hα−)1−m −
(
hα+)1−m

hα+ − hα−

= 1
m− 1

1
hα+ − hα−

(
hα+)m−1 − (hα−)m−1

(hα−)m−1(hα+)m−1

= 1
m− 1

1
hα+ − hα−

∑∞
k=1

(m−1
k

)
(hα−)m−1−k(hα+ − hα−)k

(hα−)m−1(hα+)m−1

= 1
m− 1

∑∞
k=1

(m−1
k

)
(hα−)m−1−k(hα+ − hα−)k−1

(hα−)m−1(hα+)m−1 .

In particular, this yields for m = 3

gαα(h) = 1
2

hα− + hα+

(hα−)2(hα+)2

and hence

gαα(h) = 2(hα−)2(
hα+)2

hα− + hα+ .(3.83)

Moreover, for the Itô-correction term we are left with computing

∂α′gα′α(h) = −gγγ′(h)∂γgγ′α′(h)gα′α(h)

and using (3.B.2) we compute the derivative of the metric tensor via

∂γgγ′α′(h) = −δγ′α′−
∫

Iα′

M ′(h)
M(h)2ϕγ dx.

By the diagonal structure of g(h) it is enough to compute

∂αgαα(h) = N
3
2

1
M(hα+) + 1

M(hα−) − 2gαα(h)
hα+ − hα−(3.84)

where we used integration by parts which in the case m = 3 yields

∂αgαα(h) = N
3
2

(hα−)−3 +
(
hα+)−3 − hα−+hα+

(hα−)2(hα+)2

hα+ − hα−

= N
3
2

(hα−)−2((hα−)−1 −
(
hα+)−1) +

(
hα+)−2(

(
hα+)−1 − (hα−)−1)

hα+ − hα−
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= N
3
2

(
1

(hα−)3hα+
− 1

(hα+)3hα−

)
.

Hence, for m = 3, we have

∂α′gα′α(h) = N
3
2 4hihi+1h

i − hi+1

hi + hi+1 .(3.85)

3.D. An integral inequality

Lemma 3.17. Let u(t) be positive and bounded for t ∈ [0, T ]. Let 0 ≤ γ < ∞. Then, if

u(t) ≤ u(0) + Ct+ C

∫ t

0
uγ(s) ds(3.86)

for some constant C, we have for γ = 1

u(t) ≤ (u(0) + 1)eCt

and for γ 6= 1

u(t) ≤
(
(u(0) + CT )1−γ + (1 − γ)Ct

) 1
1−γ .

Proof. For γ = 1 we note that we can write (3.86) as

u(t) + 1 ≤ u(0) + 1 + C

∫ t

0
u(s) + 1 ds

and then apply Gronwall’s inequality to get the assertion.
If γ < 1 then we set X(t) :=

∫ t
0 u

γ(s) ds and hence

d
dt
X(t) = uγ(t)

(3.86)
≤ (u(0) + Ct+ CX(t))γ

which implies
d
dt

(u(0) + CT + CX(t)) ≤ C(u(0) + CT + CX(t))γ .(3.87)

The differential inequality (3.87) further yields
d
dt

(u(0) + CT + CX(t))1−γ ≤ Cγ

for Cγ := (1 − γ)C and since X(0) = 0 we have by integrating that

(u(0) + CT + CX(t))1−γ ≤ (u(0) + CT )1−γ + Cγt.

By taking the inverse and appealing again to the assumption (3.86) we get the desired
estimate. □



CHAPTER 4

Gradient bound for the ϕ4
2-model

In this chapter we consider the massive ϕ4
2-model on a two-dimensional torus of fixed size

L > 0. The main theorem proves a certain gradient bound for the Markov semigroup
which for large enough mass m > 0 implies exponential contraction in a certain weak
norm. The proof is based on energy estimates for the linearized equation together with
a stopping time argument which is inspired by [21] and relies on the strong Markov
property of the Gaussian noise. As a corollary, using the approach of Bakry and Émery,
we can show a local spectral gap inequality for the Markov semigroup which by ergodicity
implies a spectral gap inequality for the massive ϕ4

2-measure for large enough mass.

This chapter is based on the article [78] which is joint work with Pavlos Tsatsoulis.

4.1. Introduction

We consider the dynamic ϕ4
2-model on the torus T2 = R2/LZ2 of fixed size L > 0 given

by (∂t − ∆ +m)u = −u3 + 3∞u+
√

2ξ on R>0 × T2

u
∣∣
t=0 = f,

(4.1)

where m > 0 is a positive mass, ξ denotes space-time white noise and f is a suitable
initial condition. The infinite counter term +3∞u on the r.h.s. of (4.1) is reminiscent of
renormalization (see Section 4.2 below) since the SPDE is singular due to the roughness
of ξ.

This model serves as a toy example in the stochastic quantization of Euclidean quantum
field theories. As explained in Section 1.4, it describes the natural reversible dynamics
of the ϕ4

2-measure formally given by

dν(u) = 1
Z

exp
{

−
∫
T2

dx
(1

2
|∇u(x)|2 + 1

4
|u(x)|4 − 3∞

2
|u(x)|2

)}
du. (4.2)

The construction of (4.2) was one of the first achievements in quantum field theory and
goes back to Nelson (cf. [92]). Alternatively, Parisi and Wu in [99] proposed the use
of (4.1) in order to construct and sample via MCMC methods the measure (4.2). A
first attempt to implement this approach was made by Da Prato and Debussche in [25].
Later, along with the development of regularity structures (cf. [59]) and paracontrolled
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distributions (cf. [58]), (4.1) was studied extensively by many authors (cf. [91, 105,
104, 111, 63, 90, 56, 57]). These results justified rigorously the connection of the
singular dynamics and the measure in the sense of Parisi and Wu.
In the current chapter we study the regularization properties of the Markov semigroup
(Pt)t≥0 associated to (4.1) (see (4.15) below for the definition) through gradient-type
estimates. Gradient-type estimates of Markov semigroups are important in the study
of functional inequalities, e.g. spectral gap (or infinite dimensional Poincaré) and log-
Sobolev inequalities, and transportation inequalities (cf. [72, 8, 9, 22]). These estimates
usually require some convexity assumption, see for example [22, Property (H.C.K.), p.
232 and p. 235]. In the case of (4.1) convexity is destroyed by the presence of the infinite
counter term −3∞u and at first glance it is unclear whether any type of such estimates
can be derived. The argument we present here allows us to prove the following gradient
estimate for the semigroup (Pt)t≥0.

Theorem 4.1. Let (Pt)t≥0 be the Markov semigroup associated to (4.1) and κ ∈ (0, 1).
For every q > 1 and ε < 1 − κ there exists m∗ ≡ m∗(ε, q, L) > 0 such that

‖DPtF (f)‖L2
x

≤ C(t ∧ 1)− κ+ε
2 e−(m−m∗)t

(
Pt‖DF‖q

H−κ
x

(f)
) 1

q , (4.3)

for every cylindrical functional F , t > 0, f ∈ C−α0 and an implicit constant C ≡
C(ε, κ, q, L) < ∞ which is uniform in f and m. In the case κ = 0 the estimate holds for
ε = 0 and a universal constant C which is independent of L.

Replacing L2
ω-norm on the r.h.s. by an L1

ω-norm yields the strong gradient estimate [9,
Theorem 3.2.4]. The main difference is that the strong gradient estimate implies the
log-Sobolev inequality, while (4.3) implies the (weaker) spectral gap inequality (cf.[22,
Section 1] and [9, Sections 4 and 5]). Note that in contrast to the classical literature here
we insist on a gradient estimate where the r.h.s. depends on the H−κ

x -norm, allowing for
κ arbitrarily close to 1. This is almost in line with the behaviour of the Gaussian free
field in dimension 2 where the carré du champ is given by the H−1

x -inner product or,
equivalently, its Cameron-Martin space is given by H1

x. As an immediate consequence
(4.3) implies exponential contraction for m > m∗ in the following sense,

sup
‖h‖

L2
x

≤1
sup

‖DF ‖
H−κ

x ≤1

|PtF (f + h) − PtF (f)| ≤ C(t ∧ 1)− κ
2 −εe−(m−m∗)t, (4.4)

where the second supremum is taken over all cylindrical functionals F .

In recent years gradient-type estimates of the form (4.3) have seen a rise in popularity.
Starting with the work of Bakry–Émery (cf. [8]) it has become a vast research topic to
relate these estimates to lower bounds of the Ricci curvature of the associated manifold.
Since the interpretation of the heat flow on a manifold as a formal gradient flow with
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respect to the entropy on the Wasserstein space (cf. [95]), the notion of displacement
convexity of the entropy is also closely related to lower bounds of the Ricci curvature (cf.
[96]). This relationship can be associated to exponential contraction of the heat flow
with respect to the Wasserstein metric which in our case corresponds to (4.4). Indeed,
in [116] it has been shown that in the finite-dimensional case all these notions are
equivalent. In the infinite-dimensional setting we, for example, refer to [38]. A similar
gradient estimate for the ϕ4

2-model has been obtained in [26], using similar techniques.
This estimate does not fit into the Bakry–Émery framework1, but it has interesting
implications for the Kolmogorov operator.

In order to prove (4.3) we study the linearized equation(∂t − ∆ +m)Jf
0,th = −3

(
u2 − ∞

)
Jf

0,th on R>0 × T2,

Jf
0,th

∣∣
t=0 = h,

(4.5)

for suitable initial condition h. In the absence of the counter term one easily obtains a
contraction estimate for any m > 0 of the form

‖Jf
0,th‖2

L2
x

≤ e−2mt‖h‖2
L2

x
, (4.6)

which in turn implies the strong gradient estimate (cf. [71, Lemma 2.1]) where the same
dynamics are considered in the 1-dimensional setting on the whole space2. To deal with
the counter term we appeal to the Da Prato–Debussche decomposition (see Section 4.2
below), understanding u2 − ∞ as

u2 − ∞ = v2 + 2v + + ct,∞, (4.7)

where is the solution to the stochastic heat equation (4.10) with zero initial data, its
second Wick power defined in (4.5) and ct,∞ the constant defined in (4.14)3. The idea is
to treat the lower order terms in (4.7), namely 2v + + ct,∞, as drift terms and absorb
them to the mass m. Due to the lack of the required exponential integrability, in order to
obtain a meaningful gradient estimate we restart the noise every time the Wick powers
exceed a certain barrier using a stopping time argument in the spirit of Cass–Litterer–
Lions (cf. [21]) for rough differential equations (see Section 4.3.2 below). This argument
allows us to bypass the problem of exponential integrability of the Wick powers. Instead,
we need to study the exponential integrability of the counting process N(t) of the number
of restarts to reach time t which due to the strong Markov property has exponential tails

1it is not a L2-based estimate
2Using a post-processing of (4.6) as in Proposition 4.11 below one can upgrade the L2

x-estimate to an
H−κ

x -estimate for κ ∈ [0, 1) in the case of the torus.
3The constant ct,∞ appears due to the fact that we insist on using Wick powers of which at time t = 0
vanish. This is just a technical convenience but not necessary in our approach.



