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Abstract. Yangian symmetric correlators can be constructed by the action of Yang-Baxter
R operators on trivial basic correlators. The example of a four-point correlator is given in two
representations and the construction of the completely connected N point correlator is described.
The helicity representation is dicussed and the relation of the four-point correlator to tree-level
scattering amplitudes is shown.

1. Spin chains with g`n symmetry
Let us first formulate the representations used as the quantum space at a site of the chain
(compare [15]). Jordan-Schwinger type (JS) representations are based on the Heisenberg algebra,
i.e. on n canonically conjugated pairs,

[pa, xb] = δab, a, b,= 1, .., n. (1)

Generators of g`n representations can be built, e.g. as

L+
ab = paxb, or L−ab = −xapb (2)

and functions of xa are the elements of the representation space. The two representations L± are
dual to each other. If we distinguish the variables in one of the representations by the notation
ya, then the duality can be formulated as

[L+
x,ab + L−y,ab, (xy)] = 0, (xy) =

n∑
1

xaya. (3)

The representation in terms of functions of xa decomposes into the ones of definite degree of
homogeneity,

(xp) · ψ(x) = 2`ψ(x). (4)

Such a representation can also be described by functions of n − 1 coordinate ratios, e.g.
x′a = xa

xn
, a = 1, ...n− 1.

ψ(x) = x2`n φ(x′), Lx · ψ(x) = x2`n L(x′,2`) φ(x′).

The matrix elements of L(x′,2`) generate a lowest weight representation with the constant
representing the lowest weight vector. For generic values of 2` all polynomials in x′a form
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an irreducible representation. For the special values of non-negative integer 2` the lowest weight
modul is finite-dimensional.

We use the basic ingredients of the Quantum Inverse Scattering Method (QISM) [1, 2, 3, 4, 5].
The generators of JS representations enter the L operators depending on a spectral parameter.

L+(u) = I(u) + L+ = I(u) + p⊗ x, L−(u) = Iu+ L− = I(u)− x⊗ p. (5)

In general, if Lab generate a representation of g`n on V then the L matrix operator,
L(u) = Iu + Lab, acting on the tensor product of this space with the one of the fundamental
representation,V ⊗ Vf , obeys the fundamental Yang-Baxter (YB) relation,

R12(u− v)L(u)⊗ L(v) = L(v)⊗ L(u)R12(u− v),

Rab,ef (u− v) Lec(u) Lfd(v) = Lbf (v) Lae(u)Ref,cd(u− v), (6)

with the n2 × n2 matrix R12(u) = I + P12 involving the permutation in Vf ⊗ Vf . The simple
form of the L± operators of JS type (5) allows to derive easily the following relations:

• elementary canonical transform defined as C−1(x,p)C = (p,−x) :

C−1L+(u)C = L−(u) (7)

• matrix transposition: (
L+(u)

)t
= −L−(−u− 1) (8)

• operator transposition:
L+T (u) = −L+(−1− u) (9)

• inversion: (
L+(u)

u

)−1
=

L+(−u− 1− (xp))

−u− 1− (xp)
(10)

• basic actions:
L+(u) · 1 = (u+ 1)I · 1, L−(u) · 1 = uI · 1

L+(u) · δ(x) = uI · δ(x), L−(u) · δ(x) = (u+ 1)I · δ(x). (11)

Now we consider the representations and operators referring to the entire chain of N sites. The
fundamental Yang-Baxter relation (6) is not only equivalent to the Lie algebra relation but can
serve also as the starting point to formulate the related co-algebra, i.e. the underlying structures
of the tensor product representations.

The monodromy matrix is defined as acting on V1 ⊗ V2... ⊗ VN ⊗ Vf and constructed from
the matrix product of the corresponding L operators.

Tσ
1,...,N (u) = Lσ11 (u1)...L

σ1
N (uN ), σ = (σ1, ...σN ), u = (u1, ...uN ). (12)

It is well known that the monodromy matrices obey the fundamental YB relation, i.e. the
relation (6) with L(u) substituted by T(u).