92 4. THE ϕ4
2-MODEL

(see Proposition 4.8 below). A crucial ingredient to our approach is the “coming down
from infinity" property of v first obtained in [111, Proposition 3.7] (see also [90, 89, 56]
for up-to-date results on “coming down from infinity"), which ensures that the estimates
on N(t) do not depend on the initial data f , therefore, covering uniformly the whole
time interval [0,∞). As a result of the stopping time argument we prove the following
L2

x-estimate for every p < ∞,

E
[
‖Jf

0,t‖
p
L2

x→L2
x

] 1
p ≤ Ce−(m−m∗)t

for some m∗ > 0 and C < ∞ uniformly in f , see Proposition 4.9 . Using a simple
post-processing we can upgrade the above estimate to

E
[
‖Jf

0,t‖
p
L2

x→Hκ
x

] 1
p ≤ C(t ∧ 1)− κ+ε

2 e−(m−m∗)t, (4.8)

see Proposition 4.11.

As we already mentioned earlier, the motivation to study gradient-type estimates for
Markov semigroups comes from applications on functional inequalities. As a consequence
of (4.3) we derive a spectral gap inequality for the Markov semigroup {Pt}t≥0 based on
the celebrated method of Bakry–Émery. Due to the presence of the H−κ

x -norm for κ
arbitrarily close to 1 the carré du champ is almost optimal when compared to the small
scale behaviour of the Gaussian free field in 2-dimensions on a torus of fixed size L > 0
(which plays the role of an infra-red cutoff).

Theorem 4.2. Under the assumptions of Theorem 4.1 the following spectral gap inequal-
ity holds

PtF
2(f) −

(
PtF (f)

)2 ≤ C

∫ t

0
(s ∧ 1)−κ−εe−2(m−m∗)s ds Pt‖FG‖2

H−κ
x

(f) ν-a.s. in f,

for every cylindrical functional F , t > 0 and implicit constant C ≡ C(ε, κ, L) < ∞ which
is uniform in f and m. In the case κ = 0 the estimate holds for ε = 0 and a universal
constant C which is independent of L.

Let us mention that a spectral gap-type inequality for the Markov semigroup generated
by (4.1) has already been obtained in [111] in the total variational norm in C−α0 based
on a combination of the strong Feller property, a support theorem and the “coming
down from infinity" property. The same holds in dimension 3 based on the results from
[64, 65, 90]. Although the total variational norm is stronger than any Wasserstein
metric, the results in [111] do not provide an estimate w.r.t. the L2

x-derivative.

Using the ergodicity of Pt, see for example [111, Corollary 6.6], as a corollary we prove
a spectral gap inequality for the ϕ4

2-measure for large masses m > m∗.
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Corollary 4.3. Under the statement of Theorem 4.2 and the additional assumption
m > m∗ the ϕ4

2-measure satisfies the spectral gap inequality

EνF
2 −

(
EνF

)2 ≤ C
1

(m−m∗)1−κ−ε ∧ (m−m∗)
Eν‖DF‖2

H−κ
x
, (4.9)

for every cylindrical functional F , where for κ = 0 the estimate holds for ε = 0.

Remark 4.4. We emphasize that in order to obtain (4.9) we need to choose m large
enough and, in particular, m > m∗ to ensure that the spectral gap constant does not
blow-up in the limit t ↗ ∞. This is a technical restriction of the method presented
here and it is rather unnatural in the case of the torus. On the other hand, such a
condition would be natural in the whole plane regime, provided that the dependence
of the implicit constant C and the mass m∗ on L can be eliminated. As we already
stated in Theorem 4.1, C does not depend on L for κ = 0 and it would be interesting
to investigate whether the dependence of m∗ on L can be eliminated as well to allow for
a large scale analysis. At first sight this seems possible using suitable weighted norms
(in the spirit of [91, 56]), but it is rather unclear whether one can derive meaningful
estimates in this direction.
Spectral gap inequalities are a convenient tool which quantifies ergodicity. When it
comes to applications beyond the study of long time behavior, they have been used in
the context of stochastic homogenization (cf. [51]) to obtain stochastic estimates on the
corrector. In a similar spirit, spectral gap inequalities can be used as a tool in deriving
stochastic estimates in the context of singular SPDEs (cf. [81] and [67, Section 5] for a
simpler example).

While completing this thesis, the relevant work [12] appeared, which derives log-Sobolev
inequalities for the ϕ4-measure in dimensions 2 and 3 with carré du champs given by
the L2

x-norm. More precisely, the authors study approximations of the measure with
ultraviolet and infra-red cutoffs and derive lower and upper bounds on the log-Sobolev
constant independent of the cutoffs. Their approach is based on the machinery developed
in [11] in combination with correlation inequalities. Although these results are optimal
in the large scale regime and they imply the spectral gap inequality, the techniques
presented here are more appropriate in the small scale regime.

4.1.1. Notation. For β ∈ R we set Cβ := Bβ
∞,∞(T2) and the corresponding norm

is denoted by ‖·‖β. The space of arbitrarily smooth functions is accordingly denoted
by C∞. We set Lp

x := Lp(T2) and ‖·‖Lp
x

for the corresponding norm. Similarly, we use
the same notation for L2

t,x := L2(R+ × T2) and Hα
x := Hα(T2). Note that we have

Lp
x = B0

p,p(T2) and Hα
x = Bα

2,2(T2). The space FC∞
b denotes all cylindrical functions,

i.e. for a distribution u we have F ∈ FC∞
b if there exists n ∈ N, F ∈ C∞

b (Rn) and
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hi ∈ C∞(T2) for i = 1, . . . , n such that F (u) = F (u(h1), . . . , u(hn)) where we write
u(h) :=

∫
T2 u(x)h(x) dx for the natural pairing. Moreover, a ∧ b := min{a, b}.

4.2. General framework

Contrary to Chapter 2, and as is custom for the ϕ4
d-model, we denote by 0,t the solution

to the stochastic heat equation(∂t − ∆ +m) =
√

2ξ on R>0 × T2

|t=0 = 0,
(4.10)

which is explicitly given by

0,t(ϕ) =
√

2ξ
(
1[0,t)Ht−· ∗ ϕ

)
for all sufficiently nice test functions ϕ : T2 → R where (t, x) 7→ Ht(x) denotes the heat
kernel associated with the operator (∂t − ∆ +m). We also denote by 0,t and 0,t its
second and third Wick powers defined as the limits

0,t := lim
δ↘0

(
(δ)
0,t

)2
− c

(δ)
0,t , 0,t := lim

δ↘0

(
(δ)
0,t

)3
− 3c(δ)

0,t
(δ)
0,t , (4.11)

where c(δ)
0,t = E

(
(δ)
0,t (0)

)2
, δ denotes some space mollification and the convergence takes

place in C−α for every α > 0. For simplicity, we write k 0,t, k = 1, 2, 3, to denote the
collection of 0,t, 0,t, 0,t. We are only interested in the analytical properties of the
Wick powers k 0,t, k = 1, 2, 3, given by the next proposition.

Proposition 4.5. Let T > 0. For any k = 1, 2, 3, α > 0 and p < ∞ we have

E

[
sup

0≤t≤T

∥∥∥ k 0,t

∥∥∥p

−α

] 1
p

≤ C(4.12)

where the constant C ≡ C(L, T, α, p) does not depend on m, vanishes for T ↘ 0 and
grows at most polynomially in T .

We postpone the proof of this proposition in the appendix, Section 4.C, where we present
an alternative argument in the spirit of [67, Section 5] and [81] using the fact that the
white noise ξ satisfies a spectral gap inequality. Note that we stress the independence of
the constant C on m, which allows us to ensure that m∗ in Theorem 4.1 is independent
of m (in particular, θ in Proposition 4.8 can be chosen independently of m).

We interpret the solution u of (4.1) using the Da Prato–Debussche decomposition (cf.
[25]), namely, we define u0,t := 0,t + v0,t, where v0,t solves(∂t − ∆ +m)v0,t = −v3

0,t − 3v2
t 0,t − 3v0,t 0,t − 0,t + 3ct,∞

(
0,t + v0,t

)
v|t=0 = f,

(4.13)
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and f ∈ C−α0 for α0 > 0 sufficiently small. Let us remark on the constant ct,∞ which
appears on the r.h.s. of (4.13). This is due to the fact that we renormalize the Wick
powers via time dependent constants in order for them to vanish at time t = 0, although
renormalization on the level of the dynamics is done via a time-independent constant
c

(δ)
0,∞ to ensure that the resulting Markov processes is homogeneous in time. In the limit
δ ↘ 0 the difference between the two constants leads to

ct,∞ := 2
∫ ∞

t
H2s(0) ds ≲ t−

β
2 (4.14)

for every β > 0. A crucial ingredient that we use in the sequel is the “coming down from
infinity" for the solution v0,t to (4.13) which we include in the appendix, Section 4.D.
We refer the reader to [25, 91, 111] for details on the global well-posedness of (4.13).

For t ≥ s we also consider the restarted processes k
s,t, k = 1, 2, 3 which are defined via

the solution to (∂t − ∆ +m) s,t =
√

2ξ

s,t|t=s = 0,

and respectively via (4.11) with (δ)
0,t replaced by (δ)

s,t . Note that { k 0,t}t≥0 and { k
s,t}t≥s

are equal in law and { k
s,t}t≥s is independent of { k 0,t}t∈[0,s].

Similarly, we consider vs,t which is defined as the solution to(∂t − ∆ +m)vs,t = −v3
s,t − 3v2

s,t s,t − 3vs,t s,t − s,t + 3ct−s,∞
(

s,t + vs,t

)
vs,t|t=s = us.

Note that all pathwise and stochastic estimates for k 0,t, k = 1, 2, 3, and v0,t extend to
k

s,t, k = 1, 2, 3, and vs,t. Especially, due to the “coming down from infinity" property
pathwise estimates on vs,t do not depend on us.