We need still another kind of YB operators, called general because they act on the tensor
product of generic representations, in our case with JS type generators acting on functions of
the coordinate components. These general YB operators appear as product of two factors. The
basic factor can be derived from the L operators by considering a YB relation in the following
form as the defining condition,

Rσ1,σ2
12 (u1 − u2)Lσ11 (u1)L

σ2
2 (u2) = Lσ11 (u2)L

σ2
2 (u1)R

σ1,σ2
12 (u1 − u2). (13)
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Here L1 and L2 act on variables x1 and x2, respectively, i.e. on the tensor product of generic
representations. They enter the relation in matrix product (unlike the fundamental YB relation
where their tensor product enters). We find the explicit solutions

R+−
12 (u) = (x1x2)

u, (14)

R++
12 (u) =

∫
dc

c1+u
e−c(x1p2). (15)

If the action is restricted to homogeneous functions of degree 2`1 and 2`2, repectively,

ψ(λ1x1, λ2x2) = λ2`11 λ2`22 ψ(x1,x2), (16)

then additional YB relations can be written,

Rσ2,σ1
21 (uσ11 − u

σ2
2 )Lσ11 (u1)L

σ2
2 (u2) = Lσ11 (u1)L

σ2
2 (u2)R

σ2,σ1
21 (uσ11 − u

σ2
2 ). (17)

These are obtained form the above ones by using the inversion relation (10) obeyed by the L
matrix operators and replacing the operators of dilatations (xi,pi) by their eigenvalues 2`i. Here
and in the following we use the notations u+i = ui + 2`i, u

−
i = ui − 2`i − n.

Now the general Yang-Baxter operator is the product of both of the above two types,

R12(u1, u
σ1
1 , u2, u

σ2
2 ) = P12R

σ1,σ2
12 (u1 − u2)Rσ2,σ1

21 (uσ11 − u
σ2
2 ).

P12 denotes the operator of permutation of the tensor factors in V1⊗V2. The corresponding YB
relation reads

R12(u1, u
σ1
1 , u2, u

σ2
2 )Lσ11 (u1)L

σ2
2 (u2) = Lσ22 (u2)L

σ1
1 (u1)R12(u1, u

σ1
1 , u2, u

σ2
2 ). (18)

The restriction to particular degrees of homogeneity (16) is assumed.

2. Yangian symmetric correlators
We study the matrix-operator eigenvalue condition with the monodromy operators (12) for
functions of N points in a space of n dimensions,

Tσ
1,...,N (u)Φ = E(u)I Φ, (19)

and define [16] : N point Yangian symmetric correlators Φ = Φ(x1, ...,xN ) are homogeneous
eigenfunctions of the matrix operator T(u).

Each n-dimensional point xi, i = 1, ..., N , is marked with a spectral parameter ui, a dilatation
weight 2`i and a signature σi.

The notion of Yangian algebras has been introduced in [6]. Its relation to the QISM has been
explained in [7]. The Yangian symmetry of scattering amplitudes was understood on the basis
of [8, 9].

Symmetric correlators can be generated by R operators [17]. If Φ(1, .., N ;σ,u) is a solution
of the monodromy eigenvalue relation (19) then also

R
σi,σi+1

i,i+1 (ui − ui+1) · Φ(1, 2, .., N ;σ,u) and R
σi+1,σi
i+1,i (uσii − u

σi+1

i+1 ) · Φ(1, 2, .., N ;σ,u) (20)

obey (19) with parameter permutations.
The Yang-Baxter RLL relations (13, 17) allow to permute the R operators acting on

cyclically adjacent points and having particular arguments with the monodromy operator. The
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modification of the monodromy operator and the appropriate argument of R can be read off
from the parameter permutation rules [14] :

Rσ1,σ2
12 (u1 − u2) : (u1, u

σ
1 , u2, u

σ
2 , ..., uN , u

σ
N )→ (u2, u

σ
1 , u1, u

σ
2 ..., uN , u

σ
N ),

Rσ2,σ1
21 (uσ1 − uσ2 ) : (u1, u

σ
1 , u2, u

σ
2 , ..., uN , u

σ
N )→ (u1, u

σ
2 , u2, u

σ
1 ..., uN , u

σ
N ). (21)

The generation of non-trivial solutions can be started from (trivial) basic correlators.