4.3. Strategy of the proof

In this section we want to give an outline of the proof of Theorem 4.1. By [111, Theorem
4.2] for f ∈ C−α0 we know that

{
uf

0,t

}
t≥0

is a Markov process with uf
0,t|t=0 = f . In

particular, for F ∈ FC∞
b the operator

PtF (f) := E
[
F (uf

0,t)
]

(4.15)

yields a one-parameter semigroup. We denote by D the L2−derivative, i.e. we have

DF (u) =
n∑

i=1
∂iF (u(h1), . . . , u(hn))hi.
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The implicit function theorem implies that the map

f 7→ vf

is differentiable and for any h ∈ C∞ it holds that Jf
0,th := v′

0,t(f).h is a (mild) solution
of the equation(∂t − ∆ +m)Jf

0,th = −3
((
vf

0,t

)2
+ 2vf

0,t 0,t + 0,t

)
Jf

0,th+ 3ct,∞J
f
0,th on R>0 × T2

Jf
0,0h = h.

For a proof we refer to Section 4.F.
By definition, we have uf

0,t = 0,t + vf
0,t and since 0,t does not depend on the initial

condition we can conclude that also f 7→ uf is differentiable, i.e. there exists u′(f) =
v′(f) : X → Y (cf. Section 4.F for the definition of the function spaces X and Y ) such
that

uf+h − uf − u′(f).h = vf+h − vf − v′(f).h = o(‖h‖C−α0 ).

Thus we can compute for any t ≥ 0 and F ∈ FC∞
b using a simple Taylor expansion

PtF (f + h) − PtF (f)

= E
[
F (uf+h

0,t ) − F (uf
0,t)
]

= E

[
n∑

i=1
∂iF (uf

0,t(h1), . . . , uf
0,t(hn))(uf+h

0,t (hi) − uf
0,t(hi))

]
+ o(‖h‖C−α0 )

= E

[
n∑

i=1
∂iF (uf

0,t(h1), . . . , uf
0,t(hn))(v′

0,t(f).h, hi)L2
x

]
+ o(‖h‖C−α0 ).

This shows that f 7→ PtF (f) is differentiable and we have

(PtF )′(f).h = E

[(
DF (uf

0,t), v
′
0,t(f).h

)
L2

x

]
= E

[(
DF (uf

0,t), J
f
0,th

)
L2

x

]
.(4.16)

Moreover, by Proposition 4.11 we see that (PtF )′(f) : L2
x → R is a bounded linear

functional4 and thus there exists DPtF (f) ∈ L2
x such that

(PtF )′(f).h =
∫
T2
DPtF (f)(x)h(x) dx

and in particular

‖DPtF (f)‖L2
x

= sup
‖h‖L2 ≤1

∣∣(PtF )′(f).h
∣∣.(4.17)

4more specifically the extended operator initially defined on the dense subspace C∞
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By (4.16), (4.17) and the Hölder’s inequality in probability for any κ ≥ 0

‖DPtF (f)‖L2
x

= sup
h∈C∞,‖h‖

L2
x

≤1

∣∣(PtF )′(f).h
∣∣

≤ E

[∥∥∥DF (uf
0,t)
∥∥∥q

H−κ
x

] 1
q

(
sup

h∈C∞,‖h‖L2 ≤1
E

[∥∥∥Jf
0,th

∥∥∥p

Hκ
x

]) 1
p

=
(
Pt‖DF‖q

H−κ
x

(f)
) 1

q

 sup
h∈C∞,‖h‖

L2
x

≤1
E

[∥∥∥Jf
0,th

∥∥∥p

Hκ
x

] 1
p

(4.18)

where in the first line we used that C∞ is dense in L2
x. Hence, in order to prove Theo-

rem 4.1 we have to estimate the quantity sup
h∈C∞,‖h‖

L2
x

≤1
E

[∥∥∥Jf
0,th

∥∥∥p

Hκ
x

] 1
p

(4.19)

uniformly in the initial condition f ∈ C−α0 . In order to do this, we will proceed in
three steps. The first step is to prove an L2

x-energy estimate with the drawback that the
implicit constant is random and moreover it is not clear that it is integrable. The second
step – which is our core argument – shows that this constant is indeed integrable and
moreover uniformly in the initial condition. The third step is a post-processing from L2

x

to Hκ
x for any κ < 1.

Before we embark in discussing our intermediate results, let us give the proof of our
main theorem.

Proof of Theorem 4.1. For κ ∈ (0, 1) the assertion follows from combining (4.18) and
Proposition 4.11 below, which provides an estimate on (4.19). For k = 0 we apply
Proposition 4.9. □

4.3.1. L2
x-energy estimate. For s ≤ t and h ∈ C∞ we define Js,th as the solution

to the equation(∂t − ∆ +m)Js,th = −3
(
v2

s,t + 2vs,t s,t + s,t

)
Js,th+ 3ct−s,∞Js,t,

Js,th|t=s = h.
(4.20)

In order to ease notation we will suppress the dependence on the initial condition but
we will always assume that vs,t|t=s = uf

s .

The first step towards bounding (4.19) is a standard energy estimate in order to bound
the L2

x-norm of Js,th with respect to the L2
x-norm of h. From now on, all proofs are

postponed to Section 4.5.
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Proposition 4.6. For all s ≤ t′ ≤ t, m > 0 we have

‖Js,th‖2
L2

x

+
∫ t

t′
e−2m(t−r)+2

∫ t

r
g(s,r′) dr′

‖∇Js,rh‖2
L2

x
dr +

∫ t

t′
e−2m(t−r)+2

∫ t

r
g(s,r′) dr′

‖vs,rJs,rh‖2
L2

x
dr

≤ e−2m(t−t′)+2
∫ t

t′ g(s,r) dr∥∥Js,t′h
∥∥2

L2
x
,

(4.21)

where

g(s, t) := c

(∥∥∥ s,t

∥∥∥2

−α
+
∥∥∥ s,t

∥∥∥ 2
1+α

−α
‖∇vs,t‖

2α
1+α
∞ +

∥∥∥ s,t

∥∥∥ 2
1−α

−α

+
∥∥∥ s,t

∥∥∥
−α

+
∥∥∥ s,t

∥∥∥ 2
2−α

−α
+ ct−s,∞

)
for some deterministic constant c ≡ c(α) < ∞. In particular, we have

‖Js,th‖2
L2

x
≤ e−2m(t−s)+2

∫ t

s
g(s,r) dr‖h‖2

L2
x
.(4.22)

There are some important things we want to remark concerning Proposition 4.6. The
first remark is that if it were not for the singular nature and the renormalization proce-
dure involved the error term g would be zero and hence we would have a clean energy
estimate. The second is that in order to prove Theorem 4.1 with an L2

x-norm on the
r.h.s. it is enough to consider (4.22) but since our goal is to achieve an Hκ

x -estimate it is
crucial to use the additional information coming from (4.21), namely, the estimate on the
gradient of Js,rh and the product vs,rJs,rh. The last and most important thing we want
to remark makes the bridge to our next section. Notice that by Fernique’s theorem the
quantity ‖ s,t‖−α in g(s, t) has Gaussian moments, whereas ‖ s,t‖−α has only exponen-
tial moments. Therefore, the pre-factor on the r.h.s. of (4.21) fails to be stochastically
integrable. To overcome this problem we appeal to a stopping time argument, which we
explain in the next section.

4.3.2. Stopping time argument and L2
x-estimate. In order to bypass the issue

of integrability of e
∫ t

s
g(s,r) dr we appeal to probabilistic arguments inspired by [21]. More

precisely, we restart the Wick powers k , k = 1, 2, 3, each time they exceed a certain
barrier. This allows us to replace g(s, t) by a the length of the time interval times a
deterministic constant times a counting processes N(t), see (4.25) below. By choosing
the length of the time interval small enough we can ensure the exponential integrabillity
of the counting process N(t), see Proposition 4.8. The drawback is the exponential factor
em∗t appearing in Theorem 4.1.
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We define the stopping time

τ̃1 := inf
{
t ≥ 0 : sup

k=1,2,3

∥∥∥ k 0,t

∥∥∥
−α

≥ η

}
and for θ ∈ (0, 1) we set

τ1 := τ̃1 ∧ θ.

The value of η ≡ η(α,L) will be fixed via

sup
θ∈(0,1]

P(τ̃1 ≤ θ) < 1
4
. (4.23)

This is possible due to Markov’s inequality, (4.12) and the fact that θ < 1 since

P(τ̃1 ≤ θ) ≤ P

(
sup

k=1,2,3
sup
t≤θ

∥∥∥ k 0,t

∥∥∥
−α

≥ η

)
≤ P

(
sup

k=1,2,3
sup
t≤1

∥∥∥ k 0,t

∥∥∥
−α

≥ η

)
<

1
4
.

We inductively define a sequence of stopping times for n > 1 via

τ̃n := inf
{
t ≥ τn−1 : sup

k=1,2,3

∥∥∥ k
τn−1,t

∥∥∥
−α

≥ η

}
,

where
{

k
s,t

}
t≥s

denotes the process at time t restarted at time s, and

τn := τn−1 + (τ̃n − τ̃n−1) ∧ θ.

Furthermore, we define the standard filtration of σ-algebras for t > 0

Ft := σ
(
ξ(h) : h ∈ L2

t,x, supph ⊂ (0, t) × T2
)
.

We notice that since σ
(

0,·∧t

)
⊂ Ft and the process t,t+· is independent of 0,·∧t (cf.

[111, Proposition 2.3]), by the strong Markov property for any stopping time τ the
process τ,τ+· is independent of Fτ . Since σ

(
k 0,·∧t

)
⊂ Ft, we have that for any n ≥ 1

τ̃n − τ̃n−1 is independent of Fτ̃n−1

and thus

k
τn,τn+· is independent of Fτn .(4.24)

Let t ≤ τ1. By the definition of τ1 we know that
∥∥∥ k 0,t

∥∥∥
−α

< η for all k = 1, 2, 3. Then
by Proposition 4.6 and Lemma 4.21 for any ε > 0 we have that

‖J0,th‖2
L2

x
≤ e−2mt+2

∫ t

0 g(0,r) dr‖h‖2
L2

x

≤ e
−2mt+2c

(
η2+η

2
1−α +η

2
2−α

)
t+cη

2
1+α

∫ t

0 r
2α

1+α (−1−ε) dr
‖h‖2

L2
x
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≤ e
−2mt+2c

(
t+t

1−α(1+2ε)
1+α

)
‖h‖2

L2
x

for some c ≡ c(α, η) < ∞. For τn−1 ≤ t ≤ τn we have by Proposition 4.6 in the same
manner

∥∥Jτn−1,th
∥∥2

L2
x

≤ e
−2m(t−τn−1)+2c

(
(t−τn−1)+(t−τn−1)

1−α(1+2ε)
1+α

)∥∥Jτn−2,τn−1h
∥∥2

L2
x

and thus by induction we get that

‖J0,th‖2
L2

x
≤ e

−2mt+2c

(
(t−τn−1)

1−α(1+2ε)
1+α +(t−τn−1)+

∑n−1
i=1 (τi−τi−1)

1−α(1+2ε)
1+α +(τi−τi−1)

)
‖h‖2

L2
x
.

From now on we set γ := 1−α(1+2ε)
1+α . By introducing the following counting process

N(t) := inf{n ≥ 1 : τn ≥ t}(4.25)

we furthermore estimate using τi − τi−1 ≤ θ for any t ≥ 0

‖J0,th‖2
L2

x
≤ e−2mt+2cθγN(t)‖h‖2

L2
x
.(4.26)

Remark 4.7. Although we suppressed the dependence on the initial condition f to ease
the notation, we should also point out that our estimates do not depend f . This is
possible because of the “coming down from infinity" property (cf. Section 4.D), which
allows us to ensure that the gradient estimate in Theorem 4.1 is uniform in f .
The above procedure boils down the problem of estimating J0,th to showing exponential
moment forN(t). Since the sequence {τn}n≥1 has independent increments5 we can expect
this provided we choose θ small enough. This is the content of the next proposition, which
is in the core of our argument, therefore we present the proof here.

Proposition 4.8. Let c ≡ c(α, η) > 0 as in (4.26). For all p ≥ 1 there exists θ0 ≡
θ0(α, p, η) ∈ (0, 1) which is independent of m such that for all θ ≤ θ0 and t ≥ 0

E
[
epcθγN(t)

] 1
p ≤ Ce

2 ln 2
θ

t,

where C is a universal constant uniform in L and m.

Proof. Let n ≥ 1. The Markov inequality and (4.24) yield

P(N(t) ≥ n) = P(τn ≤ t) = P

(
n∑

k=1
(τk − τk−1) ≤ t

)

= P
(
e− 2 ln 2

θ

∑n

k=1(τk−τk−1) ≥ e− 2 ln 2
θ

t
)

5at least if conditioned onto Fτn−1
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≤ e
2 ln 2

θ
tE
[
e− 2 ln 2

θ

∑n

k=1(τk−τk−1)
]

= e
2 ln 2

θ
t
(
E
[
e− 2 ln 2

θ
τ1
])n

.(4.27)

Moreover, we estimate

E
[
e− 2 ln 2

θ
τ1
]

≤ e−2 ln 2 + P(τ̃1 ≤ θ) ≤ 1
4

+ P(τ̃1 ≤ θ).(4.28)

which combined with (4.23) yields

E
[
e− 2 ln 2

θ
τ1
]

≤ 1
2
.

Finally, we have by (4.27) that

P(N(t) ≥ n) ≤ 2−ne
2 ln 2

θ
t

and the claim follows by choosing θ0 small enough such that θγ
0 <

ln 2
cp . □

As an immediate consequence of Proposition 4.8 and (4.26) we obtain the following
L2

x-estimate.

Proposition 4.9. For every p ≥ 1 there exists m∗ ≡ m∗(α, p, L) > 0 such that for every
t ≥ 0,

E
[
‖J0,t‖p

L2
x→L2

x

] 1
p ≤ Ce−(m−m∗)t,

for some universal constant C < ∞ which is uniform in m and L.

4.3.3. Upgrade from L2
x to Hκ

x . In this section we upgrade the L2
x-estimate in

Proposition 4.9 to an Hκ
x -estimate.

The first step is to post-process Proposition 4.6 using (4.26).

Corollary 4.10. For every t′ ≤ t we have that

‖J0,th‖2
L2

x
+
∫ t

t′
e−2m(t−s)‖∇J0,sh‖2

L2
x

ds+
∫ t

t′
e−2m(t−s)‖v0,sJ0,sh‖2

L2
x

ds

≤ e−2mt
(
e2cθγN(t′) +

∫ t

t′
e2cθγN(s)g(0, s) ds

)
‖h‖2

L2
x
.(4.29)

We can now upgrade Proposition 4.9 to Hκ
x .

Proposition 4.11. Let κ ∈ (0, 1) and p ≥ 1. For every α < 1−κ
5 there exists m∗ ≡

m∗(α, p, L) > 0 such that

E
[
‖J0,t‖p

L2
x→Hκ

x

] 1
p ≤ C(t ∧ 1)− k+5α

2 e−(m−m∗)t,

for some constant C ≡ C(p, α, κ, L) < ∞ which is uniform in f .

Here we need κ < 1 to ensure the integrability of the exponent when t ↘ 0. Moreover,
we again crucially used the “coming down from infinity" property that ensures that the
bound does not depend on the initial data f .
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4.4. Spectral gap inequalities

In this section we give our main application of the gradient estimate Theorem 4.1. At
the core of the argument lies the celebrated method of Bakry and Émery (cf. [7, 8, 96])
to prove log-Sobolev inequalities as well as spectral gap inequalities.
As was discussed in Section 1.5, by the convexity of the potential it is natural to expect
that (4.1) satisfies a log-Sobolev inequality, but due to the singular nature of the equation
we are only able to prove a spectral gap inequality. At this point we want to mention
that in [72] it was shown that (4.1) does satisfy a log-Sobolev inequality when d =
16 with respect to L2

x. In the following we also want to point out how the required
renormalization procedure obstructs us from proving an log-Sobolev inequality. The
first step is to show the following identity (cf. [9, p. 131, (3.1.21)]), the proof of of which
can be found in the appendix, Section 4.E.

Proposition 4.12. The following identity holds for every t > 0 and F ∈ FC∞
b ,

PtF
2(f) − (PtF (f))2 = 2

∫ t

0
Pt−s

(
‖DPsF‖2

L2
x

)
(f) ds ν-a.s. in f.(4.30)

We are now in position to prove Theorem 4.2 and Corollary 4.3.

Proof of Theorem 4.2 and Corollary 4.3. We apply Theorem 4.1 combined with (4.30)
and the fact that Pt is a Markov semigroup yielding

Pt

(
F 2
)

− (PtF )2 ≲
∫ t

0
(s ∧ 1)−κ−εe−2(m−m∗)s ds Pt‖DF‖2

H−κ
x
.

Finally, choosing m > m∗ and noting that∫ ∞

0
(s ∧ 1)−κ−εe−2(m−m∗)s ds ≲ 1

(m−m∗)1−κ−ε
∨ 1
m−m∗

,

we appeal to ergodicity (cf. [111, p. 1241, Corollary 6.6]) letting t ↗ ∞ to obtain
(4.9). □

4.5. Proof of intermediate statements

In this section we collect the proofs of the intermediate statements missing from the
previous section.

Proof of Proposition 4.6. Testing the equation (4.20) with Js,th yields
1
2
∂t‖Js,th‖2

L2
x

+ ‖∇Js,th‖2
L2

x
+m‖Js,th‖2

L2
x

+ 3‖vs,t(Js,th)‖2
L2

x

= −6
(

s,t, vs,t(Js,th)2
)

L2
x

− 3
(

s,t, (Js,th)2
)

L2
x

+ 3ct−s,∞‖Js,th‖2
L2

x
.(4.31)

6and the equation does not require any renormalization
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We start by estimating
∣∣∣∣( s,t, vs,t(Js,th)2

)
L2

x

∣∣∣∣. To this end, we apply [111, Proposition
A.8] to get ∣∣∣∣( s,t, vs,t(Js,th)2

)
L2

x

∣∣∣∣ ≲ ∥∥∥ s,t

∥∥∥
−α

∥∥∥vs,t(Js,th)2
∥∥∥

Bα
1,1

and then use Proposition A.9 in [111] such that we end up with∥∥∥vs,t(Js,th)2
∥∥∥

Bα
1,1

≲
∥∥∥vs,t(Js,th)2

∥∥∥1−α

L1
x

∥∥∥∇(vs,t(Js,th)2
)∥∥∥α

L1
x

+
∥∥∥vs,t(Js,th)2

∥∥∥
L1

x

.

Moreover, the Cauchy–Schwarz inequality and the chain rule yield∥∥∥vs,t(Js,th)2
∥∥∥1−α

L1
x

∥∥∥∇(vs,t(Js,th)2
)∥∥∥α

L1
x

+
∥∥∥vs,t(Js,th)2

∥∥∥
L1

x

≲ ‖Js,th‖1−α
L2

x
‖vs,t(Js,th)‖1−α

L2
x

∥∥∥(Js,th)2∇vs,t + 2vs,t(Js,th)∇Js,th
∥∥∥α

L1
x

+ ‖Js,th‖L2
x
‖vs,t(Js,th)‖L2

x
.

The Cauchy–Schwarz inequality again implies∥∥∥(Js,th)2∇vs,t + 2vs,t(Js,th)∇Js,th
∥∥∥α

L1
x

≲‖∇vs,t‖α
L∞

x
‖Js,th‖2α

L2
x

+ 2α‖vs,t(Js,th)‖α
L2

x
‖∇Js,th‖α

L2
x
.

Hence we have shown that∣∣∣∣( s,t, vs,t(Js,th)2
)

L2
x

∣∣∣∣ ≲ ∥∥∥ s,t

∥∥∥
−α

‖∇vs,t‖α
L∞

x
‖vs,t(Js,th)‖1−α

L2
x

‖Js,th‖1+α
L2

x

+
∥∥∥ s,t

∥∥∥
−α

‖Js,th‖1−α
L2

x
‖vs,t(Js,th)‖L2

x
‖∇Js,th‖α

L2
x

+
∥∥∥ s,t

∥∥∥
−α

‖Js,th‖L2
x
‖vs,t(Js,th)‖L2

x

= I1 + I2 + I3.