Ω(σ) =
∏

j:σj=−
δ(xj), TσT

1,...,N (u) Ω(σo) =
N∏
1

(ui +
1

2
(1 + σT,iσo,i))I Ω(σo)

We resort to two standard signature configurations

• regular case : σ0 = (+,+, ...,+), Ω = 1,

• uniform case : σT = (+,+, ...,+), ΩI,J =
∏
i∈I δ(xi).

Signature cases can be related by elementary canonical transformation C acting uniformly
on the components of the site variables xs,a, ps,a, s = 1, ..., n, a = 1, ...N , C−1(xs,a,ps,a)C =
(ps,a,−xs,a).

Let us construct an example of a 4-point correlator in both representations: In the uniform
case we have

R++
32 (u+2 − u

+
3 )R++

12 (u4 − u2)R++
34 (u3 − u1)R++

14 (u1 − u4)δ(x2)δ(x4)

= Φ+−+−(u2, u
+
1 , u4, u

+
3 , u1, u

+
2 , u3, u

+
4 ) =∫

dc23dc21dc43dc41

c1+u2−u3−n32 c1+u4−u221 c1+u3−u143 c1+u1−u441

δ(x2 − c23x3 − c21x1)δ(x4 − c41x1 − c43x3). (22)

In the regular case we have

R+−
32 (u+2 − u

+
3 )R+−

12 (u4 − u2)R+−
34 (u3 − u1)R+−

14 (u1 − u4) · 1 =

(x3x2)
u2−u3−n(x1x2)

u4−u2(x3x4)
u3−u1(x1x4)

u1−u4 .

The expression is an eigenfunction of the monodromy with the spectral parameters permuted
to (u2, u4, u1, u3).

3. The generic N point correlator
We consider the particular signature configuration −... − +...+ and use the uniform
representation

ΩN,K =

K∏
1

δ(xi) = Φ0(u1, u1 − n; ...uK , uK − n;uK+1, uK+1; ...;uN , uN ). (23)

The last notation shows the spectral parameters us as in the monodromy operator and also their
combination with the weights u+s . As shown above the action of R operators is accompanied by
parameter permutations and writing the resulting parameter configuration allows easily to fix
the arguments of the R operators such that the result is a symmetric correlator.

Each R++
ji operation brings in an integration over cij . The completely connected correlator of

interest involves K× (N−K) integrations, there is an integral with the variable cij for each pair
of sites i, j of different signature. The integration variables can be regarded as the elements of a
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K× (N −K) matrix ĉ and are related to the points of the Grassmannian GN,K . The integration
contour lies in the maximal Schubert cell.

MN,K =

∫
dK(N−K)c φ(c) δ(Ĉx), (24)

dK(N−K)c = dN−Kc1...d
N−KcN , d

N−Kci = dci,K+1...dci,N ,

Ĉ = (IK×K ,−ĉ) , δ(Ĉx) =
K∏
1

δ(n)(xi −
N∑

j=K+1

cijxj).

We shall see how the symmetry condition (19) fixes φ.
This symmetric correlator can be obtained by a K(N−K)-fold R operator action on the basic

one (23) in several ways. We indicate as a standard way for N ≥ 2K the following procedure.

MN,K = ΦK(u1, uK+1; ...;uK , u2K ; ...;uN−K+1, u
+
1 ; ...;uN , u

+
K), (25)

where ΦK is the result of R operators action in the Kth step starting from the basic correlator
(23). The first step is the action by N −K R operators

RN,N−1(u
+
1 − uN )...RK+2,K+1(u

+
1 − uK+2)RK+1,1(u

+
1 − uK+1)Φ0 =

Φ1(u1, uK+1; ...;uK , u
+
K ;uK+1, uK+2; ...;uN , u

+
1 ) =∫

dc11,K+1dc
1
K+1,K+2...dc

1
N−1,N

(c11,K+1)
1+u+1 −uK+1(c1K+1,K+2)

1+u+1 −uK+2 ...(c1N−1,N )1+u
+
1 −uN

δ

(
x1 − c11,K+1xK+1 +

N∑
K+2

(−1)K+jc1K+1,K+2...c
1
j−1,j xj

)
K∏
2

δ(xi).

We observe that the u+ parameters of the sites 1,K+1,K+1, ...N are shifted cyclically leaving
the ones at 2, ...K untouched. At the Lth step the action is by

RN,N−1(u
+
L − vN )...RK+2,K+1(u

+
L − vK+2)RK+1,L(u+L − vK+1),

where vK+1, ..., vN is the sequence of u+ parameters appearing at the step L − 1 at the sites
K + 1, ..., N . The action produces the cyclic shift of the sequence of u+ parameters at the sites
L,K + 1, ...N leaving the sites 1, ..., L− 1, L+ 1, ...K untouched.

By these R actions a completely connected correlator is generated, i.e. there are links between
all pairs of sites with different signature. We consider the details for the case K = 2 where

MN,2 = Φ2(u1, u3;u2, u4;u3, u5; ...;uN−1, u1 − n;uN , u2 − n) =∫
dc11,3dc

1
3,4...dc

1
N−1,N

N1

dc22,3dc
2
3,4...dc

2
N−1,N

N2
×

δ(x1 − c11,3x3 +

N∑
4

(−1)jS
(1,2)
3,j xj)δ(x2 − c22,3x3 +

N∑
4

(−1)jc23,4...c
2
j−1,j xj),

N1 = (c11,3)
1+u+1 −u3(c13,4)

1+u+1 −u4 ...(c1N−1,N )1+u
+
1 −uN ,

N2 = (c22,3)
1+u+2 −u4(c13,4)

1+u+2 −u5 ...(c1N−1,N )1+u
+
2 −u

+
1 . (26)
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In the general case we end up with

MN,K =

∫
dN−Kc1

N1
...

∫
dN−KcK

NK
×

δ(x1 −
N−K∑

1

(−1)jS1,K
K+1,K+jxK+j)...δ(xK −

N−K∑
1

(−1)jSK,KK+1,K+jxK+j), (27)

where
dN−KcL = dcLL,K+1dc

L
K+1,K+2...dc

L
N−1,N ,

NL = (cLL,K+1)
1+u+L−uK+L(cLK+1,K+2)

1+u+L−uK+L+1 ...

...(cLK−L,K−L+1)
1+u+L−uN (cLK−L+1,K−L+2)

1+u+L−u
+
1 ...(cLN−1,N )1+u

+
L−u

+
L−1 .

It is convenient to define S
(i0,i)
j0,j

for 1 ≤ i0 < i ≤ K < j0 < j ≤ N as a sum of products of the

integration variables cLj1−1,j1 entering by the action of Rj1,j1−1 at the Lth step, i0 ≤ L ≤ i by
the following iteration

S
(i0,i)
j0,j

= S
(i0,i)
j0,j−1c

i
j−1,j + S

(i0,i−1)
j0,j

(28)

S
(i,i)
j0,j

= cii,j0c
i
j0,j0+1...c

i
j−1,j , S

(i0,i)
j0,j0

= ciij0 .

The second relation results in

cij−1,j =
S
(i,i)
j0,j

S
(i,i)
j0,j−1

,

and then the frist relation can be solved as

S
(i0,i−1)
j0,j

=

∣∣∣∣∣Si,ij0,j−1 Si,ij0,j
Si0,ij0,j−1 Si0,ij0,j

∣∣∣∣∣ 1

Si,ij0,j−1
.