Then we have by Young’s inequality for some λ > 0 to be chosen later

I3 =
∥∥∥ s,t

∥∥∥
−α

‖Js,th‖L2
x
‖vs,t(Js,th)‖L2

x
≤ 1

2λ

∥∥∥ s,t

∥∥∥2

−α
‖Js,th‖2

L2
x

+ λ

2
‖vs,t(Js,th)‖2

L2
x

and

I1 =
∥∥∥ s,t

∥∥∥
−α

‖∇vs,t‖α
L∞

x
‖vs,t(Js,th)‖1−α

L2
x

‖Js,th‖1+α
L2

x

≤ 1 + α

2λ
1+α

2

∥∥∥ s,t

∥∥∥ 2
1+α

−α
‖∇vs,t‖

2α
1+α

L∞
x

‖Js,th‖2
L2

x
+ (1 − α)λ

2
1−α

2
‖vs,t(Js,th)‖2

L2
x

as well as

I2 =
∥∥∥ s,t

∥∥∥
−α

‖Js,th‖1−α
L2

x
‖vs,t(Js,th)‖L2

x
‖∇Js,th‖α

L2
x
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≤ 1
2λ

∥∥∥ s,t

∥∥∥2

−α
‖Js,th‖2(1−α)

L2
x

‖∇Js,th‖2α
L2

x
+ λ

2
‖vs,t(Js,th)‖2

L2
x

≤ 1 − α

2
1

1−αλ
2

1−α

∥∥∥ s,t

∥∥∥ 2
1−α

−α
‖Js,th‖2

L2
x

+ αλ
1
α ‖∇Js,th‖2

L2
x

+ λ

2
‖vs,t(Js,th)‖2

L2
x
.

For the second term on the right hand side of (4.31) we proceed similarly. First of all,
Proposition A.8 in [111] yields∣∣∣∣( s,t, (Js,th)2

)
L2

x

∣∣∣∣ ≤
∥∥∥ s,t

∥∥∥
−α

(
‖Js,th‖2(1−α)

L2
x

‖2(Js,th)∇Js,th‖α
L1

x
+ ‖Js,th‖2

L2
x

)
and hence the Cauchy–Schwarz inequality combined with Young’s inequality with the
same λ > 0 as before yields∣∣∣∣( s,t, (Js,th)2

)
L2

x

∣∣∣∣ ≤2α 2 − α

2λ
2

2−α

∥∥∥ s,t

∥∥∥ 2
2−α

−α
‖Js,th‖2

L2
x

+ αλ
2
α

2
‖∇Js,th‖2

L2
x

+
∥∥∥ s,t

∥∥∥
−α

‖Js,th‖2
L2

x
.

Then we set

g(s, t) := 1
2λ

∥∥∥ s,t

∥∥∥2

−α
+ 1 + α

2λ
1+α

2

∥∥∥ s,t

∥∥∥ 2
1+α

−α
‖∇vs,t‖

2α
1+α

L∞
x

+ 1 − α

2
1

1−αλ
2

1−α

∥∥∥ s,t

∥∥∥ 2
1−α

−α

+
∥∥∥ s,t

∥∥∥
−α

+ 2α 2 − α

2λ
2

2−α

∥∥∥ s,t

∥∥∥ 2
2−α

−α
+ 3ct−s,∞.

By choosing λ small enough, we can absorb some of the terms into ‖∇Js,th‖2
L2

x
respec-

tively ‖vs,t(Js,th)‖2
L2

x
into the right hand side and we end up with the estimate

1
2
∂t‖Js,th‖2

L2
x

+m‖Js,th‖2
L2

x
+ 1

2
‖∇Js,th‖2

L2
x

+ 1
2

‖vs,t(Js,th)‖2
L2

x
≤ g(s, t)‖Js,th‖2

L2
x
.

(4.32)

Then the chain rule combined with (4.32) yields

∂t

(
e2mt−2

∫ t

0 g(s,r) dr‖Js,th‖2
L2

x

)
+ e2mt−2

∫ t

0 g(s,r) dr‖∇Js,th‖2
L2

x

+ e2mt−2
∫ t

0 g(s,r) dr‖vs,t(Js,th)‖2
L2

x
≤ 0.(4.33)

Integrating (4.33) from t′ to t we end up with

‖Js,th‖2
L2

x
+
∫ t

t′
e−2m(t−r)+2

∫ t

r
g(s,r′) dr′

‖∇Js,rh‖2
L2

x
dr

+
∫ t

t′
e−2m(t−r)+2

∫ t

r
g(s,r′) dr′

‖vs,t(Js,rh)‖2
L2

x
dr

≤ e−2m(t−t′)+2
∫ t

t′ g(s,r) dr∥∥Js,t′h
∥∥2

L2
x
.

□
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Proof of Corollary 4.10. The estimate (4.32) yields for s = 0

∂t

(
e2mt‖J0,th‖2

L2
x

)
+ e2mt

(
‖∇J0,t‖2

L2
x

+ ‖v0,tJ0,th‖2
L2

x

)
≤ 2e2mtg(0, t)‖J0,th‖2

L2
x
.

Then we integrate from t′ to t to obtain

‖J0,th‖2
L2

x
+
∫ t

t′
e−2m(t−s)

(
‖∇J0,s‖2

L2
x

+ ‖v0,sJ0,sh‖2
L2

x

)
ds

≤ e−2m(t−t′)∥∥J0,t′h
∥∥2

L2
x

+ 2
∫ t

t′
e−2m(t−s)g(0, s)‖J0,sh‖2

L2
x

ds.

Applying (4.26) to
∥∥J0,t′h

∥∥2
L2

x
respectively to ‖J0,sh‖2

L2
x

yields the assertion. □

Proof of Proposition 4.11. First of all, Duhamel’s formula yields

J0,th = S t
2
J0, t

2
h− 3

∫ t

t
2

St−s

{(
v2

0,s + 2v0,s 0,s + 0,s − cs,∞
)
J0,sh

}
ds

= I1 + I2 + I3 + I4 + I5.

Then we estimate I1 according to∥∥∥S t
2
J0, t

2
h
∥∥∥

Bκ
2,2

(4.15)
≲ (t ∧ 1)− κ

2 e−m t
2

∥∥∥J0, t
2
h
∥∥∥

L2
x

(4.26)
≲ (t ∧ 1)− κ

2 e−mt+CθγN( t
2 )‖h‖L2

x
.

For I2 we further estimate∫ t

t
2

∥∥∥St−s

(
v2

0,sJ0,sh
)∥∥∥

Bκ
2,2

ds
(4.15)
≲

∫ t

t
2

((t− s) ∧ 1)− κ
2 e−m(t−s)

∥∥∥v2
0,sJ0,sh

∥∥∥
L2

x

ds

≲
∫ t

t
2

((t− s) ∧ 1)− κ
2 ‖v0,s‖L∞

x
e−m(t−s)‖v0,sJ0,sh‖L2

x
ds

≲
(∫ t

t
2

((t− s) ∧ 1)−κ‖v0,s‖2
L∞

x
ds
) 1

2
(∫ t

t
2

e−2m(t−s)‖v0,sJ0,sh‖2
L2

x
ds
) 1

2

(4.29)
≲

(∫ t

t
2

((t− s) ∧ 1)−κ‖v0,s‖2
L∞

x
ds
) 1

2

e−mt

(
e2cθγN( t

2 ) +
∫ t

t
2

e2cθγN(s)g(0, s) ds
) 1

2

‖h‖L2
x
,

where we used again Hölder’s inequality in the third step.
Estimating I3 yields∫ t

t
2

∥∥∥St−s

(
v0,s 0,sJ0,sh

)∥∥∥
Bκ

2,2
ds

(4.15)
≲

∫ t

t
2

((t− s) ∧ 1)− κ+α
2 e−m(t−s)

∥∥∥v0,s 0,sJ0,sh
∥∥∥

B−α
2,2

ds

(4.16),(4.17),(4.14)
≲

∫ t

t
2

((t− s) ∧ 1)− κ+α
2 ‖ 0,s‖−α‖v0,s‖2αe

−m(t−s)‖J0,sh‖B1
2,2

ds



106 4. THE ϕ4
2-MODEL

≲
(∫ t

t
2

((t− s) ∧ 1)−κ−α‖ 0,s‖2
−α‖v0,s‖2

2α ds
) 1

2
(∫ t

t
2

e−2m(t−s)‖J0,sh‖2
B1

2,2
ds
) 1

2

(4.29)
≲

(∫ t

t
2

((t− s) ∧ 1)−κ−α‖ 0,s‖2
−α‖v0,s‖2

2α ds
) 1

2

× e−mt

(
e2cθγN( t

2 ) +
∫ t

t
2

e2cθγN(s)g(0, s) ds
) 1

2

‖h‖L2
x

≲ sup
0≤s≤t

∥∥∥ 0,s

∥∥∥
−α

(∫ t

t
2

((t− s) ∧ 1)−κ−α‖v0,s‖2
2α ds

) 1
2

× e−mt

(
e2cθγN( t

2 ) +
∫ t

t
2

e2cθγN(s)g(0, s) ds
) 1

2

‖h‖L2
x
,

using Hölder’s inequality in the third step.
The term I4 is estimated via∫ t

t
2

∥∥∥St−s

(
0,sJ0,sh

)∥∥∥
Bκ

2,2
ds

(4.15)
≲

∫ t

t
2

((t− s) ∧ 1)− κ+α
2 e−m(t−s)

∥∥∥ 0,sJ0,sh
∥∥∥

B−α
2,2

ds

(4.17),(4.14)
≲

∫ t

t
2

((t− s) ∧ 1)− κ+α
2
∥∥∥ 0,s

∥∥∥
−α
e−m(t−s)‖J0,sh‖B1

2,2
ds

≲
(∫ t

t
2

((t− s) ∧ 1)−κ−α
∥∥∥ 0,s

∥∥∥2

−α
ds
) 1

2
(∫ t

t
2

e−2m(t−s)‖J0,sh‖2
B1

2,2
ds
) 1

2

(4.29)
≲

(∫ t

t
2

((t− s) ∧ 1)−κ−α
∥∥∥ 0,s

∥∥∥2

−α
ds
) 1

2

× e−mt

(
e2cθγN( t

2 ) +
∫ t

t
2

e2cθγN(s)g(0, s) ds
) 1

2

‖h‖L2
x

≲ sup
0≤s≤t

∥∥∥ 0,s

∥∥∥
−α

(∫ t

t
2

((t− s) ∧ 1)−κ−α ds
) 1

2

× e−mt

(
e2cθγN( t

2 ) +
∫ t

t
2

e2cθγN(s)g(0, s) ds
) 1

2

‖h‖L2
x
,

where again we have used Hölder’s inequality in the third step.
Finally, we estimate I5∫ t

t
2

‖St−scs,∞J0,sh‖Bκ
2,2

ds
(4.15)
≲

∫ t

t
2

s− β
2 e−m(t−s)‖J0,sh‖B1

2,2
ds
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≲
(∫ t

t
2

s−β ds
) 1

2
(∫ t

t
2

e−2m(t−s)‖J0,sh‖2
L2

x
ds
) 1

2

(4.29)
≲

(∫ t

t
2

s−β ds
) 1

2

e−mt

(
e2cθγN( t

2 ) +
∫ t

t
2

e2cθγN(s)g(0, s) ds
) 1

2

‖h‖L2
x
,

where we have used Hölder’s inequality in the second step.
Then we use monotonicity of t 7→ N(t) to infer∫ t

t
2

e2cθγN(s)g(0, s) ds ≤ e2cθγN(t)
∫ t

t
2

g(0, s) ds

which all in all yields

‖J0,th‖Bκ
2,2

≲ e−mt+CθγN(t)
(

1 +
∫ t

t
2

g(0, s) ds
)