We shall transform the integral (27) with respect to cij−1,j into the link form (24) where the

integration variables are ci,j = (−1)jSi,KK+1,K+j .
In the case K = 2 we have to consider

S
(2,2)
3,j = c23,4...c

2
j−1,j , S

(1,1)
3,j = c13,4...c

1
j−1,j , S

(1,2)
3,4 = c134 + c234,

S
(1,2)
3,j = S

(1,2)
3,j−1c

2
j−1,j + c13,4...c

1
j−1,j .

Comparing the R operator expression with the expected maximal cell link integral expression
(24) we see that the link variables c2j , c1j , j > 3 have to be proportional correspondingly to

S
(2,2)
3,j and S

(1,2)
3,j . Therefore we find the expression of the R operation variables in terms of these

sums.

c2j−1,j =
S
(2,2)
3,j

S
(2,2)
3,j−1

, c1j−1,j =
S
(1,1)
3,j

S
(1,1)
3,j−1

, S
(1,2)
3,j = S

(1,2)
3,j−1c

2
j−1,j + S

(1,1)
3,j ,

S
(1,1)
3,j =

1

S
(2,2)
3,j−1

∣∣∣∣∣S
(2,2)
3,j−1 S

(1,2)
3,j−1

S
(2,2)
3,j S

(1,2)
3,j .

∣∣∣∣∣
We identify the link variables cij , i = 1, 2; j = 3, ..., N .

c13 = c11,3, c14 = −c11,3S
(12)
34 = −c113(c134 + c234), c1j = (−1)j+1c113S

(1,2)
3j
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c23 = c22,3, c24 = −c21,3S
(2,2)
34 = −c213c234, c2j = (−1)j+1c223S

(2,2)
3j .

Now we can relate the expressions Si,23j with the link variables.

S
(1,2)
3j = (−1)j+1 c1j

c13
, S

(2,2)
3j = (−1)j+1 c2j

c23
.

Finally we express the original R integration variables in terms of the link variables.

c223 = c23, c
2
j−1,j = − c2,j

c2,j−1
, j ≥ 4. (29)

c113 = c13, c
1
j−1,j =

S
(1,1)
3,j

S
(1,1)
3,j−1

. (30)

We substitute the result for S
(11)
3j in terms of S

(i2)
3j and obtain

c1j−1,j = −c2,j−2
c2,j−1

∣∣∣∣c2,j−1 c1,j−1
c2,j c1,j

∣∣∣∣∣∣∣∣c2,j−2 c1,j−2
c2,j−1 c1,j−1

∣∣∣∣ .
The last expression works well for j ≥ 5. For j = 4 one finds the correct result with the
substitution c22 = 1, c12 = 0.

We calculate the denominator of the integrand in MN,2.

N2 = c
1+u+2 −u4
23

(
c24
c23

)1+u+2 −u5
...

(
c2,N−1
c2,N−2

)1+u+2 −uN ( c2N
c2,N−1

)1+u+2 −u
+
1

=

cu5−u423 cu6−u524 ...c
u+1 −uN
2,N−1 c

1+u+2 −u
+
1

2N ,

N1 = c
1+u+1 −u3
13

(
m4

c23c13

)1+u+1 −u4 (c23m5

c24m4

)1+u+1 −u5
...

...

(
c2,n2mN−1
c2,N−2mN2

)1+u+1 −uN−1
(

c2,N−2mN

c2,N−1mN−1

)1+u+1 −uN
=

cu4−u313 mu5−u4
4 ...m

uN−uN−1

N−1 m
1+u+1 −uN
N cu4−u523 cu5−u624 ...c

uN−1−uN
2,N−2 c

−1+uN−u+1
2,N1

.

Here we have abbreviated the determinants

mj =

∣∣∣∣c2,j−1 c1,j−1
c2,j c1,j

∣∣∣∣ , j ≥ 4.

The result for the integrands denominator is

N1N2 = cu4−u313 mu5−u4
4 ...m

uN−uN−1

N−1 m
1+u+1 −uN
N c−12,N−1c

1+u+2 −u
+
1

2N .

Still the transformation is incomplete, the Jacobian must be taken into account. Consider first
the factor in the Jacobian

∂(c223c
2
34...)

∂(c23c24...)
.
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The matrix comes out triangualar by using (29) and the product of the diagonal elements is

N∏
3

∂c2j
∂c2j−1,j

=
1

c23c24...c2N
.

The triangularity simplifies the calculation also in

∂(c113c
1
34...)

∂(c13c14...)
.

Using (30) we see that it equals to

∏ ∂c1j−1,j
∂c1j

=
1

c13

c23
m4

...
c2,N−2
mN−1

.

The Jacobian of the transformation to the link integration is the product of the above partial
Jacobians due to trangularity.

∂(c113c
1
34...c

1
N−1,Nc

2
23c

2
34...c

2
N−1,N )

∂(c13c14...c1Nc23c24...c2,N
=

1

c2,N−1c14

1

m4...mN−1
.

We obtain the completely connected symmetric correlator for K = 2 in form of the maximal cell
link integral.

MN,2 =

∫
dc11,3dc

1
3,4...dc

1
N−1,Ndc

2
2,3dc

2
3,4...dc

2
N−1,N

(c1,3)1+u4−u3(34)1+u5−u4 ...(N − 1, N)1+u
+
1 −uN c1+u2−u12N

×

δ(x1 −
N∑
3

c1j xj)δ(x2 −
N∑
3

c2j xj). (31)

Here (j − 1, j) = mj denotes the minor of the matrix Ĉ of the columns j − 1, j,

Ĉ =

(
1 0 −c13 ... −c1N
0 1 −c23 ... −c2N

)
.

The transformation can be done for general K relying on the iterative relation (28). The result
can be written as (24) with

φ(c) = (2, ...,K + 1)−1−uK+2+uK+1(3, ...,K + 2)−1−uK+3+uK+2 ...(N −K, ..., N − 1)−1−uN+uN−1

(N −K + 1, ..., N)−1−u
+
1 +uN (N −K + 2, ..., N, 1)−1−u

+
2 +u+1 ...(N, 1...,K − 1)−1−u

+
K+u+K−1 . (32)

The factors are powers of the subsequent K ×K minors of the rectangular matrix Ĉ (24).
In application to scattering amplitudes the special case of this form without parameters

was proposed in [10] and used extensively in the related literature. The parameter dependent
expression has been discussed recently in [13].

The result is by construction an eigenfunction of the monodromy T (u1, u2, ..., uN ). The action
of the R operators has resulted in permutations of the weight dependent parameters u+i ; the
resulting configuration can be characterized by the permutation(

u1 u2 ... uK uK+1 ... uN−K uN−K+1 ... uN
uK+1 uK+2 ... u2K u2K+1 ... uN u1 − n ... uK − n

)
.
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The values of v+i are on the second row and the weights attributed to the points are calculated
as 2`i = v+i − ui.

In the case K = 2 we have the list of weights and exponents as

2`1 = u3 − u1, 2`2 = u4 − u2, ..., 2`i = ui+2 − ui, ...2`N−2 = uN − uN−2,

2`N−1 = u1 − n− uN−1, 2`N = u2 − n− uN ,

α3 = u4−u3, α4 = u5−u4, ..., αi = ui+1−ui, ..., αN1 = uN−uN−1, α1 = u1−n−u1, α2 = u2−u1.

The weights are not independent, in any case

N∑
s=1

2`s = −2n.

The weights do not fix all the N spectral parameters, e.g. uN is independent. In the case of
even N = 2M there are actually two relations,

M∑
k=1

2`2k = −n,
M∑
k=1

2`2k−1 = −n.

Therefore the weights fix only N − 2 of the spectral parameters, e.g. uN and uN−1 are free.
Thus for even N the exponents of the minors in the final result (31) involve besides of the N −2
independent weights the extra parameter uN − uN−1. The particular case with N = 4 will be
discussed below.