‖h‖L2
x

×
(

(t ∧ 1)− κ
2 +

(∫ t

t
2

((t− s) ∧ 1)−κ‖v0,s‖2
L∞

x
ds
) 1

2

+ sup
0≤s≤t

∥∥∥ 0,s

∥∥∥
−α

(∫ t

t
2

((t− s) ∧ 1)−κ−α‖v0,s‖2
2α ds

) 1
2

+ sup
0≤s≤t

∥∥∥ 0,s

∥∥∥
−α

(∫ t

t
2

((t− s) ∧ 1)−κ−α ds
) 1

2

+
(∫ t

t
2

s−β ds
) 1

2)
.

Using the definition of g we see that∫ t

t
2

g(0, s) ds ≲ t sup
0≤s≤t

∥∥∥ 0,s

∥∥∥
−α

+ sup
0≤s≤t

∥∥∥ 0,s

∥∥∥ 2
1+α

−α

∫ t

t
2

‖∇v0,s‖
2α

1+α

L∞
x

ds+ t sup
0≤s≤t

∥∥∥ 0,s

∥∥∥ 2
1−α

−α

+ t sup
0≤s≤t

∥∥∥ 0,s

∥∥∥ 2
2−α

−α
+ t1−β

and for any p ≥ 1 we can estimate∫ t

t
2

E

[
‖∇v0,s‖

2αp
1+α

L∞
x

] 1
p

ds
(4.21)
≲

∫ t

t
2

s− (1+β)2α
1+α ds ≲ t1− (1+β)2α

1+α .

Moreover, by Proposition 4.5 for every p < ∞ there exists r > 0 such that

E

[
sup

0≤s≤t

∥∥∥ 0,s

∥∥∥p

−α

] 1
p

≲ (1 + t)r,(4.34)

E

[
sup

0≤s≤t

∥∥∥ 0,s

∥∥∥p

−α

] 1
p

≲ (1 + t)r.(4.35)
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Any positive power of t can brutally be bounded by Cσe
σt for σ > 0, thus we have for

any p ≥ 1

E

[(∫ t

t
2

g(0, s) ds
)p] 1

p

≲ eσt

where we implicitly used Hölder’s inequality in expectation.
Also, again for any p ≥ 1 we have(∫ t

t
2

((t− s) ∧ 1)−κ
E
[
‖v0,s‖p

L∞
x

] 2
p ds

) 1
2 (4.20)

≲
(∫ t

t
2

((t− s) ∧ 1)−κs−1−α ds
) 1

2

≲ (t ∧ 1)− κ+α
2

and similarly (∫ t

t
2

((t− s) ∧ 1)−κ−α
E[‖v0,s‖p

2α]
2
p ds

) 1
2 (4.20)

≲ (t ∧ 1)− κ+5α
2 .

Dividing by ‖h‖L2
x
, taking the supremum and using (4.34), (4.35) and (4.8), we conclude

that

E
[
‖J0,t‖p

L2
x→Hκ

x

] 1
p ≲α,κ,L (t ∧ 1)− κ+5α

2 e−(m−10σ− 2 ln 2
θ )t,

where we have used Hölder’s inequality in probability repeatedly. □



Appendix

4.A. Estimate on the renormalization constant

Proposition 4.13. The following estimate holds for any β ∈ (0, 1) and t > 0,

ct,∞ = 2
∫ ∞

t
dsH2s(0) ≲β t

− β
2 .

Proof. By a simple computation in Fourier space we have that

ct,∞ =
∑

k∈Z2

e−t(m+|k|2)

m+ |k|2
.

Noticing that e−t(m+|k|2) ≲γ
t− β

2

(m+|k|2)
β
2

for any β ∈ (0, 1) we get the assertion since the

sum
∑

k 6=0
1

|k|2+β is finite. □

4.B. Besov-norm estimates

Lemma 4.14 ([112, p. 308, (A.2)]). Let α ≤ β and p, q ≥ 1, then we have

‖f‖Bα
p,q

≤ ‖f‖Bβ
p,q
.

Lemma 4.15 ([112, p. 309, Proposition A.5]). Let α ≤ β and p, q ≥ 1, then it holds
that

‖Stf‖Bβ
p,q

≲ e−mt(t ∧ 1)
α−β

2 ‖f‖Bα
p,q

where St denotes the semigroup generated by ∆ −m for m ≥ 0.

Lemma 4.16 ([111, p. 309, Proposition A.6]). Let α ≥ 0 and p, q ≥ 1, then

‖fg‖Bα
p,q

≲ ‖f‖Bα
p1,q1

‖g‖Bα
p2,q2

where 1
p = 1

p1
+ 1

p2
as well as 1

q = 1
q1

+ 1
q2

.

Lemma 4.17 ([111, p. 309, Proposition A.7]). Let α < 0 and β > 0 such that α+β > 0
and p, q ≥ 1, then

‖fg‖Bα
p,q

≲ ‖f‖Bα
p1,q1

‖g‖Bβ
p2,q2

where 1
p = 1

p1
+ 1

p2
and 1

q = 1
q1

+ 1
q2

.
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4.C. Stochastic estimates

In this section we provide an alternative argument for the stochastic estimates in Propo-
sition 4.5 using the spectral gap inequality (4.36) for the noise ξ in the spirit of [67,
Section 5] and [81].
Let F be cylindrical in ξ, i.e. there is n ∈ N, F ∈ C∞

c (Rn,R) and h1, . . . , hn ∈ L2
t,x such

that F (ξ) = F (ξ(h1), . . . , ξ(hn)). Since ξ is Gaussian it satisfies the following spectral
gap inequality (cf. [36, p. 652, Proposition 4.1])

E
[
|F (ξ) − E[F (ξ)]|2

]
≤ E

[∥∥∥∥ ∂∂ξF (ξ)
∥∥∥∥2

L2
t,x

]
(4.36)

where ∂
∂ξ denotes the Malliavin derivative with respect to the noise ξ. This in turn can

be used to construct the singular products as follows.

Proof of Proposition 4.5. For simplicity we assume that the noise ξ is smooth. By the
spectral gap inequality (4.36) we know that for nice enough functionals Π[ξ] and p ≥ 2
there holds

E
1
p |Π[ξ] − EΠ[ξ]|p ≲p E

1
p

∥∥∥∥ ∂∂ξΠ[ξ]
∥∥∥∥p

L2
t,x

.

By duality, an estimate of the form∣∣∣∣E ∂

∂ξ
Π[ξ](δξ)

∣∣∣∣ ≤ C E
1
q ‖δξ‖q

L2
t,x

(4.37)

for any δξ : Ω → L2
t,x

7, where q ∈ [1, 2] is the dual exponent of p, implies

E
1
p

∥∥∥∥ ∂∂ξΠ[ξ]
∥∥∥∥p

L2
t,x

≤ C.

For t > 0 and x ∈ T2 we consider Πt(x) ∈
{

0,t(x), 0,t(x), 0,t(x)
}

, where

0,t(x) := 2
0,t(x) − c0,t, 0,t(x) := 3

0,t(x) − 3c0,t 0,t(x),

for c0,t = E 0,t(0)2. We treat Πt(x) ≡ Πt[z](x) as a functional of ξ and aim to prove the
following stochastic estimates (replacing x by 0 using stationarity) which are uniform in
m,

E
1
p |Πtλ(0)|p ≲ λ−|Π|α√

t
|Π|α

,(4.38)

E
1
p |(Πt+r − Πt)λ(0)|p ≲ λ−(|Π|+1)α√

r
α√

t+ r
|Π|α(4.39)

for every α ∈ (0, 1
|Π|+1), where |Π| = 1, 2, 3 for Π = , , respectively and (·)λ denotes

convolution with a suitable semigroup ψλ. By a Kolmogorov-type continuity criterion,

7where Ω denotes the underline probability space
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see for [91, Lemma 10], we then obtain (4.12). It is important to stress the uniformity of
our estimates in m which allows us to ensure that m∗ in Theorem 4.1 does not depend on
m8. This will be obvious in what follows except (4.52) where one should pay attention
on how the power on

√
r is chosen.

For δξ ∈ Lq
ωL

2
t,x we let δ 0,t(x) := ∂

∂ξ 0,t(δξ) =
∫ t

0 dsHt−s ∗ δξ(s, x) and consider δΠt ∈
{δ 0,t, δ 0,t 0,t, δ 0,t 0,t}. As in [81], in order to prove (4.38) and (4.39) we appeal to
duality and derive the following estimates for the Malliavin derivative of Πt,

E
1
q′ |δΠtλ(0)|q

′ ≲ λ−|Π|α√
t
|Π|α∥∥∥E 1

q |δξ|q
∥∥∥

L2
t,x

,(4.40)

E
1
q′ |(δΠt+r − δΠt)λ(0)|q

′ ≲ λ−(|Π|+1)α√
r

α√
t+ r

|Π|α∥∥∥E 1
q |δξ|q

∥∥∥
L2

t,x

,(4.41)

for all q′ < q < 2. Note that in (4.40) and (4.41) we ask for an estimate of the Lq′
ω -norm

by the L2
t,xL

q
ω-norm which is stronger than the Lq

ωL
2
t,x-norm for q < 2, therefore implying

the dual estimate (4.37). As in [81] estimating the Lq′
ω -norm for all q′ < q < 2 allows us

to proceed inductively, namely, in order to derive the dual estimate for δ 0,t we need
the stronger estimate on δ 0,t and similarly for δ 0,t.