4. Scattering amplitudes
For applications to scattering amplitudes we introduce a further kind of representation. It is
obtained from the uniform representation by partial canonical transformations after dividing the

index set labelling the components at each site. s = 1, ..., n→ ·
α = 1, ..., p; α = p+ 1, ..., n. The

elementary canonical transformation is applied to the dotted components only as C−1(x ·
α
,p ·

α
)C.

The matrix in the L operator splits into blocks transforming in different ways as

p⊗ x =

(
p ·
α
x ·
α

p ·
α
xα

pαx ·α pαxα

)
→
(−x ·

α
p ·
α
−x ·

α
xα

pαp ·α pαxα

)
.

We reconsider the basic symmetry condition (19). By expansion of T (u + ∆) we obtain at the
N − 1st power of ∆ the well known result that the sums over the chain sites of the off-diagonal
g`n generators annihilate the symmetric correlator. In this way the conserved quantities of the
global chain symmetry are expressed.

In the helicity representation a part of the off-diagonal operators (the ones in the upper right
block in L ) acts multiplicatively on functions of the coordinate variables:

N∑
s=1

k
s,
·
α,α

Φ = 0, k
s,
·
α,α

= x
s,
·
α
xs,α.

If k
s,
·
α,α

are the components of the momenta of scattering particles the particular conservation

law is just the energy-momemtum conservation. It works for massless particles where the mass-
shell condition is the one for the factorisability. We recall that a light-like four vector can be
represented by the product of Weyl spinor components of left and right chirality. In the following
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we rename the coordinate components introducing different symbols for the ones in the two index
ranges, λ̄ ·

α
and λα. We conclude that a generic Yangian symmetric correlator in the helicity

representation appears with the delta distribution as a factor expressing this conservation law.

Φ(λ̄1, λ1, ..., λ̄N , λN ) = δ(

N∑
1

k
s,
·
α,α

)× φ(λ̄1, λ1, ..., λ̄N , λN ). (33)

In this representation the scalar product becomes

(x1p2)→ (λ1π2)− (π̄1λ̄2)

and the action of the R operator has the form

R++
12 (u)F (λ̄

1,
·
α
, λ1,α, λ̄2, ·α, λ2,α) =

∫
dc

c1+u
F (λ̄

1,
·
α

+ cλ̄
2,
·
α
, λ1,α, λ̄2, ·α, λ2,α − cλ1,α).

We consider the transformation of the dilatation operator from the uniform to the helicity
representation

(xi · pi)→ λi,α
∂

∂λi,α
− λ̄

i,
·
α

∂

∂λ̄
i,
·
α

− 2.

The helicity of a scattering particle state hi is calculated as one half of the difference of the
weights in λ and λ̄, therefore

2`i = 2hi − 2. (34)

On the other hand we have 2`i = v+i − vi for the weights of a correlator
Φ(v1, v

+
1 ; v2, v

+
2 , ..., vN , v

+
N ). Thus a part of the spectral parameter dependence can be expressed

in terms of the particle helicities.
We return to the example of a 4-point correlator (22) and study its application to 2 → 2

scattering. We put the parameters back to the standard ordering.

Φ(u1, u
+
1 ;u2, u

+
2 ;u3, u

+
3 , u4, u

+
4 ) =

R32(u
+
2 − u

+
3 )R12(u2 − u1)R34(u4 − u3)R14(u3 − u2) δ(x2)δ(x4) =∫

dc23dc21dc43dc41

c1+u1−u4−n23 c1+u2−u121 cu4−u343 cu3−u241

×

δ(λ̄1 + c41λ̄4 + c21λ̄2)δ(λ̄3 + c43λ̄4 + c23λ̄2)δ(λ2 − c21λ1 − c23λ3)δ(λ4 − c41λ1 − c43λ3),

u+1 = u3, u
+
2 = u4, u

+
3 = u1 − n, u+4 = u2 − n. (35)

Now we specify to the case n = 4, p = 2. We shall transform to the form (33) following [11].
We count 8 delta distributions. We intend to transform the expression in such a way that the 4
deltas of the energy momentum conservation appear explicitly and the remaining 4 are used to
do the 4 link integrals. First we address the 4 linear equations related to the deltas involving λ
components.

λ2 − c21λ1 − c23λ3 = λ′2, λ4 − c41λ̄1 − c43λ3 = λ′4. (36)

We do projections by performing (antisymmetric) spinor products,

< 1, 2 >=< λ1, λ2 >= λ1,1λ2,2 − λ1,2λ2,1.
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Note the difference to the above products (3) denoted by ordinary brackets (..., ...) which are
defined in the euclidean way. The conditions (36) with λ′2 = λ′4 = 0 are solved by

c∗21 =
< 2, 3 >

< 1, 3 >
, c∗23 =

< 2, 1 >

< 3, 1 >
, c∗41 =

< 4, 3 >

< 1, 3 >
, c∗43 =

< 4, 1 >

< 3, 1 >
,

and the Jacobi determinant of the transformation λ′2,α, λ
′
4,α → c21, c23, c41, c43 is

∂(λ′2,1λ
′
2,2)

∂(c21, c23)

∂(λ′4,1λ
′
4,2)

∂(c41, c43)
=< 1, 3 >2 .

In this way we have obtained

δ(λ2−c21λ1−c23λ3)δ(λ4−c41λ1−c43λ3) =< 1, 3 >−2 δ(c21−c∗21)δ(c23−c∗23)δ(c41−c∗41)δ(c43−c∗43).

The deltas involving λ̄ components can be transformed by multiplying the matrix of the involved
equations

C̃ =

(
1 c21 0 c41
0 c23 1 c43

)
from the left by a 2× 2 matrix A taking into account the appropriate Jacobian. We choose this
matrix in such a way that

A C̃ =

(
λ1,1 λ2,1 λ3,1 λ4,1
λ1,2 λ2,2 λ3,2 λ4,2

)
.

It works indeed with

A =

(
λ1,1 λ3,1
λ2,1 λ3,2

)
,

if we substitute simultaneously the link variables ci,j by the solutions c∗i,j obtained above.
We observe that the Jacobi determinant is the inverse of the one in the first transformation.

Finally all factors of < 1, 3 > cancel. We obtain the form (33) in our case.

Φ(u1, u
+
1 ;u2, u

+
2 ;u3, u

+
3 , u4, u

+
4 ) = δ(4)(

4∑
1

λi,αλ̄i, ·α) φ(λ, λ̄),

φ(λ, λ̄) =
< 1, 2 >4

< 1, 2 >1+u1−u4< 2, 3 >1+u2−u1< 4, 1 >1+u4−u3< 3, 4 >1+u3−u2 .

We reconsider the relations for the spectral parameters (35) and calculate the scaling weights
as 2`i = u+i − ui,

2`1 = u3 − u1, 2`2 = u4 − u2, 2`3 = u1 − n− u3, 2`4 = u2 − n− u4. (37)

We see that they are pairwise connected, 2`1 = −2`3−n, 2`2 = −2`4−n. The relation between
the weights implies for the helicities (n = 4) h1 = −h3, h2 = −h4. The obtained expression
implies the spinor-helicity expressions of 2→ 2 helicity amplitudes of several cases by appropriate
choices of the helicity values, h = ±1,±1

2 , 0.
We can substitute the spectral parameters partially by the helicities.

φ(λ, λ̄) =

(
< 2, 3 >< 4, 1 >

< 1, 2 >< 3, 4 >

)u3−u4−1 < 1, 2 >2h1< 3, 4 >−2h2

< 2, 3 >2h1−2h2

The amplitude contributions still involve u3 − u4 as a free parameter. The parameter extension
of amplitudes has been proposed in [12]. The analytic structure expected from physical unitarity
(dispersion relations) must be used to fix it.
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