To this end, we denote by w the L2
t,xL

q
ω-norm on the r.h.s. of (4.40) and (4.41) and

introduce another scaling parameter Λ, coming from (·)Λ. We estimate commutators of
the form

([δΠ, (·)λ]Πλ)Λ(0) =
∫

dxψΛ(−x)
∫

dy ψλ(y)(δΠ(x− y) − δΠ(x))Πλ(x− y).

Using the Cauchy–Schwarz inequality in the x-variable we have9

E
1
q′
∣∣∣([δ 0,t, (·)λ

]
Πλ

)
Λ

(0)
∣∣∣q′

= E
1
q′

∣∣∣∣∫ dxψΛ(−x)
∫

dyψλ(y)(δΠ(x− y) − δΠ(x))Πλ(x− y)
∣∣∣∣q′

≤
∫

dx|ψλ(y)|‖ψΛ‖L2

∥∥∥E 1
q |δΠ(x− y) − δΠ(x)|q

∥∥∥
L2

x

E
1
p |Πλ(0)|p. (4.42)

For (4.40) we let δΠ = δ t and Π ∈ { 0,t, 0,t}. Using the interpolation inequality
Lemma 4.18 and the Cauchy-Schwarz inequality in the s-variable we see that∥∥∥E 1

q

∣∣∣δ 0,t(x− y) − δ 0,t(x)
∣∣∣q∥∥∥

L2
x

≤
∫ t

0
ds
∫

dz |Ht−s(z − y) −Ht−s(z)|
∥∥∥E 1

q |δξ|q
∥∥∥

L2
x

≤ |y|1−α
(∫ t

0
ds e−2m(t−s)(t− s)−1+α

) 1
2
w

8or equivalently θ in Proposition 4.5 does not depend on m
9Here p ≥ 2 satisfies 1

q′ = 1
q

+ 1
p

.
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≤ |y|1−α
√
t
α
w,(4.43)

for all α ∈ (0, 1) uniformly in m. Combining (4.42) and (4.43) yields

E
1
q′
∣∣∣([δ 0,t, (·)λ

]
Πλ

)
Λ

(0)
∣∣∣q′

≲ Λ−1λ1−α
√
t
α
E

1
p |Πλ(0)|pw.(4.44)

Using (4.38) and the dyadic summation identity(
[δΠ, (·)λ]Π

)
Λ =

∑
k≥1

λ′= λ

2k

(
[δΠ, (·)λ′ ](Π)λ′ ]

)
Λ+λ−2λ′ ,

we obtain via (4.44)

E
1
q′
∣∣∣([δ 0,t, (·)λ

]
Π
)

Λ
(0)
∣∣∣q′

≲ Λ−1λ1−|Π|α√
t
|Π|α

w.

A simple post-processing of the last estimate choosing Λ ∼ λ gives

E
1
q′ |(δ 0,tΠ)λ(0)|q′ ≲ λ−|Π|α√

t
|Π|α

w, (4.45)

therefore yielding (4.40).

For (4.41) we write δ 0,t+rΠt+r − δ 0,tΠt = δ 0,t+r(Πt+r − Πt) + Πt

(
δ 0,t+r − δ 0,t

)
and

use (4.42) for the pairs δΠ = δ 0,t+r, Π = Πt+r − Πt and δΠ = δ 0,t+r − δ t, Π = Πt.
For the first pair we apply (4.44) to get

E
1
q′
∣∣∣([δ 0,t+r, (·)λ

]
(Πt+r − Πt)λ

)
Λ

(0)
∣∣∣q′

≲ Λ−1λ1−α
√
t+ r

α
E

1
p |(Πt+r − Πt)λ(0)|pw.

Plugging in (4.39) for Πt ∈ { 0,t, 0,t} and proceeding as for (4.45) yields

E
1
q′
∣∣∣(δ 0,t+r(Πt+r − Πt)

)
λ
(0)
∣∣∣q′

≲ λ−(|Π|+2)α√
r

α√
t+ r

(|Π|+1)α
w. (4.46)

For the second pair, abbreviating δΠt,t+r := δ 0,t+r − δ 0,t, (4.42) implies

E
1
q′
∣∣∣([δ 0,t+r − δ 0,t, (·)λ

]
Πtλ

)
Λ

(0)
∣∣∣q′

≤
∫

dx|ψλ(y)|‖ψΛ‖L2

∥∥∥E 1
q |δΠt,t+r(x− y) − δΠt,t+r(x)|q

∥∥∥
L2

x

E
1
p |Πtλ(0)|p.(4.47)

We use the following estimate∥∥∥E 1
q |δΠt,t+r(x− y) − δΠt,t+r(x)|q

∥∥∥
L2

x

≲ |y|1−2α√
r

α√
t+ r

α
w(4.48)

for every α ∈ (0, 1
2), which itself is an interpolation10 of the two estimates∥∥∥E 1

q |δΠt,t+r(x− y) − δΠt,t+r(x)|q
∥∥∥

L2
x

≲ |y|1−β
√
t+ r

β
w,(4.49) ∥∥∥E 1

q |δΠt,t+r(x− y) − δΠt,t+r(x)|q
∥∥∥

L2
x

≲
√
r

1−β√
t+ r

β
w,(4.50)

10using β = α and α
1−α

+ 1−2α
1−α
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for every β ∈ (0, 1). Estimate (4.49) follows along the same lines as (4.43) using the
triangle inequality. For (4.50) using again the triangle inequality, translation invariance
and the semigroup property in the form

δ 0,t+r(x) =
∫

dz e−mrH̃r(z)δ 0,t(x− z) +
∫ t+r

t
dsHt−s ∗ δξ(s, x)︸ ︷︷ ︸

=:δ t,t+r

,

where H̃r stands for the massless heat kernel, we observe∥∥∥E 1
q |δΠt,t+r(x− y) − δΠt,t+r(x)|q

∥∥∥
L2

x

≤ 2
∥∥∥E 1

q

∣∣∣δ 0,t+r − δ 0,t

∣∣∣q∥∥∥
L2

x

≲
∫

dz Hr(z)
∥∥∥E 1

q

∣∣∣δ 0,t(· − z) − δ 0,t

∣∣∣q∥∥∥
L2

x

+ |e−mr − 1|
∥∥∥E 1

q

∣∣∣δ 0,t

∣∣∣q∥∥∥
L2

x

+
∥∥∥E 1

q

∣∣∣δ t,t+r

∣∣∣q∥∥∥
L2

x

=: I1 + I2 + I3.

For I1 using (4.43) we obtain∫
dz Hr(z)

∥∥∥E 1
q

∣∣∣δ 0,t(· − z) − δ 0,t

∣∣∣q∥∥∥
L2

x

≲
√
r

1−β√
t
β
w ≲

√
r

1−β√
t+ r

β
w.

To estimate I2 we use Young’s inequality for convolution, the Cauchy–Schwarz inequality
in the s-variable and the Hölder’s inequality again in the s-variable to treat the integral
of the exponential yielding∥∥∥E 1

q

∣∣∣δ 0,t

∣∣∣q∥∥∥
L2

x

≤
∫ t

0
ds ‖Ht−s‖L1

x

∥∥∥E 1
q |δξ|q

∥∥∥
L2

x

≤
(∫ t

0
ds e−2m(t−s)

) 1
2
(∫ t

0
ds
∥∥∥E 1

q |δξ|q
∥∥∥2

L2
x

) 1
2
≲ 1

√
m

1−β

√
t
β
w(4.51)

for every β ∈ [0, 1). This in turn implies the estimate

|e−mr − 1|
∥∥∥E 1

q

∣∣∣δ 0,t

∣∣∣q∥∥∥
L2

x

≲ |e−mr − 1| 1
√
m

1−β

√
t
β
w ≲

√
r

1−β√
t+ r

β
w, (4.52)

where the implicit constant is uniform in m. To estimate I3 we use (4.51) for β = 0 and
a change of variables in s which leads to∥∥∥E 1

q

∣∣∣δ t,t+r

∣∣∣q∥∥∥
L2

x

≲
√
r w ≲

√
r

1−β√
t+ r

β
w.

In total, (4.47) and (4.48) imply the estimate

E
1
q′
∣∣∣([δ 0,t+r − δ 0,t, (·)λ

]
Πtλ

)
Λ

(0)
∣∣∣q′

≲ Λ−1λ1−2α√
r

α√
t+ r

α
E

1
p |Πtλ(0)|pw.

Plugging in (4.38) for Πt ∈ { 0,t, 0,t} and proceeding as in (4.46) gives

E
1
q′
∣∣∣((δ 0,t+r − δ 0,t)Πt

)
λ
(0)
∣∣∣q′

≲ λ−(|Π|+2)α√
r

α√
t+ r

(|Π|+1)α
w. (4.53)
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Combining (4.46) and (4.53) implies (4.41). □

Lemma 4.18. For all α ∈ (0, 1) the following estimate holds∫
dz |Ht−s(z − y) −Ht−s(z)| ≲ e−m(t−s)|y|α

√
t− s

−α
.

Proof. Interpolating the two estimates∫
dz |Ht−s(z − y) −Ht−s(z)| ≤ 2‖Ht−s‖L1

x
= 2e−m(t−s)

and ∫
dz |Ht−s(z − y) −Ht−s(z)| ≤ ‖∇Ht−s‖L1

x
|y| ≤ e−m(t−s)√t− s

−1|y|

yields the assertion. □

4.D. Estimates on the remainder

Lemma 4.19. Let α > 0 be sufficiently small. For every p < ∞

sup
t≤1

t
1
2 ‖v0,t‖Lp

x
≤ C,

where C depends polynomially on supt≤1 ‖ k 0,t‖C−α for k = 1, 2, 3 and is uniform in the
initial condition f . In particular, C has finite moments of every order.

Proof. Follows from [111, Proposition 3.7]. The constant ct,∞ in Proposition 4.13 can
be absorbed into the terms 0,t and 0,t which together with Proposition 4.13 yield

sup
t≤1

tα
′‖ 0,t − ct,∞‖−α ≲ sup

t≤1
‖ 0,t‖C−α ,

sup
t≤1

tα
′‖ 0,t − 3ct,∞ 0,t‖−α ≲ max

k=1,3
sup
t≤1

‖ k 0,t‖C−α ,

for any α′ > 0, allowing us to apply [111, Proposition 3.7]. □

Lemma 4.20. Let α > 0 be sufficiently small. Then for every κ > 0 sufficiently small
the following estimate holds

sup
t≤1

t
1
2 +κ‖v0,t‖κ ≤ C,

where C ≡ depends polynomially on supt≤1 ‖ k 0,t‖−α for k = 1, 2, 3 and is uniform in
the initial condition f .

Proof. The statement follows essentially from the proof of Lemma 5.1 for s = t
2 in [112]

working with 0,t, 0,t−ct,∞, 0,t−3ct,∞ 0,t as we explained in the proof of Lemma 4.19.
The terms I6 and I7 in the notation of [112, proof of Lemma 5.1] can be ignored. □
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Lemma 4.21. Let α > 0 be sufficiently small. Then for any ε > 0 the following estimate
holds

sup
t≤1

t1+ε‖∇v0,t‖L∞
x

≤ C,

where C depends polynomially on supt≤1 ‖ k 0,t‖−α for k = 1, 2, 3 and is uniform in the
initial condition f .

Proof. To ease the notation we set η := maxk=1,2,3 supt≤1 ‖ k 0,t‖−α. By Duhamel’s
formula, we have

‖∇v0,t‖L∞
x

≤
∥∥∥∇H t

2
∗ v0, t

2

∥∥∥
L∞

x

+
3∑

k=0

∫ t

t
2

∥∥∥∇Ht−r ∗
(

k 0,rv
3−k
0,r

)∥∥∥
L∞

x

dr

+ 3
∫ t

t
2

cr,∞
∥∥∥∇Ht−r ∗

(
0,r + v0,r

)∥∥∥
L∞

x

dr.

Note in the following that Bε
∞,∞(T2) = Cε ↪→ L∞

x continuously for any ε > 0. Then,
first of all, by Young’s inequality and (4.19), we have∥∥∥∇H t

2
∗ v0, t

2

∥∥∥
L∞

x

≤
∥∥∥∇H t

2

∥∥∥
Lp′

x

∥∥∥v0, t
2

∥∥∥
Lp

x

≲ t
− 1

2 − 1
p t−

1
2 = t−1−ε

for p large enough. In the same vain, using (4.19) and p large enough yields∫ t

t
2

∥∥∥∇Ht−r ∗ v3
0,r

∥∥∥
L∞

x

dr ≤
∫ t

t
2

‖∇Ht−r‖
Lp′

x

∥∥∥v3
0,r

∥∥∥
Lp

x

dr =
∫ t

t
2

‖∇Ht−r‖
Lp′

x
‖v0,r‖3

L3p
x

dr

≤
∫ t

t
2

(t− r)− 1
2 − 1

p r− 3
2 dr ≲ t−1−ε.

Moreover, using the semigroup property of the heat kernel and Young’s inequality again
we note ∫ t

t
2

∥∥∥∇Ht−r ∗ 0,r

∥∥∥
L∞

x

dr =
∫ t

t
2

∥∥∥∇H t−r
2

∗H t−r
2

∗ 0,r

∥∥∥
L∞

x

dr

≤
∫ t

t
2

∥∥∥∇H t−r
2

∥∥∥
L1

x

∥∥∥H t−r
2

∗ 0,r

∥∥∥
L∞

x

dr.

Moreover, by Lemma 4.15 we conclude∫ t

t
2

∥∥∥∇Ht−r ∗ 0,r

∥∥∥
L∞

x

dr ≲
∫ t

t
2

(t− r)− 1
2 (t− r)−α−ε dr ≲ ηt

1
2 −α−ε.

Similarly, using (4.20) and Lemma 4.15 we end up with∫ t

t
2

∥∥∥∇Ht−r ∗
(
v2

0,r 0,r

)∥∥∥
L∞

x

dr ≤
∫ t

t
2

(t− r)− 1
2 −α−ε

∥∥∥v2
0,r 0,r

∥∥∥
−α

dr

≤
∫ t

t
2

(t− r)− 1
2 −α−ε

∥∥∥v2
0,r

∥∥∥
2α

∥∥∥ 0,r

∥∥∥
−α

dr
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≲ η

∫ t

t
2

(t− r)− 1
2 −α−εr−1−2α dr ≲ ηt−

1
2 −3α−ε

and in the same vain∫ t

t
2

∥∥∥∇Ht−r ∗
(
v0,r 0,r

)∥∥∥
L∞

x

dr ≲
∫ t

t
2

(t− r)− 1
2 −α−ε

∥∥∥v0,r 0,r

∥∥∥
−α

dr

≲ η

∫ t

t
2

(t− r)− 1
2 −α−εr− 1

2 −α dr ≲ ηt−2α−ε.

Finally, using Lemma 4.15, (4.20) and (4.13) we get∫ t

t
2

cr,∞
∥∥∥ 0,r + v0,r

∥∥∥
L∞

x

dr ≲
∫ t

t
2

(t− r)− 1
2 −α−εr−γ

∥∥∥v0,r + 0,r

∥∥∥
−α

dr

≲ ηt−2α−2ε.

□

4.E. Proof of the Bakry–Émery identity

In [105] it was proved that

E(F, F ) :=
∫

S′(T2)
‖DF‖2

L2
x

dν

where F ∈ FC∞
b is closable (see also [3]) and the closure gives rise to a quasi-regular

Dirichlet form (cf. [84]), hence to a generator L with domain D(L) ⊂ D(E) such that

E(F, F ) = −
∫

S′(T2)
FLF dν.

We denote by {P̃t}t≥0 the associated semi-group. Then, by [105, Theorem 3.13], we infer
that PtF = P̃tF ν-almost surely for all F ∈ FC∞

b and hence by continuity in time they
are indistinguishable (see also [71, p. 67]). Moreover, by [105, Theorem 3.7] (and the
discussion thereafter) K := C∞(T2) ⊂ L2(T2) is a a dense and linear subspace consisting
of ν-admissible elements. Hence assumptions (C.1), (C.2) and (C.3) of [3, Section 4] are
fulfilled. Moreover, f 7→ PtF (f) is quasi-continuous for any F ∈ FC∞

b . Now we can
prove Proposition 4.12.

Proof of Proposition 4.12. Following [72, Proof of Theorem 1.1] we prove the ν-a.s. iden-
tity

d
ds
Pt−s(PsF )2 = −2Pt−s

(
‖DPsF‖2

L2
x

)
.

and use the same notation. Let 0 ≤ r1, r2 ≤ t and define H(r1, r2) := Pt−r1(Pr2F )2.
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By [3, p. 364, Theorem 4.3] and since Pr2F ∈ D(E) it holds that

Pr2F (uf
r ) − Pr2F (f) =

∫ r

0
L(Pr2F )(uf

s ) ds+Mr

where M is a continuous martingale.
Moreover, by [3, p. 365, Proposition 4.5] the quadratic variation of M is given by

〈M〉r =
∫ r

0

∥∥∥DPr2F (uf
s )
∥∥∥2

L2
x

ds

Then by Itô’s formula [103, p. 222, Theorem 3.3] we compute

(Pr2F )2(uf
r ) = (Pr2F )2(f) + 2

∫ r

0
Pr2F (uf

s ) dMs + 2
∫ r

0
Pr2F (uf

s )L(Pr2F )(uf
s ) ds

+ 2
∫ r

0
‖DPr2F (uf

s )‖2
L2

x
ds

and hence

Pt−r1(Pr2F )2(f) = (Pr2F )2(f) + 2
∫ t−r1

0
Ps(Pr2FLPr2F )(f) ds

+ 2
∫ t−r1

0
Ps‖DPr2F‖2

L2
x
(f) ds.

Then we see that on the one hand
∂

∂r1
Pt−r1(Pr2F )2(f) = −2Pt−r1(Pr2FLPr2F )(f) − 2Pt−r1‖DPr2F‖2

L2
x
(f)

and on the other hand we have
∂

∂r2
Pt−r1(Pr2F )2(f) = 2Pt−r1(Pr2FLPr2F )(f).

Continuity follows in the same vain as in [72, Proof of Theorem 1.1]. Finally, we have
d
ds
Pt−s(PsF )2 = ∂

∂r1
Pt−r1(Pr2F )2(f)

∣∣∣
r1=r2=s

+ ∂

∂r2
Pt−r1(Pr2F )2(f)

∣∣∣
r1=r2=s

= −2Pt−r1‖DPr2F‖2
L2

x
(f).

Integrating from 0 to t proves the claim. □

4.F. Differentiability with respect to the initial data

We set

G(f, v)(t) := S(t)f +
∫ t

0
S(t− s)F (vs) ds− vt

where F (vt) := −
(
v3

t + 3v2
t t + 3vt t + t − ct,∞(vt + t)

)
. By [111, Theorem 3.9]

there exist fixed parameters γ, β > 0 such that for any f∗ ∈ C−α0 and T > 0 we can
find a unique solution v∗ to (4.13) satisfying G(f∗, v∗)(t) = 0, for every 0 ≤ t ≤ T , and
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sup0≤t≤T (t ∧ 1)γ‖v∗
t ‖β < ∞. We define

X :=
{
f ∈ C−α0 : ‖f‖−α0

≤ R
}
, Y :=

{
v : [0, T ] → Cβ : sup

0≤t≤T ∧T ∗
tγ‖vt‖β ≤ 1

}
for some T ∗ to be chosen below. Then again by [111, Theorem 3.9] we know that
G(f∗, v∗)(t) = 0, for every 0 ≤ t ≤ T ∧ T ∗. It is easy to check that G is Frechét-
differentiable and we have

Gv(f∗, v∗)δv(t) =
∫ t

0
S(t− s)

(
F ′(vs)δvs

)
ds− δvt =: (K − Id)δvt

where F ′(vt)δvt := −3
(
v2

t + 2vt t + t − ct,∞
)
δvt. A simple calculation shows that

‖Kδvt‖β ≲
∫ t

0
(t− s)− α+β

2 s−γ‖δvs‖β ds ≲ (T ∧ T ∗)1− α+β
2 −γ sup

0≤t≤T ∗∧T ′
tγ‖δvt‖β.

Choosing T ∗ small enough such that the r.h.s. above is strictly smaller than 1 we get
by the Neumann-series criterion that Gv(f∗, v∗) : Y → Y is a bijection. Hence by [120,
Theorem 4.E] we get that f 7→ vf is differentiable and its derivative in h is a mild
solution to (4.20) on (0, T ∧ T∗]. Concatenating this argument to cover the whole time
interval (0, T ] proves the assertion.
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